Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules and polymers, syntheses, characterization and devices
TOM 7 - Thermal radiation and energy management
TOM 8 - Nonlinear and Quantum Optics
TOM 9 - Optics at Nanoscale (ONS)
TOM 10 - Optical Microsystems (OMS)
TOM 11 - Waves in Complex Photonic Media
TOM 12 - Optofluidics
TOM 13 - Ultrafast Optical Technologies and Applications
TOM 14 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session organised by SIOF
Grand Challenges of Photonics Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for detailed view (with abstracts and downloads when you are logged in as registered attendee). Plenary speeches, tutorials, and Early Researcher session will be updated very soon. Thank you for your patience!

 
 
Session Overview
Session
Plenary speech Sophie Brasselet
Time:
Friday, 17/Sept/2021:
10:00 - 10:45

Session Chair: Nicolas Bonod, CNRS, France
Location: Aula 1

1st floor

Presentations
ID: 113
Plenary talks

Polarized microscopy, towards molecular-organization imaging in cells and tissues

Sophie Brasselet

Institut Fresnel, France

Fluorescence imaging and nonlinear coherent optical microscopy can reveal important spatial properties in nanomaterials, cells and biological tissues from fixed situations to in vivo dynamics. While microscopy can guide interpretation through morphological observations at the sub-micrometric scale, optical imaging cannot directly access the way molecules are organized in specific ulstrastructures, occuring at the molecular scale. This property, which is important in many fields, from material engineering to biomechanics, is today most often studied using electron microscopy (EM) or X ray diffraction, which are not compatible with real time imaging. ... read more https://www.europeanoptics.org/pages/events/eosam2021/program/plenaries.html