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1 Introduction

The global financial crisis was fueled by panics that arose in unprecedented circumstances.

These panics were triggered by disruptions in short-term liabilities, such as margin calls and

rollover freezes, and by the run-like behavior of asset-side credit line borrowers. Empirical

research (Ivashina and Scharfstein, 2010; Campello, Graham and Harvey, 2010) provide evidence

supporting the credit line run narrative that borrowers strategically draw down credit lines as

bank liquidity tightens.1

Despite extensive empirical evidence, important questions about the credit line run mechanism

remain unanswered. How does it exacerbate credit contraction, and is it quantitatively significant?

Additionally, what are the policy implications? To address these gaps, I estimate a dynamic

banking model using data on U.S. banks. The model features dynamic interactions between

borrowers’ credit line run behavior and bankers’ liquidity rationing, which I refer to as banker–

borrower strategic complementarity.

My analysis focuses on the amplification effect due to strategic complementarity rather than

multiple equilibria emphasized in deposit-run models. Using the estimated model, I investigate

the quantitative importance of the amplification effect and find that it accounted for two-thirds of

the U.S. banks’ credit contraction during the crisis. Furthermore, policies that target borrowers

can effectively contain credit contraction and may lead to a larger effect when combined with

policies targetting banks.

The strategic complementarity arises from the contingency of credit line contracts and the

bank balance sheet channel. On the one hand, credit lines are a form of contingent liquidity (Sufi,

2009; Acharya et al., 2021). Bankers can cut (stop rolling over or revoke) credit lines, which creates

incentives for borrowers to strategically draw down credit lines to preserve funds and avoid

separation from their credit lines. On the other hand, in downturns when intermediation costs

increase, financing strategic drawdowns becomes costly, and the balance sheet channel (Bernanke

et al., 1999) predicts that bankers will deleverage and ration liquidity, mainly through credit line

cuts (Chodorow-Reich and Falato, 2022). The two strategic responses reinforce each other: credit

1Figure 1 reproduces the evidence. Bank credit contracted severely during the global financial crisis. Meanwhile,
borrowers drew down a larger fraction of credit lines during the crisis, causing the loan-to-credit ratio to shoot up as
drawn credit lines showed up on the balance sheet as loans.
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line cuts induce strategic drawdowns, leading to more deleveraging pressure and further credit

line cuts, creating a feedback process that amplifies adverse shocks during crises.

To quantify the importance of this amplification mechanism, I develop an infinite-horizon

model in Section 2 that captures the banker–borrower strategic complementarity. In the model,

a representative banker provides credit lines to a continuum of borrowers. Borrowers operate

projects subject to liquidity shocks in the spirit of Holmstrom and Tirole (1998). The more

borrowers rely on credit lines to ensure against shocks, the more strongly they react to potential

separation from credit lines. To capture the bank balance sheet channel, I impose a leverage ratio

requirement and an intermediation cost sensitive to bank leverage.

In this setting, a hike in intermediation cost triggers the amplification spiral between strategic

drawdowns and credit line cuts. The magnitude of the amplification reflects the intensity of

strategic complementarities that depend on the borrowers’ reliance on credit lines, the banker’s

cost sensitivity to leverage, and the cost to cut credit lines. Moreover, because credit line contracts

are long-term, the dynamic strategic complementarity arises from the continuation values.

In Section 3, I estimate the model using the simulated method of moments. Estimating

models with strategic complementarities is challenging due to the potential for simultaneity and

omitted–variable biases. Instead of estimating the strategic responses directly, I draw insights from

the social interaction literature (Glaeser, Sacerdote and Scheinkman, 1996) that the stronger the

strategic interactions are, the larger the amplification is when adverse shocks hit banks. Therefore,

I compare credit line drawdowns and credit growth at the bank level before and during the

2008-2009 crisis to reveal the strength of strategic complementarity.

The estimated model has a good in-sample fit, replicates the time-series empirical patterns,

and generates acyclical leverage because banks can deleverage by cutting credit lines without

firesales. Furthermore, although I do not target any cross-sectional moment in the estimation,

the estimated model captures the empirical associations between credit contraction and pre-crisis

leverage accurately.

Next, I use the estimated model to quantify the amplification mechanism in Section 4. I start

by plotting the impulse response functions to a shift from normal times to crises and show that

dampening the response of either the bankers or borrowers contains the amplification effect. In

section 4.2, I study a counterfactual with no strategic drawdowns, where the borrower’s strategy is
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fixed and does not respond to the banker’s strategy, leading to the collapse of the banker–borrower

strategic complementarity. Comparing this scenario with the estimated model quantifies the

amplification effect due to the strategic complementarity. The results indicate that the credit

contraction is much less significant in the counterfactual. The amplification effect accounts for

two-thirds of the credit contraction in the estimated model: bank credit contracts by 1.54% every

quarter in the estimated model and by 0.54% in the counterfactual without amplification. To

assess the robustness of the quantitative result, I follow Andrews, Gentzkow and Shapiro (2017)

and compute the sensitivities to estimation moments in Section 4.3. The diagnostic suggests a

limited misspecification bias.

Finally, I discuss policy implications in Section 5. Ex-ante prudential policies, such as the

leverage ratio requirements, are effective because they enhance bank lending capacity during

crises. Specifically, I consider a set of countercyclical policies: fix the leverage ratio requirement in

crises and increase that in normal times from 6%, the baseline, to 6.4%. In the counterfactual with

a requirement of 6.4%, both credit contraction and strategic drawdowns reduce by approximately

half.

I then investigate two ex-post policies: the funding for lending (FFL) scheme, which aims

to reduce bank intermediation costs, and the corporate credit facilities (CCFs), which provide

direct liquidity to borrowers. While policies targeting banks, such as FFL, have been traditionally

used to support bank credit to the real economy, policies targeting real businesses, such as CCFs,

have gained attention and were implemented during the Covid-19 crisis due to concerns about

potential bank malfunction.

My analysis unveils a compelling argument in support of policies like CCFs that target

borrowers. Although such policies do not directly target banks, they can effectively contain credit

contraction and stimulate bank credit due to the banker–borrower strategic complementarity.

Furthermore, such policies may generate an even greater impact when combined with FFL

schemes.

My paper connects to several strands of the bank run literature (Allen and Gale, 1998; Cooper

and Ross, 1998; Rochet and Vives, 2004; Goldstein and Pauzner, 2005; Vives, 2005; Liu, 2016).

Previous studies suggest that liquidity management strategies, such as suspension of deposit

convertibility (Engineer, 1989; Cipriani, Martin, McCabe and Parigi, 2014; Ennis and Keister, 2009)
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and fund cash-rebuilding (Zeng, 2017; Shek, Shim and Shin, 2018; Morris, Shim and Shin, 2017),

may exacerbate, rather than mitigate, runs in a dynamic framework. While this work usually

focuses on creditors’ reactions to liquidity adjustments, I combine the insight with the bank

balance sheet channel and study the strategic complementarity between bankers and borrowers.

My study also contributes to the literature on how capacity constraints lead to strategic

complementarities (Arellano and Kocherlakota, 2014; Drozd and Serrano-Padial, 2018; Bond

and Rai, 2009; Infante and Vardoulakis, 2021). However, unlike these studies, the constraint in

my model emerges endogenously from the banker’s dynamic problem. In addition, my paper

complements studies on dynamic coordination failures (He and Xiong, 2012; Cheng and Milbradt,

2012; Schroth, Suarez and Taylor, 2014). In my model, dynamic strategic complementarities

emerge because credit lines are contingent rather than due to a staggered debt structure.

Furthermore, my paper contributes to the macro-finance literature on financial frictions and

recent works that study optimal regulations using dynamic models by introducing a novel

amplification mechanism. Works by Gertler and Kiyotaki (2015) and Gertler et al. (2020) connect

the bank balance sheet channel with bank runs (see also Benhabib, Miao and Wang (2016) and

Miao and Wang (2015)). They characterize runs as self-fulfilling rollover freezes following Cole

and Kehoe (2000). In contrast, I model runs due to liquidity mismatch in the spirit of Diamond

and Dybvig (1983), and the model features realistic partial runs instead of a sudden banking

sector collapse, thus connecting more closely to empirical evidence.

Finally, my paper builds on the empirical literature on credit lines (Chava and Roberts, 2008;

Sufi, 2009; Roberts and Sufi, 2009a; Nini et al., 2009; Ippolito et al., 2019; Acharya et al., 2021;

Chodorow-Reich and Falato, 2022). These studies show that credit lines, as contingent liquidity,

depend on bank soundness and that firms run on credit lines in downturns. However, little

is known about the quantitative importance of these findings in exacerbating adverse shocks.

Complementing these studies, I structurally estimate a dynamic banking model to quantify the

amplification arising from this contingency.
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2 The Infinite Horizon Model

In this section, I develop an infinite-horizon model that incorporates three key features of credit

lines: (1) banks can ration liquidity through credit line cuts (Roberts and Sufi, 2009a; Sufi, 2009), (2)

banks use this discretion based on their liquidity soundness (Ippolito et al., 2019; Chodorow-Reich

and Falato, 2022), and (3) credit line drawdowns surge when borrowers are worried about their

future access to credit lines (Ivashina and Scharfstein, 2010; Ippolito et al., 2015).

The model considers a representative banker who lends to a continuum of credit line and

passive term loan borrowers. All agents are risk-neutral with the same discount rate of 1− β. I

use S = [E, Φ, L, s] to represent the current values of the payoff-relevant states, which include

bank equity E, credit limit Φ, term loans L, and exogenous state s.

The timing of each period is as follows. First, the exogenous state of the economy is realized

and publicly observed. The state s ∈ {n, c} captures normal and crisis periods and follows a

Markov process with transition probabilities π(s′, s). In other words, the occurrence of a crisis is

an exogenous shock to the economy rather than an endogenous outcome or a result of equilibrium

selection. Then, borrowers choose their dividends and investment. Next, each borrower privately

observes a liquidity shock λ ∈ {0, 1} and a return shock κ ∈ [0, 1], both of which are identically

and independently distributed over time and across borrowers. Each borrower decides how much

to draw down from credit lines based on these shocks. At the end of the period, the banker

decides on liquidity provision.

2.1 Borrowers’ Problem

Each period, a borrower starts with a net worth ω and a credit line with a limit of φ. The borrower

has three choices to make: dividend payout c, investment k, and drawdown l. In the spirit of

Holmstrom and Tirole (1998), borrowers face liquidity shocks with probability Λ.2 If a liquidity

shock occurs, the borrower needs to inject an additional ρk to prevent costly liquidation. Therefore,

the borrower keeps enough buffer such that (1+ ρ)k ≤ ω− c+ φ. I assume that borrowers retrieve

the injected funds ρk fully at the end of the period to preserve the size of their business.

The ex-ante value function before the borrower makes any choices and observes the realizations
2The probability does not depend on the exogenous state. I discuss empirical evidence supporting this assumption

in Section 3 and perform a robustness check in Section D of the Internet Appendix.

6



of the idiosyncratic shocks is denoted by v(ω, φ; S). After observeing the idiosyncratic shocks but

before the drawdown decision, the borrower’s value function is denoted by u(ω−c, φ, k, λ, κ; S).

Thus,

v(ω, φ; S) = max
c≥0,k≥0,(1+ρ)k≤ω−c+φ

c + (1− β)Eλ,κ[u(ω− c, φ, k, λ, κ; S)]. (1)

Equation (2) characterizes how the borrower’s net worth evolves. The investment technology

is modeled as linear. The borrower receives a gross return of rk while paying a loan rate of r(s)

on the drawdown and a constant maintenance fee rm on the limit. The loan rate is dependent

on the exogenous state s as it is determined as a constant spread over benchmark interest rates,

which change significantly during crises. On the other hand, the maintenance fee, a fixed amount

specified in the contract, is independent of the state. The return rk is state-independent as well.

Nevertheless, as discussed later, this assumption does not affect strategic drawdowns since the

borrower’s value functions are separable in net worth and credit limit.

In periods without a liquidity shock (λ = 0), the borrower can choose to take a positive

drawdown and invest the funds, earning an idiosyncratic return κr(s). The parameter κ follows a

cumulative distribution function F(·), which I assume to be uniform between zero and one in the

empirical analysis.

ω′ = ω− c + rkk− rmφ− r(s)l + (1− λ)κr(s)l. (2)

The return shock measures how efficiently borrowers can utilize the funds they have drawn. If

κ = 0, borrowers can only hold the funds without being able to invest them. On the other hand, if

κ = 1, borrowers can invest the funds and earn the same rate as what they pay. This return shock

creates differences in the cost of drawdowns in period absence of a liquidity shock. While the

benefit of drawing down funds is homogenous across borrowers, only those with sufficiently high

return shocks will choose to do so. Consequently, the model exhibits partial runs on credit lines,

which is consistent with the behavior observed in real-world data.

The optimal investment and dividend decisions are corner solutions in the case of risk-

neutrality and linear technology. Specifically, if the investment return is higher than the expected

cost of credit lines, the borrower will invest as much as possible, which is (1 + ρ)k = ω− c + φ.

On the other hand, if the investment return is lower than the expected cost of credit lines, the

borrower will not use the credit line at all. Assumption 1 ensures that credit lines are relevant and
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the formal case holds.

Assumption 1 The expected net return of investment is positive; that is, rk − (1 + ρ)r(s)Λ > 0.

Additionally, the borrower always chooses to delay dividend payouts when the expected return

of net worth is greater than one, and pays out all net worth immediately when the expected return

is less than one. However, these cases do not reflect realistic dividend policies. To address this, I

follow the financial accelerator literature (Gertler and Kiyotaki, 2015) and introduce an exogenous

probability ξ, beyond Assumption 2, that the borrower exits. It is worth noting that exits are

distinct from defaults, which typically result in the renegotiation and continued operation (Cooley

and Quadrini, 2001). When the borrower exits, all net worth is paid out as dividends, and a new

borrower is brought in to maintain the lending relationship with the banker.

Assumption 2 The return of net worth is greater than 1; that is, β
(

1 + rk
1+ρ

)
≥ 1.

Next, I outline the law of motion for the credit limit, focusing on the scenarios where the

banker rations liquidity, as this represents the main tension in the model. Borrowers face the

risk of losing their unused credit line with a probability p, which is endogenous and the same

for all borrowers. Notably, this probability is independent of privately observed shocks that are

unknown to the banker. Furthermore, since the banker cannot cut drawn credit lines, the credit

limit for the next period either drops to the drawn amount l with probability p or remains at its

previous level φ with probability 1− p.

When the banker extends new credit lines without rationing liquidity, the model assumes

that the credit limit increases proportionally with the borrower’s net worth, subject to availability.

Furthermore, if the credit lines provided by the banker grow faster than the net worth of existing

borrowers, the excess credit limit is distributed to newly entered borrowers based on their net

worth. Further details are available in Section B.1 in the Internet Appendix.

After introducing the two laws of motion, I analyze the drawdown choice of borrowers. Since

the borrower invests the maximum amount such that (1 + ρ)k = ω− c + φ, she must fully draw

down the credit line to avoid liquidation when λ = 1. She solves

u(ω, φ, k, 1, κ; S) = max
l

1[l=φ]

{
ξω′ + (1− ξ)ES′|S[v(ω

′, φ; S′)]
}
+ 1[l<φ] vL, (3)
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where ξ is the exit rate, which is acyclical (Evans, 1987; Cooley and Quadrini, 2001; Lee and

Mukoyama, 2015). The liquidation value, denoted as vL, is set low enough to ensure that the

borrower chooses to fully draw down the credit line to avoid liquidation. Consequently, the

banker cannot cut the borrower’s credit line.

In the absence of a liquidity shock, a critical strategic choice emerges for the borrower. She

faces a trade-off: by drawing down credit lines, she incurs loan costs that reduce her net worth

but can secure the credit line and avoid potential separation from the banker. The borrower solves

u(ω, φ, k, 0, κ; S) = max
l

ξω′+(1−ξ)ES′|S

[
(1− p)v(ω′, φ; S′)+pvE(ω′, l, φ; S′)

]
. (4)

where vE(ω, l, φ; S) denotes the continuation value after separation, and v(ω, φ; S)− vE(ω, l, φ; S)

represents the loss from separation.

Suppose a borrower is separated from her previous credit lines and can only invest using

the drawn funds l, which are below the previous credit limit φ. The borrower can search for a

substitute, and with an exogenous probability of η in each period, she may obtain a new credit

line with the previous credit limit φ and exits the separated status. The probability of substitution

reflects the friction in the search process. As discussed later, since the banker only cuts credit lines

in crises, η is only relevant in crises. For a formal presentation of the problem after separation,

please refer to Section B.2 in the Internet Appendix.

Finally, I show in Section B.3 in the Internet Appendix that the value functions are linear:

v(ω, φ; S) = v1(S)ω + v2(S)φ and vE(ω, l, φ; S) = vE
1 (S)ω + vE

2 (S)l + vE
3 (S)φ. The linearity

implies that the correlation between the credit limit and net worth is irrelevant to the aggregate

dynamics. Moreover, when λ = 0, the borrower’s drawdown decision degenerates to a cutoff rule:

l = φ if the return shock κ exceeds a state-dependent threshold κ̄(S) that makes the net cost of

drawdowns small, and l = 0 otherwise.

As a result, the model features partial runs. Given that the total credit limit of all borrowers

equals the credit limit granted by the banker, liquidity-driven drawdowns amount to ΛΦ, and

the strategic drawdowns are represented by (1− Λ)Φ
[
1− F(κ̄

(
S)
)]

. The resulting aggregate
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drawdown, denoted as LD and defined in Equation (5), is the sum of these two types of drawdowns.

LD = ΛΦ + (1−Λ)Φ
[
1− F(κ̄

(
S)
)]

. (5)

2.2 Banker’s Problem

In each period, the banker begins with equity E, term loans L extended to firms outside the model,

and credit lines with a total limit Φ. The banker raises deposits to finance both term loans and

used credit lines with state-dependent loan rates r(s) and deposit rates z(s). Given the used credit

lines LD, the per-period profit is

Π = (1− τ)
[
rmΦ + r(s)(L + LD)− z(s)(L + LD − E)− G(E, L + LD, s)

]
, (6)

where τ is the tax rate and rm is the maintenance fee. The last term G(E, L + LD, s) represents the

operating cost, including wage and communication costs, which generally captures intermediation

costs that increase with bank leverage (see, e.g., Berger et al. (2017) and Gambacorta and Shin

(2018)). In the empirical analysis, I set G(E, L, s) = an(L + LD) in the normal state and
(
ac −

ψ E
L+LD

)
(L + LD) in the crisis state, where ψ parameterizes the sensitivity to leverage.

After borrowers draw down credit lines, the banker chooses how much liquidy to provide. He

can ration liquidity through credit line cuts.3 Importantly, the liquidity rationing strategy cannot

depend on borrowers’ idiosyncratic shocks that the banker does not observe. This implies that the

banker faces ex-ante identical borrowers and is indifferent to cutting the credit lines of any two

borrowers. Consequently, the banker’s strategy degenerates to the total size of credit limit cuts ∆,

which is limited to the size of unused credit lines Φ− LD(S).

In addition, the banker can issue new credit in the form of credit lines or term loans, denoted

as NC and NL, respectively; however, since the model focuses on situations where the banker

rations liquidity, the choice between credit lines and term loans does not significantly impact the

model’s implications. Specifically, I assume the banker has a predetermined target ratio between

credit lines and term loans, where credit lines account for 56% of bank credit, and term loans
3Motivated by the observation that net issuance of term loans was positive during the 2008-2009 crisis in the DealScan

data, I assume that the banker only rations liquidity only through credit lines but not term loans. Chodorow-Reich et
al. (2022) also find that credit lines are the main margin of liquidity rationing.
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account for 44%. If credit line cuts result in a ratio below the target, the banker will issue new

credit lines to restore the ratio to the target level. Otherwise, if the ratio is at the target level, the

banker will issue new credit lines and term loans proportionally to maintain the target ratio.4

Moreover, to ensure a well-defined bank problem, I assume that the banker exits with proba-

bility ξb in each period.5 If the banker exits, he sells the bank to an entrant and pays out equity E′

as dividends. The banker can also pay out dividends d before exit, but I do not allow the banker

to issue new equity since banks issued little equity during the 2008-2009 crisis. The banker’s

problem is

V(E, Φ, L, s) = max
d,∆,NC ,NL≥0

d + (1− β)
[
ξbE′ + (1− ξb)Es′|s V(E′, Φ′, L′, s′)

]
(7)

s.t. E′ = E + Π− d− C(∆, NC, NL, Φ + L) (8)

E′ ≥ ζ(Φ′ + L′) (9)

∆ ≤ Φ− LD, (10)

Φ′ = Φ− ∆ + NC, (11)

L′ = L + NL, (12)

where inequality (9) represents a leverage ratio requirement, where the equity-to-credit ratio must

exceed ζ. I choose to impose the leverage ratio requirements instead of the capital requirement as

it takes into account the unused credit lines and provides a more direct connection to the model.

The term C(∆, NC, NL, Φ + L) in equation (8) represents loan adjustment costs, which cause

a slow response in bank variables. These costs play a similar role to those in Q-theory models

of investment (Hayashi, 1982) and in the financial accelerator literature (He and Krishnamurthy,

2013; Brunnermeier and Sannikov, 2014; Gertler, Kiyotaki and Prestipino, 2020). The costs can

also be explained by asymmetric information, which includes screening costs, legal expenses,

and opportunity cost of time (Roberts and Sufi, 2009b; Berlin, Nini and Edison, 2020; Anderson,

4Mian and Santos (2018) find that the average drawdown rate was 57% between 1988 and 2010, ranging from
50% to 65% in different years. Additionally, Chodorow-Reich and Falato (2022) report that the mean drawdown
rate during 2006–07 was 53% for the whole sample, 56% for the sample with covenant information, and 55% for the
lender–covenant sample. Based on these drawdown rates and balance sheet data presented in Table 1, credit lines
accounted for approximately 56% of bank credit before the crisis.

5Similar to the perpetual youth models, the effective discount rate is β(1− ξb). A well-defined problem requires it
to be larger than bank credit growth; otherwise, the bank value becomes unbounded.

11



Hachem and Zhang, 2021).

In the empirical analysis, I follow De Nicolò, Gamba and Lucchetta (2014) and set C(∆, NC, NL, Φ+

L) = [γ−

2 ∆2 + γ+

2 (NC + NL)
2]/(Φ + L). This means that the banker incurs screening and moni-

toring per-unit costs γ+ when issuing new credit and per-unit rationing costs γ− when cutting

credit lines.6

The banker aims to achieve optimal leverage, which depends on the exogenous state s. During

normal periods, the profit is linear in assets and liabilities and hence does not depend on leverage.

However, the banker still targets an interior solution for optimal leverage due to the leverage ratio

requirement and the potential for distress in crises. In crisis periods, the banker targets higher

leverage as the profit decreases and becomes sensitive to leverage.

At the optimal leverage, the marginal value of the next period’s equity is equal to one over the

discount rate β. As the banker’s value is concave, he pays out dividends whenever the leverage

exceeds the state-dependent optimal level.

At the normal steady state, which is when the exogenous state remains normal for an extended

period, the banker’s leverage stays at the optimal level. Moreover, the new credit issuance is

chosen such that the marginal cost equals the marginal value of additional credit, similar to the Q

theory. If the leverage is below the optimal level, the banker issues less new credit to accumulate

equity more quickly. In normal periods, the banker will not cut any credit lines.7

During crises, cutting credit lines is an effective way for the banker to deleverage. The optimal

size of credit line cuts is determined such that the benefit from deleveraging is equal to the cost of

downsizing plus the rationing costs.

2.3 Equilibrium and Banker–Borrower Strategic Complementarity

Bankers adjust both prices and quantities in practice to reduce their exposure to credit lines.

However, either price adjustments or quantity adjustments create the same incentives for borrowers

to strategically draw down their credit lines, which can increase their bargaining power and avoid

6The per-unit costs may depend on the exogenous state s, but in the model, the banker only cuts credit lines during
crises and extends new credit in normal periods. Hence, it is sufficient to have two cost parameters. Additionally, I do
not distinguish between issuing new credit lines and new term loans, as both incur screening and monitoring costs.

7When the leverage ratio binds and the banker’s profit is insufficient to reduce leverage, the banker may cut credit
lines to meet the leverage ratio requirement in normal periods. However, this case is not relevant given the empirical
moments in Section 3. Furthermore, this aligns with empirical evidence that banks overlook covenant violations and
do not cut credit lines in normal times.
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adverse adjustments. Therefore, strategic complementarity is not tied to any particular type of

adjustment. Nevertheless, due to the information asymmetry in the financial market (Stiglitz and

Weiss, 1981) and to ensure tractability, I focus on quantity adjustments and analyze pure liquidity

rationing.

In this scenario, the banker randomly restricts the unused credit lines of borrowers that are

identical ex-ante, and each borrower faces the same likelihood of separation. The probability of

separation, represented by p, equals the size of credit line cuts (∆) divided by the total unused

credit lines (Φ− LD). Importantly, since the borrower’s value function is linear, random separation

is equivalent to a reduction in the borrower’s credit limit.

I consider the Markov perfect equilibrium, where value functions, the banker’s policy function,

and aggregated borrower drawdowns are functions of the payoff-relevant states S = [E, Φ, L, s].

Formally,

Definition 1 A Markov perfect equilibrium is given by value functions for borrowers and the banker

{v, V}, policy functions {c, k, l} and {d, ∆, NC, NL}, and probability p such that

1. {v, V} solve problems (7) and (1)-(4) given the policy functions;

2. {c, k, l} are optimal given value function v and the banker’s policy functions;

3. {d, ∆, NL, NC} are optimal for the banker given value function V and the drawdown policy;

4. The total credit limit of all borrowers equals the credit limit granted by the banker Φ. The aggregate

drawdown is given by (5). The separation probability is p = ∆/(Φ− LD).

The model incorporates a dynamic strategic complementarity between borrowers’ drawdown

decisions and the banker’s liquidity rationing. An increase in aggregate drawdown leads to a

mechanical increase in bank leverage. Since operating costs increase with leverage during crises,

the banker faces stronger deleveraging pressure and will ration liquidity more aggressively. The

more sensitive operating costs are to leverage, the more responsive the banker’s rationing policy

will be to aggregate drawdowns.

Meanwhile, anticipating more stringent rationing, borrowers have a greater incentive to

strategically draw down their credit lines. The probability of substitution, η, determines the

sensitivity of strategic drawdowns to the liquidity rationing policy. The higher this probability

is, the smaller the borrowers’ response will be. In this way, the strategies of the banker and the

13



borrowers reinforce each other, leading to a vicious cycle that amplifies adverse shocks.

2.4 Numerical Solution

I solve the model numerically using global methods. I briefly sketch the algorithm below and

discuss the implementation details in Section C in the Internet Appendix. To approximate value

and policy functions, I use piecewise linear functions evaluated at a state vector grid and iterate

them until they converge. To update each agent’s optimal policies and value functions in each

round, I follow the algorithm proposed by Pakes and McGuire (1994) and the approximated value

functions and the other agents’ policy functions from the previous iteration.

A key challenge in solving the model is the kinks in value and policy functions, which arise

due to borrowers’ drawdown decisions responding only to the banker’s strategy when the banker

rations liquidity. These kinks propagate through strategic interactions to the entire state space

and substantially complicate the solution. To deal with this issue, I follow Iskhakov et al. (2017)

and introduce random noise, which can be a structural uncertainty shock or a smoothing device. I

then use simple moving averages to smooth out the kinks and ensure consistent solutions under a

set of parameters in the estimation.

Another challenge is that strategic complementarity may lead to multiple equilibria. However,

since the data do not suggest clustering into a small finite number of distributions, as implied

by multiple equilibria, I focus on the amplification effect and partial runs instead. To avoid the

issue of multiplicity, I impose an upper bound on the degree of strategic complementarity during

the estimation process. After estimating the model, I verify numerically that the equilibrium is

unique using different initial guesses of the value and policy functions.

2.5 Model Discussion

The amplification mechanism in the model is robust to alternative modeling choices. First, while

the assumption that borrowers can draw down credit lines before the banker moves is based

on the observation that banks renegotiate credit lines with lags due to information frictions, the

mechanism remains valid under alternative assumptions. In particular, credit line runs can still

occur even if the banker moves first, as long as credit line cuts are gradual, as indicated in the
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data. More broadly, although I rely on empirical evidence to motivate the features of credit line

contracts, they can also arise as an optimal design in the presence of realistic contractual and

informational frictions (Payne, 2018).

Second, while the borrower side is stylized in my model, the linearity of the value function

permits richer heterogeneities. For instance, introducing the covenant violation status and

assuming that the banker can only cut credit lines with violations allows for different borrower

responses depending on their violation status. Similarly, I do not distinguish between retirement

and revocation, but it is possible that borrowers respond less to retirement because banks have

more bargaining power over maturing credit lines. The model accommodates such heterogeneities

among borrowers and other idiosyncratic shocks that occur after drawdowns. What matters for

aggregate dynamics is the average response. For aggregate dynamics, estimating the response of

aggregate drawdowns to the separation probability suffices, as it reflects a weighted average of

individual responses. Furthermore, the model can incorporate autocorrelated shocks and shocks

realized before drawdowns by introducing extra state variables and expanding the strategic space.

Finally, it is worth noting that the model is a partial equilibrium model. While loan and deposit

rates depend on the exogenous state that captures monetary policies outside the model, they do

not depend on endogenous state variables. However, it is possible to endogenize the deposit rates

and micro-found the operating costs by incorporating an elastic deposit supply. Additionally,

loan rates can also be recognized as a spread that depends only on the exogenous state, above an

endogenous base rate. In contrast, endogenizing loan rates for each credit line is not tractable as

it would significantly expand the state and strategy space. This would complicate the banker’s

problem; for example, the liquidity rationing policy would depend on the endogenous rate and

its distribution across borrowers.

Besides prices, the model can be extended to include other general equilibrium features.

For instance, one possible extension is to endogenize the probability of substitution, making it

dependent on the aggregate liquidity provision and search frictions. This extension introduces

another externality among identical banks, leading to further amplification. However, estimating

the search process would require additional data. Another potential extension is to model where

funds flow after being drawn down strategically. If more funds flow back to the banking system,

the intermediation cost will decrease, attenuating the amplification mechanism. Nevertheless, this
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force is likely to be small in magnitude. During the 2008-2009 crisis, borrowers tended to invest

funds in assets with an explicit government guarantee, such as Treasury bonds (Acharya and

Mora, 2015). Although some funds may flow back to banks, they are more likely to go through

the wholesale market, which incurs higher costs (Drechsler et al., 2021).

3 Estimation

Estimating models that involve strategic complementarities presents a challenge due to the

endogenous nature of agents’ strategies and the potential impact of common shocks. To address

this issue, I adopt an approach from the social interaction literature and estimate the model at

the group (bank) level rather than the individual (loan) level. Specifically, I draw on the insights

of Glaeser, Sacerdote and Scheinkman (1996). They argue that the high variance in crime rates

across time and space, such as the significant decline in U.S. homicide rates from 1933 to 1961,

cannot be fully explained by observable factors, suggesting the importance of strategic interactions.

Similarly, I examine the time-series variance in bank credit growth and credit line drawdowns

before and during the 2008-2009 crisis. As banks did not ration liquidity before the crisis, the

strategic complementarity between bankers and borrowers only emerged during the crisis. Thus,

contrasting these periods reveals the degree of strategic complementarity. Specifically, a stronger

strategic complementarity leads to more severe credit contractions and aggressive credit line

drawdowns.

One potential concern is that the exogenous shock that hit banks during the crisis and the

amplification from strategic complementarity can both cause bank credit to contract. To isolate

the two effects, I follow Glaeser, Sacerdote and Scheinkman (1996) and control for observed

differences in loan rates, deposit rates, and net non-interest expenses across time. Additionally, I

impose a specific structure motivated by the bank balance sheet channel to capture amplifications.

Specifically, I assume that the marginal cost of intermediation is increasing in bank leverage. Thus,

once borrowers draw down more credit lines, bank leverage increases, and banks have greater

incentives to cut credit lines, causing more severe credit contraction.

Another similar concern is the increase in credit line drawdowns during the crisis may reflect

higher demand for operating liquidity rather than strategic interactions. However, several pieces
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of evidence suggest that this alternative explanation is unlikely. First, according to the Federal

Reserve’s Senior Loan Officer Opinion Survey on Bank Lending Practices, banks reported a

broad reduction, rather than an increase, in demand for new loans during the crisis. Second, the

loan-to-credit ratio barely increases for banks with positive credit growth, which suggests that

borrowers with these banks do not draw down more. Moreover, the empirical literature finds little

assortative matching between banks and borrowers (Chodorow-Reich and Falato, 2022). Thus, the

aggregate demand for operating liquidity is likely similar for all banks, which cannot account for

the observed increase in drawdowns. Third, Chodorow-Reich and Falato (2022) show that only

borrowers who violate credit line covenants and borrow from less healthy banks used a larger

fraction of credit lines in 2008-2009 than in 2006-07. This finding is consistent with the credit line

runs narrative rather than a higher demand for operating liquidity.

To further address this concern, I conduct a robustness analysis in Section D of the Internet

Appendix by re-estimating the model with different assumptions about the demand for operating

liquidity during crises. The results of this analysis indicate that the magnitudes of the amplification

effect remain similar, supporting the hypothesis that strategic complementarity is the main driver

of the observed bank-level outcomes.

3.1 Data and Summary Statistics

I collect quarterly balance sheet information of all U.S. commercial banks from the Consolidated

Report of Condition and Income (Call Reports). This data set contains a consistent series of

information on credit lines from 1990 to 2011. As credit line lending started gradually in the 1990s,

I focus on the sample after the 2001-2002 crisis in the estimation. Then, I aggregate the bank-level

data to the bank-holding company level and focus on the 25 largest bank-holding companies

based on total assets in each quarter.

Table 1 presents summary statistics for balance sheet ratios. Comparing the statistics before

and after 2008Q3, the equity-to-asset and deposit-to-asset ratios remain similar. The loan-to-asset

ratio increases from 63% to 66%, while the unused credit line-to-asset ratio drops from 28% to

23%, suggesting that borrowers drew down a larger fraction of credit lines during the crisis, which

showed up as loans. For more detailed data description and institutional details, please refer to
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Section A in the Internet Appendix.

3.2 Estimation Procedure

I denote by θ ∈ Θ the vector of model parameters and partition it into two groups:

θ1 = [π(b, g), π(g, b), rk, ρ, ξ, Λ, r(g), r(b), z(g), z(b), τ, ζ, rm, ξb]

θ2 = [β, γ+, η, ψ, γ−, an, ac]

To estimate the mode, I first calibrate the parameters [π(b, g), π(g, b), β, ζ] before the estimation

and quantify the remaining parameters in θ1 using the average statistics of the large U.S. bank

sample constructed in Section 3.1. Nest, I estimate θ2 by using the simulated method of moments,

which selects parameter values that minimize the distance between moments from actual data and

their analogs generated by the model simulation. Section C in the Internet Appendix provides

further details of the estimation procedure.

I use eight moments to jointly identify the seven parameters in θ2. Specifically, I map the

pre-2008Q3 period to the model’s normal steady state and the crisis periods (2008Q3-2009Q2)

to the transition path from the normal steady state into a crisis. In addition, I define credit as

the sum of assets and unused credit lines in actual and simulated moments. Appendix Table AI

provides details on how to construct the moments, and Figures E1-E7 offer visual evidence of

how the targeted moments vary with model parameters. Table 2 then presents the elasticities of

each moment to the estimated parameters. Ideally, these moments must be insensitive to rich

heterogeneities in the data but outside the model.

The first three moments—credit growth, equity-to-credit ratio, and Tobin’s Q in normal times—

identify the discount rate parameter β and the issuance cost γ+. The discount rate disciplines

the banker’s intertemporal tradeoff. A lower β represents a smaller discount and better growth

opportunity. Consequently, the bank grows faster and takes lower leverage, leading to a higher

Tobin’s Q. The discount rate also indirectly pins down the dividend rate in normal times.8 In

addition, the issuance cost γ+ controls how fast banks can expand in normal times: the higher the

8I do not use the dividend rate as a moment because it can be derived from other moments. At the normal steady
state, the budget constraint requires that net interest income minus net non-interest expense equal dividends plus new
equity as bank credit grows.
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cost is, the slower the credit grows. Table 2 confirms that the moments are sensitive to β and γ+.

The next set of moments are derived from crisis periods and include credit growth, equity-

to-credit ratio, and asset-to-credit ratio. These moments are used to identify the probability of

substitution η, leverage sensitivity parameter ψ, and the rationing cost γ−. A lower probability of

substitution η makes borrowers’ drawdown decisions more sensitive to the banker’s rationing

policy, leading to a higher asset-to-credit ratio in crises. Similarly, a higher ψ incentivizes bankers

to deleverage more aggressively, predicting a higher equity-to-credit ratio in crises. Finally, the

credit growth helps pin down the rationing costs γ−. The higher the costs are, the more slowly

the bank credit contracts.

The remaining two moments serve to identify the operating cost parameters an and ac. In

normal times, the net non-interest expense corresponds to bank profit in the model. Therefore, an

increase in an results in higher expenses and lower bank profits. Similarly, the net non-interest

expense during crises determines the operating cost ac. Notably, since all parameters are jointly

identified, the two moments on cash flows are also sensitive to other parameters, as demonstrated

in Table 2.

3.3 Estimation Results

Table 3 presents the set of parameters that are determined before the estimation process. I set the

transition probabilities of the state of the economy based on the NBER business cycle dates.The

parameters of borrower technology are determined using the Federal Reserve’s Financial Accounts

data. I set rk = 2.04% to the average after-tax return of nonfinancial corporation business and

ξ = 0.9% to the average dividend payout ratio. These average statistics remained similar before

and during the crisis. Moreover, I set ρ = 0.925 using the average statistics and a model-consistent

formula. For further details, please refer to Section A in the Internet Appendix.

Next, I quantify [r(g), r(b), z(g), z(b), τ, ξb] directly to their empirical counterparts. Studies

using the Shared National Credit data (Mian and Santos, 2018; Chodorow-Reich et al., 2022)

suggest that the average drawdown rate of credit lines before the crisis is 0.55, and thus, I set Λ

to 0.55. Using this value along with the unused credit line-asset ratio from Table 1, term loans

account for 44%, and credit lines account for 56% of bank credit. Additionally, in normal times,
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the asset-to-credit ratio is 56%× 0.55 + 44% = 0.748.

For the required leverage ratio ζ, I follow the Basel Accords, which mandate a ratio of 0.06 for

the U.S. insured bank-holding companies. As for the maintenance fee rm, I utilize the average

all-in-undrawn fee of 8.86 basis points from the DealScan data.

Then, I turn to the parameters estimated using the simulated method of moments. Panel

A of Table 4 reports the estimation results with standard errors. All estimates are statistically

significant. The quarterly discount rate estimate is 0.0182. Although higher than the average

federal funds rate, it is comparable to the estimates in the literature (1.88% in Tian (2022) and

2.57% in Corbae and D’Erasmo (2021)) and also in line with the annual return on equity for U.S.

banks of 7.63% reported in Atkeson et al. (2019).

The estimated probability of substitution (η = 0.317) suggests that approximately 50% borrow-

ers obtain a new source of liquidity within two quarters after separation, and 78% borrowers do

so within four quarters. This partial substitution aligns with the empirical work on bond versus

bank financing (Adrian et al., 2013; Becker and Ivashina, 2014), while the evidence on the speed at

which firms can find a substitute remains limited.

Furthermore, my analysis reveals a positive cost sensitivity to leverage during crises, which

is consistent with the reduced-form evidence on bank equity and profitability (Berger, 1995). To

support this finding, I also regress equity against net non-interest expense using the large U.S.

bank sample. Specifically, I follow the linear specification below that includes bank and quarter

fixed effects. The coefficient of equity is −0.148 (standard error 0.0367), which is statistically

significant and not far from my estimate (−ψ = −0.105).

Net Non-int. Exp.i,t = ι1Equityi,t + ι2Asseti,t + Banki + Quartert + ε i,t.

The estimates of adjustment costs vary widely in the literature depending on model specifica-

tions and samples used. My estimate of rationing cost (0.116) is comparable to the estimates of

adjustment costs for banks in the literature (0.1 in De Nicolò, Gamba and Lucchetta (2014) and

0.188 in Tian (2022)). While the estimate of the issuance cost is much higher, it is still smaller than

the estimates using the Q-theoretical approach for non-financial firms (Gilchrist and Himmelberg,

1995). Similar to the neoclassical models, a larger cost coefficient is required to match Tobin’s Q
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(1.09) in the data.

Finally, the estimated operating cost parameters indicate a significant countercyclical non-

interest expense beyond deposit rates. In normal times, one dollar of intermediated asset costs

the banker 33 basis points (an) beyond the deposit rates, which is approximately 40% of the net

interest margin (loan rate minus deposit rate). In crises, the marginal operating cost (ac − ψ E
L+LD

)

amounts to 103 basis points, which is approximately two times larger than that in normal times.

3.4 Model Fit

The model reproduces the empirical moments used in the estimation. Panel B of Table 4 compares

the empirical and model-implied moments. Their differences are statistically insignificant. In

the data and the model, bank credit contracts significantly during crisis periods at a rate of

approximately 6% per year. Moreover, the asset-to-credit ratio increases from 0.748 in normal

times to 0.772 in crises, as borrowers draw down more credit lines. Tobin’s Q in the simulated

data is slightly smaller than the actual data, possibly due to the imprecise measurement of banks’

market values in the actual data.

The model replicates the time-series patterns discussed in Section 3.1. This is unsurprising

since I target the credit growth and asset-to-credit ratios in the estimation. The model also

generates acyclical leverage: leverage increases slightly from 10.0 before the crisis to 10.4. The

weak association between asset growth and book equity growth is consistent with the empirical

evidence documented by Adrian and Shin (2011). While leverage is countercyclical in most

macro-finance models, contingent credit lines allow banks to shrink their balance sheets less costly

and more promptly. As a result, leverage does not increase significantly in crises.

As an external validity check, I examine a conditional moment that is directly connected to the

policy functions in the model but not used in the estimation. Specifically, I consider the coefficient

that associates credit contraction during the 2008-2009 crisis with bank leverage immediately

before the crisis. Since the model has limited cross-sectional variation, I start from the normal

steady state, perturb the equity-to-credit ratio, and simulate responses of credit growth with

different equity-to-credit ratios. I then compare the regression coefficient with the following
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specification in actual and simulated data.

Credit Growthi = ι1Pre-crisis Equity-to-credit Ratioi + ε i,t.

The coefficient should be positive since, with lower leverage before a crisis, banks face less

deleveraging pressure and should experience smaller credit contraction. The coefficient, using

actual data, is 0.280 with a standard error of 0.117, while that using simulated data is 0.346.

Therefore, even though I do not target this conditional moment in the estimation process, the

estimated model captures the cross-sectional correlations in the actual data well.

4 The Amplification of Strategic Complementarity

In this section, I present plots of impulse responses to illustrate the amplification mechanism and

quantify the amplification effect due to the banker-borrower strategic complementarity.

4.1 Impulse Response Functions

Figure 2 plots the impulse responses resulting from a shift from the normal steady state to the

crisis state. During a crisis, the intermediation cost hikes, and the banker targets a much lower

leverage ratio and rations liquidity by cutting credit lines. As a result, bank credit (the upper

panel) drops by 1.5% in the first quarter. The cumulative credit contraction amounts to 6.0%

during the first year and 11.7% during the first two years.

The right panel plots the impulse response of the borrowers. As the banker cuts credit lines,

the borrowers face a threat of separation. They respond by drawing down credit lines strategically,

with approximately 8% of those who do not need liquidity still drawing down their credit lines to

secure them.

The responses of the banker and the borrowers reinforce each other. More strategic drawdowns

lead to higher leverage and intermediation costs and more aggressive liquidity rationing through

the bank balance sheet channel. Therefore, dampening the response of either side can restrict

the amplification effect. To illustrate this point, Figure 2 includes two counterfactual impulse

responses: a case with a higher probability of substitution (η = 0.35) and one with a higher
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rationing cost (γ− = 0.13). A higher η makes borrowers less reliant on credit lines and respond

less to credit line cuts. Moreover, when bankers face a higher rationing cost, they respond less

to drawdowns and ration liquidity more gradually. In either case, the amplification effect is

contained, resulting in less severe credit contraction and fewer strategic drawdowns.

4.2 Quantifying the Amplification Effect

This section studies two counterfactuals to quantify the amplification effect. First, I consider a

benchmark model where the banker can commit to his strategy.

The baseline model in Section 2 is time-inconsistent. From the ex-ante perspective, the banker

prefers to cut fewer credit lines to discourage borrowers from making strategic drawdowns.

However, after observing the aggregate drawdown, the banker’s future self would respond

optimally ex-post instead of sticking to the ex-ante strategy. This time-inconsistent problem arises

because current regulations prohibit credit line contracts from being contingent on bank balance

sheet strength, which prevents the banker from committing credibly to the ex-ante strategy.

Enabling the banker to commit resolves the time-inconsistent problem and results in a

constrained-efficient equilibrium. Specifically, I alter the model timing to allow the banker

to announce liquidity provisions, such as credit line cuts or new credit issuance, at the beginning

of each period and then stick to the announcement. In this benchmark with commitment, the

banker understands that aggregate drawdown will increase if he commits to more credit line cuts.

As a result, he internalizes this adverse consequence and becomes more hesitant to do so.

Table 5 compares the counterfactual against the estimated baseline model. With commitment,

the banker largely refrains from rationing liquidity unless the leverage ratio requirement is binding.

As a result, in the first year of a crisis, the banker chooses not to cut credit lines at all, resulting

in zero credit contraction. Consequently, borrowers choose not to make strategic drawdowns.

Moreover, both the banker and the borrowers become better off. The borrowers benefit because

bank commitment makes their credit lines more secure. At the same time, the banker’s welfare

improves because he can at least commit to the equilibrium strategy in the baseline model without

commitment. Consistently, Tobin’s Q (the sum of bank value V and liabilities divided by assets)

and the value of credit lines (v2(S) in the model) in normal times become higher than in the
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baseline model.

Second, I shut down the strategic complementarity and study a counterfactual with no strategic

drawdowns. In this case, borrowers only draw down when hit by the liquidity shock (λ = 1)

while keeping the probability of substitution η the same.

To quantify the amplification effect, I compare the second counterfactual with the baseline

model. Row (3) of Table 5 shows that in this counterfactual, bank credit falls by 0.536% per quarter

in the first four quarters into a crisis, which is approximately one-third of that in the baseline

model. Thus, the banker–borrower strategic complementarity accounts for two-thirds of the

overall credit contraction. Moreover, Tobin’s Q is higher than that in the model with commitment

because the banker faces no pressure from strategic drawdowns. In addition, the value of credit

lines is lower than the baseline model because, on the one hand, the banker cuts fewer credit lines,

which boosts the value of credit lines, and on the other hand, borrowers cannot strategically draw

down even if the cost of doing so is low.

4.3 Sensitivity to Estimation Moments

In this section, I examine the robustness of the quantified amplification effect by computing the

sensitivity matrix proposed in Andrews, Gentzkow and Shapiro (2017). Let X be a statistic of

interest. Suppose the model is misspecified; the estimate X̂ is biased. The bias consists of two

components: how a given alternative model specification would impact the moments and how

changes in moments would affect estimated parameters and X̂.

The first component is often straightforward and depends on the context, while the sensitivity

matrix captures the second component and is locally given by:

X̂− X = (∇X)′ [−
(
J′WJ

)−1J′W]︸ ︷︷ ︸
sensitivity matrix

, (13)

where X̂ is the estimate (e.g., the magnitude of the amplification) and X is its true value, W is

the SMM weighting matrix, J is the Jacobian matrix of the parameters with respect to moments,

and ∇X is the gradient of the estimate X with respect to parameters. Roughly speaking, the bias

depends on two sensitivities: how sensitive parameters are to moments (captured by the Jacobian
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matrix J) and how sensitive the statistic of interest is to parameters (captured by the gradient ∇X).

The larger (smaller) the first (second) sensitivity is, the smaller the bias is.

Table 6 presents the sensitivity matrix in Panel A and the gradient-adjusted sensitivity matrix

in Panel B. To better illustrate the results, consider a hypothetical scenario where the average

asset-to-credit ratio in the crisis is mismeasured by 0.00849 (one standard deviation in the actual

data). The sensitivity matrix shows that this mismeasurement would lead to a bias of 0.0211%

in the quantified amplification effect on credit contraction, which is 1.54%− 0.536% = 1.004%

according to Table 5. Similarly, a mismeasurement of Tobin’s Q by 0.0147 (one standard deviation

in the actual data) leads to a bias of 0.195%. These results suggest that the quantified amplification

effect is robust and not significantly affected by misspecification bias.

4.4 The Strategic Interactions among Borrowers

While my analysis focuses on the banker–borrower strategic complementarity, strategic interactions

among borrowers are also at play. In this section, I decompose the separation probability to show

that strategic interactions among borrowers have a limited impact. Specifically, I rewrite the

separation probability as follows:

∆
Φ− LD

=
∆

Φ−Λ
+

∆
Φ−Λ

× LD −Λ
Φ− LD

. (14)

The first term on the right-hand side, the credit line cuts divided by total unused credit lines,

comes directly from liquidity rationing. It captures the separation probability a single borrower

faces, assuming all other borrowers choose not to draw down their credit lines strategically. The

second term accounts for borrowers’ strategic interactions. When other borrowers draw down

their credit lines strategically, each borrower faces a higher separation probability because the size

of the unused credit lines reduces. With a fixed ∆, the second term increases with the number

of borrowers who make strategic drawdowns LD −Λ. In other words, as more borrowers run,

borrowers who have not yet drawn down their credit lines are subject to a higher separation

probability.

Using the estimated model, I compute the two terms and find that 92.3% of the separation

probability comes from the first term, while only 7.7% comes from the second term. This indicates

25



that the strategic interactions among borrowers only play a secondary role in the amplification

mechanism.

5 Policy Implications

This section uses the estimated model to evaluate ex-ante financial regulations and ex-post policies

aimed at supporting bank lending during crises. Prudential regulations, such as the leverage ratio

requirement, enhance bank lending capacity, while ex-post fiscal and monetary policies, such as

FFL schemes and CCFs, incentivizes banks to lend to borrowers.

5.1 Leverage Ratio Requirements

I first examine the impact of prudential regulations that impose tighter quantity requirements,

specifically the leverage ratio requirement. The leverage ratio requirement requires the ratio of Tier

1 capital to banks’ leverage exposure, including off-balance-sheet exposure such as unused credit

lines, must exceed a certain threshold. For example, in the United States, the Federal Reserve

Bank mandates a minimum ratio of 6% for insured bank-holding companies.

The financial accelerator literature has demonstrated that quantity requirements can address

the distortions caused by pecuniary externalities. Likewise, in my model, the banker fails

to internalize the impact of liquidity rationing on borrowers’ drawdown decisions, leading

to excessive leverage. Therefore, a tighter leverage ratio requirement can induce the banker to

maintain lower leverage in normal times, helping to dampen the vicious cycle by keeping more dry

powder available. Furthermore, an effective leverage ratio requirement should be countercyclical,

inducing lower leverage without imposing additional pressure on banks during crises (Davydiuk,

2017; Malherbe, 2020).

I implement changes in leverage ratio requirements as follows. First, I use the equity-to-credit

ratio in the model as the leverage ratio. Second, I keep the threshold of 6% in crises and adjust the

threshold in normal periods (from 6% to 6.1%, 6.2%, 6.3%, and 6.4%, respectively). Finally, I solve

the model with various leverage ratio requirements and compare the results for credit contraction

and strategic drawdowns. It is worth noting that the steady states differ in those counterfactuals.

Under tighter leverage ratio requirements, banks feature lower leverage in the normal steady
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states.

Panel B in Table 5 presents the results. A tighter requirement is effective. Compared with

the baseline model, an increase in the threshold from 6% to 6.4% reduces credit contraction

and strategic drawdowns by approximately half. Moreover, because a tighter requirement also

reduces credit growth in normal times, its effect on Tobin’s Q of normal periods is not monotonic.

Additionally, conditional on having a credit line, the value of the line increases as the requirement

tightens and banks cut fewer credit lines.

5.2 FFL and CCF

Next, I examine ex-post policies to support bank lending: FFL schemes and CCFs. FFL schemes

are widely used to provide funds at cheaper rates than the market. For example, the Bank of

England and the Eurosystem adopted such schemes during the Global Financial Crisis. They

share with asset purchase programs, such as quantitative easing, the same goal of reducing banks’

intermediation costs. I implement the FFL schemes as a reduction in the intermediation cost

parameter ac in the model.

Different from FFL schemes, CCFs provide liquidity to corporations directly. There is a

longstanding concern that whether banks can effectively channel funds to real economies; in

particular, banks may hoard liquidity due to precautionary motives, or banks may channel funds

only to large borrowers but not small and medium businesses. Therefore, policymakers have

called on alternative policies to support corporations directly. For example, during the recent

Covid crisis, major economies implemented CCFs to support large firms and small and medium

businesses. I implement the CCFs in the model as an increase in the probability of substitution η

after borrowers’ credit lines are cut.

This paper provides a new argument for direct support to corporations. Given the banker–

borrower strategic complementarity, even if only the banker is hit directly during crises, policies

targeting borrowers can be effective in boosting bank credit supply. Suppose borrowers can get

access to alternative liquidity, such as CCFs. The marginal benefit of strategic drawdowns reduces.

Thus, the total drawdown decreases, the banker faces less pressure to deleverage and cuts fewer

credit lines.
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To quantify this crowding-in effect of CCFs, I simulate the policy counterfactuals in two

steps. First, I solve the model with the estimated parameters adjusted for police experiments.

Specifically, I increase the probability of substitution η by 0.5% to 4% (from 31.7% in the benchmark

model). From a back-of-envelope calculation, a one percentage point increase corresponds to

approximately ten billion dollars of direct liquidity provision, comparable to the size of CCFs

adopted in the Covid crisis.9 In the second step, I calculate the impulse responses to a shift

from the normal steady state in the estimated model (with estimated parameters and no policy

adjustment) to the crisis state. Starting from the same steady state captures the ex-post nature

of the policies and allows a close comparison. Note that I also assume that policymakers are

committed to the policies until the crisis ends and in future crises.

Figure 3 displays the reductions in credit contraction in counterfactuals relative to the baseline

model (the dashed blue line with circles). For example, if the probability of substitution increases

by 4% (from 31.7% to 35.7%), quarterly credit contraction will decrease from 1.54% in the baseline

model to 1.3%. Furthermore, I consider a second set of counterfactuals implementing FFL to

gauge the economic significance of the crowding-in effect. Specifically, I reduce the intermediation

cost ac by 0.2 to 1.6 basis points.10 The dotted dark red line with triangles in Figure 3 plots the

reductions in credit contraction in this second set of counterfactuals. The results show that a 0.04

increase in the probability of substitution and a 1.6 basis-point reduction in the intermediation

cost have similar effects in boosting credit growth in crises. It is tempting to further compare the

effects per dollar spent in CCFs versus FFL schemes, yet, they are not comparable. CCFs work

through loan quantities, while FFL schemes focus on intermediation costs (prices) and provide a

subsidy below the market.

A related debate is whether to adopt both policies simultaneously. Given that both are effective

in spurring credit growth, it seems that the marginal contribution of either policy will diminish

when the other policy is present, which does not support the simultaneous adoption. In contrast, it

9The total bank credit in 2008 was approximate $9000 billion. Banks cut credit by 1.5%, and borrowers find a
substitution with a probability of 0.317 every quarter. Thus, in the first year into a crisis, the direct liquidity provision
for a 0.01 increase in the probability is 9000×0.01×10.9%=9.8 billion. As of May 31, 2021, the outstanding amount
under the CCF was $13.8 billion, that under the Main Street Lending Program was $16.3 billion, and that under the
Paycheck Protection Program was $84.2 billion.

10The sizes, 0.8 to 6.4 basis points annually, are smaller but comparable to the 25 basis-point reductions in 1-year
annual treasury yield around quantitative easing announcements during the 2008-2009 financial crisis (Krishnamurthy
and Vissing-Jorgensen, 2012).
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turns out that the combined effects (the solid orange line with diamonds in Figure 3) can be larger

than the sum of the two individual effects. Across all comparisons, the combined effect ranges

from 0.65 to 1.4 times the sum of the two individual effects. In particular, in the counterfactual

where the cost reduces by 1.2 basis points and the probability of substitution increases by 3%, the

combined effect (0.33% reduction in credit contraction) is larger than the sum of two individual

effects (0.11% for CCFs and 0.12% for FFL schemes).

This intriguing result justifies the adoption of CCFs and FFL schemes simultaneously. Intu-

itively, it is because the banker’ and the borrowers’ strategies are nonlinear. Implementing either

policy can contain the amplification, leading to fewer credit line cuts and strategic drawdowns.

Meanwhile, the degree of complementarity may change in either direction because of the nonlinear

strategies. If the complementarity strengthens, the second policy will introduce a larger marginal

effect when the first policy is present than absent.

6 Conclusion

Asset–side bank runs can happen even absent any threat of bank failure. Contingent credit

lines create incentives for borrowers to strategically draw down credit lines to secure liquidity

for future use. To demonstrate this run mechanism, I have developed a dynamic model that

integrates the bank balance sheet channel with credit line runs. A novel banker–borrower strategic

complementarity arises where liquidity rationing in the form of credit line cuts induces strategic

drawdowns, leading to deleveraging pressure and further liquidity rationing. This process repeats

and forms a vicious cycle that amplifies adverse shocks during crises.

I have estimated the model using data on large U.S. banks before and during the 2008-2009

crisis. Counterfactual experiments reveal that the amplification effect accounts for two-thirds of

the credit contraction, approximately 1% shortfalls quarterly in the first year into a crisis. I have

also used the estimated model to study policy experiments. Ex-ante prudential policies, such

as countercyclical leverage ratio requirements, enhance bank lending capacity during crises. In

addition, I have analyzed policies that reduce bank intermediation costs and those providing

direct liquidity to corporations. Because of the strategic complementarity, the latter policies can

effectively contain credit contraction even if they do not directly affect banks.
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The quantitative significance of the amplification mechanism raises several important questions

for future research. First, it is important to investigate ways to improve the design of credit line

contracts. My results suggest that allowing banks to commit to credit lines can mitigate the

amplification effect. However, how to achieve this warrants further scrutiny. Intriguingly, credit

lines with less strict covenants and split controls have become popular since the 2008-2009 crisis

(Berlin et al., 2020). Second, it would be valuable to explore how strategic complementarity affects

aggregate investment and output. To achieve this, a complete characterization of credit line

borrowers would be necessary while keeping the analysis tractable. It is also important to consider

the allocation of liquidity across different firms, as Greenwald et al. (2021) and Chodorow-Reich

et al. (2022) point out. Finally, my framework speaks to dynamic strategic complementarities

in other contexts, such as fund redemption restrictions, swing pricing, and partial defaults on

sovereign debt (Li et al., 2021; Hanson et al., 2015; Cipriani et al., 2014).
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Figure 1: Bank Credit and Asset-to-Credit Ratio
The left panel plots the median quarterly growth in bank credit (assets plus unused credit lines) of the 25 largest banks
in each quarter from 2003Q1 to 2009Q2. The right panel plots the median asset-to-credit ratio.

Figure 2: Impulse Responses
The figure displays the impulse responses to a shift from the normal steady state to the crisis state that are discussed in
Section 4.1. It includes the dynamics of credit contraction ∆/(Φ + L) in the left panel and strategic drawdown in the
right panel. Strategic drawdown is defined as the fraction of borrowers who draw down their credit lines despite not
needing liquidity, which is represented as (LD −ΛΦ)/(Φ−ΛΦ). In addition to the responses in the estimated model
(the solid blue lines), the figure depicts the impulse responses in two counterfactuals, one with a higher probability of
substitution (η = 0.35, the dashed red lines) and one with a higher rationing cost (γ− = 0.13, the dash-dotted green
lines).
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Figure 3: Policy Counterfactuals
The figure illustrates three sets of policy counterfactuals that are discussed in Section 5.2. The first set of counterfactuals
(dashed blue line with circles) implements CCFs by increasing the probability of substitution of borrowers after
being separated from their credit lines (x-axis at the bottom). The second set of counterfactuals (dotted dark red
line with triangles) implements FFL schemes by reducing banks’ operating costs (x-axis at the top). The third set of
counterfactuals (solid orange line with diamonds) implements both policies simultaneously. The vertical axis plots the
differences in credit contraction in crises between the counterfactuals and the estimated model.

Table 1: Summary Statistics Before and During the 2008-2009 Crisis

2002Q1-2008Q2 2008Q-2009Q2

mean p25 p50 p75 mean p25 p50 p75

Loan/asset 0.6282 0.5651 0.6592 0.7200 0.6623 0.6234 0.6905 0.7422
Unused credit lines/asset 0.2826 0.2045 0.2740 0.3577 0.2272 0.1618 0.2279 0.2864
Equity/asset 0.0999 0.0813 0.0932 0.1079 0.1038 0.0854 0.1000 0.1155
Deposit/asset 0.6719 0.6166 0.6742 0.7258 0.6898 0.6422 0.6911 0.7502
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Table 2: Elasticity of Moments to Parameters
This table presents the elasticity of simulated moments with respect to the estimated structural parameters. Specifically,
for each parameter ω, I hold all other parameters fixed and vary ω around the SMM estimate ω̂ to compute the
elasticity of moment n to parameter k. I compute the elasticity as

En,k =
m+

n −m−n
ω+ −ω−

∣∣∣∣ ω̂

m̂n

∣∣∣∣,
where ω̂k is the parameter value at the SMM estimate and m̂n the corresponding value for moment n. ω+

k (respectively
ω−k ) is the parameter value located right above (resp. below) on the grid used to plot Appendix Figures E1 - E6.
m+

n (resp. m−n ) is the corresponding simulated moment obtained using parameter ω+
k (resp. ω−k ), keeping the other

parameters at their SMM estimate. Table AI presents the definitions of the moments.

(Normal) Credit Growth Equity/Credit Tobin’s Q Net Non-int. Expense

β -1.57 -5.78 -0.078 -0.537
γ+ -1.21 -0.201 -0.0105 -0.242
η -0.016 0.145 -0.000791 -0.00547
ψ 0.31 4.61 0.016 0.106
γ− -0.0288 0.417 -0.00132 -0.00988
an -1.07 -1.74 -0.0545 0.671
ac -1.26 -6.36 -0.0628 -0.431

(Crisis) Credit Growth Equity/Credit Asset/Credit Net Non-int. Expense

β -39.0 -6.01 1.12 8.84
γ+ -1.72 -0.197 0.0497 0.326
η 0.7 0.164 -0.0465 -0.266
ψ 33.5 4.88 -0.966 -8.32
γ− 1.96 0.47 -0.0529 -0.597
an -11.2 -1.85 0.31 2.64
ac -48.7 -6.84 1.4 12.4

Table 3: Parameters Determined with External Information

This table presents the parameters that are determined before the estimation process. I calibrate the first six parameters
from related data, as described in Section 3.2. Additional details can be found in Internet Appendix A. The remaining
parameters are quantified based on the conditional means of their empirical counterparts.

Parameter Description Value

π(c, n) Transition prob. from normal state to crisis state 0.025
π(n, c) Transition prob. from crisis state to normal state 0.167

rk After-tax return of nonfinancial corporations 0.0204
ρ Size of liquidity shocks 0.925
ξ Firm’s exit rate 0.009

Λ Prob. of liquidity Shock 0.55
r(n) Loan interest rates (normal state) 0.0124
r(c) Loan interest rates (crisis state) 0.0107
z(n) Bank deposit rates (normal state) 0.0052
z(c) Bank deposit rates (crisis state) 0.00378
τ Bank tax rate 0.329
ξb Bank’s exit rate 0.016
ζ The leverage ratio requirement 0.06
rm Maintenance fee (bps) 8.86
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Table 4: Estimation Results

This table presents the results of the simulated method of moments estimation. The estimation procedure is described
in Section 3 in the main text and Section C in the Internet Appendix. Panel A presents the estimated parameters along
with their standard errors. Panel B displays the simulated moments alongside the actual moments and the t-statistics
of the pairwise differences. Further details regarding the definitions of the moments can be found in Table AI in the
Internet Appendix.

Panel A: Parameters Estimated via SMM

Parameters Description Value Std. Error

β Discount Rate 0.0182 0.00219
γ+ Issuance Cost 2.68 0.573
η Probability of Substitution 0.317 0.158
ψ Sensitivity to Leverage 0.105 0.0388
γ− Rationing Cost 0.116 0.0481
an Operating Cost 0.00330 0.000321
ac Operating Cost 0.0204 0.00393

Panel B: Moment Conditions

Moments Model Data t-stat

Credit Growth (normal) 0.0143 0.0167 -1.42
Equity/Credit (normal) 0.0745 0.0745 0.00114
Tobin’s Q (normal) 1.06 1.09 -2.64
Net Non-int. Expense ×100 (normal) 0.238 0.238 0.011
Credit Growth (crisis) -0.0154 -0.0143 -0.327
Equity/Credit (crisis) 0.0744 0.0768 -0.559
Asset/Credit (crisis) 0.772 0.776 -0.509
Net Non-int. Expense ×100 (crisis) 0.746 0.690 0.557

Over-identification test χ2 = 8.12
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Table 5: Quantifying the Amplification Effect and Policy Counterfactuals

Panel A presents the results of counterfactual experiments conducted in Section 4.2 to quantify the amplification effect
due to the banker-borrower strategic complementarity. Columns (1) and (2) report Tobin’s Q (the sum of bank value V
and liabilities divided by assets) and credit line value (v2(S) in the model) in the normal steady state. Columns (3) and
(4) report the quarterly average credit contraction (∆/(Φ + L)) and the fraction of borrowers drawing down strategically
((LD −ΛΦ)/(Φ−ΛΦ)) in the first four quarters into a crisis in the simulation. Row (1) is the baseline model, row (2)
is the model variant with bank commitment, and row(3) is the counterfactual with no strategic drawdowns.
Panel B presents the results of counterfactual experiments conducted in Section 5.1, where I keep the required ratio of
6% in crises and increase the required ratio in normal periods from 6% to 6.1%, 6.2%, 6.3%, and 6.4%, respectively. The
results are presented in rows (1) to (4) for each counterfactual experiment.

Panel A: Quantifying the Amplification

Tobin’s Q Credit Line
Value

Credit Contraction
(%)

Strategic
Drawdown (%)

(1) Baseline 1.05563 0.104291 1.54 7.68
(2) With commitment 1.05778 0.105154 0.0 0.0
(3) No Strategic Drawdown 1.0589 0.103829 0.536 0.0

Panel B: Leverage Ratio Requirements (Baseline ζ = (0.06, 0.06))

Tobin’s Q Credit Line
Value

Credit Contraction
(%)

Strategic
Drawdown (%)

(1) ζ = (0.061, 0.06) 1.05562 0.104302 1.53 7.64
(2) ζ = (0.062, 0.06) 1.0556 0.10434 1.37 6.77
(3) ζ = (0.063, 0.06) 1.05542 0.104551 0.998 4.85
(4) ζ = (0.064, 0.06) 1.05569 0.104621 0.776 3.91
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Table 6: Sensitivity to Moments

This table presents the sensitivity of estimates of the amplification effect to moments, following Andrews et al. (2017).
Panel A reports the sensitivity matrix

(
J′WJ

)−1J′W, where J is the estimated Jacobian matrix, and W is the SMM
weighting matrix. Panel B reports the gradient-adjusted sensitivities of the estimated amplification effect to moments,
where ∇X is the gradient of the estimated effect to parameters. Table AI in the Internet Appendix presents the
definitions of the moments.

Panel A: Sensitivity Matrix
(
J′WJ

)−1J′W

(Normal) Credit Growth Equity/Credit Tobin’s Q Net Non-int. Expense

Info: β 0.231 0.00131 -0.125 -3.66
γ+ -188.0 -57.4 47.0 -12.0
η 0.00492 10.2 2.54 -2.11
ψ 2.29 5.2 -2.62 -43.4
γ− 1.4 -0.896 -0.345 53.2
an -0.0384 0.018 -0.00903 1.34
ac 0.213 0.693 -0.237 -4.04

(Crisis) Credit Growth Equity/Credit Asset/Credit Net Non-int. Expense

β -0.0419 -0.106 0.0282 -1.34
γ+ 13.0 52.5 -2.33 125.0
η -26.6 -6.32 -14.4 -29.3
ψ 0.506 -5.0 0.0231 1.09
γ− -4.67 6.87 2.45 -32.9
an -0.00408 -0.0165 0.00072 -0.0392
ac 0.0211 -0.526 -0.0182 1.09

Panel B: Gradient-adjusted Sensitivity Matrix (∇X)′
(
− J′WJ

)−1J′W

(Normal) Credit Growth Equity/Credit Tobin’s Q Net Non-int. Expense

Amp. Effect (%) 0.0639 -0.194 -0.195 -0.112

(Crisis) Credit Growth Equity/Credit Asset/Credit Net Non-int. Expense

Amp. Effect (%) 0.127 0.172 0.0211 -0.41
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Internet Appendix for ”Asset-side Bank Run and Liquidity Rationing: A

Vicious Cycle”

A Data and Institutional Background

Bank balance sheet. ”I obtained the Call Reports data from Wharton Research Data Services

and aggregated the bank-level data to the bank holding company level (RSSD9348). To ensure

data quality, I filtered the dataset by dropping observations with loans (RCFD1400) that were less

than 20% of assets (RCFD2170). I also excluded observations with quarterly asset growth above

10% and those with quarterly asset growth below -10% and annual asset growth above 10% at the

same time. Additionally, I removed Morgan Stanley and Goldman Sachs from the dataset, as they

both became bank-holding companies during the 2008-2009 crisis.

I identify the 25 largest bank holding companies each quarter based on their total domestic

assets (RCON2170). To compute the actual moments in estimations, I require each bank to have

at least 25 observations for the 30-quarter sample period from 2002Q1 to 2009Q2. I also collect

loan-level data from the DealScan dataset and stock price data from the Center for Research

in Security Price (CRSP). For a complete list of variables and their definitions, please refer to

Table AI.

Bank credit issuance. The DealScan dataset covers the syndicated loan market. I only consider

the observations in which the lender is a lead arranger (LeadArrangerCredit==“YES”) and match

the facility-level data with the issuance bank using the file that links DealScan Lender IDs to Call

Report BHC-level IDs by Chakraborty et al. (2020). If amounts committed to a facility by some

lenders are missing, I assign unattributed amounts equally among those lenders. To further refine

the data, I limit the dataset to U.S.-based banks and facilities with the U.S. dollar as the currency.

Using this dataset, I compute quarterly net issuance rates by the 25 largest banks, which is

the issued amount minus the matured amount divided by the total amount of existing loans. To

differentiate between credit lines and term loans, I utilize the LoanType variable and categorize

loans as credit lines if they fall into one of the four types— ”Revolver/Line< 1 Yr.”, ”Revolver/Line

>= 1 Yr.”, ”364-Day Facility”, and ”Revolver/Term Loan.” The remaining types are classified as
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Table AI: Variable Definitions

Variables Details of construction

Unused credit lines Φ− LD RCFD3814+RCFD3816+RCFD3817+RCFD3818
+RCFD3411 +RCFD6550 (Acharya and Mora, 2015)

Bank credit Φ + L Assets (RCFD2170) plus unused credit lines.

Asset-to-credit ratio (L + LD)/(Φ + L) Assets (RCFD2170) / bank credit.
Equity-to-credit ratio E/(Φ + L) Equity (RCFD3210) / bank credit.
Tobin’s Q (V + L + LD − E)/(L + LD) Bank value (market cap) plus liabilities

(RCFD2170-RCFD3210), then divided by assets
(RCFD2170)

Net non-interest expensen
[G(E, L+LD, s)+C(∆, NC, NL, Φ+L)] /(Φ+L)

Non-interest expense (RIAD4093+RIAD4230) minus
non-interest income (RIAD4079), then divided by bank
credit.

Tax rate τ Applicable income taxes (RIAD4302) / before-tax
income (RIAD4301).

Loan interest rate r(s) Interest income (RIAD4107) / assets (RCFD2170).
Bank deposit rate z(s) Interest expense (RIAD4073) / liabilities

(RCFD2170-RCFD3210).

term loans. The average quarterly net issuance rate of term loans is 0.3% from 2008Q3 to 2009Q2.

In addition, I compute the maintenance fee, which corresponds to the all-in-undrawn fee in

the dataset. The all-in-undrawn fee is similar before and during the 2008-2009 crisis. Thus, in

the estimation, I set the maintenance fee to the average all-in-undrawn fee of all facilities issued

between 2002 and 2010.

Borrower balance sheet. I obtain the annual balance sheet information of nonfinancial corporate

businesses from the Z.1 Statistical Release as of Jun 06, 2019. Variables include nonfinancial assets

excluding inventories, net worth, loans, and net operating surplus.

I calculate the after-tax return rk as the net operating surplus divided by nonfinancial assets,

excluding inventories. To pin down the size of liquidity shocks ρ, I assume an average drawdown

ratio of 0.55 based on previous studies of the Shared National Credit data. I then use the following

model-consistent formula.

net worth + loans + unused credit
1 + ρ

= nonfin. assets excl. inventories. (IA.1)
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Institutional background of credit lines. Credit lines are contingent liquidity sources for

borrowers, as they are subject to rollover risk and revocations. Banks have full discretion in rolling

over credit lines, while revocations entail several institutional details.

Most commercial loan contracts contain non-pricing terms, known as loan covenants, which

restrict the actions that borrowers can take or specify minimum or maximum thresholds for balance

sheet variables. If borrowers violate any covenant, the lender obtains the right to renegotiate and

modify the contract. Moreover, most credit lines have a material adverse change covenant, which

allows lenders to determine whether a borrower’s credit quality has deteriorated significantly

enough to trigger a violation. Chodorow-Reich and Falato (2022) find that over one-third of loans

in their SNC sample breached a covenant during the 2008-2009 crisis, providing lenders with an

opportunity to force a renegotiation. While banks typically overlook covenant violations in normal

times, they exercised their discretion to modify credit limits and loan rates in the 2008-2009 crisis

when they themselves were in distress.

However, once borrowers draw down their credit lines, banks cannot force them to repay the

funds. Therefore, borrowers can draw down strategically to secure funds for future use. Ivashina

and Scharfstein (2010) is the first to point out that the increase in total lending in 2008Q4 is due to

increased drawdowns by existing credit line borrowers. They also provide evidence that borrowers

do so strategically by examining SEC filings and coined the term ”credit line runs.”

To identify the effect of the expected decline in liquidity supply on credit line usage, Ippolito

et al. (2015) compare drawdowns by the same firm from different banks. They find that higher

exposure to the interbank market leads to more drawdowns. Moreover, the 2008Q4 CFO survey

explicitly asked about firms’ reasons for drawing down credit lines (Campello, Graham and

Harvey, 2010). Seventeen percent of constrained firms and 8% of unconstrained firms reported

that they drew down credit lines in case the bank restricted credit line access in the future.

Unfortunately, this question only appears in the 2008Q4 survey, so we cannot tell whether firms

drew down strategically beyond the crisis. This fact, nevertheless, demonstrates that firms indeed

have incentives to run on credit lines.

B Model Derivations
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B.1 Credit Limit Dynamics When the Banker Extends New Credit

The law of motion of the credit limit depends on whether the banker issues new credit lines or

cuts existing ones. While borrowers move first in each period, they can anticipate the banker’s

decision, which depends on the state vector S at the equilibrium.

When the banker extends new credit lines, I assume that credit limits increase proportionally

with net worth. Specifically, I assume that φ′ = φω′/ω. If the aggregate credit limit summed over

all borrowers falls short of the credit limit provided by the banker, I allow new entrants to take

the remaining credit limit. Otherwise, if the aggregate credit limit exceeds that provided by the

banker, a constant multiplier ι ∈ [0, 1] is imposed on the credit limit growth of each borrower. In

this case, φ′ = ιφω′/ω such that the aggregate credit limit matches the credit limit provided by

the banker. A property of this law of motion is that if φ ≤ ρω holds in the initial period, it holds

for all subsequent periods.

The primary purpose of having this law of motion is to match aggregate quantities when

the banker issues new credit lines. It does not significantly affect the model’s implications, as

the banker–borrower strategic complementarity only comes into play when the banker rations

liquidity. With this law of motion, the borrower’s problem, after observing the liquidity shock,

becomes

u(ω, φ, k, 1, κ; S) = max
l

1[l=φ]

{
ξω′ + (1− ξ)ES′|S[v(ω

′, φ′; S′)]
}
+ 1[l<φ] vL, (IB.2)

u(ω, φ, k, 0, κ; S) = max
l

ξω′+(1−ξ)ES′|S
[
v(ω′, φ′; S′)

]
. (IB.3)

This differs from the borrower’s problem (3) and (4) in two ways. First, the law of motion for net

worth is different. Second, borrowers have no incentive to strategically draw down their credit

lines since the banker does not ration liquidity.

B.2 Borrowers’ Problem After Separation

I denote the continuation value after separation as vE(ω, φ, φ̄; S), where φ is the actual credit limit

after separation, and φ̄ is the credit limit before separation. φ̄ is relevant because, with probability

η, the borrower can obtain a new credit line with the same credit limit as before separation.
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Similar to the problem before separation (1) - (4), I denote the value function before observ-

ing the idiosyncratic shocks as vE(ω, φ, φ̄; S) and the value function afterward but before the

drawdown decision as uE(ω, φ, φ̄, k, λ, κ; S). Thus,

vE(ω, φ, φ̄; S) = max
c≥0,k≥0,(1+ρ)k≤ω−c+φ

c+βEλ,κ
[
uE(ω−c, φ, φ̄, k, λ, κ; S)

]
.

The law of motion of net worth remains the same as in Equation (2).

When facing a liquidity shock (λ = 1), the borrower always draws down her credit line fully

to avoid liquidation. Moreover, with probability η, the borrower obtains a new credit line and

leaves the separation status. Therefore, the continuation value becomes v(ω′, φ̄; S′), the same as

the value before separation. The value function satisfies

uE(ω, φ, φ̄, k, 1, κ; S) = ξω′ + (1− ξ)ES′|S
[
ηv(ω′, φ̄; S′) + (1− η)vE(ω′, φ, φ̄; S′)

]
.

When there is no liquidity shock (λ = 0), the borrower faces the same tradeoff as before

the separation. The continuation value depends on whether the credit limit is cut further (with

probability p) and whether the borrower obtains a new credit line (with probability η).

uE(ω, φ, φ̄, k, 0, κ; S) =

max
l

ξω′ + (1− ξ)ES′|S
[
(1−p)

[
ηv(ω′, φ̄; S′) + (1− η)vE(ω′, φ, φ̄; S′)

]
+ pvE(ω′, l, φ̄; S′)

]
.

At the equilibrium, since the borrower’s drawdown choice follows a cut-off rule, the credit

limit always drops to zero after a separation. Therefore, with φ = 0, the borrower’s problem

becomes

uE(ω, 0, φ̄, k, 1, κ; S) = ξω′ + (1− ξ)ES′|S
[
ηv(ω′, φ̄; S′) + (1− η)vE(ω′, 0, φ̄; S′)

]
,

uE(ω, 0, φ̄, k, 0, κ; S) = ξω′ + (1− ξ)ES′|S
[
ηv(ω′, φ̄; S′) + (1− η)vE(ω′, 0, φ̄; S′)

]
.
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B.3 Linear Value Functions

In this section, I guess and verify that v(ω, φ; S) = v1(S)ω + v2(S)φ and vE(ω, l, φ; S) = vE
1 (S)ω +

vE
2 (S)l + vE

3 (S)φ. The linear value functions have two important properties. First, the continuation

value must be continuous at l = φ. Thus, vE
2 (S) = v2(S)− vE

3 (S). Second, the value of net worth

remains the same after separation; that is, v1(S) = vE
1 (S). When λ = 1, borrowers always choose

to drawdown fully,

u(ω, φ, k, 1, κ; S) = ξω′ + (1− ξ)ES′|S[v1(S′)ω′ + v2(S′)φ′], (IB.4)

subject to the law of motion (2).

When λ = 0, the drawdown decisions depend on the following tradeoff: the benefit of strategic

drawdowns is to avoid the loss from separation v2(ω′, φ; S′)− vE
3 (ω

′, l, φ; S′), while the cost of

doing so is that the net worth decreases by (1− κ)r(s)l. With the linear value functions, the

optimal choice is a corner solution. Specifically, borrowers draw down fully (l = φ) if κ exceeds a

threshold value κ̄, and they do not draw down at all (l = 0) otherwise. The threshold depends on

the state S.

κ̄(S) = 1−
E
[
(1− ξ)p(v2(S′)− vE

3 (S
′))|S

]
r(s)E

[
ξ + (1− ξ)v1(S′)

∣∣S] . (IB.5)

Then, I derive the equilibrium drawdown decisions characterized by the threshold. I assume

that κ follows a uniform distribution on [0, 1] and focuses on empirically relevant solutions that

are stable and have a separation probability below 1. Proposition 1 demonstrates that there at

most one such solution exists.

Proposition 1 If κ follows a uniform distribution on [0, 1], when the separation probability is below 1,

there exists at most one stable solution of Equations (1) - (5).

Proof. Since p = ∆/(Φ− LD), κ̄(S) depends on the aggregate drawdown LD from Equation (IB.5).

Rewrite Equation (5) and take [Λ + (1−Λ)(1− F(κ̄(S))]Φ− LD as a function of LD. If κ follows

a uniform distribution on [0,1], the function is strictly convex. Therefore, it has at most two roots.

It follows that there are at most two solutions of Equations (1) - (5), and only one of them is stable.

Appendix - 6



Finally, I rewrite the borrowers’ problem when the banker rations liquidity as follows. It is

then straightforward to verify that the value functions are linear.

v1(S)ω+v2(S)φ = ΛβξE[ω′(S)|λ = 1, κ] + (1−Λ)βξE[ω′(S)|λ = 0, κ]

+ Λβ(1− ξ)

{
E[v1(S′)]E[ω′(S)|λ = 1, κ]+E[v2(S′)]φ

}
+(1−Λ)β(1−ξ)

{
F(κ̄(S))p

[
E[vE

1 (S
′)]E[ω′(S)|λ = 1, κ] + E[vE

3 (S
′)]φ

]
+
[
(1− F(κ̄(S))) + F(κ̄(S))(1− p)

][
E[v1(S′)]E[ω′(S)|λ = 1, κ] + E[v2(S′)]φ

]}
.

Because the drawdown choice follows a cut-off rule, the credit limit always drops to zero after a

separation. With φ = 0, we have

vE
1 (S)ω+vE

3 (S)φ̄ = βξE[ω′(S)|λ, κ] + ηβ(1− ξ)

{
E[v1(S′)]E[ω′(S)|λ, κ]+E[v2(S′)]φ̄

}
+ (1− η)β(1− ξ)

{
E[vE

1 (S
′)]E[ω′(S)|λ, κ]+E[vE

3 (S
′)]φ̄

}
,

where ω′(S)= ω+rkω/(1+ρ).

C Computational Algorithm and Estimation Details

This appendix describes the algorithms used to solve and estimate the model. A key challenge is

that there are kinks in the value functions and policy functions. Following Iskhakov et al. (2017), I

introduce random noise and take moving averages to smooth out kinks in the policy functions.

The noise can be viewed as a structural uncertainty shock or simply a smoothing device.

Solving the model. I solve the model using value function iteration with linear interpolation.

This robust approach helps to alleviate concerns about the multiplicity of equilibria and non-

smooth policy functions. To implement the leverage ratio requirement, I assume the bank goes

through reconstruction and assign bank equity as the banker’s value whenever the requirement is

violated. The algorithm is as follows:

1. Place a grid on the state space. I normalize the banker’s problem by bank credit, such that
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the payoff-relevant state vector degenerates to S = [ E
L+Φ , L

L+Φ , s]. The grid of E
L+Φ contains

101 grid points with equal space between 0.06, the required leverage ratio, and 0.16. The

grid of L
L+Φ contains seven grid points spanning 0.44 to 0.5. The exogenous state s has two

grid points, 1 (normal) or 2 (crisis). Increasing the size of the grid does not significantly

affect the solution.

2. Initialize value functions V(0)(S) and v(0)(ω, φ; S).

3. Initialize policy function ∆(0)(S) = 0 and L(0)
D (S) = Λ. A negative ∆(S) represents the

issuance of new credit.

4. Starting with the functions V(n)(S), v(n)(ω, φ; S), ∆(n)(S), and L(n)
D (S) from the n-th iteration

or from the initial guess (n = 0), iterate the value functions and the policy functions as

follows:

(a) Solve for the borrowers’ optimal policy L∗D and value function v∗ given ∆(n) and v(n).

(b) Smooth L∗D and v∗ by taking the moving averages with a window width of three grid

points of E
L+Φ and three grid points of L

L+Φ .

(c) Update the policy function and the value function such that L(n+1)
D = L∗D and v(n+1) =

0.5v∗ + 0.5v(n).

(d) Solve for the banker’s optimal policy ∆∗ and value function V∗ given L(n+1)
D .

(e) Smooth V∗ by taking the moving averages with a window width of three grid points

and update the policy function and the value function such that ∆(n+1) = ∆∗ and

V(n+1) = 0.025V∗ + (1− 0.025)V(n).

5. Go back to Step 4 until the value functions and policy functions from two consecutive

iterations are close enough.

Estimation. I estimate the parameters θ2 by the simulated method of moments (SMM). SMM

chooses parameter values that minimize the distance between moments from real data and their

analogs generated by the model simulation. Once I have solved the model for a given set of

parameters θ2, I simulate the normal steady state and a transition path from the normal steady

state into crisis periods. Both the actual and the simulated moments are computed in a simple

way as described in Section 3.3.

Denote M as the vector of moments from the actual data and M(θ2) as the moments generated
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by the model with parameters θ2. The SMM procedure searches the set of parameters that

minimizes the weighted deviations between the actual and the simulated moments; that is,

(M−M(θ2))
′W(M−M(θ2)), (IC.6)

I choose the weight matrix W as the inverse of the variance-covariance matrix of the actual

moments estimated by bootstrapping with replacement at the bank level on the actual data. This

adjustment accounts for scale differences and correlations between the moments.

I use the covariance matrix adaptation evolution strategy (CMA-ES) algorithm to minimize

the distance. The CMA-ES algorithm is a derivative-free evolutionary algorithm for nonlinear

optimization problems. I draw off-springs in the parameter space in each round. The off-springs

are normally distrusted around the mean inherited from the last round. Then, I compute the

distance between simulated data with each off-spring and actual data as its fitness. I rank the

off-springs by their fitness and update the mean and variance–covariance matrix for the next

round. I iterate this procedure until the offsprings are close enough to the mean.

To compute the standard errors, I use the standard formula for the variance–covariance

matrix of parameter estimates (Strebulaev and Whited, 2012). Since there is no cross-sectional

heterogeneity in the model, the simulation error is absent. The covariance matrix of the estimates

is given by (
J′WJ

)−1, (IC.7)

where W is the inverse of the variance–covariance matrix of data moments and J = ∂M(θ2)
∂θ2

is the

Jacobian matrix around the SMM estimate. I approximate the Jacobian matrix using forward finite

differences, identical to the computation in Table 2.

Finally, I follow Andrews et al. (2017) and compute the sensitivity of model estimators (e.g.,

the amplification effect) to moments. The sensitivity is given by

(∇X)′
(
− J′WJ

)−1J′W, (IC.8)

where W is the inverse of the variance–covariance matrix of data moments, J is the Jacobian matrix,

and ∇X is the gradient of the estimator with respect to structural parameters, all computed at the
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SMM estimates.

D Robustness Analysis

This section explores the robustness of the estimation and quantitative results. As discussed in

Section 3, empirical evidence suggests that the hike in drawdown rate is due to the bank–borrower

strategic complementarity rather than shocks on borrowers’ demand for operating liquidity. To

further examine this issue, I estimate two models with a state-dependent probability of liquidity

shocks.

In particular, I set Λ = 0.55 in normal times, as in the estimation in Section 3.3, and Λ = 0.565

or 0.58 in crises, rather than 0.55. I then estimate the parameters θ2 and compute the magnitude

of the amplification effect as in Section 4.2.

Table DII presents the results, which suggest that the amplification effect is robust to changes

in state-dependent demand for operating liquidity. Specifically, when the demand for operating

liquidity increases in crises, the estimation delivers a higher probability of substitution and fewer

strategic drawdowns. This results in larger standard errors for the estimates of substitution

probability compared to the baseline estimation in column (1). However, the other estimated

parameters remain similar.

Interestingly, even though there are fewer strategic drawdowns, the amplification effect is

close to that in the baseline estimation. For example, comparing columns (2) versus (1), strategic

drawdowns reduce by 24

These findings suggest that the amplification effect is not driven by the correlation between

drawdowns and the exogenous state but rather by the positive association between drawdowns

and bank leverage at the equilibrium. This positive association creates incentives for bankers to

ration liquidity and deleverage, even in the absence of state-dependent demand.
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Table DII: Robustness Analysis

This table represents the estimation results of models with state-dependent liquidity demand. Column (1) replicates
the results in Table 4 in the main text, with Λ = 0.55 in both normal and crisis periods. For columns (2) and (3), I set
Λ = 0.565 and 0.58 in crisis periods and estimate two models, respectively. The upper panel displays the estimated
parameters, with standard errors in parentheses calculated in the same way as in the main text. The middle panel
shows the estimated moments: credit contraction and strategic drawdown in crises. In the lower panel, I consider the
counterfactual with no strategic drawdowns and compute the magnitude of the amplification effect.

Parameters (1) Λ = 0.55 (2) Λ = 0.565 (3) Λ = 0.58

Discount Rate β 0.0182 0.0181 0.0175
(0.00219) (0.00696) (0.00294)

Issuance Cost γ+ 2.68 2.68 2.73
(0.574) (0.464) (0.602)

Probability of Substitution η 0.317 0.367 0.512
(0.158) (0.262) (0.292)

Sensitivity to Leverage ψ 0.105 0.108 0.109
(0.0388) (0.0376) (0.0179)

Rationing Cost γ− 0.116 0.106 0.0567
(0.0481) (0.0619) (0.24)

Operating Cost an 0.00330 0.00329 0.00333
(0.000321) (0.000309) (0.000393)

Operating Cost ac 0.0204 0.0206 0.0209
(0.00393) (0.00323) (0.00231)

Baseline Model

(1a) Credit contraction (%) 1.54 1.41 1.40
(2a) Strategic Drawdown (%) 7.68 5.82 3.83

No Strategic Drawdown

(1b) Credit contraction (%) 0.536 0.521 0.184
(2b) Strategic Drawdown (%) 0.0 0.0 0.0

Amp. Effects: row (1a) − row (1b) 1.00 0.889 1.22
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E Additional Figures

Figure E1: Sensitivity of moments to discount rates β

Note: I set all estimated parameters at the SMM estimate. Then, I perturb β. For each value of β, I solve the model,
simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line corresponds
to the SMM estimate of β.
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Figure E2: Sensitivity of moments to issuance costs γ+

Note: I set all estimated parameters at the SMM estimate. Then, I perturb γ+. For each value of γ+, I solve the
model, simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line
corresponds to the SMM estimate of γ+.
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Figure E3: Sensitivity of moments to substitution probability η

Note: I set all estimated parameters at the SMM estimate. Then, I perturb η. For each value of η, I solve the model,
simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line corresponds
to the SMM estimate of η.
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Figure E4: Sensitivity of moments to leverage sensitivity ψ

Note: I set all estimated parameters at the SMM estimate. Then, I perturb ψ. For each value of ψ, I solve the model,
simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line corresponds
to the SMM estimate of ψ.
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Figure E5: Sensitivity of moments to rationing costs γ−

Note: I set all estimated parameters at the SMM estimate. Then, I perturb γ−. For each value of γ−, I solve the
model, simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line
corresponds to the SMM estimate of γ−.
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Figure E6: Sensitivity of moments to operating costs an

Note: I set all estimated parameters at the SMM estimate. Then, I perturb an. For each value of an, I solve the model,
simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line corresponds
to the SMM estimate of an.
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Figure E7: Sensitivity of moments to operating costs ac

Note: I set all estimated parameters at the SMM estimate. Then, I perturb ac. For each value of ac, I solve the model,
simulate the data, and compute the moments. Each panel corresponds to one moment. The red vertical line corresponds
to the SMM estimate of ac.
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