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Abstract

We investigate the scope for active investing in corporate bonds by estimating an opti-
mal portfolio using asset characteristics. Our portfolio weights are modeled to account
for the severe trading frictions present in OTC bond markets. A portfolio based on
maturity, rating, coupon, and size outperforms passive benchmarks and univariate
sorts after transaction costs in and out of sample. Further, it predicts macroeconomic
activity, suggesting bond characteristics provide hedging against macro-fluctuations.
Active funds appear constrained by narrow investment mandates from holding the
optimal portfolio. Overall, while active corporate bond portfolios are feasible, institu-
tional constraints might limit their accessibility.
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1 Introduction

The value of U.S. corporate debt outstanding has increased from $460 billion in 1980 to $9.57

trillion in 2019, making corporate bonds an asset class of first order relevance for investors.

Bond mutual funds and ETFs have grown at a similar pace, making this OTC market more

accessible. 1 Failure to properly manage corporate bond portfolios has been shown to result

in sudden outflows, increasing the odds of instability in that market and the aggregate

economy (Falato et al., 2021; Falato, Goldstein, and Hortacsu, 2020; Haddad, Moreira, and

Muir, 2021). Despite a large number of papers investigating which characteristics best predict

corporate bond returns, the question of how to actively construct a tradeable portfolio of

corporate bonds by exploiting their characteristics has largely been ignored.2 This issue is

especially relevant in light of recent evidence showing that actively managed corporate bond

portfolios are pervasive and less prone to fragility (Choi, Cremers, and Riley, 2021).

Our paper fills this gap by estimating an optimal corporate bond portfolio and investi-

gating the economic drivers of its performance. The weights of the portfolio are modeled as

a smooth maximum function of observable bond characteristics, while taking into account

asset-specific real transaction costs. This methodology allows to internalize the illiquid na-

ture of the OTC corporate bond market, which render traditional portfolio approaches used

for stocks infeasible. We find that a portfolio conditioned on four simple bond character-

istics (time to maturity, credit rating, coupon and size) significantly outperforms in and

out of sample passive benchmarks and univariate portfolio sorts, while keeping low levels of

turnover and short positions.

The optimal portfolio has several interesting properties. First, it predicts various mea-

sures of macroeconomic activity above and beyond the information content of yield spreads,

meaning it provides a hedge against undesirable states of the economy. Second, our evidence

suggests the optimal allocation cannot be reached by active fund managers in the market

1Investment in corporate bonds by mutual funds and ETFs grew from $0.52 trillion in 2008, to above %2.0 trillion in 2019.
2See for example (Kelly, Palhares, and Pruitt, 2021; Bartram, Grinblatt, and Nozawa, 2020; Elkamhi, Jo, and Nozawa, 2020;

Bai, Bali, and Wen, 2019; Chordia et al., 2017; Gebhardt, Hvidkjaer, and Swaminathan, 2005) among others.
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due to narrow investment mandates that are based on the same characteristics we use for the

optimal allocation. While the optimal portfolio deviates from passive funds or benchmarks

in a similar way those of active bond funds do, our deviations are larger. Further, larger de-

viations of our portfolio from active bond funds’ allocation, predict a higher out-performance

of the optimal portfolio over those funds. Third, adding to the baseline specification other

characteristics that have been found to predict bond returns (e.g. downside risk, stock char-

acteristics, etc) does not improve the performance of the optimal portfolio out of sample.

Overall, we show that even when accounting OTC bond market frictions, it is possible to

create a superior portfolio by exploiting macroeconomic information embedded in bond char-

acteristics. However, the set of tradeable characteristics is not as large as previously thought.

Further, narrow investment mandates might prevent institutional investors from holding the

optimal portfolio, hence representing an important limit to arbitrage in this market.

Our starting point is an investor (say, a bond fund manager) whose objective is to choose

an optimal portfolio of corporate bonds. There are several issues related to the nature of

this asset class and the structure of the market that render the portfolio choice problem

particularly challenging. First, the investor has to consider a large cross-section of highly

heterogeneous securities. Some of that heterogeneity is captured in various bond charac-

teristics – such as maturity, credit rating, coupon rate, issue size – which are linked to the

pricing of these assets. Second, investors in that market face high trading costs, which reflect

illiquidity and the complex structure of this OTC market, in which participants face search

and bargaining frictions, while limited pre-trade transparency and infrequent trading slow

the information flow relative to the more efficient centralized markets (Duffie, Gârleanu, and

Pedersen, 2005; Bessembinder et al., 2018). Third, short-selling constraints in that mar-

ket are significantly higher than for equities (Asquith et al., 2013). Finally, implementing

the traditional mean-variance approach with corporate bond data is daunting, as it involves

estimating expected returns, variances, and covariances with a short time series, a large cross-
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section, and an unbalanced data set.3 Incorporating asset-specific conditioning information

adds another layer of intractability.

We construct portfolios of corporate bonds by directly specifying their weights as a func-

tion of observable asset-specific characteristics and unknown parameters. This so-called

“parametric portfolio approach”, introduced by Brandt, Santa-Clara, and Valkanov (2009),

has several conceptual advantages. One is to sidestep the challenge of modeling the joint

distribution of bond returns and characteristics, and instead focusing directly on the object

investors care most about: the portfolio weights. There are only as many parameters in

this method as there are characteristics, which tremendously reduces the dimensionality of

the estimation problem. The parameters capture the marginal impact of the conditioning

variables on the optimal weights, relative to a benchmark allocation. As the weights are a

function of a multitude of variables, this approach is, in principle, more flexible and condi-

tions on a larger information set than long-short portfolios based on univariate sorts. The

parametric weights are estimated by maximizing the average utility of an investor over the

sample period and hence can be interpreted as capturing the revealed preferences of investors

for certain characteristics. Another advantage of the parametric approach is that the func-

tional form of the weights is specified depending on the asset class of interest. For corporate

bonds, we introduce a novel smooth maximum specification which allows us to limit short

positions and turnover, while accounting for bond-specific transaction costs.

To estimate the portfolio weights of an optimal corporate bond portfolio, we use individ-

ual bond data from January 1993 to December 2017. On average, our sample contains about

900 assets. For each bond, we start applying 4 characteristics – time to maturity (TTM),

credit rating (RAT), coupon (COUP), size of the issue (SIZE) – that are easily observable

and often used by fund managers to characterize their investment mandates. In a second

step, we also explore variations with a larger number of bond and firm-specific variables, fol-

3Corporate bond maturity rarely exceeds 15 years. Moreover, the cross-section of bond returns is large, as many companies
have multiple bonds outstanding at a given time. In addition, the panel data of bond returns is severely unbalanced because
securities enter and exit the sample frequently as new bonds are issued or existing debt matures.
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lowing recent papers in this literature. We estimate the weights for an investor with CRRA

utility and risk aversion of 5.

Our findings can be summarized as follows. The optimal corporate bond portfolio weights

load significantly on the asset characteristics. Compared to passive equally or value-weighted

benchmarks, the optimal allocation is tilted toward bonds with higher time to maturity,

credit risk, coupon and issue size. Hence, the optimal portfolio puts more weight on char-

acteristics that the previous literature has found to proxy for various sources of risk in that

market. For instance, placing more weight on high maturity bonds is a strategy that em-

phasizes the term premium and interest rate risk (e.g., Campbell and Shiller, 1991). The

tilt toward bonds with higher credit risk is in line with Longstaff, Mithal, and Neis (2005)

or Bai, Bali, and Wen (2019), who find a strong link between credit risk and corporate yield

spreads. A tilt toward bonds that pay higher coupons is essentially a “reaching for yield”

strategy, as described in Becker and Ivashina (2015).

To measure the economic contribution of the bond characteristics, we compare the an-

nualized certainty equivalent return and Sharpe ratio of the optimal portfolio to that of an

equally or value-weighted benchmark. In our baseline specification, our parametric portfolio

yields an annualized CE return of 9.1% after transaction costs and outperforms the value

weighted (equally-weighted) benchmark by 65.6% (56.9%). Thanks to the smooth maxi-

mum weight function, the optimal portfolio maintains low level of short positions (12.7%)

and yearly turnover (116%), that are both in line with the levels observed in practice in

fixed income funds. The superior perfromance holds within an out of sample exercise that

spans a period of 15 years between January 2002 and December 2017. In this case, our

parametric portfolio yields outperforms the value weighted (equally-weighted) benchmark

by 62.1% (49.1%), while keeping short positions similar to those observed in-sample. In

strong support of our approach, the out of sample performance (8.2% CE return) is su-

perior to strategies based on single characteristics’ portfolio sorts, both with and without

transaction costs. Our results are consistent with recent findings by DeMiguel et al. (2020),
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who document that combining characteristics can reduce transaction costs, as trades in the

underlying assets can be netted against each other. This idea is further supported by the

significant cross-correlations among long-short portfolios of univariate sorts we document in

our data.

In attempt to shed further light on the properties of our portfolio, and motivated by

evidence that corporate bond spreads anticipate business cycles, we investigate whether

the active component of the optimal portfolio returns predicts economic activity.4 To do

so, we regress three-month-ahead and twelve-month-ahead changes in GDP growth and in

consumption growth (CONS) on our portfolio returns, decomposed in active and passive

component. Optimal portfolios are estimated using an expanding window that ends before

the period over which changes in the macroeconomic variables are calculated. We control

for lagged GDP or consumption growth and the yield spread from (Gilchrist and Zakraǰsek,

2012), that has been shown to be a strong predictor of macro variables. At all horizons, the

active component of the portfolio return predicts future GDP and consumption growth. A

one-standard-deviation increase in our active portfolio return leads to an increase of GDP

(consumption) growth of 0.178 (0.16) standard deviations in the three-month-ahead regres-

sions and of 0.489 (0.275) standard deviations at the yearly horizon. We find similar results

for other macro variables such has industrial production growth and changes in unemploy-

ment rate. Our findings are consistent with the view that the bond characteristics are

capturing hedging demands. To the extent that the time-varying characteristics proxy for

changes in investment opportunities, Brandt and Santa-Clara (2006) argue that the optimal

weights of a static portfolio choice problem are “conditional managed portfolios” and can be

seen as approximating a dynamic portfolio. In other words, the optimal weights are chosen

to partially hedge against undesirable innovations in economic conditions (Merton, 1969).

Our results show that, even when carefully accounting for the trading frictions present

in the corporate bond market, it is possible to create active portfolios with a superior per-

4For evidence on the predictive power of credit spreads on the macroeconomy see (Gilchrist and Zakraǰsek, 2012),(López-
Salido, Stein, and Zakraǰsek, 2017; Ben-Rephael, Choi, and Goldstein, 2018).
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formance. A natural question that arises is whether active investors (e.g. active corporate

bond funds) are taking full advantage of the information contained into bond-specific char-

acteristics, achieving the risk-adjusted performance of our optimal portfolio. To answer this,

we first compare the average characteristics in our optimal portfolio with those of active

and passive corporate bond funds. Interestingly, the portfolio of passive funds is fairly close

to our benchmark, while that of active funds deviates from it in the same direction of our

optimal portfolio. However, the deviations are not as large as those of our optimal portfolio,

indicating that they are not exploiting the full potential of our optimal strategy. OTC market

frictions, captured by transaction costs which we carefully estimate in our portfolio, cannot

explain such divergence. A potential explanation is the presence of narrow characteristics-

based investment mandates. For example, some funds can only invest into investment grade

bonds, while some others can only invest into short term assets. Such constraints might stop

fund managers from trading all the way towards the optimal portfolio. In an attempt to

shed light on this, we regress the one-month ahead difference in performance between our

out of sample optimal portfolio and active corporate bond funds on the distance in charac-

teristics between our portfolio and the average active bond fund. A larger deviation from

active bond funds portfolios in month t predicts a larger outperformance during the following

month. Our evidence points at narrow investment mandates as an important constraint for

active fund managers in the corporate bond market.

In the last part of the paper, present various extensions of our methodology. First,

we add to the baseline specification downside risk, which has been recently found to be a

powerful predictor of bond returns (see Bai, Bali, and Wen (2019)). Second, we include

several popular stock characteristics5. In both cases, increasing the set of characteristics

does not improve the performance in-sample and out of sample. Our results indicate that

not all characteristics that predict corporate bond returns are useful in an optimal portfolio

allocation when properly accounting for transaction costs and limiting short positions. Third,

5Market capitalization (FME), book-to-market ratio (FBTM), momentum (FMOM), beta (FBETA), idiosyncratic volatility
(FIVOL), and skewness (FSKEW) for a total of 11 conditioning variables
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we split the sample into investment grade and high yield bonds to show that our findings

are not exclusively concentrated in the speculative segment.

Our paper differs for two reasons from recent applications of the parametric portfolio

method, such as Barroso and Santa-Clara (2015) (currencies), Ghysels, Plazzi, and Valkanov

(2016) (international portfolios) or DeMiguel et al. (2020) (equity portfolios with a multitude

of signals). First, we tackle the optimal asset allocation of corporate bonds, a problem

that is hugely important and that has previously been unexplored. Second, we are the

first to introduce a smooth maximum parametrization, a specification that allows to control

turnover and short positions more efficiently than previous papers.6 The latter is particularly

important in the corporate bond market, whose OTC structure makes frequent trading and

short-selling challenging.

A large and growing literature investigates which characteristics best predict the cross-

section of corporate bond returns using traditional factor models (Bartram, Grinblatt, and

Nozawa, 2020; Elkamhi, Jo, and Nozawa, 2020; Bai, Bali, and Wen, 2019; Chordia et al.,

2017; Gebhardt, Hvidkjaer, and Swaminathan, 2005)) or machine learning techniques ((Kelly,

Palhares, and Pruitt, 2021; Bali et al., 2020). Our paper is the first to tackle this question

from the asset allocation perspective, asking how characteristics can be used to form a

tradeable portfolio. Our findings that not all characteristics that predict returns can be

easily incorporated in an investment strategy opens sets the stage for additional research on

the persistence of risk factors/anomalies in this market.

Last but not least, our findings on optimal corporate bond investing are related to the

literature that analyzes the demand of institutional corporate bond investors through their

holdings ((Becker and Ivashina, 2015; Choi and Kronlund, 2018; Anand, Jotikasthira, and

Venkataraman, 2020) among others). The focus of our paper is very different and com-

plements that literature with a normative analysis of how to invest optimally, given the

cross-sectional features of the data. Our evidence that active managers cannot hold an op-

6In a recent paper Langlois (2020) develops a dynamic mean-variance portfolio allocation that accommodates transaction
costs and short-sale constraints and applies it to equity portfolios.
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timal bond portfolio contributes to the recent debate on how narrow investment mandates

limit corporate bond arbitrage (Nielsen and Rossi, 2020) and push institutional corporate

bond demand away from representative agent models (Bretscher et al., 2020)).

The remainder of the paper proceeds as follows. We develop the smooth maximum

parametric specification of the portfolio weights in Section 2. Section 3 describes the data.

The main results are presented in Section 4 and several extensions are discussed in Section

5. We conclude in Section 7.

2 Methodology

In this section, we lay out the methodology of constructing corporate bond portfolios as a

function of bond-specific characteristics. We introduce a novel functional form of the weights

that is suitable for the corporate bond market while paying particular attention to limit short

positions and transaction costs.

2.1 Parametric corporate bond portfolios

At each date t, there is a large number Nt of corporate bonds in the investable universe.

Each bond i has a return ri,t+1 from date t to t+ 1 and an associated vector of bond-specific

characteristics xi,t, observed at time t. For example, the characteristics can be the bond’s

maturity (or duration), credit rating, coupon rate, and issuing amount. The portfolio return

of corporate bonds between t and t+ 1 is rp,t+1 =
∑Nt

i=1wi,tri,t+1, where wi,t are the portfolio

weights. An investor chooses the weights to maximize her conditional expected utility,

max
{wi,t}

Nt
i=1

Et (u (rp,t+1)) . (1)

The portfolio weights are parameterized to be a function of bond characteristics,

wi,t = g(w̄i,t;xi,t; θ), (2)
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where w̄i,t denotes the weight of a benchmark portfolio, such as a value-weighted weighted

index of all securities available in the market. The function g(·) captures deviations of

the portfolio weights wi,t from the benchmark and is parameterized by a vector θ, to be

estimated. Its functional form is dictated by the application at hand.

Linear specifications of the weights have been used by Brandt, Santa-Clara, and Valka-

nov (2009), Barroso and Santa-Clara (2015), Ghysels, Plazzi, and Valkanov (2016), and

DeMiguel et al. (2020) in the context of equity or currency portfolios.7 The linearity of g(·)

is appealing from a tractability standpoint and yields economically sensible weights when

the characteristics do not exhibit significant variability over time (e.g., firm size). A linear

specification also treats positive and negative weights symmetrically, and is suitable when

portfolios with significant short positions are practically feasible.

In the context of corporate bond portfolios, the linear parametrization is not appropriate

for two important reasons. First, corporate bond characteristics are prone to large changes,

which translate into significant time series variation in the weights and a high turnover.

Portfolios with high turnover are unimplementable in OTC markets where transaction costs

are significantly higher than for equities (Bessembinder et al., 2018). Second, there is no

good way to limit short positions in a linear specification. Therefore, the optimal portfolio

will likely imply large (in absolute magnitude) negative positions. This would only be ap-

propriate if there are no significant short-sale constraints in this market, which is not the

case. Indeed, despite having the same amount of securities available for lending (around

20% of the market), the aggregate short positions in corporate bonds are about half of what

they are in equities. According to (Hendershott, Kozhan, and Raman, 2020), just 1.8% of

bonds outstanding is shorted vs. 4.4% of stocks outstanding. As a consequence, limiting

short positions and turnover is crucial when forming bond portfolios. We next propose a

novel specification of g(·) that is suitable in our context.

7Specifically, Brandt, Santa-Clara, and Valkanov (2009) use g (xi,t; θ) = θ′xi,t/Nt, where xi,t = (x̃i,t − x̄i,t) /σx,t are
the raw characteristics x̃i,t, standardized by their cross-sectional variances σx,t, and demeaned by the cross-sectional average

x̄t = 1
Nt

ΣNt
i=1x̃i,t.
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2.1.1 A specification that limits short positions

We let the weights enter our portfolio through a smooth maximum function:

g (w̄i,t;xi,t; θ) =
h (w̄i,t;xi,t; θ)× e(α×h(w̄i,t;xi,t;θ))

e(α×h(w̄i,t;xi,t;θ)) + 1
, (3)

h (w̄i,t;xi,t; θ) = w̄i,t + θ′xi,t/Nt. (4)

The specification in expression (3) effectively attenuates the impact of extreme realiza-

tions of xi,t on the weights by reducing leverage stemming from short positions. We re-scale

g(w̄i,t;xi,t; θ) to ensure that portfolio weights sum up to one, or ΣNt
i=1g(w̄i,t;xi,t; θ) = 1. The

expression in (4) follows the linear specification used in Brandt, Santa-Clara, and Valka-

nov (2009). The normalization 1/Nt allows the number of bonds in the portfolio to be

time-varying. Without it, doubling the number of bonds without otherwise changing the

cross-sectional distribution of the characteristics results in an allocation that is twice as

aggressive, even though the investment opportunities are fundamentally unchanged.

With out choice of g(·), we consider the impact of shorting on the optimal allocation,

as it might reduce the gains from trading on information in xi,t. Investors with large α will

effectively be facing a no-short-sale constraint. By varying the magnitude of α, we can map

out the impact short-sale constraints have on the optimal portfolio.

The parametric approach effectively reduces the parameter space to a low-dimensional

vector θ. The coefficients in θ do not vary across assets or through time, which implies that

bonds with similar characteristics will have similar portfolio weights, even if their sample

returns are different. In other words, the bond characteristics fully capture all aspects of the

joint distribution of bond returns that are relevant for forming optimal portfolios. Constant

coefficients through time means that the θs that maximize the investor’s conditional expected

utility at a given date are the same for all dates, and therefore also maximize the investor’s

unconditional expected utility. This setup also implies that misspecification of the variables
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in xi,t will translate into misspecification in the portfolio weights. The choice of conditioning

information xi,t is important as it is in any estimation problem.

2.1.2 Transaction costs and turnover of corporate bond portfolios

The corporate bond market is characterized by significant transaction costs. In addition,

passive and active bond funds exhibit high levels of turnover. Some of it is “mechanically”

due to bonds maturing and new bonds being issued, while the rest stems from active trading

decisions. In the following, we modify the parametric weights to capture these peculiarities

of corporate bond trading.

The turnover in corporate bond funds is sizable, partly due to the periodic rebalancing

related to the maturity of the assets. For example, the Vanguard Intermediate-Term Bond

Index fund reports an average annual turnover of 100% for the 2013-2017 period, which is

on the low end of the spectrum. Funds that trade actively have a much higher turnover.

For instance, Pimco’s Total Return fund, one of the most widely held bond funds, has an

average annual turnover of approximately 748% over the 2013-2017 period.8 Not surprisingly,

reducing the turnover is an important consideration for corporate bond funds.

Significant transaction costs in the corporate bond market might render some highly

volatile strategies unprofitable. A large literature studies optimal selection with trading

costs proportional to the bid-ask spread.9 The parametric nature of the portfolio policy

allows us to compute turnover and to optimize the after-transaction-cost returns. To do

that, we define the bond portfolio return, net of transaction costs, as

rp,t+1 =
Nt∑
i=1

wi,tri,t+1 −
Nt∑
i=1

ci,t|wi,t − wi,t−1|, (5)

where ci,t are the one-way trading costs of a particular bond at time t and
∑Nt

i=1 |wi,t −
8The turnover data for the Vanguard Intermediate-Term Bond Index fund (VBIIX) and Pimco’s Total Return Fund (PTTAX)

are from Morningstar, see http://www.morningstar.com. Detailed turnover figures for several corporate bond funds are reported
in the Internet Appendix.

9Important papers in that literature include Magill and Constantinides (1976), Constantinides (1986), Amihud and Mendel-
son (1986), Taksar, Klass, and Assaf (1988), Davis and Norman (1990), Vayanos (1998), Vayanos and Vila (1999), Leland
(2013), Lo, Mamaysky, and Wang (2004), Liu (2004), Gârleanu (2009), Acharya and Pedersen (2005).
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wi,t−1| is the overall portfolio turnover between t − 1 and t. As transaction costs penalize

proportionately large fluctuations in wi,t, the characteristics in the policy function (3-4)

will lead to improvement in portfolio performance only if they generate significant after-

transaction-cost returns. There is considerable evidence that transaction costs vary across

bonds and over time (Edwards, Harris, and Piwowar, 2007; Dick-Nielsen, Feldhütter, and

Lando, 2012; Bessembinder et al., 2018). In our empirical application, we will make use of

bond specific transaction costs that are estimated from trading data. Figure 1 presente the

time series of average transaction costs in our sample, while details on their calculation can

be found in Appendix A.

Under weight specification (2), we can decompose the after-transaction-cost portfolio

return (5) into three parts,

rp,t+1 = rpassive,t+1 + ractive,t+1 − TCt, (6)

where TCt =
∑Nt

i=1 ci,t|wi,t − wi,t−1| are the transaction costs, rpassive,t+1 =
∑Nt

i=1 w̄i,tri,t+1 is

the benchmark return, and ractive,t+1 = rp,t+1 − rpassive,t+1 + TCt is the active part (due to

the characteristics).

2.2 Benchmark portfolios

The benchmark portfolio weights w̄i,t should be chosen appropriately as the empirical and

economic gains of the optimal allocation are expressed as deviations from it. With equities,

the benchmark portfolio is often the equally or value-weighted portfolio. Both are transpar-

ent, investable (feasible), and fairly passive in the sense that they involve little turnover.

For corporate bonds, we use the following two benchmarks. The first benchmark sets

the portfolio weights equal to the outstanding amount of a bond relative to the outstanding

amount of all bonds in the sample at that time. This portfolio is value-weighted in the sense

that the weights are proportional to the bond’s outstanding amount. Its weights change

12



when bonds exit (e.g., due to maturity or default) or new issues enter the sample and it

captures the spirit of a value-weighted index while keeping turnover low.

The second benchmark is equally weighted. Similarly to the value-weighted portfolio, its

turnover is low as weights change only when bonds exit or enter the sample. The equally

weighted portfolio puts more weight, relative to the value-weighted one, on small issues. It

is an important benchmark, because in the case of equities, it has been shown to perform

particularly well not only relative the value-weighted benchmark but also to actively managed

portfolios (DeMiguel, Garlappi, and Uppal, 2009). For corporate bonds, however, its relative

performance is not known.

We check that the returns of our equally and value-weighted benchmarks are highly

correlated (around 80%) with the returns of widely-used bond indexes, such as the Bloomberg

Barclays US Corporate Investment Grade + High Yield index. Hence, we conclude that they

are suitable benchmarks for our analysis.10

2.3 Estimation

For a given functional form of the utility (e.g., CRRA or quadratic) and the weights in (2-4),

we estimate the parameters by maximizing the sample analogue of expression (1),

max
θ

1

T

T∑
t=1

(u(
Nt∑
i=1

wi,tri,t+1)), (7)

where the returns are after-transaction-costs, as in expression (5).

As bond returns are negatively skewed, we use a CRRA utility function in this paper.

Thus, our framework captures the relation between the xi,t’s and the first, second, and higher-

order moments of returns, to the extent that the characteristics affect the distribution of the

optimized portfolio’s returns, and therefore the investor’s expected utility.

10Another commonly used benchmark in dynamic asset allocation is a “hold” strategy (i.e., keep the weights unchanged from
period t− 1 to t), which involves no trading and incurs no transaction costs. With corporate bonds, implementing a true hold
strategy is difficult, because on average, about 36% of bonds mature in any given year and drop out of our sample. Therefore,
the portfolio has to be re-balanced periodically and new investments have to be made on a monthly basis for the funds to be
fully invested in corporate bonds. The weights of the equally and value-weighted portfolios that we consider change little and
are very close in spirit to a passive hold portfolio.
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The estimation of θ is within the class of extremum estimators and its properties are

well-known (Amemiya, 1985). This approach is also used by Brandt, Santa-Clara, and

Valkanov (2009) and Ghysels, Plazzi, and Valkanov (2016). Given the presence of cross-

sectional dependence in the characteristics, we bootstrap the standard errors. Details of the

estimation and bootstrap procedure are spelled out in Appendix B.

3 Data

3.1 Sample construction

We employ multiple data sources in our paper. From MERGENT FISD, we obtain infor-

mation on bond characteristics. Datastream is our source of monthly US corporate bond

prices for the period between January 1993 and December 2004. From January 2005 until

December 2017, we get corporate bond transaction prices from the TRACE database.11 Our

main sample thus covers roughly 24 years of data. For additional analyses, we also collect

US corporate bond funds portfolio holdings from Morningstar for the period from January

2002 till December 2017.

In TRACE, we follow standard data cleansing and price filtering procedures described

by Dick-Nielsen (2009), Edwards, Harris, and Piwowar (2007) and Friewald, Jankowitsch,

and Subrahmanyam (2012). We consider only straight corporate bonds without complex

optionalities.12 We compute the return of bond i in month t as

ri,t =
(Pi,t + AIi,t + Ci,t)− (Pi,t−1 + AIi,t−1)

(Pi,t−1 + AIi,t−1)
, (8)

where Pi,t is the price of bond i at the end of month t. AIi,t is the accrued interest of

the bond and Ci,t is the coupon paid between month-ends t − 1 and t. Pi,t−1 and AIi,t−1

are the price and accrued interest in the previous month, respectively. We rebalance the

11TRACE collects disseminated data since September 2002, but almost full coverage of the market starts end of 2004.
12This is equivalent to excluding foreign government bonds, U.S. agency debentures, retail notes, corporate strips, pay-in-kind

bonds, rule 144a-bonds, convertible and preferred securities.
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portfolio on the last trading day of each month. To prevent stale prices from entering the

return calculation, we consider only bonds that trade at least once in the last 5 working days

of the month and take the last daily volume-weighted average price available when using

the TRACE sample, as in Bessembinder et al. (2009). Bonds are included in the sample

one month after issuance and excluded two months before maturity to guarantee tradeable

prices. Further, to avoid including extremely illiquid bonds in our portfolio that might not

be consistent with an active investment approach, we consider only assets that had available

secondary market prices in each of the last six months.

3.2 Bond characteristics

The bond-specific characteristics that we use as conditioning variables in our portfolio op-

timization are time to maturity (TTM), credit rating (RAT), coupon (COUP), and the

outstanding amount of the bond (SIZE). All these characteristics are directly available from

MERGENT, which means they are easily observable by any investor.13 Moreover, such char-

acteritics are often used in corporate bond funds to define investment mandates. TTM is

the difference in years between the maturity date of the bond and the day on which the

monthly return is calculated.14 RAT is the average credit rating across the major rating

agencies Moody’s, Standard and Poor’s, and Fitch. We assign integer values to the different

rating grades, with 1 being the highest and 21 the lowest credit score. Hence, bonds with

high RAT have a high ex-ante probability of default. Bonds not rated by at least one of the

agencies are dropped from the sample. COUP is expressed as annualized percentage of face

value. SIZE is the dollar value of the outstanding amount of the respective bond issue. In

the portfolio optimization, we take the logarithm of TTM and SIZE to attenuate the impact

of outliers (bonds outstanding for up to 100 years and bonds with an outstanding amount

13Bond illiquidity has been shown to impact bond prices by Bao, Pan, and Wang (2011) and Lin, Wang, and Wu (2011),
among others. We do not include illiquidity in our baseline specification for two reasons. First, we already consider real
transaction costs in our portfolio optimization. Second, when including illiquidity as a characteristic, the tilt is not significant
once we consider transaction costs, see Table IA4 in the Internet Appendix.

14We prefer TTM over duration as calculating the latter requires the bond yield, which is not available in Datastream and
often not populated in TRACE. Our results hold if we use duration instead of TTM for a subset of bonds.
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of up to $15 billion).

We leave a one-month lag between the bond characteristics and the determination of

portfolio weights to ensure that the information would have been available to the investor

at the time of the investment decision. An observation is dropped from the sample when

information about at least one characteristic is missing. Our cleaned data set contains

266,851 bond-month observations.

3.3 Summary statistics

Table 1 reports summary statistics of our bond data in Panel A and of bond-specific charac-

teristics in Panel B. Our main sample consists of 914 bonds per month on average. In total,

6,084 bonds appear at least once in our sample, amounting to approximately $3.3 trillion

of outstanding debt. As bonds mature and new bonds are issued frequently, our sample

changes monthly. On average, about 4% ((20 + 17)/914) of the bonds enter or exit every

month, resulting in an annualized (equally weighted) turnover of 65%. This “automatic”

turnover amounts to 3.9% ((11 + 7)/456) of the monthly debt outstanding in our data. The

changing composition of the sample implies that even a passive corporate bond portfolio

involves a significant amount of rebalancing.

In Panel B, we present summary statistics of bond characteristics without further trans-

formations to preserve economic magnitudes. The median bond has a time to maturity of

9.239 years, a rating score of 6.69 (which corresponds to an A rating), a coupon of 6.064%

of face value, and an outstanding amount of about $500 million. The characteristics show

generally low cross-correlations. The variable that exhibits the highest correlation with the

other characteristics is COUP, but it is never above 23.9%. In our sample, bonds with high

COUP tend to have a longer TTM and a higher RAT (higher ex-ante default risk). SIZE

has a negative correlation with the other variables, COUP in particular.
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4 Empirical Findings

We present results for several specifications of the optimal parametric portfolio weights for

a CRRA investor with γ = 5. In the baseline case, the investor takes into account four

bond-specific characteristics and faces bond-specific transaction costs. First, we show both

the in-sample and out-of-sample performance of the baseline strategy. Second, we dig deeper

and analyze the drivers of our portfolio performance and provide evidence that the active

portfolio component predicts macroeconomic activity, on top of established credit-market

based predictors. Third, we compare our portfolio performance to traditional investment

strategies that are based on univariate sorts. Fourth, we analyze how our portfolio differs

from actual holdings of fixed-income funds. The evidence suggests that the outperformance of

our portfolio relative to active bond mutual funds can be explained by market segmentation,

which is the result of narrow investment mandates.

4.1 Smooth maximum parametric portfolio

Table 2 contains the results of our base case in which the parametric portfolio weights in (2)

are a function of the four corporate bond characteristics TTM, RAT, COUP, and SIZE. The

first two columns display the value-weighted (VW) and equally weighted (EW) benchmark

portfolios that take into account transaction costs.

The next four columns show optimal parametric portfolios for a grid of the smooth maxi-

mum parameter α: 0, 150, 300 and 750. The case of α = 0 is the standard linear specification.

In the first part of the table, we report the marginal impact of each bond characteristic on

the portfolio weights, in percent.15 The p-values of estimated θs, reported in parentheses,

are based on bootstrapped standard errors. The optimal portfolio is generally tilted toward

bonds with longer time to maturity (TTM), higher ex-ante default risk (RAT), and higher

15The non-linearity of g(·) implies that the parameters θ cannot be interpreted as the marginal impact of changes in the
characteristics xi,t on the portfolio weights. The coefficients θ capture the marginal impact only if g(·) is linear in the char-
acteristics, as in Brandt, Santa-Clara, and Valkanov (2009). Hence, we evaluate the marginal impact by computing changes
in wi,t that result for a one-standard-deviation change in each conditioning variable in xi,t, evaluated at the average value of
the other characteristics and at the estimated θ. This is the standard approach used to measure economic impact in non-linear
models. C contains the exact steps of the computation.
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coupon (COUP). The tilt on SIZE is towards smaller bonds, except for relatively high lev-

els of α. As expected, introducing the smooth maximum parameter (α > 0) significantly

reduces turnover and short positions without decreasing performance. We focus most of our

discussion on the case with α = 300, which is presenting an average level of short positions

and turnover which is in line with what can be observed in practice for active bond funds.16

To understand the economic magnitudes of the results, we discuss the parameter esti-

mates in more detail. The marginal impact of RAT is 1.128% (for α = 300). The average

bond in our sample has a rating of about 7 (A rating) with a standard deviation of roughly

3 (see Table 1). Take two bonds, one with RAT one standard deviation above the mean (10

or BBB-) and another with RAT one standard deviation below the mean (4 or A). Every-

thing else equal, the weight on the first bond will be 1.128% higher than average, whereas

the weight on the second bond will be lower by the same amount. Similarly, if we consider

COUP and its marginal impact of 0.02%, a one-standard-deviation increase (decrease) of

the coupon rate of an average bond from about 6% to 8% (4%) implies that the weight will

increase (decrease) by about 0.02%. These numbers are for the optimal portfolio weights of

individual bonds. If we aggregate them over the entire cross-section of about 914 bonds per

month, or even a fraction thereof, we observe that the overall impact of the bond-specific

characteristics on portfolio weights is economically large.

The second set of rows in Table 3 displays annualized performance measures and average

weight statistics of the bond portfolios. While the value-weighted benchmark has a CE of

5.5%, the optimal portfolios deliver a CE in the range of 9.6% to 8.6%. As expected, when

applying the smooth maximum (α > 0), a higher α negatively impacts the CE. Nevertheless,

we observe more than a 56% increase in CE even after accounting for the most conservative

level of α = 750, where short positions are basically 0. These numbers are statistically and

economically highly significant.17 The reference portfolio with α = 300 exhibits a higher

16Using data on active corporate bond funds from Morningstar, we find that the average short positions between 2003 and
2018 are around 13% and the average annualized turnover is 157%.

17Note that %∆CE in Table 3 is calculated on the basis of a benchmark that takes into account the same transaction costs
as the respective optimal portfolio. See B for details on how we determine the statistical significance of gains in CE.
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return than the benchmark and a slightly higher volatility, which translates into a Sharpe

ratio of 0.935 compared to 0.678 for the benchmark. The last two rows summarize the

distribution of the portfolio weights. The optimal portfolio has an average short position of

just 11.6%. The annual turnover of 116.1% is less than twice the turnover of the benchmark

portfolio. As mentioned above, short positions and turnover levels are in line with those of

major active corporate bond mutual funds. Interestingly, increasing α up to 750 leads to a

portfolio that has virtually no short positions (0.04%) but still keeps a significant part of the

outperformance.

Comparing the portfolios that are based on a weight function that includes a smooth

maximum (α > 0) to those based on the linear specification (α = 0) strikingly highlights the

importance of this novel approach. The linear case requires an amount of short positions

(148.2%) and turnover (334.7%) that are at best unrealistic when looking at actual portfolios

of bond funds or other institutional investors in the market. Introducing a smooth maximum

specification does not significantly hurt performance (α = 150 performs even better), while

it massively reduces short positions and portfolio turnover to levels that are in line with

what can be observed in practice. The advantages of our approach become even clearer

when looking at the out-of-sample performance, which is the focus of the next section.

4.2 Out-of-sample performance

In this section, we provide out-of-sample evidence for the performance of our portfolio ap-

proach. The optimal tilts are applied out-of-sample from January 2002 until December 2017,

using an expanding window estimation. At the end of each month, we use the optimal tilts

estimated using data up to this month to make an investment decision. We analyze the

portfolio performance in the following month. The smallest estimation window (September

2003-December 2001) includes 100 months. Our out-of-sample period covers 15 years of

data, which represents more than half of the overall sample period.

Table 3 shows the out-of-sample performance of the parametric portfolios for α = 0
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(linear case), α = 150, α = 300, and α = 750. All specification are based on the bond

characteristics TTM, RAT, COUP, and SIZE. Whenever the smooth maximum is used (α >

0), the parametric portfolios show a significant outperformance relative to the corresponding

value-weighted benchmark. The CE return ranges from 7.5% to 8.5%, which translates into

an increase in CE relative to the benchmark of at least 48%. The outperformance is obtained

with levels of short positions and turnover which are in line with what can be observed

in corporate bond funds. Figure 2 shows the cumulative out-of-sample returns and short

positions over time for selected optimal portfolios, the VW benchmark, and the Bloomberg

Barclays index for the whole corporate bond market (investment grade and high yield). The

graphs confirm that our out-of-sample performance is stable over time and not driven by

extreme outliers. Reassuringly, the performance of our VW benchmark is extremely close

to that of the Bloomberg index, confirming that our benchmark is a proper reference point

when evaluating our optimal portfolios.

In strong support of our methodology, the out-of-sample test with the linear specification

(α = 0) leads to an extreme and unrealistic portfolio, which underperforms the benchmark

and takes extreme short positions, coupled with high turnover. These results underline the

instability of the linear specification when faced with a large cross-section of illiquid assets

that mature frequently and are highly heterogeneous. Overall, the out-of-sample results

confirm the stability and performance of parametric portfolios that are based on a weight

function that includes a smooth maximum. In the next sections we will investigate the

drivers of such performance.

4.3 Multiple characteristics vs. univariate sorts

In this section, we compare the benefits of choosing a portfolio by jointly conditioning on

several characteristics relative to univariate sorts. In a first step, we present in Panel A of

Table 4 the returns of long-short portfolios constructed using each of the four characteristics

TTM, RAT, COUP, and SIZE. At the end of each month t, we sort bonds into value-weighted
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portfolios based on a given characteristic, observed at the end of month t− 1, and compute

subsequent portfolio returns over month t + 1. Portfolio P1 contains bonds in the lowest

quintile of a sorting variable and portfolio P5 contains bonds in the highest quintile. We

display returns of zero-cost, long-short positions in portfolios P5 and P1 and the certainty

equivalent return of such strategies both without and with transaction costs.

Bonds with a longer time to maturity, with worse credit rating, and with higher coupon

earn significantly positive excess returns.18 The signs of these results are consistent with

the optimal portfolio tilts in Table 2. However, when we calculate the certainty equivalent

return for those strategies, we find that none of the hedge portfolios outperforms our baseline

portfolio with α = 300, with and without transaction costs. The relevant out-of-sample CE

return presented in Table 3 is 8.2%, while the hedge portfolios based on univariate sorts reach

at most a CE return of 2.3%. When accounting for transaction costs, the CE return reaches

at most 1.8%. This finding suggest that univariate sorts produce inferior and noisy results,

which we conjecture is due to the underlying correlations with the other characteristics.

To explore this line of reasoning, we report correlations across the long-short portfolios

in Panel B. The returns of these portfolios are significantly correlated, with values ranging

from −0.611 to 0.767. For instance, while the hedge portfolio return for COUP is posi-

tively correlated with those for TTM and RAT, it exhibits negative correlations with that

for SIZE. The high correlations present a problem for univariate sorts, which is reflected

in the fact that, when taking into account characteristics jointly, the performance improves

significantly. To further support this point, we estimate our optimal portfolio by taking into

account only a single characteristic at time. The results are displayed in Tables IA1 and IA2

in the Internet Appendix. We find that the performance is significantly worse compared to

that of a portfolio that takes into account all four characteristics jointly. Another reason for

considering a joint approach is to reduce turnover. Indeed, the significant cross-correlations

indicate that there might be a great potential for saving up on transaction costs when con-

18While hedge portfolio returns for characteristic SIZE are not significantly different from zero, the premium is consistent
with a risk-based interpretation.
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sidering characteristics jointly. Our results are consistent with recent findings by DeMiguel

et al. (2020), who document that combining characteristics can reduce transaction costs,

as trades in the underlying assets can be netted against each other. Given the dependence

across characteristics, we conclude that it is essential to condition on them jointly when

estimating optimal portfolio weights.

4.4 Stock characteristics

We extend our portfolio weights to include the following stock characteristics of the firms that

issue corporate bonds: market capitalization (ME), book-to-market ratio (BTM), momen-

tum (MOM), idiosyncratic volatility (IVOL), beta (BETA), and historical skewness (SKEW).

These variables are motivated by the extensive literature on equity factors. To the extent

that these characteristics are not spanned by the bond variables, they could provide valu-

able information when estimating optimal bond portfolio weights. We match our sample of

corporate bonds to stock returns in CRSP and accounting variables in Compustat, which

leaves 135,070 bond-month observations between September 1993 and December 2017.19

In Table 10, we report the in-sample and out-of-sample results of our optimal portfolios

for α = 300 taking into account only bond characteristics (B), only stock characteristics (S)

and both (B+ S). The in-sample results for our baseline specification are comparable to the

full sample, with the exception of the coefficient for COUP, which turns negative.The outper-

formance relative to the benchmark remains high, amounting to an increase in CE of 32.2%.

When taking into account only stock-specific characteristics, we find that the marginal im-

pact of those characteristics is consistent with a risk-taking behavior. The optimal corporate

bond portfolio is tilted toward bonds of companies with a lower market capitalization, higher

book-to-market ratio, and higher past returns. Furthermore, we observe a negative tilt for

BETA and a negative tilt for IVOL, consistent with the findings of Frazzini and Pedersen

(2014) and Ang et al. (2006) on low-risk anomalies. Among others, Boyer, Mitton, and

19See D for a description of how we match bonds with stocks and how the single stock characteristics are calculated.
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Vorkink (2010) show that stocks with positive idiosyncratic skewness earn lower returns, as

investors require a compensation for negative skewness. In line with this reasoning, we find

a negative tilt for SKEW. The increases in CE relative to the benchmark is significant and

amounts to 16.9%, which, however, is lower than the one obtained when only accounting

for bond characteristics. Taking into account bond and stock characteristics jointly leads

to a significant increase in CE by up to 32.2% with respect to the value-weighted bench-

mark. The gain in CE is the same an investor would have obtained by considering only bond

characteristics. In all cases, short positions an turnover are kept low.

The out-of-sample results provide a similar picture. Including only bond characteristics

leads to a 17.2% increase in CE relative to the benchmark, while keeping short positions and

turnover relatively low at -10.7% and 223.5%, respectively. Considering only stock charac-

teristics leads to an under-performance relative to the benchmark, with a CE return of only

4.8%, which means a decrease of 8.3% relative to the VW portfolio. When considering both

stock and bond characteristics, our portfolio does better out-of-sample than the benchmark.

However, the outperformance is lower than when accounting just for bond characteristics

(a 13.1% increase in CE instead of 17.2%). Overall, our results show that the information

included in bond characteristics that is relevant for bond returns subsumes the information

provided by stock characteristics. Not only does the inclusion of stock characteristics leave

the in-sample performance unaffected, but it can also hurt performance out-of-sample. Our

findings are consistent with Bali et al. (2020), who use machine learning techniques to assess

how well bond and stock characteristics predict the cross-section of bond returns.

4.5 Robustness and Extensions

In this section, we show that our approach is robust to adding characteristics ot the baseline

specification and splitting the sample between investment grade and high yield bonds.

Downside Risk: While our baseline specification is kept simple by including four well-

accepted bond characteristics (TTM RAT, COUP, and SIZE), the methodology we present
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allows to take into account as many characteristics as the investor wants to condition the

portfolio on. In this section, we investigate the performance of our portfolio when including

downside risk (DSIDE henceforth) in addition to TTM, RAT, COUP, and SIZE. DSIDE has

been found to be an important bond specific factor in explaining the cross-section of corporate

bond returns. We follow Bai, Bali, and Wen (2019) and define bond-specific DSIDE as the

second lowest monthly return observation over the past 36 months, provided that there are at

least 24 return observations available for that bond. We do not include DSIDE in our main

specification because it would eliminate from the sample all bonds that are outstanding for

less than 3 years. Eliminating those bonds from the sample would significantly reduce our

investment universe, and would not reflect how fund managers invest, as they are holding

bonds as soon as they are issued on the secondary market. Table 9 displays the in-sample and

out-of-sample results of our portfolio with (CH + D) and without (CH) DSIDE. As before,

we focus on a specification with α = 300. Due to the filter applied to calculate DSIDE,

our sample drops to 182,062 observations, a reduction by nearly one third. When looking

at the in-sample results, three findings stand out. First, our original portfolio specification

shows a similar composition and performance for the smaller sample when compared to

the full sample: the tilts for TTM, RAT, COUP, and SIZE have the same sign as those

in Table 2, the improvement in CE return is comparable (59.6% vs 65.5%), while the level

of short positions (-6.3% vs -11.6%) and turnover (113% vs 116.1%) is even slightly lower.

Second, DSIDE enters with a negative and significant tilt (meaning that our portfolio is

tilted towards bonds with more negative returns, hence higher downside risk) but does not

affect the magnitudes of the other characteristics. Third, the inclusion of DSIDE does not

improve the in-sample performance (CE returns are the same), leaving almost unaffected

the percentage of short positions and turnover. The out-of-sample results provide a similar

picture. Our baseline specification outperforms the benchmark by 2.1% in CE returns, while

keeping short positions and turnover low at -5.8% and 162.7%, respectively. Adding DSIDE

does not improve the performance of our portfolio out-of-sample, but even slightly worsens
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it, with the CE return dropping from 7.6% to 7.5%. Our findings show that, when properly

accounting for realized transaction costs and keeping a realistic level of short positions,

adding downside risk is not beneficial for our portfolio.

Bond Momentum: Next to downside risk, we also investigate bond momentum (MOM)

as another return-based characteristic (Jostova et al. (2013)). We find that the information

in MOM about bond returns is spanned by the characteristics TTM, RAT, COUP, and SIZE

that are included in the base specification (see Table IA5 in the Internet Appendix). The

coefficient for MOM is positive but not statistically significant. Accordingly, the portfolio’s

CE return, is not affected when accounting for MOM. Similar to the results for DSIDE, the

out-of-sample performance of the optimal portfolio drops slightly by 0.1% when accounting

for MOM.

Investment Grade vs High Yield Bonds: In this section, we analyze whether our

findings are robust to probably the most common segmentation in corporate debt markets:

investment grade vs high yield. Many corporate bond funds hold exclusively either invest-

ment grade (IG) or high-yield (HY) bonds. This type of investment constraint is present also

among other institutions such as insurance companies and pension funds. We present opti-

mal portfolios consisting only of IG or HY bonds, respectively. The overall sample of 266,851

bond-month observations is divided into a subsample of 248,165 bond-month observations

for IG and 18,686 bond-month observations for HY.

In Table 11, we report the in-sample and out-of-sample results of our optimal portfolios

for α = 300. The signs of the tilts toward the single bond-specific characteristics for portfolios

based on the IG subsample is similar to those found for the full cross-section of corporate

bonds, as reported in Table 2. The optimal portfolio is tilted toward bonds with larger

TTM, RAT, and COUP and toward bonds with smaller SIZE. The marginal impact for the

HY subsample is greater in magnitude for all characteristics, with RAT and SIZE being the

largest. TTM is not significant in the HY subsample, while COUP switches the sign from

positive to negative. Both IG and HY portfolios outperform the benchmark portfolio and
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have low short positions (-11.2% for IG and -0.02% for HY) and turnover (105.8 % for IG

and 168.1% for HY).

When looking at the out-of-sample performance, the portfolio based on the IG (HY)

subsample has a CE return of 4.9% (7.7%), which is 1.1 (3.2) percentage points larger than

those of the corresponding benchmarks. The larger out-of-sample performance for the HY

subsample is consistent with the idea that there is more room for active management in

the high-yield segment of the corporate bond market. Interestingly, both out-of-sample

portfolios reach a lower CE return than a similar portfolio that includes all corporate bonds

(see Table 3). This is consistent with the idea that narrow investment mandates might

represent and obstacle to performance. Overall, the evidence displayed in Table 11 confirms

that our methodology is robust to the split of the sample between IG and HY bonds.

5 Optimal Corporate Bond Portfolios and Macroeco-

nomic Activity

In this section, we document a significant correlation between our optimal portfolio return

and future macroeconomic activity. This fact is of economic importance for two reasons.

First, it is plausible that the portfolio weights capture time-variation in investment oppor-

tunities (Brandt and Santa-Clara, 2006). If the optimal weights are chosen to hedge against

undesirable innovations in economic conditions, the return of the portfolio must be corre-

lated with fluctuations in state variables (Merton, 1969). Second, as imbalances in the cor-

porate bond market have been shown to precede downturns in the economy (Gilchrist and

Zakraǰsek, 2012) (GZ hereafter),(López-Salido, Stein, and Zakraǰsek, 2017; Ben-Rephael,

Choi, and Goldstein, 2018), it is interesting to see whether the optimal corporate bond port-

folio return is also able to capture information on macroeconomic activity. To explore these

points, we decompose the portfolio return into its passive and active component.20 Exam-

20The active component is calculated by simply subtracting the value-weighted benchmark portfolio return (the passive
component) from the overall portfolio return. The results for the equally weighted portfolio are almost identical and available
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ining the passive component is essentially testing the predictability documented in GZ by

using portfolio returns rather than yields. Our main goal is to analyze whether the active

part plays a role in predicting various measures of economic activity, on top of the passive

part.

In Table 5, we present results from regressing three-months-ahead and twelve-months-

ahead changes in GDP growth and in consumption growth (CONS), which we use as a

monthly proxy for macroeconomic activity, on our decomposed portfolio returns. Optimal

portfolios are estimated using an expanding window that ends before the period over which

changes in the macroeconomic variables are calculated. The portfolio return during the final

month of each estimation period is used to forecast the macroeconomic variables. We control

for the GZ yield spread and lagged GDP or consumption growth (lagged GDP and consump-

tion growth are constructed without overlapping the observations, which insures that we do

not introduce artificial serial correlation in the series (Valkanov, 2003)). At all horizons, both

the passive and the active component of the portfolio return is positively and significantly

correlated with future GDP and consumption growth. A one-standard-deviation increase

in our active portfolio return leads to an increase of GDP (consumption) growth of 0.178

(0.160) standard deviations in the three-month-ahead regressions. At the yearly horizon the

effect gets stronger: a one-standard-deviation increase in our active portfolio return leads

to an increase of GDP (consumption) growth of 0.489 (0.275) standard deviations. Further,

adding the parametric portfolio returns increases the R2 of about 13% at short horizons and

35% (GDP) or 11% (CONS) at long horizons. The coefficient on the yield spread is also

significant and negative, which is essentially a replication of the GZ results with our data set.

We note that the positive coefficient for returns is consistent with the negative coefficient

for the GZ spread: an unexpected increase in the yield spread implies an unexpected drop

in bond prices, and hence a negative return of the bond portfolio. Our conclusions are not

limited to GDP and consumption growth, but hold for other measures of macroeconomic

upon request.
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activity as well.21

Our findings so far imply that the active component of our portfolio return contains infor-

mation, beyond that in the GZ spread, about the future state of the economy. If this is true,

the active component of our portfolio should predict the GZ spread. To explore this point

further, we present in Table 6 results from regressing three-month-ahead and twelve-month-

ahead GZ spread in levels and in changes on our decomposed portfolio returns. We control

for the lagged dependent variable, again without overlapping the observations. Consistent

with the previous findings, the active component of the portfolio return is negatively and

significantly correlated with future GZ levels and changes. The relationship is stronger for

changes in the GZ spread, supporting the idea that our investment strategy anticipates fluc-

tuations in credit markets. A one-standard-deviation increase in our active portfolio return

leads to a stronger decrease in GZ of 0.239 standard deviations at short horizons and 0.210

standard deviations at long horizons. Moreover, adding our portfolio returns increases the

R2 for both levels (between 5% and 6%) and changes (11% at short horizons and 3.5% at

long horizons) in the GZ spread. From this evidence, we conclude that the active part of

the portfolio does indeed serve to hedge against undesirable states of the economy.

6 Can active bond funds hold the optimal portfolio?

Our evidence so far has demonstrated that the performance of the optimal portfolio might

stem from its ability to hedge against future states of the economy, thanks to accounting for

multiple characteristics at once. However, it is unclear whether other investors are taking

advantage of the information contained into bond-specific characteristics and if not, why this

is the case. We will focus in this section on actively managed corporate bond mutual funds,

and show in this section that the reason they are only partially holding the optimal portfolio

is likely the presence of narrow investment mandates. Such narrow mandates create bond

21In Table IA3 in the Internet Appendix we repeat the exercise by using industrial production growth and changes in the
unemployment rate as proxies for macroeconomic activity, and find similar results.
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market segmentation, by forbidding active mangers to hold certain securities even when it

might be profitable to do so. We focus on bond mutual funds as they represent the closest

type of investors to our portfolio allocation problem.22

For the remainder of this section, we consider our out-of-sample optimal portfolios re-

ported in Table 3. We start off by analyzing whether the holdings of actual corporate bond

mutual funds are similar to those of our optimal parametric portfolio. In Table 7, we report

the average characteristics of our equally weighted, value-weighted, and optimal parametric

portfolio (CBPP), along with those of passive funds, active funds, and all funds combined.

Average bond characteristics are calculated by taking the value-weighted average of all mu-

tual fund holdings reported in the Morningstar database, following the methodology of Choi

and Kronlund (2018). Consistent with Table 2, our optimal portfolio has on average a higher

TTM, RAT, COUP and a lower SIZE than our EW and VW benchmarks. When looking

at the average characteristics of bond funds, those of the passive funds are close to our VW

benchmark, while those of the active funds tilt to our optimal portfolio, with the exception of

TTM. Interestingly, our optimal portfolio has deviations from the benchmark that are larger

than those observable in active funds. As shown in the last row of Table 7 those differences

are statistically significant. Our optimal portfolio has on average a longer TTM (1.446 years

more), a higher RAT (2.226 notches more), a higher COUP (0.415% more) and a smaller

SIZE (165$ million less) than the average portfolio of active bond funds in the same time

period.

The evidence in Table 7 is consistent with our interpretation that narrow mandates limit

active investors from holding optimal portfolios, forcing them to have less than optimal tilts

towards the bond characteristics. If this was true, whenever our portfolio deviates the most

from active bond funds holdings, the out-performance relative to active funds should get

larger. In other words, a greater deviation of our weights from those of active bond funds

22We gather data on bond funds holdings and performance from Morningstar for the period from January 2002 till December
2017. We consider funds in the following Morningstar categories: Corporate Bond, High-Yield Bond, Multisector Bond,
Nontraditional Bond, Bank Loan, Preferred Stock, Short-Term Bond, Intermediate-Term Bond, and Long-Term Bond.
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along the bond characteristics should predict larger out-performance. We test this conjecture

by running the following regression:

rCBPP,t+1 − rACT,t+1 = a+ β1∆CHARSt + β2(rCBPP,t − rACT,t) + εt+1, (9)

where rCBPP,t+1 is the optimal portfolio return in month t+ 1 and rACT,t+1 is average value-

weighted active fund return in month t + 1. ∆CHARSt is the sum of the standardized

differences in absolute value between the optimal portfolio’s and the average active fund’s

characteristics (TTM, RAT, COUP, SIZE) in month t. We use one-month ahead return

spread as dependent variable as the portfolio is rebalanced monthly, and the portfolio allo-

cation decided in month t influences the performance in the following month (t+ 1). Table

8 displays the results along with those of other four regressions where instead of ∆CHARSt

we use the difference relative to one single characteristic. First, our portfolio outperforms, on

average, active bond funds by around 0.48% per month. Consistent with our story, a larger

deviation from active bond funds portfolios in month t predicts a larger outperformance

during the following month. A one standard deviation change in the distance between the

optimal portfolio and the average active fund portfolio leads to an increase in outperformance

of the parametric portfolio by 0.423%. Decomposing the distance across single characteristics

suggests that RAT, COUP and SIZE are those characteristics that contribute to the out-

performance. This is not surprising, as generally investment mandates limit fund managers

along such characteristics. For example, some funds cannot hold high yield bonds, while

other cannot buy bonds with a small outstanding amount because they are not included in

major benchmarks.

Overall, these results suggest that narrow investment mandates potentially i) represent

an important constraint for active fund managers in reaching an optimal portfolio and ii)

might be a driver of the parametric portfolio’s outperformance relative to active investors in

bond markets.
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7 Conclusion

We optimally select corporate bond portfolios based on asset-specific characteristics. Port-

folio weights are modeled through the smooth maximum function, which allows for a large

cross-section, asset-specific transaction costs a parsimonious use of turnover and short posi-

tions. We find that a portfolio based on four simple characteristics -time to maturity, rating,

coupon, issue size- outperforms passive benchmarks after transaction costs in and out of sam-

ple, while keeping low levels of turnover and short positions. The optimal portfolio predicts

various measures of economic activity above and beyond the information content of yield

spreads, meaning it provides a superior hedge against undesirable states of the economy.

The key message of our paper is that the cross-section of bond characteristics contains

a wealth of information that empirical methods can use in forming corporate bond port-

folios. However, incorporating this information is more complex than previously thought.

Multiple characteristics that have predictive power over bond returns do not lead to superior

performance when incorporated in portfolios that take into account real transaction costs

and keep a reasonable level of short positions and turnover. Further, narrow investment

mandates among active bond fund managers seem to limit them from holding and optimal

portfolio. Our paper only a first step understanding how to approach portfolio allocation in

corporate bond markets, and opens the door to exciting possibilities for further research. For

example, more work is needed to understand whether representative agent models are suit-

able for corporate bond investors, given the heterogeneous nature of their mandates (see for

example Bretscher et al. (2020)). Also, much needs be done to shed light on the implications

of the fact that not all characteristics are easily tradeable.
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Table 1: Summary Statistics
This table displays summary statistics of the corporate bond data used in our study. Our
dataset includes 266,851 bond-month observations between September 1993 and December
2017. Panel A shows average monthly statistics of our sample of corporate bonds. First, we
show monthly statistics for the number of bonds and outstanding debt (in billion USD) for
all bonds in our sample, for bonds coming in our sample each month, and for those dropping
out of our sample in each month. The column Total shows the number and the amount of
outstanding debt of all bonds that are present at least once in our sample. Panel B shows
summary statistics and correlations for bond-specific characteristics. TTM is the bond’s
time to maturity in years, RAT is the average rating of the bond across the three main
rating agencies (Standard & Poor’s, Moody’s, and Fitch), COUP is the bond’s coupon, and
SIZE is the bond’s outstanding amount in billion USD.

Panel A: Corporate Bond Sample

Mean SD Q25 Median Q75 Total

# Bonds 914 599 615 763 918 6084

# Bonds In 20 44 8 14 19 -

# Bonds Out 17 80 2 12 18 -

Debt Outst. 456 349 79 438 718 3317

Debt Outst. In 11 21 1 6 14 -

Debt Outst. Out 7 15 0 4 8 -

Panel B: Corporate Bond Characteristics

TTM RAT COUP SIZE

Mean 9.239 6.694 6.064 0.499

SD 9.411 3.015 1.984 0.796

Min 0.236 1.000 0.000 0.000

Median 6.044 6.000 6.500 0.250

Max 99.578 25.000 15.500 15.000

TTM 1.000 0.017 0.239 -0.062

RAT 0.017 1.000 0.220 -0.042

COUP 0.239 0.220 1.000 -0.290

SIZE -0.062 -0.042 -0.290 1.000
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Table 2: Parametric Corporate Bond Portfolios – Smooth Maximum α
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE). Our dataset includes 266,851 bond-month observations between September 1993
and December 2017. The parameters are estimated for a power utility function with γ = 5,
taking into account transaction costs. The column VW (EW) refers to the value-weighted
(equal-weighted) benchmark portfolio for α=300. The other columns display optimal portfo-
lios for different levels of the smooth maximum parameter α, starting from a value-weighted
benchmark. The first set of rows shows the marginal impact of the characteristics and boot-
strapped p-values for the corresponding coefficients. The second set of rows shows (annu-
alized) performance measures and portfolio statistics, displaying certainty equivalent return
(CE) and bootstrapped p-value, percentage increase in CE with respect to the corresponding
benchmark, the mean (total, for the passive benchmark, and for active portfolio tilts) and
standard deviation of portfolio returns, Sharpe ratio, average short positions, and annual
turnover.

VW EW CBPP

α = 0 α = 150 α = 300 α = 750

TTM 0.023 0.476 0.330 1.075

(0.001) (0.001) (0.001) (0.001)

RAT 0.194 1.230 1.128 3.245

(0.001) (0.001) (0.001) (0.001)

COUP 0.368 0.044 0.020 0.031

(0.001) (0.001) (0.001) (0.001)

SIZE −0.341 −0.038 −0.047 0.095

(0.001) (0.001) (0.001) (0.001)

CE(r) 0.055 0.058 0.094 0.096 0.091 0.086

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

%∆CE 0.000 0.000 0.709 0.745 0.655 0.564

r̄ 0.066 0.068 0.151 0.137 0.127 0.119

r̄passive 0.066 0.068 0.066 0.066 0.066 0.066

r̄active 0.000 0.000 0.085 0.071 0.061 0.053

σ(r) 0.060 0.054 0.135 0.114 0.107 0.101

SR 0.678 0.788 0.908 0.963 0.935 0.906∑
wiI(wi < 0) 0.000 0.000 −1.482 −0.225 −0.116 −0.004∑
|(wi,t − wi,t−1)| 0.654 0.648 3.347 1.342 1.161 0.983
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Table 3: Parametric Corporate Bond Portfolios – Out-of-Sample Performance
This table displays out-of sample portfolio statistics for the value-weighted benchmark and
different specifications of the parametric corporate bond portfolio, based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE). Our dataset includes 266,851 bond-month observations between September 1993
and December 2017. The parameters are estimated for a power utility function with γ = 5,
taking into account transaction costs. Optimal tilts are applied out-of-sample from Jan-
uary 2002 until December 2017, using an expanding window estimation. The column VW
(EW) refers to the value-weighted (equal-weighted) benchmark portfolio for α=300. The
other columns display out-of-sample portfolios for different levels of the smooth maximum
parameter α, starting from a value-weighted benchmark. In particular, we report (annual-
ized) performance measures and portfolio statistics, displaying certainty equivalent return
(CE) and bootstrapped p-value, percentage increase in CE with respect to the correspond-
ing benchmark, the mean and standard deviation of portfolio returns, Sharpe ratio, average
short positions, and annual turnover. The out-of-sample period includes 212,061 bond-month
observations.

VW EW CBPP

α = 0 α = 150 α = 300 α = 750

CE(r) 0.051 0.055 −0.418 0.085 0.082 0.075

%∆CE 0.000 0.000 −9.171 0.682 0.621 0.481

r̄ 0.065 0.066 0.187 0.129 0.116 0.104

r̄passive 0.065 0.066 0.065 0.065 0.065 0.065

r̄active 0.000 0.000 0.122 0.064 0.051 0.039

σ(r) 0.069 0.059 0.344 0.114 0.100 0.093

SR 0.755 0.900 0.504 1.015 1.028 0.979∑
wiI(wi < 0) 0.000 0.000 −4.966 −0.240 −0.115 −0.010∑
|(wi,t − wi,t−1)| 0.602 0.627 19.640 2.228 1.553 1.352
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Table 4: Univariate Portfolio Sorts for Bond Characteristics
This table displays results for univariate corporate bond portfolio sorts, conditional on bond-
specific characteristics. Our dataset includes 266,851 bond-month observations between
September 1993 and December 2017. For each month, corporate bonds are sorted into quin-
tile portfolios based on either time to maturity (TTM), rating (RAT), coupon (COUP), or
size (SIZE). Value-weighted returns are calculated for each portfolio during the following
month. P1 contains bonds in the lowest quintile with respect to a given sorting variable, P5
those in the highest. P5−P1 presents results for a hedge portfolio that is long in P5 and
short in P1. Panel A reports annualized excess returns in percentage points and certainty
equivalent returns (CE) for a power utility function with γ = 5. The last two columns report
long-short hedge portfolio returns and certainty equivalent returns, accounting for transac-
tion costs. Panel B displays correlations of long-short hedge portfolio returns, accounting
for transaction costs. Robust two-tailed p-values following Newey and West (1987, 1994) are
reported in parentheses.

Panel A: Performance

w/o t-costs w/ t-costs

P5−P1 CE P5−P1 CE

TTM 0.034 0.021 0.029 0.016

(0.023) (0.052)

RAT 0.048 0.022 0.042 0.016

(0.035) (0.058)

COUP 0.034 0.023 0.029 0.018

(0.003) (0.010)

SIZE 0.002 −0.003 −0.003 −0.008

(0.773) (0.646)

Panel B: Correlations

TTM RAT COUP SIZE

TTM 1.000 0.037 0.344 −0.290

RAT 0.037 1.000 0.767 −0.487

COUP 0.344 0.767 1.000 −0.611

SIZE −0.290 −0.487 −0.611 1.000
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Table 5: Parametric Corporate Bond Portfolios and Macro Predictability
This table displays results for forecasting future realized GDP growth and consumption
growth with returns of the optimal parametric corporate bond portfolio, decomposed into
its passive and active part. The optimal portfolio returns are based on a value-weighted
corporate bond benchmark. We use a specification with α = 300, and take into account the
bond-specific characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP),
and size (SIZE). The parameters are estimated for a power utility function with γ = 5, taking
into account transaction costs. Our dataset includes 266,851 bond-month observations be-
tween September 1993 and December 2017, the forecasts are estimated beginning in January
2002. Optimal portfolios are estimated using an expanding window that ends before the
period over which changes in the macroeconomic variables are calculated. The portfolio re-
turn during the final month of each estimation period is used to forecast the macroeconomic
variables. We take into account growth in macroeconomic variables over the next quarter
(GDPQ1 and CONS3M) and over the next year (GDPQ4 and CONS12M). We furthermore
control for the GZ credit spread index from Gilchrist and Zakraǰsek (2012) (GZ) and include
a lagged (non-overlapping) value of the dependent variable (AR(1)). Our regression sam-
ple ends in August 2016 due to the availability of GZ. Robust two-tailed p-values following
Newey and West (1987) for three and twelve lags, according to the horizon of the dependent
variable, are reported in parentheses. All variables are standardized and demeaned.

GDPQ1 GDPQ4 CONS3M CONS12M

rpassive 0.302 0.298 0.321 0.193

(0.001) (0.001) (0.003) (0.001)

ractive 0.178 0.489 0.160 0.275

(0.047) (0.001) (0.029) (0.002)

GZ −0.616 −0.674 −0.518 −0.509 −0.439 −0.479 −0.440 −0.379

(0.004) (0.001) (0.002) (0.001) (0.010) (0.001) (0.077) (0.052)

AR(1) 0.031 0.066 0.012 0.202 0.024 0.044 0.004 0.146

(0.864) (0.650) (0.965) (0.294) (0.813) (0.658) (0.988) (0.478)

Obs. 59 59 56 56 177 177 168 168

Adj. R2 0.400 0.522 0.264 0.618 0.204 0.339 0.191 0.304
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Table 6: Parametric Corporate Bond Portfolios and Credit Spread Predictability
This table displays results for forecasting future realized values of the GZ credit spread
index from Gilchrist and Zakraǰsek (2012) (GZ) and its changes over time (∆GZ) with
returns of the optimal parametric corporate bond portfolio, decomposed into its passive and
active part. The optimal portfolio returns are based on a value-weighted corporate bond
benchmark. We use a specification with α = 300, and take into account the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE). The parameters are estimated for a power utility function with γ = 5, taking into
account transaction costs. Our dataset includes 266,851 bond-month observations between
September 1993 and December 2017, the forecasts are estimated beginning in January 2002.
Optimal portfolios are estimated using an expanding window that ends before the period
over which changes in GZ are calculated. The portfolio return during the final month of each
estimation period is used to forecast GZ or ∆GZ. Our regression sample ends in August 2016
due to the availability of GZ. We take into account macroeconomic variables over the next
quarter (GZ3M and ∆GZ3M) and over the next year (GZ12M and ∆GZ12M). We control
for a lagged (non-overlapping) value of the dependent variable (AR(1)). Robust two-tailed
p-values following Newey and West (1987) for three and twelve lags, according to the horizon
of the dependent variable, are reported in parentheses. All variables are standardized and
demeaned.

GZ3M GZ12M ∆GZ3M ∆GZ12M

rpassive −0.186 −0.050 −0.254 −0.061

(0.027) (0.046) (0.000) (0.280)

ractive −0.156 −0.234 −0.239 −0.210

(0.008) (0.108) (0.003) (0.022)

AR(1) 0.803 0.835 0.195 0.212 0.151 0.017 0.004 −0.057

(0.000) (0.000) (0.140) (0.077) (0.168) (0.850) (0.984) (0.773)

Obs. 174 174 156 156 174 174 156 156

Adj. R2 0.645 0.709 0.038 0.087 0.023 0.131 0.000 0.036
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Table 7: Parametric Corporate Bond Portfolios and Bond Funds Holdings
This table displays statistics for average bond characteristics for our benchmark portfolios,
the optimal parametric portfolio, and US corporate bond mutual funds. We report average
bond characteristics for the equal-weighted (EW) and value-weighted (VW) corporate bond
benchmarks, for the out-of-sample parametric corporate bond portfolio (CBPP, for the refer-
ence specification with α=300, estimated for a power utility function with γ = 5, accounting
for transaction costs), and of index funds, actively managed funds, and all US corporate bond
mutual funds. Finally, we show the difference in average bond characteristics between the
out-of-sample parametric corporate bond portfolio and actively managed funds. Two-sample
two-tailed p-values are reported in parentheses. Our dataset includes 266,851 bond-month
observations between September 1993 and December 2017. The out-of-sample returns are
obtained by applying optimal tilts out-of-sample from January 2002 until December 2017,
using an expanding window estimation. We get information about mutual fund holdings
from Morningstar.

TTM RAT COUP SIZE

EW 7.564 6.974 5.359 0.776

VW 8.041 6.461 5.261 1.982

CBPP 9.977 13.029 6.775 0.806

Active Funds 8.531 10.803 6.360 0.971

Passive Funds 9.613 6.920 5.155 1.207

All Funds 8.642 10.417 6.234 0.992

CBPP-Active 1.446 2.226 0.415 −0.165

(0.001) (0.001) (0.001) (0.001)
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Table 8: Parametric Corporate Bond Portfolios and Bond Funds Performance
This table displays results for forecasting monthly out-of-sample parametric corporate bond
portfolio returns in excess of active US bond fund returns with the distance in characteristics
between the two portfolios. The parametric corporate bond portfolio returns are based on a
value-weighted corporate bond benchmark. We use a specification with α = 300, and take
into account the bond-specific characteristics time to maturity (TTM), credit rating (RAT),
coupon (COUP), and size (SIZE). The parameters are estimated for a power utility function
with γ = 5, taking into account transaction costs. Our dataset includes 266,851 bond-
month observations between September 1993 and December 2017. The out-of-sample returns
are obtained by applying optimal tilts out-of-sample from January 2002 until December
2017, using an expanding window estimation. We control for a lagged (non-overlapping)
value of the dependent variable (AR(1)). Robust two-tailed p-values following Newey and
West (1987) are reported in parentheses. All right-hand side variables are standardized and
demeaned.

rCBPP,t+1 − rACT,t+1

∆CHARSt 0.423

(0.002)

∆TTMt −0.361

(0.104)

∆RATt 0.242

(0.078)

∆COUPt 0.411

(0.023)

∆SIZEt 0.462

(0.001)

AR(1) −0.003 −0.038 −0.011 0.009 −0.043

(0.993) (0.880) (0.970) (0.974) (0.876)

Constant 0.484 0.480 0.482 0.484 0.482

(0.004) (0.004) (0.004) (0.004) (0.004)

Obs. 179 179 179 179 179

Adj. R2 0.020 0.015 0.001 0.023 0.032
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Table 9: Parametric Corporate Bond Portfolios – Downside Risk
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), size (SIZE),
and downside risk (DSIDE). We show performance statistics for both in-sample and out-of-
sample portfolios. Our dataset includes 186,062 bond-month observations between Septem-
ber 1993 and December 2017. The parameters are estimated for a power utility function with
γ = 5, using α=300, and taking into account transaction costs. Optimal tilts are applied
out-of-sample from January 2002 until December 2017, using an expanding window estima-
tion. The column VW refers to the value-weighted benchmark portfolio. The other columns
display optimal and out-of-sample portfolios with (CH+D) and without downside risk (CH).
The first set of rows shows the marginal impact of the characteristics and bootstrapped
p-values for the corresponding coefficients. The second set of rows shows (annualized) per-
formance measures and portfolio statistics, displaying certainty equivalent return (CE) and
bootstrapped p-value, percentage increase in CE with respect to the corresponding bench-
mark, the mean (total, for the passive benchmark, and for active portfolio tilts) and standard
deviation of portfolio returns, Sharpe ratio, average short positions, and annual turnover.

In Sample Out-of-Sample

VW CBPP VW CBPP

CH CH+D CH CH+D

TTM 0.539 0.539

(0.001) (0.001)

RAT 1.737 1.708

(0.001) (0.001)

COUP 0.095 0.092

(0.001) (0.001)

SIZE −0.144 −0.137

(0.001) (0.001)

DSIDE −0.027

(0.001)

CE(r) 0.057 0.091 0.091 0.056 0.077 0.076

(0.001) (0.001) (0.001)

%∆CE 0.000 0.596 0.596 0.000 0.372 0.349

r̄ 0.068 0.126 0.126 0.070 0.107 0.105

r̄passive 0.068 0.068 0.068 0.070 0.070 0.070

r̄active 0.000 0.058 0.058 0.000 0.037 0.035

σ(r) 0.059 0.104 0.104 0.069 0.094 0.091

SR 0.719 0.950 0.952 0.836 1.000 1.005∑
wiI(wi < 0) 0.000 −0.063 −0.065 0.000 −0.058 −0.060∑
|(wi,t − wi,t−1)| 0.750 1.130 1.134 0.774 1.627 1.880
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Table 10: Parametric Corporate Bond Portfolios – Stock Characteristics
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE), as well as on the stock-specific characteristics size (ME), book-to-market (BTM),
momentum (MOM), idiosyncratic volatility (IVOL), CAPM beta (BETA), and skewness
(SKEW). We show performance statistics for both in-sample and out-of-sample portfolios.
Our dataset includes 135,070 bond-month observations between September 1993 and De-
cember 2017. The parameters are estimated for a power utility function with γ = 5, using
α=300, and taking into account transaction costs. Optimal tilts are applied out-of-sample
from January 2002 until December 2017, using an expanding window estimation. The column
VW refers to the value-weighted benchmark portfolio. The other columns display optimal
and out-of-sample portfolios with bond (B), stock (S), and both (B+S). The first set of rows
shows the marginal impact of the characteristics and bootstrapped p-values for the corre-
sponding coefficients. The second set of rows shows (annualized) performance measures and
portfolio statistics, displaying certainty equivalent return (CE) and bootstrapped p-value,
percentage increase in CE with respect to the corresponding benchmark, the mean (total,
for the passive benchmark, and for active portfolio tilts) and standard deviation of portfolio
returns, Sharpe ratio, average short positions, and annual turnover.
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In Sample Out-of-Sample

VW CBPP VW CBPP

B S B+S B S B+S

TTM 0.542 0.497

(0.001) (0.001)

RAT 1.100 1.029

(0.001) (0.001)

COUP −0.062 −0.032

(0.001) (0.001)

SIZE −0.281 −0.241

(0.001) (0.001)

ME −0.198 −0.167

(0.001) (0.001)

BTM 5.770 −0.035

(0.001) (0.001)

MOM 1.746 0.006

(0.001) (0.037)

IVOL −0.062 0.007

(0.001) (0.145)

BETA −0.206 −0.047

(0.001) (0.001)

SKEW −0.226 −0.025

(0.001) (0.001)

CE(r) 0.059 0.078 0.069 0.078 0.053 0.062 0.048 0.060

(0.001) (0.001) (0.001) (0.001)

%∆CE 0.000 0.322 0.169 0.322 0.000 0.172 −0.083 0.131

r̄ 0.069 0.100 0.080 0.099 0.065 0.082 0.057 0.075

r̄passive 0.069 0.069 0.069 0.069 0.065 0.065 0.065 0.065

r̄active 0.000 0.031 0.011 0.030 0.000 0.017 −0.008 0.010

σ(r) 0.056 0.086 0.058 0.084 0.065 0.083 0.054 0.070

SR 0.738 0.830 0.903 0.844 0.795 0.824 0.807 0.865∑
wiI(wi < 0) 0.000 −0.078 −0.001 −0.077 0.000 −0.107 −0.012 −0.096∑
|(wi,twi,t−1)| 0.682 1.285 1.546 1.306 0.697 2.235 3.019 2.202
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Table 11: Parametric Corporate Bond Portfolios – IG and HY Bonds
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE) for two subsamples: investment grade (IG) and high-yield (HY) bonds. We show
performance statistics for both in-sample and out-of-sample portfolios. Our dataset includes
266,851 bond-month observations between September 1993 and December 2017. The pa-
rameters are estimated for a power utility function with γ = 5, using α=300, and taking
into account transaction costs. Optimal tilts are applied out-of-sample from January 2002
until December 2017, using an expanding window estimation. The column VW refers to the
value-weighted benchmark portfolio. The other columns display optimal and out-of-sample
portfolios for the two subsamples. The first set of rows shows the marginal impact of the
characteristics and bootstrapped p-values for the corresponding coefficients. The second set
of rows shows (annualized) performance measures and portfolio statistics, displaying cer-
tainty equivalent return (CE) and bootstrapped p-value, percentage increase in CE with
respect to the corresponding benchmark, the mean (total, for the passive benchmark, and
for active portfolio tilts) and standard deviation of portfolio returns, Sharpe ratio, average
short positions, and annual turnover.

In Sample Out-of-Sample

IG HY IG HY

VW CBPP VW CBPP VW CBPP VW CBPP

TTM 0.359 −0.054

(0.001) (0.798)

RAT 0.623 7.200

(0.001) (0.001)

COUP 0.302 −1.084

(0.001) (0.001)

SIZE −0.139 −1.653

(0.001) (0.001)

CE(r) 0.050 0.064 0.074 0.137 0.038 0.049 0.045 0.077

(0.001) (0.001) (0.001) (0.001)

%∆CE 0.000 0.280 0.000 0.851 0.000 0.273 0.000 0.711

r̄ 0.059 0.079 0.129 0.234 0.050 0.057 0.131 0.202

r̄passive 0.059 0.059 0.129 0.129 0.050 0.050 0.131 0.131

r̄active 0.000 0.020 0.000 0.105 0.000 0.006 0.000 0.072

σ(r) 0.055 0.068 0.135 0.167 0.063 0.051 0.171 0.195

SR 0.623 0.782 0.758 1.227 0.599 0.867 0.684 0.964∑
wiI(wi < 0) 0.000 −0.112 0.000 −0.002 0.000 −0.063 0.000 −0.003∑
|(wi,t − wi,t−1)| 0.660 1.058 1.141 1.681 0.623 1.910 0.985 1.894
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Figure 1: Monthly One-way Transaction costs. This figure displays the time series
of the average transaction costs we apply to the bonds in our sample. We plot average
transaction costs for the full sample and separately for the investment grade and high-yield
subsamples. Our dataset includes 266,851 bond-month observations between September
1993 and December 2017.
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Figure 2: Out-of-Sample Performance. This figure displays the time series of cumula-
tive returns and short positions (12-months moving average) of out-of sample portfolios for
different values of smooth maximum parameter α, based on the bond-specific characteris-
tics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size (SIZE). Our
dataset includes 266,851 bond-month observations between September 1993 and December
2017. The parameters are estimated for a power utility function with γ = 5, taking into
account transaction costs. Optimal tilts are applied out-of-sample from January 2002 until
December 2017, using an expanding window estimation.

(a) Cumulative Returns

(b) Short Positions

52



Appendix A Magnitude of transaction costs

In our optimization, we apply bond specific transaction costs by exploiting information

from Datastream and TRACE. First, following among others Schestag, Schuster, and Uhrig-

Homburg (2016), we calculate round-trip transaction costs of bond i at month-end t with

the bid-ask spread:

bidaski,t =
P buy
t − P sell

t

0.5 · (P buy
t + P sell

t )
(10)

where P buy
t is the price at which an investor can buy the bond from the dealer and P sell

t is

the price at which the investor can sell the bond to the dealer. P buy
t and P sell

t are based

on month-end prices for the Datastream sample.23 In the TRACE sample, we exploit the

richness of the transaction-level data and estimate P buy
t and P sell

t by averaging daily bid-

ask spreads over the month t.24 As we are considering one-way transaction costs in our

optimization, the final transaction cost that we apply is given by TCi,t =
bidaski,t

2
. Consistent

with Bessembinder et al. (2018), the one-way transaction cost is as half the difference between

the price at which dealers will sell a bond and the price at which they will purchase the bond.

Taking a conservative approach, whenever in the sample we observe a bid-ask spread that is

zero or negative, we nevertheless assign a transaction cost level of 10bps.

23For the vast majority of bonds from September 1993 until September 1998, Datastream only provides mid-prices. In that
period, we apply the average transaction cost observed in the rest of the Datastream sample, dividing between IG (15bps) and
HY bonds (50bps).

24We consider days where both buy and sell prices are available. To avoid retail transactions driving our estimates, we consider
only institutional trades, defined following Bessembinder et al. (2009) as those with a trading volume of at least $100,000. If
in a month a bond has not days with both buys and sell prices, or no transactions of at least $100,000, we assign the average
transaction cost across bonds in that month, distinguishing between IG and HY bonds.
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Appendix B Estimation details

B.1 Bootstrapping the coefficients

We follow the bootstrap procedure outlined in Brandt, Santa-Clara, and Valkanov (2009, pp.

3419-3420) to estimate the covariance matrix of coefficients Σθ̂. Our original data set consists

of monthly observations of bond returns and bond-specific characteristics. We randomly

draw - with replacement - 1, 000 samples from this data set. As the original sample period

covers different economic regimes, we maintain the time-series dependence of the data by

separately drawing randomly each month. Thus, each of the bootstrapped samples covers the

period of our original sample, which goes from September 1993 till September 2015. For each

bootstrapped sample, we follow the procedure described in Section 2 and estimate optimal

portfolio weights. We retain the coefficients θ̂ and in a final step compute the covariance

matrix Σθ̂. We estimate the covariance matrix separately for each portfolio specification

(e.g., for different levels of transaction costs or when accounting for short-sale costs).

We use the bootstrapped covariance matrix to test whether the coefficients θ̂, which are

estimated for the original sample, are significantly different from zero. Brandt, Santa-Clara,

and Valkanov (2009) discuss that this test of statistical significance does not automatically

allows for a statement about whether a given bond-specific characteristic is cross-sectionally

related to conditional bond returns. They argue that the passive benchmark weights w̄i,t

may already reflect a tilt toward some characteristics (e.g., a positive tilt for SIZE for a

value-weighted benchmark). It might not be optimal for an investor to change this exposure

and the corresponding θ̂ will be indistinguishable from zero.

B.2 Bootstrapping the certainty equivalent return

We estimate the variance of the certainty equivalent return (CE) σ2
CE by bootstrap. For that,

we estimate the distribution of the CE under the null hypothesis that our parameter vector

θ is zero and that bond-specific characteristics have no impact on optimal portfolio weights.
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We generate 1, 000 samples of returns by randomly drawing monthly observations from the

original data set (with replacement). As our sample period covers different economic regimes,

we maintain the time-series dependence of the data by separately drawing randomly each

month. For each of these bootstrapped samples, we compute the CE of the portfolio while

keeping θ = 0. Finally, we compute σ2
CE across all bootstrapped samples.

The resulting estimate of σ2
CE can be used to test hypotheses about the CE (e.g., whether

the CE of portfolios conditioned on bond-specific characteristics is larger than the CE of an

equally or value-weighted benchmark).
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Appendix C Calculation of marginal impact

The non-linearity of g(·) in our parametric portfolio weight specification

wi,t = g(w̄i,t;xi,t; θ)

implies that the parameters θ cannot be interpreted as the marginal impact of changes in

xi,t on the optimal portfolio weights. Hence, we evaluate the marginal impact by computing

changes in wi,t that result for a one-standard-deviation change in each of the conditioning

variables xi,t, evaluated at the average value of the other characteristics and at the estimated

θ. This is the standard approach used to measure economic impact in non-linear models.

As the characteristics are normalized to have a cross-sectional mean of zero and a standard

deviation of one in each month t, the calculation of the marginal impact simplifies to the

difference between the average weight of a bond with characteristic xj being set to one, while

all other characteristics x˜j are kept at zero (wx
j
), and the average weight of the benchmark

portfolio (w0), given by

wx
j

= g(w̄;xj = 1;x˜j = 0; θ) and (11)

w0 = g(w̄;x = 0; θ), (12)

with w̄ being the average benchmark weight in the sample.25 The marginal impact of char-

acteristic xj on the optimal portfolio weights, taking into account the re-scaling of weights

such that they sum up to one, can then be calculated as

25The normalization applied in h(·) in (4) is done by using N̄ , the average number of bonds in the portfolio in each month t.
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dw

dxj
=

wxj

wxj +w0∗(N̄−1)
− w0

w0∗N̄

1− 0
(13)

=
wx

j

wxj + w0 ∗
(
N̄ − 1

) − 1

N̄
. (14)
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Appendix D Calculation of stock characteristics

We get monthly returns for common stocks (share code 10 and 11) from CRSP and match

them to our sample of corporate bonds, taking care of mergers, acquisitions and spin offs.

We merge our matched sample with Compustat to get accounting variables for all stocks in

our sample. All accounting variables from Compustat are lagged by six months to make sure

they are observable at the time of portfolio formation. Our final sample consists of 135,070

bond-month observations between September 1993 and December 2017.

We calculate the market capitalization (ME) of a firm by multiplying the share price

from the end of the past fiscal year by shares outstanding from the monthly CRSP file.

The book-to-market ratio (BTM) is calculated by dividing a firm’s book equity by ME.

Book equity is the book value of stockholders’ equity, plus balance sheet deferred taxes and

investment tax credit, minus the book value of preferred stock, following Davis, Fama, and

French (2002). A stock’s momentum (MOM) is calculated following Jegadeesh and Titman

(1993) and Carhart (1997) as the one year cumulative return spanning month t − 12 till

t− 1. Over the same time period, a firm’s exposure to the market portfolio (BETA) as well

as sample skewness (SKEW) is calculated, using daily stock return data from CRSP. The

idiosyncratic volatility of a stock (IVOL) is calculated following Ang et al. (2006) as the

volatility of a stock’s daily residual return during month t− 1, after controlling for exposure

to the market portfolio as well as Fama and French’s (1993) SMB and HML factors.26

25This is done using the Bond-CRSP linking table provided by WRDS for the period 2003-2017, and manually for the period
1993-2003.

26We thank Kenneth French to make those factors available on his website http://mba.tuck.dartmouth.edu/pages/faculty/

ken.french/data_library.html.
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Table IA1: Parametric Corporate Bond Portfolios – Single Characteristics
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE). Our dataset includes 266,851 bond-month observations between September 1993
and December 2017. The parameters are estimated for a power utility function with γ = 5,
using α=300, and taking into account transaction costs. The column VW refers to the
value-weighted benchmark portfolio. The first set of rows shows the marginal impact of
the characteristics and bootstrapped p-values for the corresponding coefficients. The second
set of rows shows (annualized) performance measures and portfolio statistics, displaying
certainty equivalent return (CE) and bootstrapped p-value, percentage increase in CE with
respect to the corresponding benchmark, the mean (total, for the passive benchmark, and
for active portfolio tilts) and standard deviation of portfolio returns, Sharpe ratio, average
short positions, and annual turnover.

VW CBPP

TTM 1.166

(0.001)

RAT 1.479

(0.001)

COUP 1.306

(0.001)

SIZE −0.248

(0.001)

CE(r) 0.055 0.065 0.088 0.070 0.061

(0.001) (0.001) (0.001) (0.001) (0.002)

%∆CE 0.182 0.600 0.273 0.109

r̄ 0.066 0.085 0.128 0.084 0.073

r̄passive 0.066 0.066 0.066 0.066 0.066

r̄active 0.000 0.019 0.062 0.018 0.007

σ(r) 0.060 0.080 0.112 0.068 0.062

SR 0.678 0.729 0.900 0.849 0.769∑
wiI(wi < 0) 0.000 −0.105 −0.110 −0.090 −0.135∑
|(wi,t − wi,t−1)| 0.654 0.951 1.139 0.752 1.062
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Table IA2: Parametric Corporate Bond Portfolios – Single Characteristics – Out-
of-Sample Performance
This table displays out-of sample portfolio statistics for the value-weighted benchmark and
different specifications of the parametric corporate bond portfolio, based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), and size
(SIZE). Our dataset includes 266,851 bond-month observations between September 1993
and December 2017. The parameters are estimated for a power utility function with γ = 5,
using α=300, and taking into account transaction costs. Optimal tilts are applied out-of-
sample from January 2002 until December 2017, using an expanding window estimation. The
column VW refers to the value-weighted benchmark portfolio. The other columns display
out-of-sample portfolios. In particular, we report (annualized) performance measures and
portfolio statistics, displaying certainty equivalent return (CE) and bootstrapped p-value,
percentage increase in CE with respect to the corresponding benchmark, the mean and
standard deviation of portfolio returns, Sharpe ratio, average short positions, and annual
turnover. For the out-of-sample period, the sample includes 212,061 bond-month observa-
tions.

VW CBPP

TTM RAT COUP SIZE

CE(r) 0.051 0.051 0.073 0.068 0.053

%∆CE 0.000 0.011 0.439 0.347 0.036

r̄ 0.065 0.070 0.116 0.087 0.064

r̄passive 0.065 0.065 0.065 0.065 0.065

r̄active 0.000 0.004 0.050 0.022 −0.002

σ(r) 0.069 0.077 0.111 0.079 0.058

SR 0.755 0.737 0.926 0.929 0.874∑
wiI(wi < 0) 0.000 −0.095 −0.115 −0.069 −0.063∑
|(wi,t − wi,t−1)| 0.602 2.063 1.422 0.905 1.475
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Table IA3: Parametric Corporate Bond Portfolios and Macro Predictability –
Industrial Production Growth and Changes in the Unemployment Rate
This table displays results for forecasting future realized industrial production growth and
changes in the unemployment rate with returns of the optimal parametric corporate bond
portfolio, decomposed into its passive and active part. The optimal portfolio returns are
based on a value-weighted corporate bond benchmark. We use a specification with α = 300,
and take into account the bond-specific characteristics time to maturity (TTM), credit rating
(RAT), coupon (COUP), and size (SIZE). The parameters are estimated for a power utility
function with γ = 5, taking into account transaction costs. Our dataset includes 266,851
bond-month observations between September 1993 and December 2017, the forecasts are
estimated beginning in January 2002. Optimal portfolios are estimated using an expanding
window that ends before the period over which changes in the macroeconomic variables are
calculated. The portfolio return during the final month of each estimation period is used
to forecast the macroeconomic variables. We take into account growth in macroeconomic
variables over the next quarter (IPG3M and UNRATE3M) and over the next year (IPG12M

and UNRATE12M). We control for the GZ credit spread index from Gilchrist and Zakraǰsek
(2012) (GZ) and include a lagged (non-overlapping) value of the dependent variable (AR(1)).
Our regression sample ends in August 2016 due to the availability of GZ. Robust two-tailed
p-values following Newey and West (1987) for three and twelve lags, according to the horizon
of the dependent variable, are reported in parentheses. All variables are standardized and
demeaned.

IPG3M IPG12M UNRATE3M UNRATE12M

rpassive 0.095 0.171 −0.130 −0.168

(0.360) (0.001) (0.054) (0.001)

ractive 0.283 0.323 −0.025 −0.250

(0.001) (0.001) (0.610) (0.039)

GZ −0.365 −0.416 −0.527 −0.488 0.639 0.667 0.432 0.350

(0.004) (0.001) (0.023) (0.006) (0.001) (0.001) (0.003) (0.015)

AR(1) 0.344 0.300 −0.391 −0.284 0.101 0.092 0.109 0.265

(0.004) (0.018) (0.117) (0.136) (0.389) (0.408) (0.621) (0.294)

Obs. 177 177 168 168 177 177 168 168

Adj. R2 0.421 0.512 0.132 0.272 0.510 0.523 0.265 0.352
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Table IA4: Parametric Corporate Bond Portfolios – Illiquidity
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), size (SIZE),
and illiquidity (ILLIQ). We show performance statistics for both in-sample and out-of-sample
portfolios. Our dataset includes 266,851 bond-month observations between September 1993
and December 2017. The parameters are estimated for a power utility function with γ = 5,
using α=300, and taking into account transaction costs. Optimal tilts are applied out-of-
sample from January 2002 until December 2017, using an expanding window estimation. The
column VW refers to the value-weighted benchmark portfolio. The other columns display op-
timal and out-of-sample portfolios with (CH+ILLIQ) and without (CH) illiquidity. The first
set of rows shows the marginal impact of the characteristics and bootstrapped p-values for
the corresponding coefficients. The second set of rows shows (annualized) performance mea-
sures and portfolio statistics, displaying certainty equivalent return (CE) and bootstrapped
p-value, percentage increase in CE with respect to the corresponding benchmark, the mean
(total, for the passive benchmark, and for active portfolio tilts) and standard deviation of
portfolio returns, Sharpe ratio, average short positions, and annual turnover.

In Sample Out-of-Sample

VW CBPP VW CBPP

CH CH+ILLIQ CH CH+ILLIQ

TTM 0.539 2.178

(0.001) (0.001)

RAT 1.737 6.270

(0.001) (0.001)

COUP 0.095 0.157

(0.001) (0.001)

SIZE −0.144 −0.395

(0.001) (0.001)

ILLIQ 0.016

(0.189)

CE(r) 0.055 0.091 0.091 0.051 0.082 0.078

(0.001) (0.001) (0.001)

%∆CE 0.000 0.655 0.655 0.000 0.621 0.537

r̄ 0.066 0.126 0.127 0.065 0.116 0.114

r̄passive 0.066 0.055 0.055 0.065 0.065 0.065

r̄active 0.000 0.071 0.072 0.000 0.051 0.048

σ(r) 0.060 0.104 0.107 0.069 0.100 0.104

SR 0.678 0.950 0.935 0.755 1.028 0.963∑
wiI(wi < 0) 0.000 −0.063 −0.116 0.000 −0.115 −0.120∑
|(wi,t − wi,t−1)| 0.654 1.130 1.162 0.602 1.553 2.789
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Table IA5: Parametric Corporate Bond Portfolios – Momentum
This table displays optimal parametric corporate bond portfolios based on the bond-specific
characteristics time to maturity (TTM), credit rating (RAT), coupon (COUP), size (SIZE),
and bond momentum (MOM). We show performance statistics for both in-sample and out-of-
sample portfolios. Our dataset includes 254,880 bond-month observations between Septem-
ber 1993 and December 2017. The parameters are estimated for a power utility function
with γ = 5, using α=300, and taking into account transaction costs. Optimal tilts are ap-
plied out-of-sample from January 2002 until December 2017, using an expanding window
estimation. The column VW refers to the value-weighted benchmark portfolio. The other
columns display optimal and out-of-sample portfolios with (CH+MOM) and without (CH)
bond momentum. The first set of rows shows the marginal impact of the characteristics
and bootstrapped p-values for the corresponding coefficients. The second set of rows shows
(annualized) performance measures and portfolio statistics, displaying certainty equivalent
return (CE) and bootstrapped p-value, percentage increase in CE with respect to the cor-
responding benchmark, the mean (total, for the passive benchmark, and for active portfolio
tilts) and standard deviation of portfolio returns, Sharpe ratio, average short positions, and
annual turnover.

In Sample Out-of-Sample

VW CBPP VW CBPP

CH CH+MOM CH CH+MOM

TTM 2.334 2.312

(0.001) (0.001)

RAT 5.775 5.771

(0.001) (0.001)

COUP 0.233 0.225

(0.001) (0.001)

SIZE −0.417 −0.438

(0.001) (0.001)

MOM 0.070

(0.379)

CE(r) 0.055 0.088 0.088 0.052 0.076 0.075

(0.001) (0.001) (0.001)

%∆CE 0.000 0.600 0.600 0.000 0.466 0.456

r̄ 0.066 0.123 0.123 0.066 0.108 0.102

r̄passive 0.066 0.066 0.066 0.066 0.066 0.066

r̄active 0.000 0.057 0.057 (0.001) 0.042 0.035

σ(r) 0.060 0.106 0.106 0.069 0.098 0.090

Skew −0.235 0.262 0.276 −0.235 −2.016 −1.382

SR 0.670 0.903 0.903 0.767 0.970 0.984∑
wiI(wi < 0) 0.000 −0.113 −0.113 0.000 −0.114 −0.097∑
|(wi,t − wi,t−1)| 0.656 1.155 1.168 0.574 1.684 3.250
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