Fluorescence imaging and nonlinear coherent optical microscopy can reveal important spatial properties in nanomaterials, cells and biological tissues from fixed situations to in vivo dynamics. While microscopy can guide interpretation through morphological observations at the sub-micrometric scale, optical imaging cannot directly access the way molecules are organized in specific ulstrastructures, occuring at the molecular scale. This property, which is important in many fields, from material engineering to biomechanics, is today most often studied using electron microscopy (EM) or X ray diffraction, which are not compatible with real time imaging. ... read more https://www.europeanoptics.org/pages/events/eosam2021/program/plenaries.html