Session | ||
TOM13 S16: Ultrafast: High harmonic generation and XUV science 2
| ||
Presentations | ||
11:15 - 11:30
ID: 321 / TOM13 S16: 1 TOM 13 Ultrafast Optical Technologies and Applications A new tool for measuring ultrashort laser pulses directly on-target during high-intensity laser-matter interactions 1Imperial College London, United Kingdom; 2Faculty of Sciences, University of Porto, Portugal; 3Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany; 4Sphere Ultrafast Photonics, Porto, Portugal We present a new technique for the temporal measurement of intense ultrashort laser pulses directly on target and at full laser power. The setup can be easily added to an existing beamline, providing pulse characterisation at the sample location. This allows pulse optimization and meaningful comparison with theory, while revealing potential pulse distortions occurring in or on the target. We demonstrate the technique by measuring intense 4-fs pulses in conditions optimized for high-harmonic generation and show that it enables measuring pulses at extreme relativistic intensities presently inaccessible to other diagnostics. 11:30 - 11:45
ID: 342 / TOM13 S16: 2 TOM 13 Ultrafast Optical Technologies and Applications Controlling the focusing properties of attosecond XUV beams 1Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (ILM), rue A. Byron, 69622 Villeurbanne, France; 2Université de Bordeaux, CNRS, CEA, Centre Laser Intenses et Applications (CELIA), 43 rue P. Noailles, 33400 Talence, France; 3ELI Beamlines Centre, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic; 4Czech Technical University in Prague – Faculty of Nuclear Sciences and Physical Engineering, Jugoslávských partyzánů 1580/3, 160 00 Praha 6, Czech Republic By controlling high order harmonic generation in gases and characterizing the XUV beams properties, we observe that high order harmonics are usually not all focused at the same longitudinal position. We show that this focusing can be modified by controling the XUV wavefront directly in the generating medium and achieve optics free focusing of the attosecond XUV beam with micrometer size of the XUV foci. We use this effect to perform broad band XUV spectral filtering with high efficiency and without temporal stretching of the attosecond pulses. 11:45 - 12:15
Invited ID: 146 / TOM13 S16: 3 TOM 13 Ultrafast Optical Technologies and Applications 13 mW average power ultrafast HHG source 1Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.; 2Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.; 3Active Fiber Systems GmbH, Ernst-Ruska-Ring 17, 07745 Jena, Germany.; 4Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany. In this contribution, a novel class of extreme ultraviolet (XUV) sources based on high-harmonic-generation (HHG) is presented. The source realized in this work is driven by a frequency doubled and post compressed Yb-fiber laser system, delivering 51μJ, 18.6fs pulses at a central wavelength of 515nm and a repetition rate of 1MHz. Employing this unique laser system for HHG, results in a record high XUV average power of 12.9mW in a single harmonic line at 26.5eV with sub-6fs pulse duration – surpassing previously reported HHG sources by one order of magnitude. 12:15 - 12:30
ID: 443 / TOM13 S16: 4 TOM 13 Ultrafast Optical Technologies and Applications Broadband UV-Vis frequency combs from high-harmonic generation in quasi-phase-matched waveguides 1Stony Brook University, USA; 2National Institute of Standards and Technology, USA; 3Dept. of Physics, University of Colorado, Boulder We report efficient, phase-coherent high-harmonic generation in chirped periodically poled lithium niobate waveguides pumped with a watt-scale 3 $\mu$m frequency comb. Simulations support a mechanism of cascaded quadratic nonlinearity and provide insight into spectral optimization. 12:30 - 12:45
ID: 250 / TOM13 S16: 5 TOM 13 Ultrafast Optical Technologies and Applications Raman red-shift compressor: A simple approach for scaling the high harmonic generation cut-off 1Institut National de la Recherche Scientifique, Canada; 2Sorbonne Université, France; 3Helmholtz-Zentrum Berlin, Germany; 4Synchrotron SOLEIL, France; 5Vienna University of Technology, Austria Propagation of sub-picosecond laser pulses in a gas-filled hollow-core fibre creates red-shifted multidimensional solitary states through intermodal Raman scattering. The pulses, which can be compressed to few-cycle durations by simple transmission through materials with positive dispersion, are used to generate high harmonics in argon. Due to the characteristics of the ultrashort driver pulses, the highest generated photon energy is increased, allowing for the implementation of photon-demanding applications with high photon energy requirements. As a demonstration, the source is used for resonant magnetic scattering measurements at the M2,3 edge of cobalt. |