Conference Agenda

Topical Meetings and Sessions:

TOM 1 - Silicon Photonics and Guided-Wave Optics
TOM 2 - Computational, Adaptive and Freeform Optics
TOM 3 - Optical System Design, Tolerancing and Manufacturing
TOM 4 - Bio-Medical Optics
TOM 5 - Resonant Nanophotonics
TOM 6 - Optical Materials: crystals, thin films, organic molecules and polymers, syntheses, characterization and devices
TOM 7 - Thermal radiation and energy management
TOM 8 - Nonlinear and Quantum Optics
TOM 9 - Optics at Nanoscale (ONS)
TOM 10 - Optical Microsystems (OMS)
TOM 11 - Waves in Complex Photonic Media
TOM 12 - Optofluidics
TOM 13 - Ultrafast Optical Technologies and Applications
TOM 14 - Advances and Applications of Optics and Photonics
EU Project Session
Early Stage Researcher Session organised by SIOF
Grand Challenges of Photonics Session

More information on the Topical Meetings

Select a date or location to show only sessions at that day or location. Select a single session for detailed view (with abstracts and downloads when you are logged in as registered attendee). Plenary speeches, tutorials, and Early Researcher session will be updated very soon. Thank you for your patience!

Session Overview
Plenary speech Isabelle Staude
Wednesday, 15/Sept/2021:
10:15 - 11:00

Session Chair: Riad Haidar, Onera, France
Location: Aula 1

1st floor

ID: 107
Plenary talks

Tunable, light-emitting and nonlinear all-dielectric metasurfaces

Isabelle Staude

Friedrich Schiller University Jena, Germany

Optically resonant dielectric metasurfaces have been established as a versatile platform for manipulating light fields at the nanoscale. While initial research efforts were concentrated on purely passive structures, all-dielectric metasurfaces also hold a huge potential for dynamic control of light fields, as well as for tailoring light emission processes, such as spontaneous emission and nonlinear frequency generation. This talk will review our recent advances in tunable, light-emitting and nonlinear all-dielectric metasurfaces, and outline future research directions for next-generation metasurface architectures.