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Abstract 

The literature has asserted that as few as four or five factor principal components (PCs) are sufficient to 
largely explain the cross-section of stock returns.  By allowing for time variation in factor premia, we 
show that portfolios formed from factor PCs yield economically large out-of-sample Sharpe ratios that 
increase as up to forty PCs are employed.  That is, non-latent time-varying factors have strong predictive 
power for the cross-section of stock returns, and to a substantial extent are not redundant of each other.  
Time variation in the number of economically relevant factors is related to changes in economic 
conditions and the diversity of firm characteristics, indicating roles for economic complexity and investor 
learning.    
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1. Introduction 

The literature has identified hundreds of variables, including firm characteristics and “factors” 

constructed as returns to long-short portfolios, that appear to have significant ability to predict the cross-

section of stock returns.1   However, more recent research has asserted significant progress in taming the 

“factor zoo.”2  Hou, Xue, and Zhang (2020) report that the first four principal components (PCs) of 158 

characteristics they study explain over half the sample variation, and that eight PCs can explain more than 

two thirds of the variation.  Kelly, Pruitt, and Su (2019) use the method of instrumented principal 

components analysis (ICPA), and report that five ICPA factors explain the cross-section of returns better 

than existing factor models.   Kozak, Nagel, and Santosh (KNS, 2018) study Sharpe ratios (SRs) for 

portfolios formed from factor PCs, and report that “while factors beyond the first few PCs contribute 

substantially to the maximum SR in sample, PCs beyond the first few no longer add to the SR out of 

sample.”  Collectively, this evidence suggests that the many characteristics and characteristic-based 

factors identified in the literature contain a substantial amount of redundant information, and that only a 

few sources of independent variation are required to explain the cross section of stock returns.    

We show that allowing for time variation in factor return premia leads to notably different 

implications.  In particular, we rely on rolling sixty-month in-sample estimation periods and show that 

out-of-sample (OOS) Sharpe ratios for portfolios formed from factor principal components are 

economically large (averaging over 2.6 on an annualized basis) and increase as portfolios are formed from 

as many as forty factor principal components.   These conclusions hold in the data studied by KNS (2018) 

and are even stronger in a broader set of 205 factors compiled by Chen and Zimmerman (2021).  Our 

results imply that empirically observable, non-latent factors contain substantial information relevant to 

 
1 The literature has not always been consistent in usage of the terms “characteristic” and “factor.”  To be precise, we 
use the term “characteristic” to refer to a firm-level attribute, such as firm size or profitability, and we use the word 
“factor” to refer to returns on a long-short portfolio.  More specifically, each factor is the time series of returns on a 
portfolio that is long a set of stocks selected with either left or right tail outcomes on a given characteristic, e.g., 
firms of small size or high profitability, and short a set of stocks with outcomes in the opposite tail, e.g., stocks of 
large size or low profitability.  We do not herein use the term factor to refer to outcomes obtained by the statistical 
method of factor analysis.    
2 Cochrane (2011) appears to have been the first to use the phrase “factor zoo” to refer to the body of evidence.  
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forecasting the cross-section of stock returns.  Further, the fact that OOS Sharpe ratios continue to 

increase as portfolios are formed from larger numbers of PCs implies that the factors identified in the 

literature are, to a substantial extent, not redundant in linear combination.   

The notion that only a few sources of common variation should be necessary to explain the cross 

section of returns is articulated by KNS (2018, page 1184): “the existence of a relatively small number of 

arbitrageurs should be sufficient to ensure that near-arbitrage opportunities—that is, trading strategies that 

earn extremely high Sharpe ratios (SRs)—do not exist.”  KNS (2018) further argue that the stochastic 

discount factor “can be represented to a good approximation” with a “few dominant factors.”  Consistent 

with this perspective, Kozak, Nagel, and Santosh (2020) employ an estimation procedure that penalizes 

deviations of Sharpe ratio estimates from zero.    

Yet, we document high OOS Sharpe ratios, even in the same sample studied by KNS.  These 

results do not necessarily imply unexploited arbitrage opportunities, but rather suggest that arbitrage 

activity faces larger barriers than may have been previously recognized.  Time variation in factor premia 

implies that frequent trading would be required in any attempt to exploit the high Sharpe ratios, with 

attendant high transaction costs attributable in part to the fact that many factors involve positions in small 

and illiquid stocks.  We also document that the return premia associated with individual factors display 

“spells” of significance and insignificance, to an extent that cannot be attributed to random variation 

around a constant premium.   We further show that the numbers of factors that are economically relevant 

at various points in time are related to diversity in firm characteristics and to measures of economic 

complexity.  In combination, these results suggest that the need for investors to learn or estimate the 

current state of time-varying factor premia comprises an additional barrier to arbitrage, and that this 

barrier is greater at times of greater economic complexity.   In short, it is a challenge for active investors 

to identify the relevant factor premia in real time.      

We believe that our findings are of inherent interest, independent of whether the evidence implies 

the existence of unexploited trading opportunities.  For example, the evidence implies time variation in 

firms’ costs of capital, with attendant implications for corporate finance decisions such as the timing of 
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security issuances.  Further, while parsimony is surely desirable, theoreticians should take account of the 

evidence indicating that the determinants of expected stock returns are more complex than many models 

would imply.  The recent demand-based asset pricing literature (e.g., Koijen and Yogo, 2019; Gabaix and 

Koijen, 2021), which is premised on characteristic-based heterogeneity in asset demand across investors 

and implies that expected returns depend in part on demand shocks that originate with heterogeneous 

groups of investors comprises a promising example of an approach with potential to enhance 

understanding of an economy where many characteristic-based factors may be relevant at various times.     

Accommodating time variation in factor premia may provide additional scope for specification 

searches or other sources of bias.  We avoid amplifying any such bias in this study by focusing only on 

previously identified factors.  Further, a requirement to link variation in estimated factor premia to 

variation in observable economic variables that were not directly employed to identify the factors imposes 

a degree of discipline.  Here, we show that that the number of economically relevant factors is related to 

measures of the economic environment, including a recession indicator variable, interest rates, the 

percentage of firms that pay dividends, mean institutional ownership rates, and an economic complexity 

index.   On balance, the results presented here indicate a significant role for time-varying economic 

complexity in asset pricing. 

 

2. Placing our Study in the Literature 

We are certainly not the first to consider the role of time variation in factor premia.  However, the 

focus of most prior studies has mainly been on canonical factors such as the overall market, firm size or 

value (market-to-book ratio).3  Haddad, Kozak, and Santosh (2020) expand on the prior research by 

showing that time variation in the return premia in the PCs of fifty “anomaly” portfolios can be identified 

based on the market-to-book ratios of the factors themselves.  We go further by accommodating time 

variation in the set of empirically relevant factors rather than focusing on a constant set of PCs formed 

 
3 See, for example, Conrad and Kaul (1988), Ferson and Harvey (1991), Cochrane (1999), van Dijk (2011) and 
Ehsani and Linnainmaa (2021). 
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from a fixed set of factors, and by relaxing the restriction that factor premia are functions of market-to-

book ratios alone.   We further demonstrate the empirical importance of doing so. 

The evidence that time variation in factor premia is economically important also has implications 

for the literature on investor learning.  Lewellen and Shanken (2002) note that rational investors’ 

uncertainty regarding parameters such as the dividend growth rate allow for return predictability to arise 

in equilibrium.  Martin and Nagel (2022) show how investors’ incorrect priors regarding parameters of 

the return distribution in combination with complexity in the form of many relevant firm characteristics 

allows for out-of-sample return predictability as investors learn about the true distribution, even if the 

underlying economic structure is stable.   Chinco, Neuhierl, and Weber (2021), also assuming constant 

underlying parameters, assess how traders optimally combine their prior assessments with the emergence 

of empirical evidence to determine which signals they will attempt to trade on.  We reason that a dynamic 

economic environment with time-varying parameters only heightens the importance of investor learning 

as a barrier to arbitrage, thereby providing scope for economically large factor premia that can persist for 

a period of time.   On balance, our results highlight the desirability of additional research that considers 

investor learning in a dynamic environment.  

Our findings that time variation in factor premia is economically important highlights the 

relevance of the considerable body of evidence regarding diversity across investors and firms.   Investors 

are diverse in terms of both their sophistication and their investment objectives, which allows that the 

identity of the marginal investor can differ across stocks and, in each stock, can change over time.4  

Further, some investors hold positions for extended periods, others periodically rebalance to target 

weights, and yet others trade episodically in response to wealth shocks, opportunities to provide liquidity 

or to correct perceived mispricings, or in response to rumors.  Some investors trade directly, while others 

delegate portfolio decisions to professional managers, whose objectives can differ from those of their 

investors due to agency issues arising, for example, from specific compensation plans (e.g., Kashyap, 

 
4 Recent studies documenting the diversity of individual trading approaches include Barber, Huang, Odean, and 
Schwarz (2021), Chen, Kumar, and Zhang (2021) and Bali, Brown, Murray Tang (2017).     
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Kovrijnykh, Li and Pavlova, 2021) or as a function of career horizons.  The trades of professional 

investors can depend on considerations such as the funding liquidity of their employing firms, and return 

premia have also been shown to also depend also on the leverage of financial sector firms.5  Consistent 

with the reasoning that return premia can depend on the identity of the marginal investor, Betermier, 

Calvet, Knüpfer, and Kvaerner (2021) show that the cross-section of expected stock returns depends in 

part on the proportion of individual investors that are younger as well as the proportion that are wealthier.   

In addition, the economic characteristics of newly listed firms often differs from those of existing firms, 

as shown by Campbell (2001), Fama and French (2004), and Kahle and Stulz (2017).  We construct a 

measure of cross-sectional diversity in the observable characteristics that are collectively known to be 

related to expected returns and show the number of factors that are significant in explaining stock returns 

increases with such diversity.    

Our finding of economically large OOS Sharpe ratios also relates to a substantial literature.   The 

implementation costs associated with any attempt to capture these time-varying return premia through 

active trading could be substantial, particularly since the CZ factors (which use the weighting method of 

the original paper for each) are often constructed with equal weights in each component stock.  Equal 

weighting implies the need for substantive positions even in small stocks and for monthly rebalancing 

trades.  Assessing whether these results imply profitable trading opportunities after implementation costs 

could be of substantial interest.   Such a careful investigation might support the conclusion that, in line 

with the conclusions drawn by Lewellen (2011), no excess returns can be captured.  However, we believe 

it is important to understand the nature of cross-sectional variation in expected returns and time series 

variation therein, whether such trading opportunities exist or not.  As one example, researchers are 

interested in knowing if illiquidity affects expected returns as implied, for example, by Amihud and 

Mendelson (1982), even if that illiquidity implies the absence of profit opportunities to an active trader.   

Though we refer throughout this paper to time variation in factor premia, the economic relevance 

of factors can vary due to changes in either factors’ return premium per unit of factor risk or in the 
 

5 See, for example, He, Kelly and Manela (2017), Tobias, Etula, and Muir (2014) and He and Krishnamurthy (2013). 
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quantity of factor risk, and we do not seek to decompose the factor premia into these components.6  We 

study t-statistics estimated for factor alphas (which are proportional to factor-level information ratios), 

which capture both effects.  The OOS Sharpe ratios we study capture both aspects as well.  Further, we do 

not take a stand as to whether the return premia arise because of investor aversion to undesirable factor 

outcomes, mispricing in the face of barriers to arbitrage, or a combination thereof. 

 

3. Time Variation in Factor Premia and the Cross Section of Stock Returns 

In this paper we study 205 factors drawn from Chen and Zimmerman (2021).  However, before 

reporting results based on this broad sample, we demonstrate that time variation in factor premia is 

empirically important even in narrower and arguably more familiar samples, including those employed by 

Kozak, Nagel and Santosh (2018).    

a. Initial Evidence: Allowing for time variation in the KNS (2018) sample 

Kozak, Nagel, and Santosh (2018) (KNS) comprise a prominent example of recent studies that 

conclude there are only a few sources of priced variation in the cross section of stock returns.  They study 

a sample comprised of the long and short legs of fifteen anomaly-based factors, as well as a sample 

comprised of twenty-five size and book-to-market based portfolios.  KNS employ a split sample approach 

whereby the first twenty-five years of their 1965 to 2015 sample period is used for in-sample estimation 

of factor principal components, and the second twenty-five years comprises the out-of-sample period.  

They report that as few as four factor principal components (PCs) capture the relevant information, as 

out-of-sample (OOS) Sharpe ratios do not meaningfully increase when portfolios are formed from more 

than four factor PCs.     

The split-sample approach employed by KNS (2018) does not allow for potential time variation 

in factor premia within the twenty-five-year subperiods.   We study the same data as KNS, while allowing 

for time variation in parameters.   We study factor PCs in part to ensure that our outcomes differ from 

 
6 That return premia can vary over time relative to canonical factors’ volatility is documented for example in 
Moreira and Muir (2017).  We extend this insight to the hundreds of non-canonical factors.  
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prior studies primarily (or in the case of the KNS data entirely) because of our allowance for time 

variation in factor return premia.  It should be recognized that PCs comprise a means, not an end, and that 

there are other statistical methods of extracting common variation.  The assessment of OOS Sharpe ratios 

based on factor PCs allows the assessment of whether there is redundancy in the form of linear factor 

combinations.   

Panels A and B of Figure 1 report in-sample and out-of-sample Sharpe ratios for portfolios 

constructed from the PCs of the long and short legs of fifteen anomaly-based factors, while Panels C and 

D report corresponding outcomes for portfolios formed from the PCs of twenty-five factors constructed 

based on firm size and book-to-market equity ratios.  The red line displays outcomes obtained using the 

KNS split-sample approach.  The red line replicates their results, showing that factors beyond the first few 

PCs contribute substantially to in-sample Sharpe ratios, but PCs beyond the first four do not substantially 

enhance OOS Sharpe ratios.  KNS argue that this result is to be expected since even a relatively small 

number of arbitrageurs should “be sufficient to ensure that near-arbitrage opportunities—that is, trading 

strategies that earn extremely high Sharpe ratios do not exist.”    

We compile results that parallel those reported by KNS, while allowing for time variation in 

factor return premia by use of rolling 60-month estimation windows.  For each month, t, we employ factor 

returns in months t – 59 to t to compute the in-sample eigenvalues and eigenvectors of the standardized 

factor covariance matrix, sorting the in-sample eigenvectors by decreasing order of their corresponding 

eigenvalues.  We then consider out-of-sample outcomes based on returns in months t+1 to t+36. In each 

case, portfolio weights are chosen to optimize the portfolio’s in-sample Sharpe ratio, i.e., to identify the 

tangency portfolio, while performance evaluation is based on OOS Sharpe ratios for portfolios with the 

same weights.  Specifically, we multiply out-of-sample factor returns by the in-sample eigenvectors to 

create returns to OOS PCs 7. We provide a detailed outline of the computation of the PCs and the 

construction of the portfolios in Appendix A.   

 
7 To maintain compatibility, we measure out-of-sample results from within the same 25 years that comprise the 

out-of-sample period for Kozak, Nagel and Santosh (2018).  That is, when employing N months to define the in-
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The blue lines on each Panel of Figure 1 display average (across months) Sharpe ratios for 

portfolios formed from varying numbers of the resulting factor PCs.  Two points are noteworthy.   First, 

Sharpe ratios, both in- and out-of-sample, are virtually all larger when time variation in factor premia is 

accommodated than when it is not.  The divergence in Sharpe ratios is apparent in each Panel of Figure 1, 

but is greater for the factors formed based on size and book-to-market.   Second, Sharpe ratios increase as 

more factor PCs are employed.  As KNS note, this is a mechanical outcome for in-sample Sharpe ratios.  

However, it is not a mechanical result out-of-sample, and OOS Sharpe ratios increase notably as the 

number of PCs is increased when time variation is allowed for.  That is, higher order factor PCs contain 

economically relevant information when time variation is allowed for.   In contrast, but consistent with 

KNS, there is little or no increase in OOS Sharpe ratios beyond the first few PCs when split-sample 

estimation is employed.   

The increases in OOS Sharpe ratios due to the allowance for time variation are large.  In 

particular, focusing on portfolios constructed based on the widely-studied firm size and book-to-market 

characteristics, OOS Sharpe ratios formed from twenty to twenty-five factor principal components are 

more than twice as large when time variation is allowed for as compared to when it is not (Panel D of 

Figure 1).  These empirical results, obtained in the same sample employed by KNS, support the 

conclusions that (1) allowing for time variation in factor premia enhances the ability to forecast the cross 

section of stock returns, and (2) more factor PCs are relevant when time variation is allowed for than 

when it is not.    

4. Broader Evidence: 205 Factors from Chen and Zimmerman (2021)  

KNS studied fifteen “anomaly” factors and twenty-five size and market-to-book factors for which 

return data was available during all months of their fifty-year sample period.  Of course, the literature 

studies a much broader set of factors, some of which have available data for longer time intervals than 
 

sample period, we begin the estimation with the final N months of the first half of the sample, so that the first out-of-
sample month is identified starting at the sample midpoint.   While we report results for a 36-month out-of-sample 
window, outcomes are similar for both 12- and 60-month windows.  We focus on 36 months as a balance between 
greater noise at short horizons and a potential loss of economic relevance at long horizons attributable to time 
variation in the economic importance of individual factors.  
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others.  Our rolling estimation approach only requires factor data that factor return data is available during 

relatively short estimation windows, and can therefore be implemented for factors whose data is 

unavailable during periods outside the estimation window.     

We implement our rolling estimation approach using 205 factors derived from firm characteristics 

previously studied in the literature, including the 161 “clear predictors” and 44 “likely predictors” 

identified by Chen and Zimmerman (2021).8  Of course, some of these factors are similar in their 

construction, and the economic information contained in outcomes on similarly constructed factors could 

overlap substantially.   

We report in Panel A of Figure 2 annualized OOS Sharpe ratios for portfolios formed from the 

PCs of the 205 CZ factors, when the end of the sixty-month estimation period ranges from June 1931 to 

December 2020.  The yellow line displays Sharpe ratios for portfolios formed from the first five PCs (in 

line with the results of Hou, Xue, and Zhang, 2020 and Kozak, Nagel and Santosh, 2018) and the blue 

line shows the average Sharpe ratio obtained across all numbers of PCs considered (from one to fifty-

nine).  The orange line shows the Sharpe ratio obtained from 59 PCs, the maximum number that can be 

constructed when using a sixty-month estimation window.  Table 1 reports time series averages of each of 

these Sharpe ratios, as well as differences in average Sharpe ratios and associated t-statistics.9    

The data displayed on Panel A of Figure 2 and the summary statistics in Table 1 indicate that the 

CZ factors collectively have economically important out-of-sample predictive power for the cross-section 

of stock returns.  The annualized OOS Sharpe ratios for portfolios formed from the first five factor PCs 

are mostly positive, average 1.4 for the full sample, and exceed 3.0 during some portions of the 1980s and 

1990s.  The blue line displays average Sharpe ratios (across one to fifty-nine PCs) and comprises our 

 
8 The authors graciously posted their data to https://www.openassetpricing.com/.   Bessembinder, Burt and Hrdlicka 
(2023) report qualitatively and quantitatively similar results when using the factor data of Jensen, Kelly, and 
Pedersen (2021) instead.   We mainly focus on Chen and Zimmerman factors for two reasons.  First, they more 
closely follow the factor construction methods employed by authors of the original papers, and second, they provide 
a larger set of factors to evaluate.  Bessembinder, Burt, and Hrdlicka (2023) report similar outcomes for a variety of 
in-sample and out-of-sample window lengths.     
9 Since outcomes are based on rolling sixty-month estimation, we employ Hansen-Hodrick standard errors with a 
bandwidth of sixty.   

https://www.openassetpricing.com/
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main focus.  These Sharpe ratios are virtually always positive, average 2.64 across months, and 

particularly since about 1950 are consistently larger than those based on five PCs.  The Sharpe ratio based 

on fifty-nine factor PCs is larger yet, averaging 2.98 across months.  These results reaffirm that 

observable, i.e., non-latent, factors have significant forecast power for the cross-section of returns.   The 

Sharpe ratios displayed on Figure 2 are generally larger than those displayed on Figure 1, implying that 

the larger set of CZ factors contain more information than the factors studied by KNS.      

The difference between the time series average OOS Sharpe ratio obtained from the average 

across one to fifty-nine PCs and the time series average based on five PCs is 1.25, while the difference in 

the time series average Sharpe ratio based on the maximum number of PCs and that based on five PCs is 

1.58.  Each of these differences is highly statistically significant, with t-statistics of 7.22 and 3.55, 

respectively.  These OOS Sharpe ratios imply that factor PCs beyond the first few contribute substantially 

to the ability to forecast the cross-section of stock returns.10    

BNS note that in-sample Sharpe ratios increase mechanically when portfolios are formed from a 

larger number of factor PCs.  This mechanical result should not be expected to, and does not, pertain to 

out-of-sample outcomes.  To illustrate this point, we also report on Table 1 the time series average of the 

maximum Sharpe ratio obtained across any number of PCs.   This maximum Sharpe ratio exceeds the 

Sharpe ratio obtained with the maximum number of PCs in every rolling sixty-month interval, and 

averages 4.24 across months.   The average number of PCs for the portfolio that gives the maximum out-

of-sample Sharpe ratio is forty-seven.  Alternatively stated, the higher OOS Sharpe ratios obtained when 

portfolios are formed from larger numbers of factor PCs is an economic outcome, not a mechanical one.  

 The large maximum Sharpe ratios and the large numbers of PCs used to construct these 

portfolios imply that many factors contain economically relevant and non-redundant predictive 

 
10 We also assess the explanatory power of individual factor PCs, from the first to the fifty-ninth, by assessing 
Sharpe ratios for portfolios comprised of that PC factor alone (i.e., PC-transformed factor returns).   In Appendix 
Figure C1, we report the average (across months) in-sample and OOS Sharpe ratios for each factor PC.  Consistent 
with the reasoning expressed by KNS (2018), in-sample Sharpe ratios increase almost monotonically for the higher 
numbered PCs.  In contrast, OOS Sharpe ratios are nearly constant, equal to approximately 0.20 to 0.25 across all 
PCs from the first to the fifty-ninth.  That is, the OOS explanatory power of higher numbered PCs is neither greater 
or smaller than that of the first few PCs. 
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information regarding the cross-section of stock returns, particularly when time variation is allowed for.   

This outcome contrasts with the conclusions of recent papers such at Kelly, Pruitt, and Su (2019), Kozak, 

Nagel and Santosh (2018), and Kozak, Nagel and Santosh (2020) that conclude that only relatively few 

factor principal components are relevant.   The different conclusion arises because our rolling estimation 

approach allows for flexible time variation in factor return premia in a way these studies do not.11   

 

5. Are outcomes stronger when considering only those factors that are significant 

in sample? 

For the results reported to this point, we employ all factors with available data during the relevant 

estimation window.   While Chen and Zimmerman (2021) identified their set of factors based on the 

factors’ statistical significance during the periods studied by authors of the original underlying studies, the 

evidence in support of some factors is stronger than others.  Further, if factor premia vary across time, 

then considering only those factors with significant in-sample explanatory power should reduce noise and 

improve the ability to forecast the cross-section of returns.  We identify the factors that have significant 

in-sample explanatory power by identifying those cases where the t-statistic on the alpha estimated in a 

regression of factor returns on excess market returns exceeds 3.0 (the level recommended by Harvey, Liu 

and Zhu, 2016).   A significant alpha in this regression implies that a factor is economically relevant in 

the sense that it has explanatory power for the cross-section of non-market returns.12  

 
11 In Appendix B we report results obtained when we use the data and programs posted by Kozak, Nagel and 
Santosh (2020). OOS Sharpe ratios implied by their analysis and data continue to increase modestly as more factor 
PCs are used to form portfolios, even though their approach does not accommodate time variation in factor premia.  
Thus, while allowing for time variation is important, more than five factor PCs are of some use even without such 
allowance. 
12 It would of course be possible to assess the significance of a given factor by estimating alphas in regressions on 
multiple other factors.  However, it is unclear which or how many additional factors should be employed, and with 
only sixty monthly observations, not all can be.   We therefore choose the simple approach of assessing only if the 
factor explains the cross-section of non-market returns.  If a given factor contains the same information as other 
factors, then OOS Sharpe ratios should not increase as the number of factor PCs increases.  
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Panel B of Figure 2 displays OOS Sharpe ratios that correspond to those in Panel A, but are 

obtained when PCs are formed from only those factors with significant in-sample alphas.13  Table 1 also 

reports on means and standard deviations across months of these Sharpe ratios.   The outcomes indicate 

that OOS Sharpe ratios for portfolios formed from the PCs of those factors with statistically significant 

in-sample alphas exceed those for portfolios formed from the PCs of all factors.  In particular, the average 

annualized out-of-sample Sharpe ratio (across months) for portfolios formed from five PCs is 2.16 when 

the PCs are drawn from only significant factors versus 1.39 when the PCs are drawn from all factors.   

Corresponding outcomes for Sharpe ratios averaged across all potential numbers of PCs are 3.20 when 

PCs are constructed from only significant factors versus 2.64 when PCs are constructed from all available 

factors.  In Section 4, we delve more deeply into the empirical determinants of times series variation in 

the numbers of economically relevant factors.   

The annualized out-of-sample Sharpe ratios displayed in Figure 2 are economically large.  

However, such large Sharpe ratios are not unprecedented in the literature.  For example, Kelly, Pruitt, and 

Su (2019) report an annualized out-of-sample Sharpe ratio of 4.05 in their study of latent factors.   These 

substantial out-of-sample Sharpe ratios support the conclusion that the factors identified in the literature 

have economically important predictive power for the cross-section of stock returns.  Importantly, the 

outcome that out-of-sample Sharpe ratios are larger when many factor PCs are employed would not be 

anticipated if researchers had systematically identified new factors that duplicated the information 

contained in existing factors.   

 

6. Are the results attributable to extreme portfolio weights? 

KNS (2018) express the concern that constructing mean-variance optimal portfolios from large 

numbers of factor PCs could result in portfolios with extreme weights.  The apparent concern is that if 

higher order PCs did not lead to small Sharpe ratios, it would imply that the tangency portfolio would 

 
13 Excess market returns are obtained from Kenneth French’s website.  Some sections of the lines in Panel B are 
missing due to an insufficient number of significant factors (i.e., only 1 or 0) during those time periods. 
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involve unreasonably large positions.   Accordingly, they assert that “ignoring the small-eigenvalue PC 

portfolios” is appropriate for OOS evaluation.  We assess if the portfolios selected by our estimation 

methods, which are based on up to fifty-nine factor PCs, involve extreme weights.   In particular, Figure 3 

reports on the average (across months) of the maximum and the minimum weight on any PC in the mean-

variance optimal portfolio, when the number of factor PCs varies from one to fifty-nine.  While the exact 

definition of an “extreme” weight may be subjective, we note that our procedures lead to maximum 

weights very near 10% when the number of factor PCs exceeds thirty.   

The preceding outcomes are based on the selection of mean-variance optimal portfolios, the 

details of which are somewhat complex.  To assess whether our main conclusions regarding the role of 

time variation in factor premia and the number of sources of information regarding the cross-section of 

stock return are robust to simpler methods of estimation we compute out-of-sample Sharpe ratios for 

simple equal-weighted portfolios of factor PCs.   Figure 4 displays monthly outcomes that parallel those 

in Panel A of Figure 2, when portfolios are equal-weighted and formed from the indicated number of 

factor principal components.  Table 2 presents corresponding time series means of these OOS Sharpe 

ratios.  These outcomes also support the conclusions that factors contain significant forecast power for the 

cross section of stock returns, as OOS Sharpe ratios are economically large, and are greater when 

portfolios are formed from more than a few factor principal components.   In particular, the average OOS 

Sharpe ratio for equal-weighted portfolios formed from five factor PCs is 0.952, while that for equal 

weighted portfolios formed from all fifty-nine factor PCs is 2.957.  Remarkably, the average Sharpe ratios 

for equal-weighted portfolios as reported on Table 2 are only modestly smaller than those for optimized 

portfolios as reported on Table 1.   For example, considering the outcome averaged across all possible 

numbers of PCs, the average Sharpe ratio for optimized portfolios on Table 1 is 2.64, while that for equal-

weighted portfolios on Table 2 is 2.11.  Thus, our central conclusions, namely that time variation in factor 

premia is economically important and that factors contain more than four or five independent sources of 

information regarding the cross-section of stock returns, obtain even when portfolios are formed from 

factor PCs in the simplest possible manner.  
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7. Can OOS Sharpe ratios or the number of factor PCs that maximize OOS Sharpe 

ratios be forecast? 

To this point, we have emphasized OOS Sharpe ratios that are based on portfolios formed from 

either the maximum possible number of factor PCs or based on average outcomes across all possible 

numbers of factor PCs.  The number of factor PCs that lead to the highest OOS Sharpe ratio for any given 

thirty-six month evaluation period can be observed, ex post.  We next assess whether evidence that more 

factors are relevant in-sample also implies higher OOS Sharpe ratios or that the highest OOS Sharpe 

ratios will be attributable to portfolios formed from a greater number of factor principal components.    

We assess, for each rolling sixty-month in sample period, the number of factor PCs required to 

explain 95% of the time series variation across the available CZ factors.  We term this the number of 

“relevant PCs” and plot the outcomes on Panel A of Figure 5 as a red line.  To explain 95% of the in-

sample variation in factor returns requires between twenty-nine and forty PCs for every rolling sixty-

month window from the late 1950s through the end of the sample period.14  In general more factors are 

relevant during those periods where more factors are available; the correlation between the number of CZ 

factors with available data in each month and the number of relevant PCs is 0.46, while the correlation 

between the number of statistically significant factors, (as previously described) and the number of 

relevant PCs is 0.90.   

On Panel B of Figure 5 we display the number of PCs required to explain 50%, 60%, 75%, 90% 

of the variation in the available factors.  Consistent with the results reported by Hou, Xue, and Zhang 

(2020), approximately fifty to sixty percent of the variation in the factors can be explained by a small 

number of PCs, ranging at various times from three to eight.  However, explaining a larger portion of the 

variation in the factors requires many more PCs.  We show below that these additional PCs are 

 
14 The number of PCs estimated from monthly data is inherently limited by the fact that only sixty data points are 
employed for each estimate.  When we repeat this procedure using daily data, the total number of PCs is nearly 
equal to the number of statistically significant factors, suggesting that virtually all the factors contain significant 
non-redundant information for the cross-section of stock returns.    
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economically important to understanding the cross-section of returns, to an extent that they cannot simply 

dismissed as absorbing minor variation that can be safely ignored.  

To assess whether the number of relevant factor PCs, defined as above as the number that 

explains 95% of the in-sample variation in factor returns, has predictive power for OOS portfolio 

performance, we estimate regressions where the dependent variables are, in turn, the maximum OOS 

Sharpe ratio and the number of PCs used to construct the portfolio with the maximum Sharpe ratio.  

Outcomes are reported in Table 3.  For Panel A the explanatory variable is the number of factor PCs that 

are relevant (i.e., that explained 95% of the variation in factor returns) in sample, while for results in 

Panel B the explanatory variable is the number of factors with significant (t-statistic greater than 3.0) in-

sample explanatory power.  We assess results both when out-of-sample portfolios are formed from the 

PCs of all factors available in-sample (columns 1 and 2) and from the PCs of only the factors that are 

significant in-sample (columns 3 and 4).   

The results reported in Table 3 support two conclusions.  First, the number of PCs employed to 

form the portfolio with the highest out-of-sample SR is significantly greater when more factors are 

significant in-sample as well as when more PCs are required to explain in-sample variation in factor 

returns.  This relation is particularly strong (R2 statistic of 0.82) in Panel B, column 4, where the number 

of PCs used to form portfolios with the highest out-of-sample Sharpe ratios is predicted by the number of 

factors with significant in-sample explanatory power.  That is, during those in-sample periods where a 

larger number of factors can explain the cross-section of non-market returns, OOS Sharpe ratios are 

maximized when a larger number of factor PCs are employed.   Second, the maximum OOS Sharpe ratios 

are greater when there are a higher number of significant in-sample factors or when more PCs are 

required to explain time series variation in in-sample factors.   This relation as well is strongest (R2 

statistic of 0.40) in Panel B, column 3, when the predictive variable is the number of factors with 

significant in-sample explanatory power.    

The CZ factors were initially discovered by widely disparate authors, which allows the possibility 

that some of the factors might be largely duplicative of the information contained in others.   However, 
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the results described here show not only that the factors collectively contain substantial information 

regarding the out-of-sample cross-section of returns, but that larger numbers of in-sample relevant factors 

contain more information relevant to predicting the cross-section of stock returns.   That is, the additional 

significant factors contain non-duplicative information, and larger numbers of significant factors imply 

both higher OOS Sharpe ratios and that the most profitable OOS portfolios will be formed from a larger 

number of factor PCs.  These outcomes provide scope for the possibility that advanced methods such as 

machine learning approaches may allow more precise forecasts of the number of factor PCs to be 

employed to obtain high OOS Sharpe ratios.  Of course, implementation costs would also be relevant.         

8. Do the outcomes reported herein reflect data-snooping by original authors?   

It has been suggested that most empirical findings related to factors are attributable to 

specification searches (also referred to as “data snooping” or “p-hacking”) and a failure to incorporate 

appropriate multiple testing procedures.   However, it has also been argued that most of the factor-related 

findings can indeed be replicated, do not arise from specification searches, and survive adjustment for 

multiple testing.15   

Our results indicating large OOS Sharpe ratios for portfolios formed from factor PCs do not fully 

resolve this debate, since in some cases intervals that are out-of-sample in terms of our rolling estimation 

methods nevertheless include calendar months that were studied by the authors who first documented the 

empirical relevance of the characteristic or factor involved.  However, we contribute to the discussion in 

three ways.16  First, we assess the extent to which factors have statistically significant explanatory power 

in subperiods before and after those examined in the studies that originally identified the factors.  In doing 

so, we extend the related results reported by McLean and Pontiff (2016), Linnainmaa and Roberts (2018) 

and Ilmanen, Israel, Moskowitz, Thapar, and Lee (2021), who mainly studied factors on a univariate 

 
15 Studies that conclude that factor-based evidence is largely unreliable include Harvey, Liu, and Zhu (2015), 
Linnainmaa and Roberts (2018), Chordia, Goyal, and Saretto (2020), and Hou, Xue, and Zhang (2020), while the 
studies arguing that identified factors do reliably explain returns include Chen (2021), Chen and Zimmerman (2021), 
and Jensen, Kelly, and Pedersen (2021). 
16 Bessembinder, Burt, and Hrdlicka (2023) study data drawn exclusively from time periods subsequent to those 
studied by original authors in their Table 6, and report that the CZ factors retain significant forecast power for the 
cross-section of returns.   
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basis, by studying a larger set of factors on a multivariate basis.17  Second, while the related studies have 

assessed whether factors do or do not have explanatory power for the pre- and post-sample periods as a 

whole, we assess the extent to which factors’ explanatory power changes over time, both within and 

outside of the authors’ original samples.  Third, we go beyond simply tabulating outcomes for varying 

time periods.  In Section 4 we construct measures of economic complexity and demonstrate that the 

numbers of economically relevant factors are systematically related to these measures.    

Figure 6 displays information regarding the significance of each of the 205 CZ factors during 

periods before, during, and after the sample periods studied by the original authors.  The figure includes 

one row for each factor, and a column for each sample month.  Factors are sorted based on their 

unconditional CAPM alpha t-statistics during the original sample period, from lowest to highest.  A given 

row and column contains a blue dot if the t-statistic on the factor’s alpha estimated in a CAPM regression 

over the prior sixty months is greater than 3.00.   In addition, each row contains a green dot that denotes 

the earliest data used in the original study that identified the factor, a red dot that denotes the latest data 

used in the original study, and a magenta dot that indicates the earliest date for which data is now 

available.   It is, of course, not possible even now to ascertain if the factor had significant explanatory 

power for returns for those dates that are earlier than the magenta dots.           

Two points can be observed in Figure 6.  First, factors often display statistically significant 

explanatory power in data drawn from months both before and after the data used in the original study 

that identified the factor.   In Panel A of Table 4 we report data on the frequency of such occurrences.  If 

significance is assessed by a t-statistic on the alpha estimate of 1.96 or greater, over three quarters (77%) 

of the factors have significant explanatory power during at least one 60-month interval prior to the range 

of dates used in the original studies, and 93% have significant explanatory power during at least one 

 
17 However, replication rates are not directly comparable across our study and theirs, as we focus on a set of 205 
factors that were previously verified by Chen and Zimmerman to have significant explanatory power within the 
authors’ original sample periods.  In contrast, only 85 of the 97 factors studied by McLean and Pontiff (2016) have 
an in-sample t-statistic greater than 1.50, and only 32 of the 36 factors studied by Linnainmaa and Roberts (2018) 
have an in-sample t-statistic greater than 1.96.  Ilmanen, Israel, Moskowitz, Thapar, and Lee (2021) study just four 
factors, but over a 100-year sample period, and in several distinct asset classes.  They report little evidence that 
arbitrage reduces factor premia over time.    
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sixty-month interval after the range of dates used in the original studies.  If statistical significance is 

defined based on a larger t-statistic, the proportion of factors that are significant outside of the original 

sample period declines but remains large.  For example, applying the t-statistic of 3.00, 54% of factors are 

significant during at least one earlier sixty-month interval and 69% are significant during at least one 

subsequent sixty-month interval.  This out-of-sample evidence supports the reasoning that the factors’ 

success in the original studies cannot be fully attributed to data mining or specification searches.   

The second observation that can be gleaned from Figure 6 is that the statistical significance of 

individual factor alphas varies over time; in many cases a given factor is significant for periods spanning 

multiple years, loses significance for a time, and then regains significance.  In Panel B of Table 4 we 

report evidence on the distribution of the number of non-overlapping periods, or “spells” of significance, 

for various t-statistic cutoffs.  For example, relying on a t-statistic cutoff of 3.00, the cross-factor median 

number of significance spells is 6.0 per factor, while the cross-factor mean is 7.7 spells per factor.  Panel 

C of Table 4 reports on the distribution of the duration of such spells.  Once again based on a t-statistic 

cutoff of 3.00, the cross-factor median length of a significance spell is 13 months, while the cross-factor 

mean length is 22 months.    

9. Is the evidence of time variation in factor premia statistically significant?   

The pattern displayed in Figure 6 and summarized in Table 4 whereby statistical significance for 

individual factors ebbs and flows over time could simply reflect random noise in a stable economic 

environment.  That is, a factor with a constant premium equal to zero or an economically modest quantity 

could be associated with significant estimates during some intervals and insignificant estimates during 

other intervals.  Alternatively, the pattern could reflect that the number of factors that earn a return 

premium, or the magnitude of such return premia, vary over time.  We distinguish between these 

explanations in two ways.  First, we use simulation methods to assess the distribution of the statistics 

reported on Panels B and C of Table 4 under the null hypothesis that factor premia are constant over time.  

Second, we present evidence in Section 4 that assesses the extent to which variation in the number of 

significant factors is related to measures of changes in the economic environment.    
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To assess the distribution of the statistics reported on Table 4 under the null hypothesis that factor 

premia are constant over time, we rely on a simulation, as follows.  First, we estimate each factor’s 

constant alpha, beta and residual volatility from a regression of its returns on the market excess returns.18  

We then create a simulated time series of market returns calibrated to the sample mean and standard 

deviation of the market over our sample period and generate a simulated time series of returns for each of 

the 205 factors using a factor model that relies on the simulated market returns in combination with the 

estimated alpha, beta, and residual volatility for each factor.  The length of each factor’s simulated time 

series is matched to the number of sample observations for the factor return.  Having done so we estimate 

rolling 60-month regressions of simulated factor returns on simulated market returns and obtain both the 

count and average length of significance spells for each simulated factor, when significance is assessed 

based on t-statistics ranging from 1.96 to 4.00.  We compile the cross-factor average of the spell counts 

and spell lengths, corresponding to the sample data reported in Table 4.  We repeat the simulation 2,000 

times to obtain a distribution of the cross-factor average factor spell lengths and counts under the null 

hypothesis of constant factor premia.  

Panel A of Figure 7 displays the simulated distributions for the cross-factor average of the 

average spell lengths, while Panel B displays corresponding cross-factor average spell counts.  The red 

dashed lines denote corresponding sample outcomes.  The information displayed on Panel A of Figure 7 

shows that the statistics pertaining to the actual sample and reported on Table 4 are unlikely to be 

observed under the null hypothesis of constant factor premia.  For each of the t-statistic cutoffs (used to 

define significance) considered, the actual average spell length lies far in the right tail of, or entirely 

outside, the simulated distribution of spell lengths.  That is, actual spell lengths are longer than would be 

observed under the null hypothesis, as would be anticipated if premia varied through time without 

immediate reversion to their long run means.     

 
18 We assume here that residual volatility is uncorrelated across factors.   This simplifying assumption is consistent 
with the empirical outcomes reported in Section 2 indicating that the various factors contain essentially non-
redundant information.   
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The information displayed on Panel B of Figure 7 shows that the cross-factor average number of 

significant spells also diverges from the distribution obtained under the null of constant premia, except 

when the t-statistic cutoff is 2.5.  The use of a higher t-statistic cutoff naturally leads to fewer periods of 

significance, both in the sample data and in the simulated distribution obtained under the null.  Note, 

though, that with high t-statistic cutoffs of 3.5 or 4.0, the actual average count of significance spells lies 

far in the right tail of the simulated distribution, while with low t-statistic cutoffs of 1.96 or 2.00 the 

actual average count of significance spells lies to the left of the simulated distribution.  That is, simulated 

outcomes that were obtained under the null hypothesis are more sensitive to the t-statistic cutoff 

employed as compared to actual sample outcomes.  Empirical estimates of economically modest and 

time-invariant return premia are likely to be recategorized as insignificant rather than significant as the t-

statistic hurdle increases.  In contrast, the t-statistic employed is of less relevance for factor premia that 

are economically large during some periods (as they are then more likely to remain significant even as the 

t-statistic threshold is increased) and close to zero during other periods (when they are likely to be 

insignificant even with low t-statistic thresholds).  That is, the simulation outcomes displayed on Figure 7 

imply that it is exceptionally unlikely that the sample data reported on Table 4 could be observed under 

the null hypothesis of constant factor premia.  Rather, the sample outcomes are consistent with those that 

would be anticipated if return premia associated with individual factors were economically large for some 

extended periods and near zero at other times.  This finding contrasts with a perspective that has appeared 

in the prior literature, by which a return premium deemed to be anomalous should be permanently 

eliminated by arbitrage activity once the existence of the premium becomes broadly known.    

 

 

10. The Role of Economic Complexity 

We next assess whether the number of economically relevant factors is related to the state of the 

economy or to the complexity of the economic environment.  We focus mainly on results for the 1968 to 
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2020 period, during which we can construct a larger set of such measures.  However, we report 

corresponding results for the full 1931 to 2020 sample in Appendix Table C4.    

11. The role of the number of listed firms. 

We first consider the potential role of the number of firms traded in the U.S. markets.  We reason 

that large changes in the number of publicly traded firms attributable for example to surges in IPO 

activity, firm failures, or merger waves, are likely to be accompanied by shifts in the types of firms 

available for public investment.  Indeed, Fama and French (2004) show that the characteristics of firms 

newly listed on major U.S. stock markets varies over time.  Multiple and varied risk factors may be 

necessary to explain patterns in the returns of varying firm types.   

Column (1) of Table 5 reports outcomes obtained from regression of the number of statistically 

significant factors (Panel A) or the number of relevant factor PCs (Panel B) during months t -59 to t on 

the number of firms publicly listed in month t.  Each coefficient estimate is positive and statistically 

significant, and in Panel A the regression R2 statistic is equal to 0.50, implying that the number of listed 

firms explains half the variation in the number of factors with significant explanatory power.19  This 

finding supports the reasoning that a larger number of factors and PCs thereof are required to explain 

cross-sectional variation in mean returns when a greater number of firms are listed.20  The empirical fact 

that more factors have significant explanatory power at times when more firms are listed is consistent 

with the reasoning that the firms that enter and depart the CRSP database differ from other firms in that 

they are exposed to differing sources of priced risk, rather than simply having differential exposures to a 

fixed set of priced systematic risks.21  

 
19  In Internet Appendix Table IA-2 we report results obtained when the number of firms is assessed as of month t-
60 and as the number firms continuously listed from time t-60 to t (so that alpha can be estimated).   Outcomes are 
similar for each measure.      
20 Note that this result need not arise mechanically.  If, for example, the CAPM determined expected returns for all 
stocks then the addition of new stocks with unique characteristics would only require estimation of their potentially 
distinct market betas, not the use of additional factors.   
21 A simple alternative explanation for the observed positive relation between the number of statistically significant 
factors and the number of listed firms is that a larger cross-sectional sample size improves statistical power, such 
that estimated return premia of given economic magnitudes are more likely to become statistically significant.  
However, we show in Appendix Table C3 that we continue to estimate positive coefficients on the number of firms 
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12.  Economic Complexity and Diversity in Firm Characteristics 

We next assess the extent to which the number of significant factors and the number of relevant 

PCs thereof is related to measures of economic complexity and to the diversity of observable firm 

characteristics.  To facilitate interpretation, we standardize each of the following variables relative to its 

own time series standard deviation.  Thus, regression coefficients are interpreted as a response to a one-

standard deviation change in that variable.   

We conjecture that the business cycle may be relevant, both because of potential variation in the 

magnitude of return premia and due to changes in firm types, with economic expansions characterized by 

high rates of firm entry and recessions more likely to involve net exit by firms.  To capture these effects, 

we rely on an indicator variable equal to one for recession months, as defined by the National Bureau of 

Economic Research, and the unemployment rate reported by the US Bureau of Labor Statistics.  We also 

consider two interest rate series, the ninety-day Treasury-bill rate and the spread between the 10-year 

treasury note yield and the ninety-day rate.  Interest rates potentially capture the effects of monetary 

policy and funding conditions.  The unemployment rate, the fed funds rate and treasury yields are all 

obtained from the Federal Reserve Economic Data (FRED) website.   

Fama and French (2001) suggest that the disappearance of dividend-paying firms reflects the 

changing characteristics of publicly traded firms.  To capture this aspect of variation in firm types, we 

compute the proportion of dividend-paying common stocks as the number of firms paying at least one 

cash dividend in the previous 12-months relative to the total number of common stocks.  Variation in firm 

characteristics such as the propensity to pay dividends could arise as firms respond to demand from 

different investor types.  Further, the preferences of the marginal investor who effectively sets prices for 

specific stocks can depend on whether the investor is an individual or an institution.22  To potentially 

 
even when mean standard error of the alpha estimates is included as a regressor.  We also show there that while a 
larger mean alpha is, as expected, associated with more statistically significant factors, the number of firms 
continues to have a significantly positive effect as well. 
22 Lewis and Santosh (2021), for example, show that an asset pricing model where betas are defined relative to the 
portfolios held by active institutional investors performs better than the standard CAPM where betas are defined 
relative to aggregate market holdings.   
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capture the impact of changes in the composition of the investor base, we measure the proportion of each 

firm’s shares outstanding held by 13-F institutions in the Thomson-Reuters database.   

We also consider the possibility that the number of significant factors may be related to market 

liquidity and to general economic complexity.   To the extent that factor premia arise because investors 

are unable to profitably trade to eliminate mispricing, we should observe that more factor premia are 

significant when markets are less liquid.  To assess this possibility, we compute on a monthly basis the 

average across stocks of the Amihud (2002) illiquidity measure.  As a proxy for general economic 

complexity, we use the Economic Complexity Index constructed by Simoes and Hidalgo (2011), which 

they describe as a measure of “the relative knowledge intensity of an economy.”   

To measure diversity in firm characteristics, we first compute the cross-sectional standard 

deviation for each of the 205 characteristics within each month.  We then rescale each of these measures 

such that the time series mean is zero and the time series standard deviation equals one.  Finally, we 

compute the sum of these standardized volatility measures across characteristics within each month.23  

The result can be interpreted as a measure of the cross-sectional dispersion in those characteristics 

observable for the available sample of firms in each month.  Note that no relation necessarily exists 

between the number of firms and cross-sectional dispersion in characteristics; if newly listed firms were 

like the typical existing firm in terms of observable characteristics the diversity measure would decline 

rather than increase as more firms listed.  An increase in the cumulative dispersion in characteristics 

across firms, in contrast, indicates that the underlying firms themselves are becoming increasingly 

differentiated. 

Appendix Figure C3 displays the average number of characteristics that can be computed, 

delineated by the number of months since the firm initially appears in the database.  In the first few 

months, less than twenty characteristics can be computed, on average.   Thirty-six months after listing, 

 
23 Note that since the measures are rescaled to a zero mean there is not a mechanical relation between the sum and 
the number of characteristics available in a month.  The correlation between the sum and the mean across 
characteristics is 0.96, and use of the latter for the results in Table 5 leads to results that are virtually identical, but 
with moderately higher standard errors on the coefficient estimates.      
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approximately one hundred characteristics can be computed.  This rapid growth reflects the fact that many 

characteristics require prior accounting statement data (often sparsely collected at the beginning of a 

firm’s public life) and prior return history.   However, the fact that a given characteristic cannot yet be 

computed by an econometrician need not imply that market participants are unaware of the characteristic.  

To accommodate the “burn in” period between the addition of a firm and the time when characteristics 

become observable, we focus on cross-sectional variation in characteristics in month t+36 to measure 

firm characteristic diversity as of month t.  

We report in columns (2) to (10) of Table 5 the results of univariate regressions of the number of 

statistically significant factors (Panel A) and the number of relevant PCs thereof (Panel B) on each of 

these measures of economic complexity in turn.  The results indicate that the number of statistically 

significant factors is related to macroeconomic conditions, decreasing during recessions, increasing 

during periods of higher interest rates, but decreasing with the interest term spread.  The unemployment 

rate, in contrast, does not have significant explanatory power.  However, none of these macroeconomic 

variables is significant in explaining the number of relevant PCs.  Further, the macroeconomic variables 

have much less explanatory power for the number of significant factors as compared to the number of 

listed firms.  The R-squared statistics for the statistically significant macroeconomic variables vary from 

0.03 for the recession indicator to 0.17 for the Treasury bond rate, as compared to 0.50 for the number of 

listed firms. 

The coefficient estimates reported in column (6) of Table 5 indicate that the number of 

statistically significant factors as well as the number of relevant PCs thereof are negatively related to the 

percentage of firms that pay dividends.  This result is consistent with the reasoning that the listing of non-

dividend paying firms, which tend also to be younger and less familiar to investors, is associated with an 

increase in the number of significant factors.  The coefficient estimates reported in column (7) of Table 5 

indicate that the number of statistically significant factors (though not the number of PCs thereof) is 

strongly negatively related to mean institutional ownership, with an R-squared statistic equal to 0.46.  If 

institutions invest with a differing objective function as compared to individuals (due, for example, to 
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agency issues or heterogeneity across individual investors), then changes in institutional ownership can 

effectively alter the identity and objective of the marginal stock market investor.  The negative coefficient 

estimates imply that increased institutional ownership reduces the numbers of significant factors, 

potentially because it effectively reduces variation in the identity of the marginal investor.  The 

coefficient estimates on the economic complexity index (column 8) and the Amihud illiquidity measure 

(column 9) are not statistically significant in either Panel of Table 5.  

The coefficient estimate for the diversity of firm characteristics (column 10) is positive and 

statistically significant in both Panels A and B of Table 5, with relatively large R-squared statistic of 0.38 

in Panel A (number of significant factors) and 0.51 in Panel B (number of relevant PCs).   This result 

implies that more factors and relevant PCs thereof are significant during those periods when there is 

greater cross-sectional variability in firm characteristics.    

Columns 11 and 12 present results for multivariate specifications.  We omit mean institutional 

ownership from the results in column 11, because data is available only from 1980 onward.  The 

unemployment rate remains significant in each specification.  The interest rate variables remain 

significant in Panel A.  The coefficient on the cross-sectional mean Amihud illiquidity measure is positive 

and significant in Column 11 of each panel; that is, the multivariate outcomes support that greater 

illiquidity is associated with more significant factors, potentially due to reduced arbitrage activity.  The 

proportion of firms paying dividends becomes insignificant in the multivariate setting. 

Notably, the coefficient estimate on the diversity of firm characteristics remains positive and 

statistically significant in each specification, both when explaining the number of significant factors or the 

number of relevant PCs thereof.  That is, even after allowing for the explanatory power of 

macroeconomic variables, cross-sectional variation in firm characteristics has explanatory power for the 

number of significant factors and relevant PCs.  The number of publicly listed firms is no longer 

significant in the multivariate setting, which is consistent with the reasoning that the univariate 

significance of the number of firms is linked to the greater diversity of characteristics when the number of 

firms is large.  The R-squared statistics in column 11 are large, equal to 0.72 in Panel A and 0.59 in Panel 
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B, implying that observable measures of economic complexity and firm diversity together explain most of 

the variation in the numbers of factors with economically significant explanatory power for the cross-

section of stock returns.  That is, time variation in the number of significant factors and the number of 

relevant PCs thereof is not random, but rather is linked to variation in macroeconomic conditions and 

observable diversity in firms’ characteristics.  

13. Conclusions 

The reasoning that only a few factors or factor principal components should be necessary to 

explain the cross section of mean returns is attractive because parsimony is desirable.  So, should the fact 

that the literature shows that a substantial number of observable factors have explanatory power for the 

cross-section of stock returns be viewed as a collective failure?   

We think not.  Financial markets and the broader economy are complex and dynamic.  The 

characteristics of the firms that are available for investment can change over time as existing firms evolve 

and new firms are listed or delisted.  Investors are diverse in terms of their investment horizon and 

objectives.  Some investors trade on their own account, while others rely on professional managers whose 

strategies can be affected by agency issues related to their compensation.  The identity of the marginal 

investor can differ across stocks, and in any given stock can vary through time.  Further, investors may 

need time to learn about relevant firm characteristics and their associated expected returns.   Return 

premia have been shown to depend on intermediaries’ funding liquidity, leverage, and balance sheets, as 

well as on the state of the economy.  In short, it is unclear that return premiums in actual capital markets 

are necessarily governed by only a small and time-invariant set of factors.   

Cochrane (2011) observes that most variation in price-to-dividend ratios is attributable to changes 

in discount rates, i.e., expected returns.   Prices are determined in market trading, based on the interaction 

between buy and sell orders.  Cochrane (2022, page 31) observes that “the standard models do not 

produce a hundredth of the observed trading volume.”  It follows, in our view, that the determinants of 

expected returns are not necessarily confined to those predicted by the same standard models, and can 

vary as market conditions, the economic environment, and other motivations for trading change.  The 
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need to be mindful of the possibility of collective data mining and joint hypothesis testing 

notwithstanding, these considerations support allowing the data to speak on the issues.   

We present empirical findings relevant to these issues, showing that non-latent, i.e., observable, 

factors identified in the literature have substantial forecast power for the cross-section of stock returns.  

Out-of-sample Sharpe ratios for portfolios formed from the PCs of in-sample factors are larger when time 

variation in factor premia is accommodated by means of rolling window estimation and when focusing on 

those factors with statistically significant in-sample explanatory power.  Out-of-sample Sharpe ratios are 

larger when more factor PCs are used to form portfolios, implying that the factors identified by prior 

researchers are to a substantial extent not redundant of each other.  Further, the conclusions of existing 

studies that assert that only a few factor PCs are relevant are altered when the only change in research 

design is to allow for time variation in factor premia.    

We use simulation methods to show that neither the average number of periods where a factor is 

significant, nor the average duration of significance is consistent with the null hypothesis that factor 

premia are constant over time.  We further show that the number of significant factors varies with 

measures of economic complexity and firm diversity.   In particular, the number of significant factors is 

related to a recession indicator variable, interest rates, the percentage of firms that pay dividends, mean 

institutional ownership rates, and is particularly strongly related to cross-sectional variation in observable 

firm characteristics.  Our findings support the reasoning that newly listed firms systematically differ from 

existing firms in terms of systematic risks relevant to investors.  Finally, the finding with respect to 

diversity of firm characteristics suggests that more factors are relevant when firms themselves are more 

distinct.     

Our findings imply that a time-varying number of non-redundant factors are required to price the 

cross-section of returns as the economy evolves and diverse firms are listed and delisted.  In such a 

dynamic economy a factor can be significant in explaining returns during some periods but not others.  

This suggests that insignificant post-publication outcomes need not imply that a factor was unpriced in 

the original sample period nor that it will necessarily remain unpriced.  However, accommodating such 
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time variation may also provide additional scope for specification searches or other sources of bias.  We 

avoid amplifying any such bias in this study by focusing only on previously-identified factors.  Further, a 

requirement to link variation in estimated factor premia to variation in observable economic variables that 

were not directly employed to identify the factors imposes a degree of discipline.   On balance, our 

findings suggest that multiple and time-varying factors may be required to price the cross-section of 

returns as the economy continues to evolve dynamically and firms with differing characteristics are listed 

and delisted.     
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Figure 1. Effect of PCs’ estimation and forecasting horizons on out-of-sample Sharpe ratios. This figure shows the average annualized Sharpe ratios of portfolios formed 
from increasing numbers of PCs for different estimation windows of two sets of test assets from 1965-2015. Panel A shows the averages of rolling in-sample Sharpe ratios 
obtained from forming optimal portfolios consisting of different numbers of PCs. Panel B shows the averages of rolling out-of-sample Sharpe ratios. Panel C shows the averages of 
rolling out-of-sample Sharpe ratios for the 25 size and book-to-market portfolios. Panel D shows the averages of the corresponding out-of-sample Sharpe ratios for the same assets.  
The PCs are computed on a rolling monthly basis for different estimation windows. The out-of-sample portfolios are constructed using the in-sample optimal weights.  The solid 
red line shows the Sharpe ratios where the sample is split in half and replicates Kozak, Nagel and Santosh (2018).  The blue line shows the Sharpe ratio where the in-sample 
winodw is 60 months and the out-of-sample window is 36 months. For consistency with the split sample analysis, out-of-sample Sharpe ratios are computed only using the second 
half of the split sample. 
 

Panel A: In-sample Sharpe ratios – short/long legs of 15 anomalies 

 

Panel B: Out-of-sample Sharpe ratios – short/long legs of 15 anomalies 

 

Panel C: In-sample Sharpe ratios – 25 Size/BM 

 

Panel D: Out-of-sample Sharpe ratios – 25 Size/BM 
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Figure 2. Out-of-sample Sharpe ratios of portfolios constructed from principal components. These 
figures show the annualized out-of-sample Sharpe ratios of portfolios formed from varying number of principal components.  For 
each month t, we compute the factor loadings for the in-sample principal components for two sets of factor returns from t – 59 to 
t. We then use the factor loadings to form out-of-sample principal components from t + 1 to t + 36. We present 3 different 
Sharpe ratios formed from portfolios of PCs: 1) the SR from a portfolio of the first 5 PCs, 2) the average SR across all portfolios 
formed by increasing numbers of PCs, and 3) the SR from a portfolio of the maximum number of principal components. Panel A 
shows results for PCs calculated from the set of all factors in our sample. Panels B shows results using PCs calculated for the 
subset of significant factors. See section 2.B for the full methodology. The missing points in Panel B are due to the lack of 
significant factors in the in-sample period. 

Panel A: Out-of-sample Sharpe ratios of PC portfolios computed for all factors. 

 

Panel B: Out-of-sample Sharpe ratios of PC portfolios computed from significant factors. 
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Table 1. Out-of-sample Sharpe ratios for portfolios consisting of varying numbers of principal components. This table provides descriptive 
statistics regarding the Sharpe ratios shown in Figure 2. We tabulate the mean and standard deviation of the time series of 4 different annualized Sharpe ratios formed from 
portfolios of PCs: 1) the SR from a portfolio of the first 5 PCs, 2) the average SR across all portfolios formed by increasing numbers of PCs, 3) the SR from a portfolio of the 
maximum number of principal components, and 4) the maximum SR attainable from any number of PCs. The “Difference from SR of 5 PCs” shows the increase in the Sharpe 
ratio of a given portfolio relative to the portfolio formed by the first 5 PCs. The PCs are calculated from the factor returns from t – 59 to t.  The portfolios are formed using the out-
of-sample data from t + 1 to t + 36. See section 2.B for the full methodology. The statistics tabulated under the heading “PCs from all factors” corresponds to Panel A of Figure 2, 
while those under “PCs from sig factors only” correspond to Panel B. The t-statistic on the difference of SRs from the 5-PC portfolio is calculated based on Hansen-Hodrick 
standard errors with a bandwidth of 60 are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 

5 PCs Average Max PCs Max SR 5 PCs Average Max PCs Max SR
(1) (2) (3) (4) (5) (6) (7) (8)

Average 1.394 2.640 2.977 4.242 2.164 3.200 3.570 4.676
Std dev 1.103 1.131 1.874 1.622 1.097 1.318 1.609 2.067
N 1039 1039 1039 1039 935 1005 1005 1005

Difference from SR of 5 PCs 1.246*** 1.583*** 2.848*** 1.036*** 1.406*** 2.512***
t-statistic 7.22 3.55 9353 3.68 4.56 4.97

% difference 89% 114% 204% 74% 101% 180%

PCs from all factors PCs from sig factors only
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Figure 3. Average minimum and maximum weights within a portfolio of PCs. This figure shows the average minimum and maximum weights found within 
a portfolio of a given number of PCs.  For each month t, we compute the in-sample principal components for the full sample of factor returns from t – 59 to t. We use the factor 
loadings to form out-of-sample principal components from t + 1 to t + 36 and construct portfolios comprised of increasing numbers of these out-of-sample PCs. The portfolio 
weights are the mean-variance optimal weights computed using the in-sample PCs.  The red dots below plot the average maximum weight in a portfolio consisting of the given 
number of PCs shown on the x-axis.  The blue dots plot the average minimum weight in the same portfolio. The sample of factors comes from the set of 205 “clear” and “likely” 
predictors provided by Chen and Zimmermann (2021) from 1931 to 2020. 
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Figure 4. Out-of-sample Sharpe ratios of equal-weighted portfolios constructed from principal 
components. These figures show the annualized out-of-sample Sharpe ratios of portfolios formed from varying number of 
principal components for the set of all factors in our sample.  For each month t, we compute the factor loadings for the in-sample 
principal components for two sets of factor returns from t – 59 to t. We then use the factor loadings to form out-of-sample 
principal components from t + 1 to t + 36. We present 4 different Sharpe ratios formed from equal-weighted portfolios of PCs: 1) 
the SR from a portfolio of the first 5 PCs, 2) the average SR across all portfolios formed by increasing numbers of PCs, and 3) 
the SR from a portfolio of the maximum number of principal components. See section 2.B for the full methodology. The missing 
points in Panel B are due to the lack of significant factors in the in-sample period. 
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Table 2. Out-of-sample Sharpe ratios for equal-weighted portfolios consisting of varying numbers 
of principal components. This table provides descriptive statistics regarding the Sharpe ratios shown in Figure 4. We 
tabulate the mean and standard deviation of the time series of 4 different annualized Sharpe ratios formed from portfolios of PCs: 
1) the SR from a portfolio of the first 5 PCs, 2) the average SR across all portfolios formed by increasing numbers of PCs, 3) the 
SR from a portfolio of the maximum number of principal components, and 4) the maximum SR attainable from any number of 
PCs. The “Difference from SR of 5 PCs” shows the increase in the Sharpe ratio of a given portfolio relative to the portfolio 
formed by the first 5 PCs. The PCs are calculated from the factor returns from t – 59 to t.  The portfolios are formed using the 
out-of-sample data from t + 1 to t + 36. See section 2.B for the full methodology. The statistics tabulated under the heading “PCs 
from all factors” corresponds to Panel A of Figure 2, while those under “PCs from sig factors only” correspond to Panel B. The t-
statistic on the difference of SRs from the 5-PC portfolio is calculated based on Hansen-Hodrick standard errors with a 
bandwidth of 60 are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 
 

 

 

5 PCs Average Max PCs
Average 0.952 2.110 2.957
Std dev 0.858 1.017 1.340
N 1039 1039 1039

Difference of SRs from 5 PCs 0.000 1.157*** 2.005***
t-statistic 10.08 8.54

% difference 22% 111%

Portfolio SR
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Table 3. Relation between the number of relevant principal components, significant in-sample 
factors and out-of-sample Sharpe ratios. For each month t, we compute the factor loadings for the in-sample 
principal components for two sets of factor returns from t – 59 to t. We then use the factor loadings to form out-of-sample 
principal components from t + 1 to t + 36. The number of relevant principal components is the number of PCs required to 
explain 95% of the cumulative variation in the in-sample factor returns from t – 59 to t. We also compute the number of 
significant factors by counting the total number of factors with a CAPM alpha that has a t-statistic greater than 3.0 over the same 
in-sample period. The maximum out-of-sample Sharpe ratio is obtained from the optimal portfolio of out-of-sample PCs. All 
Sharpe ratios are annualized. Panel A shows the results of regressing the maximum out-of-sample Sharpe ratios and the number 
of PCs that make up the maximum out-of-sample SR portfolio on the number of relevant principal components. Panel B shows 
the analogous results to Panel A but replaces the independent variable with the number of significant factors. Hansen-Hodrick 
standard errors with a bandwidth of 60 are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% 
levels. 
 

Panel A. Out-of-sample PC portfolio Sharpe ratios and number of in-sample relevant PCs 
 

 
 
 

Panel B. Out-of-sample PC portfolio Sharpe ratios and number of in-sample significant factors 
 

Max SR Num PCs Max SR Num PCs
(1) (2) (3) (4)

Number of relevant PCs 0.07 1.22*** 0.14*** 1.36***
(0.05) (0.14) (0.05) (0.28)

Intercept 2.10 3.22 0.38 -24.97***
(1.28) (3.73) (1.20) (6.87)

R-squared 0.11 0.35 0.24 0.51
N 1039 1039 1005 1005

Portfolio of principal components obtained from:
All factors Significant factors

Max SR Num PCs Max SR Num PCs
(1) (2) (3) (4)

Number of significant factors 0.04*** 0.35*** 0.06*** 0.54***
(0.01) (0.08) (0.01) (0.03)

Intercept 3.34*** 31.28*** 3.19*** 2.56**
(0.47) (3.41) (0.48) (1.17)

R-squared 0.26 0.27 0.40 0.82
N 1039 1039 1005 1005

Portfolio of principal components obtained from:
All factors Significant factors
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Figure 5. Time series variation in the number of relevant principal components. This figure shows the 
number of relevant principal components that explain a large number of factors documented in the finance literature. For each 
month t, we compute the in-sample principal components for a set of factor returns from t – 59 to t. We also compute the number 
of factors that have a significant (t-statistic > 3.00) CAPM alpha over the same in-sample period. The sample of factors comes 
from the set of 205 “clear” and “likely” predictors provided by Chen and Zimmermann (2021) from 1931 to 2020. The dotted 
black line in Panel A is the cumulative number of factors incremented at the date of each factor’s first available return based on 
the time period of the data used in the original paper’s sample. The solid blue line in Panel A is the cumulative number of factors 
incremented at the date of each factor’s first available return given the data available today. The solid red line of Panel A shows 
the number of relevant principal components, where the number of relevant principal components is the number of PCs required 
to explain 95% of the cumulative variation in the factor returns from t – 59 to t.  The dashed orange line shows the number of 
significant factors over time. Panel B shows the amount of variation in the factor returns explained by a given number of 
principal components. The grey vertical bars represent periods of NBER-defined recessions.  
 

Panel A:  Time series variation in relevant principal components and significant factors 
 

 
 

Panel B: Cumulative variation explained by principal components of all factor returns 
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Figure 6. Time series variation in individual factors’ significance. This figure shows whether a factor at a specific date has a statistically significant CAPM 
alpha over the preceding 60 months for the full sample of factors from 1931-2020. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s 
monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha exceeds 3.0. Factors must have 60 non-missing 
returns over the alpha estimation period. Each horizontal series represents a different factor with the blue dots signifying a month in which the factor is significant over the 
previous 60 months. A green dot denotes the earliest data used in the original study that identified the factor. A red dot denotes the latest data used in the original study. A magenta 
dot indicates the earliest date for which we are able to estimate the factor’s alpha based on data now available. The factors are sorted in increasing order of the unconditional t-
statistic of their unconditional CAPM alpha during the original sample period. The grey vertical bars represent periods of NBER-defined recessions. 
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Figure 7. Simulated distributions for average significance spell lengths and counts. This figure shows simulated distributions of the cross-factor average of 
individual factors’ average spell lengths and spell counts, when each factor has a constant return premium.  We estimate for each factor a constant  alpha, beta and residual 
volatility by means of a regression of factor returns on excess market returns.  We create a simulated time series of market returns calibrated to the sample mean and standard 
deviation of the market over the sample period, and generate a simulated time series of returns for each of the 205 factors based on the simulated market returns, estimated factor 
alpha and beta, and estimated factor residual volatility, with the length of each factor’s simulated time series matched to the number of sample observations for the factor return.  
We then estimate rolling 60-month regressions of simulated factor returns on simulated market returns, and obtain both the count and average length of significance spells for each 
simulated factor, when significance is assessed based on t-statistics ranging from 1.96 to 4.00.  Having done so, we compute the cross-factor average of the spell counts and spell 
lengths (corresponding to the sample data reported in Table 4).   We repeat the simulation 2,000 times to obtain a distribution of the average cross-sectional factor spell lengths and 
counts.  Panel A displays the simulated distributions for the cross-factor average of the average spell lengths, while Panel B corresponding cross-factor average spell counts.  The 
red dashed lines display the corresponding sample outcomes.    

Panel A: Simulated distribution of average spell length. 

T-statistic for factor significance: 1.96 

 

T-statistic for factor significance: 2.00 

 

T-statistic for factor significance: 2.50 

 
 
 

  

T-statistic for factor significance: 3.00

 

T-statistic for factor significance: 3.50 

 

T-statistic for factor significance: 4.00 
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Figure 7 continued. 

Panel B: Simulated distribution of average spell count. 

T-statistic for factor significance: 1.96 

 

T-statistic for factor significance: 2.00 

 

T-statistic for factor significance: 2.50 

 
 
 

  

T-statistic for factor significance: 3.00

 
 

T-statistic for factor significance: 3.50 

 

T-statistic for factor significance: 4.00 
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Table 4. Summary statistics of factor significance spells across various thresholds of significance. 
For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each 
factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha exceeds one of the various thresholds 
listed in the table. Factors must have 60 non-missing returns over the alpha estimation period.  A significance spell for a given 
factor is the number of months (i.e., spell length) the factor is continuously significant. Panel A shows the proportion of factors 
that exhibit at least one significance spell before (after) the sample period of the original paper to identify the factor. Panel B 
provides summary statistics on the number of significance spells for the cross-section of factors. Panel C computes each factor’s 
average length of a spell and shows summary statistics of this measure for the cross-section of factors conditional on having at 
least one significance spell. The exceptions are that “Abs min” and “Abs max” show the absolute minimum and maximum spell 
length of all factors. ***, **, * represent significance at the 10%, 5% and 1% level relative to the simulated distribution in Figure 
11. 

 
Panel A: Proportion of factors with at least one significance spell  

 

 
 
 

Panel B: Number of significance spells per factor  
 

 
 
 

Panel C: Average length of significance spell  
 

 

t-statistic p-value

before 
original 
sample

after 
original 
sample

1.96 0.050 77.2 92.6
2.00 0.046 77.2 92.1
2.50 0.012 66.9 82.3
3.00 0.003 54.3 68.5
3.50 0.001 44.1 50.7
4.00 0.000 23.6 36.5

% significant:

t-statistic p-value Mean SD Median Min Max

1.96 0.050 11.9*** 6.9 11 0 35
2.00 0.046 11.7*** 6.9 11 0 37
2.50 0.012 9.8 6.5 9 0 33
3.00 0.003 7.7*** 5.8 6 0 23
3.50 0.001 5.2*** 4.6 4 0 21
4.00 0.000 3.5*** 4.2 2 0 19

Cross-sectional statistics of factors' spell counts

t-statistic p-value Mean SD Median Min Max Abs Min Abs Max

1.96 0.050 32.3*** 52.9 20.0 1.4 535 1 624
2.00 0.046 32.0*** 52.6 20.0 1.2 535 1 624
2.50 0.012 22.1*** 25.7 15.1 1 233 1 572
3.00 0.003 21.8*** 45.5 12.7 1 523 1 523
3.50 0.001 18.3*** 30.3 11.4 1 260 1 427
4.00 0.000 20.1*** 29.6 12.2 1 233 1 415

Cross-sectional statistics of factors' average spells
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Table 5. Comovement of the number of significant factors and relevant PCs with economy and firm characteristics. This table shows the results 
of regressing the number of significant factors or relevant principal components in each period on various economic measures at each month for the sample of factors from 1968-
2020. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s monthly excess returns to obtain each factor’s CAPM alpha. A factor is 
significant at month t if the t-statistic of its CAPM alpha exceeds 3.00. Factors must have 60 non-missing returns over the alpha estimation period.  We also compute the number of 
relevant principal components at each date t by counting the number of principal components required to explain 95% of the cumulative variation of a set of factor returns from t – 
59 to t. Panel A uses the number of significant factors at each month t as the dependent variable, while Panel B uses the number of relevant factors at each month t. The 
independent variables are the same in both panels. The number of public firms is a count of all common stocks at t traded on the NYSE, NASDAQ or Amex at month t. The NBER 
recession indicator is an indicator equal to one if the month is classified as an NBER recession and zero otherwise. The unemployment rate is the number of unemployed as a 
percentage of the labor force as provided by the U.S. bureau of labor statistics. The 90-day T-bill rate is the 3-month Treasury Bill Secondary Market Rate and the 10-year treasury 
note yield spread is the difference of the market yield on U.S. treasury securities at a 10-year constant maturity and the 90-day T-bill rate. The percent of dividend-paying firms is 
the total number of common stocks which have paid a dividend in the previous 12 months divided by the number of firms at month t. The mean institutional ownership is the 
fraction of a firm’s shares outstanding held by 13-f firms. The economic complexity index is a measure of economic complexity used from Simoes and Hidalgo (2011). Diversity 
of firm characteristics is a measure of diversity in the cross-sectional characteristics across firms. See Appendix Table C1 for a complete description of the measures.   See 
Appendix Table C4 for a similar analysis using the sample of factors from 1931-2020. Hansen-Hodrick standard errors are in parentheses. ***, **, * denote statistical significance 
at the 1%, 5%, and 10% levels. 
 

Panel A: Comovement of the number of significant factors with economy and firm characteristics 
 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Number of public firms 26.74*** 6.56 -2.90

(7.97) (4.89) (19.08)
NBER recession indicator -11.90** -7.44** -2.59

(5.58) (3.16) (3.97)
Unemployment rate -5.30 -11.63*** -10.80***

(4.22) (2.45) (2.00)
90-day T-Bill yield 8.08 12.29*** -1.08

(5.38) (3.67) (4.91)
10-year T-Note yield spread -0.02 8.41*** 2.24

(3.64) (1.33) (2.52)
% dividend-paying firms -12.09* -2.48 -13.32

(6.21) (8.05) (16.60)
Mean institutional ownership -16.81*** -19.51

(4.46) (13.32)
Economic complexity index 6.79 0.50 -4.29

(4.20) (2.36) (2.74)
Mean Amihud illiquidity 8.25 9.07*** 0.54

(11.77) (3.31) (4.71)
Diversity of firm characteristics 17.23*** 10.85** 18.41***

(5.71) (4.75) (6.94)
R-squared 0.50 0.03 0.05 0.14 0.00 0.11 0.46 0.09 0.01 0.38 0.72 0.80
N 636 636 636 636 636 636 483 600 636 600 600 456

Dep var: Number of significant factors
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Table 5 (continued).  

 
Panel B: Comovement of the number of relevant PCs with economy and firm characteristics 

 

  
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Number of public firms 2.02* -1.72* 3.09

(1.14) (0.97) (3.16)
NBER recession indicator -1.14 -0.06 -0.27

(1.06) (0.56) (0.52)
Unemployment rate -0.62 -1.06*** -1.18***

(0.46) (0.39) (0.42)
Fed funds rate -0.41 -0.44 -1.88**

(0.61) (0.43) (0.84)
10-year T-Bond yield -0.40 0.90* 0.44

(0.73) (0.48) (0.95)
% dividend-paying firms -2.96** -0.68 4.91

(1.18) (1.98) (3.26)
Mean institutional ownership -0.29 0.29

(0.87) (1.43)
Economic complexity index 0.46 -0.26 -1.20

(0.80) (0.38) (0.74)
Mean Amihud illiquidity 0.83 2.46*** 2.58***

(2.00) (0.87) (0.90)
Diversity of firm characteristics 2.93*** 3.42*** 3.05***

(0.62) (0.96) (1.06)
R-squared 0.13 0.01 0.03 0.02 0.01 0.30 0.01 0.02 0.01 0.51 0.59 0.54
N 636 636 636 636 636 636 483 600 636 600 600 456

Dep var: Number of relevant PCs
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1. Appendix A: PC estimation and portfolio construction 

 

We estimate the principal components using 60-month rolling windows. For each month, t, we 

consider all factors that have non-missing returns for the in-sample months t – 59 to t.24  It is important to 

note that the factor returns are neither centered nor standardized. For the subset of factor returns, 𝐹!"#$:!	, 

from t – 59 to t, we compute the eigendecomposition of the factor covariance matrix 

∑ = 𝑄𝛬𝑄"& with 𝛬 = 𝑑𝑖𝑎𝑔(𝜆&, 𝜆', … , 𝜆() 

where Q is the square n x n matrix of eigenvectors (at each column i) and 𝛬 is the diagonal matrix of 

eigenvalues. The eigenvectors are ordered based on the decreasing magnitudes of their corresponding 

eigenvalues. We construct the principal component factors (PCF) by right multiplying the factor returns 

from t – 59 to t + 36 with Q: 

𝑃𝐶𝐹!"#$:!)*+ = 𝐹!"#$:!)*+𝑄 

We classify the subset of principal components from t – 59 to t as the in-sample (IS) principal 

components, 𝑃𝐶𝐹!,- and those from t + 1 to t + 36 as the out-of-sample principal components, 𝑃𝐶𝐹!..-.  

With the principal component factors so defined, we proceed to construct out-of-sample 

portfolios of an increasing number of principal component factors as follows. First, for a given number of 

the first n principal component factors, we compute the mean-variance optimal weights from the in-

sample principal component factors of a given number, where the weight matrix is 

𝑊 =	
∑"&𝜇

1/(∑"&𝜇)012
 

where ∑ is the covariance matrix of those n in-sample principal component factors, 𝜇 is the mean 

of the same, and 1 is the 1 x n-column ones vector. The superscript abs in the denominator denotes the 

absolute value which is taken element by element of the vector.  As opposed to the traditional mean-

variance weights formula, which scales the weights such that they sum to 1, we scale the weights such 

 
24 Generally, once a factor is non-missing, it continues to be non-missing through the end of the sample. There are 6 
factors that become sparse after 2007.  
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that the absolute value of the weights sums to 1. Applying the absolute value operation to the 

denominator is the key difference between the weights formula we use and the traditional mean-variance 

formula.  

Scaling by the sum of absolute values of the unscaled weights is required because the principal 

component factors consist of long-short portfolios. This constraint guarantees (in-sample) that the optimal 

portfolio falls on the upper part of the mean variance frontier. The economics of this constraint is that it 

takes seriously the issue that one cannot raise capital to go further long in one zero net cost portfolio by 

shorting another zero net cost portfolio, because shorting said portfolio raises no capital. Another 

interpretation of this constraint is that it takes seriously positions being scaled by wealth. A further benefit 

of this constraint is that weights in the optimal portfolio are well behaved and never extreme. This 

constraint imposes a maximum on a given weight is 1.  

In contrast, applying the traditional scaling of simply dividing by the sum of the unscaled weights 

can give very wild weights. This can also lead to negative Sharpe ratios (in-sample) because the optimal 

portfolio so formed may fall on the lower part of the mean variance frontier. Though the absolute value of 

said Sharpe ratio will match the Sharpe ratio obtained using the absolute sum constraint, since the scaling 

parameters cancel in the numerator and denominator of the Sharpe ratio up to a sign. The prior literature 

deals with this inconvenience of negative Sharpe ratios by squaring the Sharpe ratio to give positive 

values, but that solution still often gives very extreme weights for the portfolio constituents especially 

with larger numbers of factors, which is a common criticism of using large numbers of factors.  

Having obtained the optimal weights from the in-sample principal component factor returns, we 

construct the out-of-sample principal component portfolios by applying the in-sample optimal weights to 

the out-of-sample principal component factor returns from t + 1 to t + 36 for the first n principal 

components to create an out-of-sample portfolio consisting of 36 monthly returns.  The Sharpe ratio is 

computed from this set of returns. 
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2. Appendix A: Reconciliation with Kozak, Nagel, and Santosh (2020) 

Kozak, Nagel and Santosh (2020) report that, while a large number of factors are required to 

explain the cross section of returns to the fifty-anomaly based factors they study, a relatively sparse 

stochastic discount factor formed from only four PCs performs quite well, as judged by their model’s out-

of-sample R2 statistic.  This finding appears to contrast with our own, though the difference is likely 

attributable, at least in part, to the fact that we study a larger set of factors.   

We investigate further.   The computer code employed by Kozak, Nagel, and Santosh (2020)  

computes not only the out-of-sample R2 statistic, but also out-of-sample Sharpe ratios.25  Despite the facts 

that the estimation procedure they employ penalizes deviations of Sharpe ratio estimates from zero and 

that their method does not accommodate time variation in parameters, out-of-sample Sharpe ratios 

estimated in their sample by their program increase moderately from 0.75 with 4 factor PCs to 0.90 with 

ten factor PCs, and to 1.11 with 48 factor PCs.    

However, these Sharpe ratio estimates may be biased due to the fact that their program computes 

PC eigenvectors over the full sample period.26  We therefore modify their program to construct factor PCs 

separately during the “training folds” (in-sample subperiods) and apply the resulting eigenvectors to 

returns in the “evaluation folds” (the out-of-sample subperiods).   Figure B1 displays the outcomes.   

Panel A displays the out-of-sample R2 statistic, and corresponds to Figure 3A in Kozak, Nagel and 

Santosh (2020).  Panel B displays the corresponding out-of-sample Sharpe ratios.   The specific out-of-

sample Sharpe ratios estimated in their sample are 0.80 with four factor PCs, 0.94 with ten factor PCs, 

and 1.09 with 48 factor PCs.  We conclude that the data and programs employed by Kozak, Nagel and 

Santosh (2020) also support that employing factor PCs beyond the first few leads to somewhat greater 

explanatory power for the cross-section of out-of-sample stock returns, even without any allowance for 

time variation in factor premia. 

 
25 More specifically, their program computes the square root of the expected squared Sharpe ratio. 
26 We are grateful to Stefan Nagel for identifying this bias and suggesting the solution to eliminate it.  
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Our results may also help to understand why Kozak, Nagel and Santosh (2020) report that many 

factors (as opposed to factor PCs), some with small SDF weightings, are necessary for good out-of-

sample performance.  In particular, we posit that time variation in factor premia contributes indirectly to 

their findings.  Even if a particular factor is not significant during the in-sample period, keeping small 

non-zero weights on many factors implies that those that factors that become economically important out-

of-sample contribute to portfolio performance.   

We also obtain from Serhiy Kozak’s website the optimal SDF coefficients for individual factors 

as estimated by Kozak, Nagel and Santosh (2020).  Analogous to the research approach adopted here, we 

then assess, for each of the fifty anomaly portfolios they study, the percentage of sample months where 

the portfolio has a significant (t-statistic > 3.0) alpha in rolling sixty-month regressions of portfolio 

returns on market returns.   Finally, we study relations between the absolute value of the coefficients in 

the SDF as reported by Kozak, Nagel and Santosh (2020), and the percentage of months where the 

portfolio has a significant alpha.27    

The results, displayed on Figure B2, demonstrate a strong positive relation between SDF 

coefficients and the frequency of significance.  The figure also reports the outcome of an OLS regression 

of absolute SDF coefficients complied by Kozak, Nagel and Santosh (2020) on the percentage of months 

with significant alphas; the slope coefficient is 0.80 with a t-statistic equal to 9.85, and the regression R-

squared statistic is 0.67.   These results imply their shrinkage technique produces weights related to the 

fraction of time a factor is significant and also places small rather than zero weights on factors that have 

only intermittent significance.  

 
27 We rely on absolute t-statistics and coefficients since Kozak, Nagel and Santosh (2020), unlike some authors, do 
not normalize factor returns such that they have positive mean returns.    
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Figure B1. R-squared and Sharpe Ratios based on Kozak, Nagel, and Santosh (2020) (KNS).  Panel A replicates Figure 3b in KNS, and 
displays the out-of-sample r-squared implied by a range of possible priors regarding the Sharpe ratio (kappa) and for a range of non-zero 
coefficients in an SDF formed based on the PCs of the 50 anomaly return series they study.  Panel B shows the corresponding out-of-sample 
Sharpe ratios actually attained, based on a modified version of their computer code, as described in the text.  Warmer colors indicate higher 
outcomes on both Panels. The red line denotes outcomes for the kappa that generates the highest out-of-sample r-squared. The red ‘+’, ‘x’ and ‘●’ 
denote outcomes when the SDF has non-zero coefficients on 4, 10, and the maximum number of PCs.   The ‘●’ also reflects the maximum 
achievable out-of-sample r-squared in Panel A.  

 

Panel A: Out-of-sample r-squared Panel B: Sharpe ratio 
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Figure B2. Factors fraction of time significant related to the size of its coefficient in optimal 
unconditional SDF. This figure shows that the coefficients in the optimal unconditional SDF of Kozak, Nagel and Santosh 
(2020) are positively related to the fraction of months that a given factor is significant in the sample. The data consists of the 50 
anomaly portfolios from Kozak, Nagel and Santosh (2020) for their same sample period. Both axes are based on absolute values, 
as in that paper, these factor portfolios have not been normalized to have positive premia, but instead are based on long-short 
portfolios of high and low characteristic firms. The x-axis shows the fraction of time a given factor is significant relative to the 
CAPM (absolute t-stat greater than 3.0). The y-axis shows the absolute value of the coefficient in the optimal unconditional SDF 
as reported in Kozak, Nagel and Santosh (2020). The full set of coefficients are obtained from the code posted on Kozak’s 
website. The red dashed line shows the best fit line with the parameters and statistics reported in the text in the figure.   
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Appendix C: Additional Figures and Tables 
 
Figure C1. Regression slopes of in-sample and out-of-sample SRs by principal component. This figure 
shows the time series average of the rolling in-sample (IS) and out-of-sample (OOS) Sharpe ratios as well as the slope coefficient 
from a regression of the OOS SR on the IS SR.  For each month t, we compute the in-sample principal components for the full 
sample of factor returns from t – 59 to t. We also use the in-sample factor loadings to form out-of-sample principal component 
factors from t + 1 to t + 36. We then calculate the in-sample SR for each PC individually and the corresponding out-of-sample 
SR for the same PC. The internet appendix includes a table and scatterplots of all SRs in the time series by principal component 
number. 
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Figure C2. Effect of PCs’ estimation and forecasting horizons on out-of-sample Sharpe ratios – alternative factor data. This figure replicates 
Figure 1 but uses the Chen and Zimmerman factors rather than the data provided by Kozak, Nagel and Santosh (2018). This figure shows the average annualized Sharpe ratios of 
portfolios formed from increasing numbers of PCs for different estimation windows.  Panel A shows the averages of rolling in-sample Sharpe ratios obtained from forming optimal 
portfolios consisting of different numbers of PCs. Panel B shows the averages of rolling out-of-sample Sharpe ratios. The PCs are computed on a rolling monthly basis for different 
estimation windows. The out-of-sample portfolios are constructed using the in-sample optimal weights.  The solid red line shows the Sharpe ratios where the sample is split in half 
following Kozak, Nagel and Santosh (2018).  The other lines present in-sample and out-of-sample windows from t – k to t, where k can be 10, 5 or 3 years of rolling months of 
daily returns.  For consistency with the split sample analysis, the 10, 5, and 3-year out-of-sample Sharpe ratios are computed only using the second half of the split sample. 

 

Panel A: In-sample Sharpe ratios – CZ factors 

 

Panel B: Out-of-sample Sharpe ratios – CZ factors 
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Figure C3. Cumulative number of non-missing cross-sectional characteristics over a firm’s 
lifecycle. This figure shows the average number of cross-sectional characteristics available for each firm in a given month since 
the firm first appears in the cross-sectional characteristics dataset of Chen and Zimmerman (2021). The first month the firm 
appears is indexed at zero.  The blue line is for firms that first appeared at any time during the sample.  The orange line is the set 
of firms that first appeared after January 1963.  
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Table C1. Variable definitions This table summarizes the various variables we use throughout the analysis.  The variables are listed in order of appearance in the paper. 

Variable name Description 

Number of 
significant factors 

The total number of significant factors at each month t.  At each month t, we regress each factor's returns from t-59 to t on the 
market's excess returns over the same period to obtain the factor's CAPM alpha. A factor is considered significant if the t-statistic 
of its CAPM alpha is greater than 3.00. To be included, the factor must have zero non-missing returns over the 60-month period. 
Factors come from Chen and Zimmerman (2021) and are categorized as "clear" or "likely" predictors. 

Standard deviation 
of stocks' alphas 

The equal-weighted (value-weighted) cross-sectional standard deviation of stocks' alphas at month t.  At each month t, we regress 
each factor's returns from t-59 to t on the market's excess returns to obtain the stock's CAPM alpha. To be included, the stock 
must have zero non-missing returns over the 60-month period.  Stocks are all common stocks (CRSP share codes 10 or 11) listed 
on the NYSE, AMEX and NASDAQ. The value-weighted cross-sectional standard deviation is weighted by each stock's market 
capitalization at t-61. Units are expressed as percentage points. This measure is standardized across the sample for ease of 
interpretability. 

NBER recession A recession indicator equal to 1 if the economy at month t was in a recession as defined by the National Bureau of Economic 
Research. Data can be obtained here: https://fred.stlouisfed.org/series/USREC 

25 Size and Book-
to-Market portfolios 

Monthly equal-weighted returns from 25 size and book-to-market portfolios provided on Ken French's website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

30 Fama-French 
industry portfolios 

Monthly equal-weighted returns from Fama-French 30 industry portfolios provided on Ken French's website: 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

Number of relevant 
PCs 

The number of principal components at month t required to explain 95% of the variation in factor returns from t-59 to t.  The set 
of factors may be either all factors or only significant factors during the time period.  Returns may be at either the monthly or 
daily frequency. 

Significance spell of 
factor 

The number of consecutive months for which a factor remains significant. 

Mean standard 
error of alphas 

The equal-weighted average standard error of CAPM alphas for all stocks at month t. The value-weighted mean standard error is 
weighted by each stock's market capitalization at t-60. This measure is standardized across the sample for ease of interpretability. 

Mean residual 
volatility 

The average residual volatility across stocks obtained from the 60-month stock-level CAPM regressions at each month t. This 
measure is standardized across the sample for ease of interpretability. 

Number of public 
firms 

The total number of CRSP common stocks listed on the NYSE, AMEX or NASDAQ at time t.  This measure is standard across 
the sample for ease of interpretability. 

Number of public 
firms at beginning 
of estimation period 

The total number of CRSP common stocks listed on the NYSE, AMEX or NASDAQ at time t-60. This measure is standard across 
the sample for ease of interpretability. 

Number of public 
firms with alpha at t 

The total number of CRSP common stocks at month t listed on the NYSE, AMEX or NASDAQ for which an alpha can be 
calculated (i.e., stock has zero non-missing returns from t-59 to t). This measure is standard across the sample for ease of 
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interpretability. 

Mean absolute 
alpha 

The equal-weighted average of the absolute value of alpha for all factors at month t.  This measure is standardized across the 
sample for ease of interpretability. 

Mean standard 
error of alphas 

The equal-weighted average standard error of alphas for all factors at month t.  This measure is standardized across the sample for 
ease of interpretability. 

Unemployment rate The percentage of the labor force unemployed at t as determined by the US Bureau of Labor Statistics. This measure is 
standardized across the sample for ease of interpretability. Data can be obtained here: https://fred.stlouisfed.org/series/UNRATE 

Fed funds rate The federal funds rate at the end of each month t. This measure is standardized across the sample for ease of interpretability. Data 
can be obtained here: https://fred.stlouisfed.org/series/FEDFUNDS 

10-year Treasury 
Bond yield 

The 10-year Treasury bond yield at the end of each month t. This measure is standardized across the sample for ease of 
interpretability. Data can be obtained here: https://fred.stlouisfed.org/series/DGS10 

% of dividend-
paying firms 

The total number of common stocks which pay a dividend divided by the total number of common stocks at each month t. A stock 
is defined as paying a dividend if at least one dividend was paid over the previous year. This measure is standardized across the 
sample for ease of interpretability. 

Mean institutional 
ownership 

The average institutional ownership across stocks at month t. For each stock at month t, the percentage of institutional ownership 
is determined by the total number of shares held by institutions divided by the total number of shares outstanding.  Institutional 
shareholdings are obtained from Thomson-Reuters 13-F database. This measure is standardized across the sample for ease of 
interpretability. 

Economic 
complexity index 

An annualized measure of economic complexity based on the complexity of trade activities within the United States. Each month 
t uses the measure from December of the most previous year.  This measure is standardized across the sample for ease of 
interpretability. Data can be obtained here: https://oec.world/en/rankings/legacy/eci 

Mean Amihud 
Illiquidity 

For each stock in each month, we compute the Amihud (2002) illiquidity measure using daily data. We require at least 10 trading 
days in a month. We then average this measure across all stocks in that month.  
 

Diversity of firm 
characteristics 

We compute the standard deviation for each of the 205 cross-sectional characteristics across firms in each month t. We then 
standardize each of these characteristic standard deviations based on the entire time series for that characteristic.  We then sum all 
the standardized characteristics available at each month. Finally, we move the measure 36 months back in time to account for the 
delayed introduction of characteristics during the first 3 years from which a firm first appears in the data. The final measure used 
in the regression is standardized across the sample for ease of interpretability. 



59 
 

Table C2. Difference in out-of-sample Sharpe ratios of 5 PC and maximum PC portfolios. This table 
tabulates statistics for Figure 1 panels B and D. It shows the increase in the out-of-sample Sharpe ratio 
between a portfolio consisting of the first 5 PCs and the portfolio of the maximum number of PCs for two 
different sets of test assets as used in Kozak, Nagel and Santosh (2018). The two sets of test assets are the 
long and short legs of 30 anomalies and the 25 size-B/M portfolios. The PCs are computed on a rolling 
monthly basis for different in-sample and out-of-sample estimation windows. The out-of-sample 
portfolios are constructed using the in-sample optimal weights.  The in-sample window of 25 years and 
out-of-sample window of 25 years replicates Kozak, Nagel and Santosh (2018) and matches the red solid 
lines in Figure C2. 

 

 

In-sample Out-of-sample Anomalies BTM
25 25 0.061 0.303
10 10 0.024 1.095
10 5 0.507 0.647
10 3 0.499 0.729
5 5 0.678 0.842
5 3 0.654 0.895
3 3 0.414 0.724

Rolling estimation window (years) Test assets
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Table C3. Disentangling noise from power This table shows the results of regressing the number of significant factors in each period on the cross-sectional mean of the 
absolute value of all factors’ CAPM alphas, the mean standard error of those alphas and the number of public firms. For each month t, we regress each factor’s monthly returns 
from t – 59 to t on the market’s monthly excess returns to obtain the factor’s CAPM alpha and its corresponding standard error. The dependent variable is a count of the number of 
significant factors at each month t.  A factor is significant at month t if the t-statistic of its CAPM alpha is greater than 3.00. To be included, factors must have 60 non-missing 
returns over the alpha estimation period. The number of public firms is a count of all common stocks outstanding at t. We standardize each independent variable by subtracting the 
mean of that variable over the full time series and dividing that difference by the variable’s standard deviation over the time series. Hansen-Hodrick standard errors with a 
bandwidth of 60 are in parentheses.  ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

 

   

(1) (2) (3) (4) (5) (6) (7) (8)
Mean standard error of factor alphas -8.69** -2.69 -30.01*** -19.39*** -17.01 -17.61** -37.64*** -34.61***

(3.48) (1.98) (6.98) (6.72) (13.42) (8.22) (4.03) (4.13)
Number of public firms 17.31*** 11.16*** 26.91*** 7.97***

(2.90) (1.67) (7.26) (1.67)
Mean factor absolute alpha 27.08*** 18.51*** 37.26*** 31.47***

(7.75) (6.63) (3.80) (4.35)
R-squared 0.14 0.64 0.67 0.83 0.09 0.60 0.90 0.92
N 1075 1075 1075 1075 636 636 636 636

Dependent var: Number of significant factors
1931-2020 1968-2020
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Table C4. Comovement of the number of significant factors and relevant PCs with economy and firm characteristics. This table replicates Table 
5 of the main text for the sample years of 1931-2017. The table shows the results of regressing the number of significant factors or relevant principal components in each period on 
various economic measures at each month for the sample of factors from 1968-2020. For each month t, we regress each factor’s monthly returns from t – 59 to t on the market’s 
monthly excess returns to obtain each factor’s CAPM alpha. A factor is significant at month t if the t-statistic of its CAPM alpha exceeds 3.00. Factors must have 60 non-missing 
returns over the alpha estimation period.  We also compute the number of relevant principal components at each date t by counting the number of principal components required to 
explain 95% of the cumulative variation of a set of factor returns from t – 59 to t. Panel A uses the number of significant factors at each month t as the dependent variable, while 
Panel B uses the number of relevant factors at each month t. The independent variables are the same in both panels. The number of public firms is a count of all common stocks at t 
traded on the NYSE, NASDAQ or Amex at month t. The NBER recession indicator is an indicator equal to one if the month is classified as an NBER recession and zero otherwise. 
The unemployment rate is the number of unemployed as a percentage of the labor force as provided by the U.S. bureau of labor statistics. The 90-day T-bill rate is the 3-month 
Treasury Bill Secondary Market Rate and the 10-year treasury note yield spread is the difference of the market yield on U.S. treasury securities at a 10-year constant maturity and 
the 90-day T-bill rate. The percent of dividend-paying firms is the total number of common stocks which have paid a dividend in the previous 12 months divided by the number of 
firms at month t. The mean institutional ownership is the fraction of a firm’s shares outstanding held by 13-f firms. The economic complexity index is a measure of economic 
complexity used from Simoes and Hidalgo (2011). Diversity of firm characteristics is a measure of diversity in the cross-sectional characteristics across firms. See Appendix Table 
C1 for a complete description of the measures. Hansen-Hodrick standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5%, and 10% levels. 

 

Panel A: Comovement of the number of significant factors with economy and firm characteristics 
 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Number of public firms 18.24*** 5.85 5.40 -4.97

(3.08) (6.41) (4.73) (19.75)
NBER recession indicator -9.41** -9.90** -8.92** -2.27

(4.66) (4.17) (4.10) (3.70)
Unemployment rate 0.11 -11.16*** -9.76*** -9.81***

(4.38) (1.77) (2.33) (1.73)
Fed funds rate 8.95* -5.62** -4.20* -2.90

(5.18) (2.46) (2.18) (4.63)
10-year T-Bond yield 9.64* 15.46*** 15.04*** 1.83

(5.23) (4.48) (3.77) (5.94)
% dividend-paying firms -12.12*** -1.32 -2.65 -16.19

(4.47) (8.98) (7.94) (17.84)
Mean institutional ownership -16.81*** -20.14

(4.46) (13.18)
Economic complexity index 5.59 1.83 -3.91

(4.72) (2.30) (2.54)
Mean Amihud illiquidity -5.30*** 12.97*** 11.84*** 0.70

(1.90) (4.33) (4.22) (4.55)
Diversity of firm characteristics 14.76*** 9.32* 10.13** 18.51**

(4.76) (5.29) (4.97) (7.46)
R-squared 0.63 0.02 0.00 0.16 0.18 0.28 0.46 0.06 0.05 0.42 0.67 0.70 0.80
N 1075 1075 876 798 708 1075 483 648 1075 1039 672 648 456

Dep var: Number of significant factors
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Table C4 (continued).  

 
Panel B: Comovement of the number of relevant PCs with economy and firm characteristics 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Number of public firms 5.70*** -1.92 3.09

(1.33) (1.20) (3.16)
NBER recession indicator -2.61 -0.35 -0.27

(1.65) (0.62) (0.52)
Unemployment rate 0.86 -1.03*** -1.18***

(1.01) (0.39) (0.42)
Fed funds rate 0.05 -0.43 -1.88**

(0.76) (0.39) (0.84)
10-year T-Bond yield -0.32 0.77 0.44

(0.75) (0.51) (0.95)
% dividend-paying firms -3.74*** -0.16 4.91

(1.40) (1.98) (3.26)
Mean institutional ownership -0.29 0.29

(0.87) (1.43)
Economic complexity index 0.38 -0.05 -1.20

(0.78) (0.49) (0.74)
Mean Amihud illiquidity -3.73*** 2.94*** 2.58***

(0.62) (0.93) (0.90)
Diversity of firm characteristics 3.32** 3.48*** 3.05***

(1.50) (0.89) (1.06)
R-squared 0.58 0.02 0.03 0.00 0.01 0.25 0.01 0.01 0.25 0.21 0.56 0.54
N 1075 1075 876 798 708 1075 483 648 1075 1039 648 456

Dep var: Number of relevant PCs
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