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Abstract

We study a macro-finance model with entrepreneurs who have diverse views about the likelihood
that their ideas will lead to successful innovations. These views and the resulting experimentation
stimulate economic growth and overcome market failures that would otherwise occur in an
equilibrium without this diversity. The resulting benefits for future generations come at the
cost of higher wealth and consumption inequality because a few entrepreneurs will ex -post be
successful while most entrepreneurs will fail. Hence, our model provides a potential explanation
for the “entrepreneurial puzzle” in which entrepreneurs choose to innovate despite taking on
substantial idiosyncratic risk accompanied by low expected returns. Venture capital funds and
taxes enhance risk sharing among entrepreneurs, stimulating innovation and growth unless high
taxes deplete entrepreneurial capital. Redistribution via taxes reduces inequality and can raise
interest rates. Nevertheless, a tradeoff exists between risk-sharing and the exertion of costly
effort, giving rise to a hump-shaped economic growth curve when plotted against tax rates.

Keywords: Diverse beliefs, Disagreement, Optimism, Entrepreneurship, Externality,
Endogenous Growth, Innovations, Tax distortions, and Venture capital.
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1 Introduction

Entrepreneurial innovation across diverse ideas is key to economic growth. However, innovations

are also associated with substantial risk. By their nature, innovations require venturing into

the unknown, where it is difficult to predict the outcome. There are numerous examples and

anecdotes of successful inventions that were discarded as impossible or even ridiculed but turned

out to be hugely successful. Of course, there are also numerous examples of innovations, most

of which we do not know about today, that turned out to be spectacular failures. Consider

the invention of the light bulb by Thomas Edison in 1879. Not everyone at that time was

enthusiastic about the prospects of this innovation. Henry Morton, a renowned scientist and

president of the Stevens Institute of Technology, stated in the New York Times on December

28, 1879, that “Everyone acquainted with the subject will recognize it as a conspicuous failure.”

Henry Morton was not the only skeptic. A British parliamentary committee commented on the

light bulb: “... good enough for our transatlantic friends ... but unworthy of the attention of

practical or scientific men.” While these statements are ridiculous in retrospect, at the time, it

was not an uncommon view among intellectuals. Edison was also not the first one to invent

an incandescent lamp. Friedel and Israel (2010) discusses more than 20 unsuccessful inventors

prior to Edison’s version. What made Edison succeed while so many others failed maybe be

understood with the benefit of hindsight, but it was clearly important that so many were not

discouraged or even prevented from trying because the light bulb is considered one of the most

important innovations in history.

The story about the light bulb is far from unique. Many important inventions share similar

narratives of uncertainty, doubt, and most notably, widely diverse views about their potential.

Predicting, let alone reaching consensus on, the next big idea and the appropriate strategy

for its successful implementation, is exceedingly challenging. In a similar vein, entrepreneurs

often subject themselves to massive risks, which, when observed by outsiders, seem to offer

low average returns. For instance, Moskowitz and Vissing-Jørgensen (2002) demonstrate that

the average return to non-publicly traded firms is not higher than that of public firms, even
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though ownership of these private firms is highly concentrated (often over 70 percent in a

single firm). This lack of diversification and the seemingly poor risk-return tradeoff, from an

outsider’s perspective, is difficult to justify, leading the authors to refer to this phenomenon as

the “entrepreneurial puzzle”.

Despite limited coverage in the economic growth literature, we think the role of belief

diversity warrants further investigation. Can it provide fresh perspectives on the entrepreneurial

puzzle? Does it spur economic growth, or does it divert resources to unproductive ventures?

Might it exacerbate wealth inequality? Who benefits, and who bears the cost? This paper

addresses these questions using an equilibrium model with diverse views on innovation success.

Drawing parallels with the invention of the light bulb—where inventors held very different

beliefs–entrepreneurs in our model hold diverse beliefs about the right path forward. If their

confidence in success is high, they pursue entrepreneurship. However, ex post, only very few

entrepreneurs succeed. Becoming an entrepreneur entails costs and, due to a “skin in the game”

constraint, risk cannot be easily diversified.

We demonstrate that belief diversity is crucial for economic growth, as it encourages

entrepreneurs to explore a wider array of ideas. This effectively means that society taps into

the entire spectrum of innovative possibilities. Consequently, this diversity alleviates the skin

in the game constraints arising from ex ante moral hazard issues. Although a majority of these

ideas fail ex post, the few successful ones contribute significantly to society and to substantial

economic growth for future generations. However, this surge in economic growth coincides with

an increase in wealth and consumption inequality. Ex post, entrepreneurs bear the bulk of

the cost, while the rate of intergenerational growth among non-entrepreneurs aligns with the

aggregate growth in the economy. Furthermore, we show that these entrepreneurial activities

yield low expected returns coupled with substantial idiosyncratic risk, thereby shedding light

on the entrepreneurial puzzle.

We study an overlapping generations model in the spirit of Blanchard (1985) and Gârleanu

and Panageas (2015). Agents entering the economy can choose to become entrepreneurs

and engage in innovation. To innovate, an entrepreneur must place a significant portion of
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her endowment at risk, signifying the constraints to risk sharing. While numerous paths to

innovation exist, only one eventually proves successful ex post. This successful innovation

triggers positive spillovers to future generations, thereby fuelling sustained growth. Within

our model, the variety of agent types corresponds to the multitude of innovative paths. These

agents have divergent views on the optimal course, resulting in a distribution of beliefs about

each innovative path. In equilibrium, only those agents with a high level of optimism choose

entrepreneurship. However, once this choice is made, the inherent uncertainty is resolved, and

agents solve a classic dynamic consumption-investment problem with complete markets.

The key friction in our model stems from the fact that agents are unable to diversify across

multiple avenues of innovation. Although we don’t microfound this friction, we attribute it

to a skin in the game constraint, underpinned by the moral hazard at play. This constraint

necessitates that the entrepreneur retains a minimum portion of the company’s equity, which for

the sake of simplicity in our model, is represented by the entire equity stake. Furthermore, this

friction rules out the potential for pooling across all projects in equilibrium, thereby preserving

the element of idiosyncratic risk. We relax this assumption in Section 5, where we introduce

government tax redistribution or venture capital funds as potential avenues for risk sharing.

We show that diversity in beliefs among innovators helps circumvent the skin in the game

constraint, as the resulting optimism about an invention may make an investment appear to

have a high Sharpe ratio, despite a general understanding of its high failure rate on average.

This is reminiscent of the common phenomenon where many believe themselves to be better

drivers than the average. In addition, belief diversity works as a sampling device from the

distribution of different ways to implement ideas. If everyone has the same view or an institution

would settle on a view, e.g., the consensus or expert view, then only one way of innovating would

be implemented. While these views may have a higher probability ex ante it would only lead to

innovation if it is ex post correct. In our model, there is a continuum of investors with different

ideas and therefore the entire distribution of ideas is tested every period, leading to smooth

economic growth for society that is much higher than when only one view is implemented.

Therefore, diverse views and the ensuing experimentation benefit society as a whole, despite

3
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not being advantageous for the average entrepreneur on an ex-ante and ex-post basis. This

dynamic inevitably leads to wealth and consumption inequality.1

Our study examines two mechanisms for entrepreneurial risk sharing: taxation and venture

capital fund investment. Absent the costly effort to innovate, both mechanisms can miti-

gate entrepreneurial risk, thereby enhancing the prospects of innovation. This diminished

entrepreneurial risk bolsters economic growth, provided the tax framework does not excessively

deplete entrepreneurial capital. Tax redistribution consistently alleviates inequality. However,

it only influences asset prices when taxes are reallocated across different demographic cohorts.

Introducing costly effort to innovate leads to a tradeoff between risk-sharing and exerting effort.

As tax rates rise from zero, they contribute to improved risk sharing among entrepreneurs,

stimulating greater levels of innovation and, consequently, economic growth. This is because the

redistributed wealth, through taxation, provides a safety net that encourages entrepreneurs to

take calculated risks. However, if tax rates escalate too high, they may diminish the incentives

for entrepreneurs to exert effort and innovate, due to the reduced potential for personal gain.

This can lead to a drop in the likelihood of innovation and subsequent economic growth. Hence,

the relationship between tax rates, entrepreneurial innovation, and economic growth is not

linear but rather hump-shaped.

Our model is deliberately stylized yet highly tractable, yielding all quantities in closed

form, thus making the underlying economic forces transparent. For instance, we do not factor

in aggregate uncertainty, and we assume agents have logarithmic utility. Any uncertainty

related to innovations is resolved immediately. Furthermore, we propose a continuum of agents,

thus applying the law of large numbers. These features contribute significantly to the model’s

tractability. However, they can be relaxed, albeit at the expense of diminishing the transparency

of our economic argument.

Our paper is related to the literature examining the asset pricing implications of technological

innovation, such as Garleanu, Panageas, and Yu (2012), Kogan, Papanikolaou, and Stoffman

(2013), Kung (2015), Kung and Schmid (2015), Garleanu, Panageas, Papanikolaou, and Yu

1Kaplan and Violante (2022) provides a survey of the literature identifying key sources of wealth inequality.
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(2016), Andrei and Carlin (2023), Haddad, Ho, and Loualiche (2018), Lin, Palazzo, and Yang

(2017), and Opp (2019). We also connect to papers looking at the impact of taxes on asset

prices through the growth margin, such as Croce, Kung, Nguyen, and Schmid (2012) and Croce,

Nguyen, and Schmid (2012). We also relate to papers studying wealth inequality and asset

prices, such as, Gomez (2016), Pástor and Veronesi (2016), and Pastor and Veronesi (2018).

We differ from these papers by showing how belief diversity over ideas allows entrepreneurs to

try different innovation paths in equilibrium, which is important for long-run economic growth.

Experimenting with a wider spectrum of ideas increases the likelihood that entrepreneurs as a

whole find breakthrough innovation that increases aggregate trend growth.

Our paper also relates to the literature on that studies how heterogeneous beliefs effects asset

prices such as Miller (1977), Harrison and Kreps (1978), Detemple and Murthy (1994), Zapatero

(1998), Basak (2000), Scheinkman and Xiong (2003), Basak (2005), Berrada (2006), Buraschi

and Jiltsov (2006), Jouini and Napp (2007), David (2008), Dumas, Kurshev, and Uppal (2009),

Xiong and Yan (2010), Cvitanic and Malamud (2011), Cvitanic, Jouini, Malamud, and Napp

(2012), Simsek (2013b), Simsek (2013a), Bhamra and Uppal (2014), Buraschi, Trojani, and

Vedolin (2014), Chien, Cole, and Lustig (2016), Cujean and Hasler (2017), Ehling, Gallmeyer,

Heyerdahl-Larsen, and Illeditsch (2018), Collin-Dufresne, Johannes, and Lochstoer (2017),

Ehling, Graniero, and Heyerdahl-Larsen (2018), Borovička (2019), and Heyerdahl-Larsen and

Illeditsch (2023). Our paper makes a unique contribution to this literature by introducing

a heterogeneous beliefs model that highlights the crucial role of diverse views in promoting

innovation. Additionally, we analyze the implications of diverse views for interst rates and

consumption/wealth inequality, which, to the best of our knowledge, has not been explored in

previous studies.

Finally our paper also relates to the literature that studies the asset pricing implication of

overlapping generations (OLG) models, such as Constantinides, Donaldson, and Mehra (2002),

Gomes and Michaelides (2005), Acharya and Pedersen (2005), Gârleanu, Kogan, and Panageas

(2012), Gârleanu and Panageas (2015), Gârleanu and Panageas (2021) Kogan, Papanikolaou,

and Stoffman (2019), Ehling, Graniero, and Heyerdahl-Larsen (2018), Heyerdahl-Larsen and
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Illeditsch (2021), and Heyerdahl-Larsen and Illeditsch (2023). Our paper extends the literature

on OLG models by employing this tractable framework to study endogenous growth. While

previous studies have demonstrated the usefulness of OLG models in analyzing heterogeneity

and obtaining a non-degenerate stationary wealth distribution, we uniquely incorporate an

innovation stage that introduces dynamic aspects to the model. By doing so, we provide insights

into the endogenous growth process within this framework, shedding light on the interplay

between heterogenous beliefs, innovation, wealth distribution, and asset pricing.

2 Exogenous growth

In this section, we introduce the benchmark model with exogenous output growth. There is no

heterogeneity within birth cohorts but the exogenous growth will lead to heterogeneity across

birth cohorts. In the next section, we introduce a decision to become an entrepreneur when

entering the economy. An agent that chooses to be an entrepreneur will either be successful

or fail with their innovation decision. Successful innovation will generate positive output

externalities for future generations, implying endogenous growth and heterogeneity within and

across birth cohorts. Both models are based on a continuous-time overlapping generations

setting in the spirit of Blanchard (1985) and, more recently, Gârleanu and Panageas (2015).

Every agent in the economy faces a stochastic time of death T that is exponentially

distributed with the hazard rate, ν > 0. A new cohort of mass ν is born every period.

Consequently, the population size remains constant:

∫ t

−∞
νe−ν(t−s) ds = 1, (1)

where νe−ν(t−s) denotes the population density. An agent born at time s is entitled to the

endowment stream Ys,t as long as the agent is alive. Enforcing the aggregate resource constraint

6
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by integrating over all agents currently alive leads to

∫ t

−∞
νe−ν(t−s)Ys,t ds = Yt, (2)

where Yt denotes total output at time t. There is no aggregate uncertainty in the economy and

the output growth rate µY is exogenous. Hence, the dynamics of Yt are

dYt = µY Yt dt. (3)

Let Ys,t = γYs with γ > 0, and thus there is no endowment growth within a birth cohort. If there

is aggregate growth, new birth cohorts receive more output, and γ exceeds one. Specifically,

differentiating the aggregate resource constraint given in Equation (2) w.r.t. time t (by applying

the integral rule of Leibniz) leads to

µY = ν(γ − 1). (4)

Hence, aggregate output growth depends on the endowment growth of the new cohort, γ − 1,

and the probability, νdt, of having a new cohort over the next instant.

Agents can trade two assets: (i) an instantaneously risk-free asset in zero-net-supply and

(ii) a life insurance/annuity contract that is offered by a competitive insurance industry as in

Blanchard (1985) and Gârleanu and Panageas (2015). The dynamics of the real risk free asset

with price Bt are

dBt = rBt dt, (5)

where the real short rate, r, is determined in equilibrium. The life insurance/annuity contract

pays the actuarily fair rate ν per unit of wealth in the case of an annuity and it charges the

rate ν per unit of wealth in the case of a life insurance. Hence, the dynamics of the insurance
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contract from the agent’s perspective are

dLt = νWL
t dt, LT = −WL

T , ∀t ≤ T, (6)

where Lt denotes the value of the insurance contract at time t and WL
t is the amount of wealth

invested in the insurance contract. It is optimal for an agent with positive financial wealth

to annuitize all her wealth because she does not have any bequest motive and, hence, does

not get any utility from dying with positive financial wealth. Moreover, agents have to buy

life insurance for their negative financial wealth to avoid default at death because they are no

longer entitled to an income stream after death. The financial wealth of all agents currently

alive is always zero, and thus the insurance market clears.

Agents have log-utility and thus an agent born at time s has life time utility,

Us = Es

[∫ T

s

e−ρ(t−s) logCs,t dt

]
=

∫ ∞

s

e−(ρ+ν)(t−s) logCs,t dt, (7)

where Cs,t denotes time-t consumption of an agent born at time s. Mortality risk, captured by

the random time of death T , increases the effective time discount rate from ρ to ρ+ ν. Once

an agent is born, she can trade the risk free asset and the insurance contract, and therefore

faces a dynamically complete market. Hence, we can solve the model by maximizing expected

utility given in Equation (7) subject to the static budget condition (see Cox and Huang (1989)

and Karatzas and Shreve (1998)),

Es

[∫ T

s

Mt

Ms

Cs,t dt

]
=

∫ T

s

Mt

Ms

Ys,t dt ≡ Hs, (8)

where Mt is the discount factor with dynamics dM/M = −r dt since there is no aggregate

uncertainty. The first order conditions (FOC) is

e−ρ(t−s)
1

Cs,t
= κs

Mt

Ms

= κse
−r(t−s), (9)

8
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where κs denotes the Lagrange multiplier of the static budget constraint of birth cohort s.

Solving for Cs,t leads to the optimal path for consumption

Cs,t = κ−1
s e−ρ(t−s)

Ms

Mt

= Cs,se
(r−ρ)(t−s), ∀ s ≤ t ≤ T. (10)

Total wealth at time t of an agent born at time s denoted by Ws,t is the sum of her financial

wealth Ŵs,t and her endowment value Hs,t. Initially, at the time of birth, an agent’s financial

wealth is zero. Subsequently, it may increase or decrease, reflecting gains or losses resulting

from trading activities. Every agent of birth cohort s is entitled to the constant endowment

stream Ys,t = γYs and thus the value of her endowment stream at time t is

Hs,t = Et

[∫ T

t

Mu

Mt

Ys,u du

]
= γYsψt, ∀ s ≤ t ≤ T, (11)

where ψt is the price of a life annuity that continuously pays one unit of the consumption good

until time of death T . Specifically,

ψt = Et

[∫ T

t

Mu

Mt

du

]
=

∫ ∞

t

e(r−ν)(u−t) du =
1

ν + r
≡ ψ. (12)

At every point in time t, an agent’s total wealth has to finance her consumption stream and

thus

Ws,t = Ŵs,t +Hs,t = Et

[∫ T

t

Mu

Mt

Cs,u du

]
=

1

ν + ρ
Cs,t, ∀ s ≤ t ≤ T. (13)

The last equality follows from inserting optimal consumption given in Equation (10) for Cs,u.

This verifies the well-established results that agents with log-utility consume at a constant rate

equal to their effective time discount rate out of their wealth.

To pin down optimal consumption in Equation (10), we still need to solve for initial

consumption Cs,s or, equivalently, the initial consumption per unit of output defined as

βs = Cs,s/Ys. To determine βs we value the endowment stream of an agent at birth and then

use the fact that agents consume a constant fraction out of their wealth (see Equation (13)).

9

Electronic copy available at: https://ssrn.com/abstract=4526073



Agents are born with no financial wealth and receive a constant endowment stream, and thus,

βs =
Cs,s
Ys

= (ν + ρ)
Ws,s

Ys
= (ν + ρ)

Hs

Ys
= (ν + ρ)γψ ≡ β. (14)

To determine the risk-free rate, we combine the FOC for optimal consumption with the aggregate

resource constraint and get

MtYt =

∫ t

−∞
νe−(ν+ρ)(t−s)βYsMs ds. (15)

Differentiating both sides of the previous equation w.r.t. time t leads to the risk-free rate

r = ρ+ µY + ν(1− β). (16)

The constants r = ρ and β = γ satisfy Equations (14) and (16). Hence, the equilibrium

interest rate is constant and does not depend on output growth. Intuitively, the interest rate is

determined by all agents currently alive, and even though there is endowment growth from

generation to generation when γ exceeds one, nobody experiences any endowment growth after

birth, and therefore the interest rate does not depend on growth.

To determine the wealth-output ratio we compute total wealth in the economy by integrating

over the total wealth of all agents currently alive. Specifically,

Wt

Yt
=

1

Yt

∫ t

−∞
νe−ν(t−s)Ws,t ds =

1

ν + ρ
= ψ. (17)

The market portfolio is a claim on the total wealth of all agents currently alive, and thus the

price-dividend ratio is ϕ ≡ Pt/Yt = ψ. We summarize the results in Proposition 1.

Proposition 1. In the exogenous growth model with endowment heterogeneity across birth

cohorts, there is an equilibrium in which all agents consume their endowment, that is,

Cs,t = Cs,s = γYs = Ys,t, ∀ s ≤ t ≤ T. (18)

10
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The risk-free rate is constant and equal to the subjective time discount rate, that is, r = ρ. The

price of a life annuity is ψ = 1
ν+ρ

and the price-dividend ratio is equal to ϕ = 1
ν+ρ

.

There is no consumption or wealth inequality within a birth cohort, and the annualized log

consumption growth rate across birth cohorts is equal to aggregate output growth. Specifically,

1

∆
log

(
Cs+∆,t

Cs,t

)
= µY , ∀∆ > 0 and s ≤ t ≤ T. (19)

The risk-free rate does not depend on output growth and thus there is no growth in individual

consumption which usually occurs when the risk-free rate exceeds the subjective time discount

factor. However, the price-dividend ratio does not depend on growth which is surprising since

the economy is growing and the risk-fee rate does not depend on growth. The reason is that we

define the market portfolio as a claim on total wealth of all agents currently alive which does

not include wealth that is generated by future generations.

We conclude this section by contrasting our findings with an exogenous growth model without

output heterogeneity, as detailed in Proposition 2. In this model, every agent’s consumption

increases at the same rate as the aggregate output, consequently causing the risk-free rate to

also rely on growth. Given log-utility, cash flows grow at the same pace as the rate at which

they are discounted, meaning the price-dividend ratio remains independent of growth.

Proposition 2. In the exogenous growth model without endowment heterogeneity, that is,

Ys,t = Yt there is an equilibrium in which all agents consume their endowment, that is,

Cs,t = Yse
(r−ρ)(t−s) = Yt, ∀ s ≤ t ≤ T. (20)

The risk-free rate is constant and equal to r = ρ+ µY , the price of a life annuity is ψ = 1
ν+r

,

and the price-dividend ratio is ϕ = 1
ν+ρ

.

11
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3 Endogenous growth

In this section, we introduce the choice to become an entrepreneur, and this choice will feed

back into aggregate economic growth. Specifically, we consider the same demographic structure

as in Section 2 in which each agent receives the endowment stream Ys,t = γYs. The choice

to become an entrepreneur or innovator and the ex-post separation of agents in successful,

unsuccessful, and non-innovators endogenously determines γ and hence leads to endogenous

growth and inequality within and across birth cohorts. Successful innovators enjoy the reward of

a larger endowment, generating inequality within a cohort. The successful innovator passes on

the benefits to future generations through positive output spillovers shared by future cohorts as

they get to start off with a higher level of the endowment. While we do not explicitly model the

aggregate production technology, we can interpret the endowment spillovers as intertemporal

knowledge externalities from successful innovation that raise the productive efficiency for future

generations (e.g., Aghion and Howitt (1992) and Grossman and Helpman (1993)).

3.1 Innovation

Agents can choose to become entrepreneurs and engage in an activity that may lead to an

innovation. Only entrepreneurs can innovate. Specifically, an agent entering the economy

at time s has an endowment stream Ys. They can only make the decision to become an

entrepreneur at the time of entry. If the agent chooses not to innovate, then Ys,t = Ys for all

s ≤ t ≤ T . Hence, any agent who chooses not to innovate will not experience any growth

in her endowment stream. An agent that chooses to become an entrepreneur must pay the

cost (1− δ)Ys with 0 < δ < 1. This cost can be thought of as an irreversible investment into

the entrepreneurial activity. The entrepreneur must bear the entire investment risk due to an

unmodeled skin-in-the-game constraint.2 Importantly, the choice to become an entrepreneur is

made just prior to entering the economy, and all uncertainty about the success of the innovation

2Relaxing this assumption by allowing the entrepreneur to sell part of the firm to an outside investor would
lead to qualitatively similar results.

12
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is resolved immediately after the decision to innovate has been made.

If the entrepreneur is successful, then her endowment is Ys,t = AδYs for all s ≤ t ≤ T .

Let Aδ > 1 because otherwise, an innovation would not raise output even if successful. If

the entrepreneur is unsuccessful, then her endowment is Ys,t = δYs for all s ≤ t ≤ T . The

agent’s endowment stream is passed on to a new generation when the agent dies. Hence, neither

the knowledge created by a successful innovation nor the cost of an unsuccessful innovation

vanishes. Hence, we can write the endowment in the three different scenarios as Ys,t = ωiYs for

all i ∈ I = {se, ue, ne} and with

ωi =


Aδ > 1, if i = se, that is, the agent is a successful entrepreneur

δ < 1, if i = ue, that is, the agent is an unsuccessful entrepreneur

1, if i = ne, that is, the agent is not an entrepreneur.

(21)

We focus on a winner-takes-all-innovation economy in which many entrepreneurs try but only

a handful capture a large share of the reward. Hence, every period there are H ≫ 1 possible

innovation strategies and only one of them leads to success with a large reward Aδ ≫ 1. When

each of the H strategies is equally likely to succeed, then the expected per period endowment

is given by

E0 [Ys,t] =

(
A

1

H
+

(
1− 1

H

))
δYs =

(
1 +

1

H
(A− 1)

)
δYs. (22)

Hence, a risk-neutral agent would become an entrepreneur as long as this expectation exceeds the

endowment of agents who do not become entrepreneurs (Ys), that is, she becomes an entrepreneur

if δ > δ∗ ≡ H
H+A−1

. However, a risk-averse agent might require a large entrepreneurial risk

premium due to the skin-in-the-game constraint that prevents her from diversifying and thus,

she has to bear the idiosyncratic entrepreneurial risk. Specifically, an agent with log-utility

would innovate if

E0 [log Ys,t] = log (AδYs)
1

H
+ log (δYs)

(
1− 1

H

)
> log(Ys), (23)
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and thus, she innovates if

δ > δ∗∗ ≡ A− 1
H > δ∗. (24)

To stress the winner-takes-all innovation economy we consider the following numerical example

for the remainder of this paper.

Baseline example. Suppose there are H = 1000 different innovation strategies or projects,

and the reward of a successful innovation is very large, that is, A = 1501. Hence, δ∗ = 40%

and δ∗∗ = 99.27%.

A risk-neutral entrepreneur will pursue innovation as long as potential losses do not exceed

60% of her investment should the project fail. However, the inability to diversify entrepreneurial

risk—owing to the skin-in-the-game constraint—significantly increases this threshold from

40% to 99.27% with moderate risk aversion. Consequently, this leads to a significantly less

innovation except in the rare situations where the cost to innovate is less than 0.73%.

Moreover, when agents are indifferent ex-ante among the H different innovation strategies,

the ex-post fraction of successful innovators becomes indeterminate since we do not know the

fraction of entrepreneurs who will choose the single successful innovation strategy out of the H

possible ones. However, we show in the next section that diverse views about the success of

different innovation strategies leads to more innovation because it alleviates the skin-in-the-game

constraint and it uniquely determines the ex-post fraction of successful innovators, which is

increasing in the degree of diversity. It is crucial to note, however, that the consensus view—

defined in the next section as the cross-sectional average across agents beliefs—still maintains

that the chance of successful innovation from employing any single strategy remains at 1/H.

Moreover, we will demonstrate in the following sections that the increase in innovation, fostered

by diverse views, can have effects on output, potentially raising or even lowering it. Hence, we

introduce a benchmark that outlines the social optimum in terms of cost to innovating.

First best benchmark. If δ ≥ δ∗ ≡ H
H+A−1

, then it is socially optimal to employ all H

strategies and thus eliminate all the entrepreneurial idiosyncratic risk. If δ < δ∗, then it is
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socially optimal to not employ any of the H strategies. In our baseline example it is socially

optimal to innovate if δ ≥ δ∗ = 40% and forego innovation if δ < δ∗ = 40%.

If it is socially optimal to innovate, then entrepreneurs could achieve first best by pooling

their endowments and employ all H strategies. We discuss in Section 5 two different mechanisms

to share entrepreneurial risk: taxes and a venture capital fund.

3.2 Diverse Views

We define in this section the beliefs of entrepreneurs. These beliefs consist of two elements. The

first element reflects a strong preference for a particular innovation strategy that is often shaped

by factors such as their visionary goals, unique insights, or specific skill sets and resources. The

second element pertains to their level of optimism and confidence in the success of the chosen

strategy, which varies among entrepreneurs.

Let ph denote the subjective probability of an entrepreneur that innovation strategy h leads

to success with ph >
1
H

and pj denote the subjective probability that innovation strategy j

leads to success with pj ≡ 1−ph
H−1

< 1
H

for all j ∈ {1, . . . H}\{h}. Hence, an entrepreneur who

has a strong preference for innovation strategy h behaves as if this strategies is the one out of

the H possible ones that most likely succeeds. Moreover, all strategies other than her preferred

innovation strategy h are perceived to be equally likely by this entrepreneur. Since only one

out of the H possible strategies leads to success, we have that the probability of success and

failure is ph and 1− ph, respectively.

Entrepreneurs not only have different views about the best innovation strategy, but they

also differ in their degree of optimism and confidence about their chosen innovation strategy.

Hence, we assume that there is a unit interval of agents who differ across two dimensions: (i)

their preferred innovation strategy indexed by h and (ii) their perceived probability of success

ph. For each of the H different innovation strategies, there is an equal mass of agents with

different beliefs about the success probability, that is, ph = ∆h

H
for all h ∈ {1, . . . , H}. The

parameter ∆h, which captures the degree of optimism and confidence across entrepreneurs who
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chose innovation strategy h, is uniformly distributed on the interval
[
1, ∆̄

]
with 1 ≤ ∆̄ < H.

The lower bound of 1 for ∆h guarantees that for each innovation strategy h the mass 1
H

of

entrepreneurs thinks that strategy h most likely succeeds and the upper bound of ∆̄ < H

guarantees that no entrepreneur thinks that success is certain. Moreover, an entrepreneur who

is optimistic about a specific innovation strategy is pessimistic about all others. By symmetry,

we have that the consensus view of all entrepreneurs about the probability that a specific

innovation strategy leads to success is 1/H. However, the consensus probability of success for

entrepreneurs who prefer innovation strategy h is

p̄success ≡
∫ ∆̄

1

∆h

H

1

∆̄− 1
d∆h =

1 + ∆̄

2H
. (25)

The consensus view of all entrepreneurs about the success probability is also equal to p̄success

because the distribution of beliefs is the same for all innovation strategies. Similarly, the belief

dispersion across all entrepreneurs defined as the cross-sectional standard deviation of beliefs is

∆̄success =
∆̄−1
H
√
12

since

∆̄2
success ≡

∫ ∆̄

1

(
∆h

H
− p̄success

)2
1

∆̄− 1
d∆h =

1

12

(
∆̄− 1

H

)2

. (26)

We measure diversity across investors with the diversity index D = ∆̄− 1, which monotonically

increases the consensus success probability and belief dispersion but holds the consensus

probability that a specific innovation strategy leads to success equal to 1/H.

We now discuss the ex-ante decision to become an entrepreneur. This decision is the same

for each innovation strategy, and thus we drop the subscript h and use the parameter ∆ when

referring to an agent’s perceived success probability p = ∆/H. The expected per period
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endowment growth from innovating as perceived by an agent with belief ∆ is3

E∆

[
Ys,t
Ys

]
=

(
A
∆

H
+

(
1− ∆

H

))
δ =

(
1 +

∆

H
(A− 1)

)
δ. (27)

This expectation is strictly increasing in the degree of optimism about the success probability

of the entrepreneur’s preferred innovation strategy measured given by ∆/H and attains its

minimum and maximum if ∆ = 1 and ∆ = ∆̄, respectively. However, the risk is also changing

with ∆ because the variance of the per period endowment growth from innovating is

V ar∆
(
Ys,t
Ys

)
= (A− 1)2

∆

H

(
1− ∆

H

)
δ2. (28)

The risk is a quadratic function of ∆ that is maximized when ∆ = H
2
.

To illustrate the entrepreneurial choice model we set ∆̄ = 199 in our baseline example.

Baseline example. Suppose there are H = 1000 different innovation strategies or projects,

and the reward of a successful innovation is very large, that is, A = 1501. Hence, δ∗ = 40% and

δ∗∗ = 99.27%. Let, ∆̄ = 199 and thus the consensus success probability and belief dispersion

is p̄success =
1+∆̄
2H

= 10% and ∆̄success =
∆̄−1
H
√
12

= 5.72%, respectively. Moreover, the maximum

success probability is less than 20%.

We now discuss the ex post outcome. The belief distribution of entrepreneurs is the same for

each innovation strategy and thus, if a fraction α decides to choose innovation strategy h given

their beliefs, then the same fraction chooses innovation strategy j for all j ∈ {1, . . . H}\{h}.

Hence, by the law of large numbers we have with probability one that α
H

entrepreneurs will be

successful, α
(
1− 1

H

)
will be unsuccessful, and (1− α) will not become entrepreneurs.

3The qualitative results in this Section do not change if we assume that agents need to exert effort when
innovating because an agent who innovates has to bear all the entrepreneurial risk. We relax this assumption in
Section 5 when we allow entrepreneurs to share their risk.
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3.3 Decision to innovate

Agents have log-utility and a time discount rate denoted by ρ. They differ according to their

innovation strategy, indexed by h, and their perceived probability of success, indexed by ∆.

We introduce the function ι(·) to classify every agent of type (h,∆) within a birth cohort s

into one of three categories: successful entrepreneur (se), unsuccessful entrepreneur (ue), or an

agent that does not innovate (ne). Specifically, ι : {1, . . . . , H}×
[
1, ∆̄

]
→ I = {se, ue, ne}. We

solve the decision problem to innovate by backward induction. The expected utility of a type

(h,∆) agent when entering the economy, after the uncertainty about the innovation decisions is

revealed, is

U i
s = Es

[∫ T

s

e−ρ(t−s) logCi
s,t dt

]
=

∫ ∞

s

e−(ρ+ν)(t−s) logCi
s,t dt, ∀i = ι(h,∆) ∈ I, (29)

where T and ν denote the uncertain time of death and hazard rate as in Section 2, respectively.

Agent i faces dynamically complete markets once the innovation uncertainty has been resolved

and thus maximizes expected utility given in Equation (29) subject to her static budget

constraint

W i
s,s = Es

[∫ T

s

Mt

Ms

Y i
s,t dt

]
=

∫ ∞

s

e−(ν+r)(t−s)Y i
s,t dt = ωiYsψ, (30)

where Mt/Ms = e−r(t−s) denotes the discount factor as in Section 2. The valuation ratio is

equal to the price of a life annuity, ψ, given in Equation (12) because the endowment stream,

while different across the three types, remains constant over time. The level of the endowment

stream for the different types is represented by ωi which is given in Equation (21). Optimal

consumption at time t of agent i born at time s is

Ci
s,t = Ci

s,se
−ρ(t−s)Ms

Mt

= (ρ+ ν)W i
s,se

(r−ρ)(t−s) ∀ s ≤ t ≤ T. (31)
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Plugging Equation (31) into lifetime expected utility given in equation (29) leads to

U i
s =

log
(
W i
s,s

)
ρ+ ν

+
log (ρ+ ν)

ρ+ ν
+

∫ ∞

s

e−(ρ+ν)(t−s) log

(
Ms

Mt

)
dt. (32)

Substituting in for the wealth of agent i born at time s given in equation (30) implies

U i
s =

log (ωi)

ρ+ ν
+

log (ρ+ ν) + log(ψsYs)

ρ+ ν
+

∫ ∞

s

e−(ρ+ν)(t−s) log

(
Ms

Mt

)
dt︸ ︷︷ ︸

=Ūs

,
(33)

where the second term of lifetime utility is independent of the agent’s type. Hence, an agent

born at time s will choose to become an entrepreneur if the expected lifetime utility from

innovating exceeds the lifetime expected utility from not innovating. Specifically,

EU e
s =

∆

H

log (Aδ)

ρ+ ν
+

(
1− ∆

H

)
log (δ)

ρ+ ν
+ Ūs >

log (1)

ρ+ ν
+ Ūs = EUne

s . (34)

Let ∆∗/H denote the success probability for which agents are indifferent between innovating

and not innovating. Hence, agents decide to innovate if their success probability exceeds the

threshold ∆∗/H with

∆∗ = −H log δ

logA
≥ 0.

Neither the valuation ratio nor the discount factor affects the decision to innovate and hence the

threshold ∆∗ is constant. To determine the equilibrium fraction of entrepreneurs for each cohort,

we determine the probability that belief type ∆ exceeds threshold ∆∗ using the cross-sectional

distribution of belief types ∆, that is, ∆ is uniformly distributed on the interval [1, ∆̄]. The

threshold is constant, and the cross-sectional beliefs distribution does not vary over time; thus,

the equilibrium fraction of entrepreneurs is the same for each birth cohort s. We summarize

the results in the next proposition.

Proposition 3. In equilibrium an agent with type (h,∆) decides to innovate by choosing
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strategy h ∈ {1, . . . , H} if her success probability ∆/H exceeds the threshold ∆∗/H with

∆∗ = −H log δ

logA
. (35)

The equilibrium fraction of innovators for every birth cohort is

α = P (∆ > ∆∗) =


1 if ∆∗ ≤ 1

∆̄+H
log(δ)
log(A)

∆̄−1
if ∆∗ ∈

(
1, ∆̄

)
0 if ∆∗ ≥ ∆̄.

(36)

The fraction of entrepreneurs is weakly increasing in diversity in beliefs D because it is strictly

increasing in D for all ∆∗ ∈
(
1, ∆̄

)
, that is

∂α

∂D
=

1

D
(1− α) > 0 for ∆∗ ∈

(
1, ∆̄

)
. (37)

Ex-post only one of the H innovation strategies leads to success and thus for birth cohort s the

fraction α/H is successful and has total wealth AδψYs, the fraction α(1− 1/H) is unsuccessful

and has total wealth δψYs, and the fraction (1− α) does not innovate and has total wealth ψYs.

The left plot in Figure 1 illustrates the relationship between the equilibrium fraction of

entrepreneurs and the parameter δ. Initially, when the cost parameter δ is below δ∗∗∗ = A− ∆̄
H =

23%, no innovation takes place since the perceived success probability falls short of the minimum

threshold of 20%. However, when the cost of innovating decreases and δ surpasses 23%, the

cutoff probability falls below 20%, and the most optimistic agents start to innovate. The red

chain-dotted line shows that there is innovation even though it is not socially optimal when

δ ranges between 23% and δ∗ = 40%. In contrast, if δ exceeds 40%, as indicated by the blue

dashed line, a substantial fraction of agents innovate in equilibrium, even if δ is lower than

δ∗∗ = 99.27%. This finding is significant since, without belief diversity, no innovation would

occur within this range. We explore the consequences of socially inefficient innovation, which

leads to a marginal reduction in output, compared to the positive economic growth resulting
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from socially efficient innovations in the next subsection.

The right plot in Figure 1 shows that belief diversity (D) significantly increases the likelihood

of innovation which can have significant benefits for society, as indicated by the moderate

cost scenarios represented by the black and red chain-dotted lines. However, when the cost to

innovate becomes very high, as depicted by the blue dashed and purple circled lines, and D is

sufficiently large, the innovations generated are not beneficial for society.
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Figure 1: Equilibrium fraction of innovators (α). The left plot shows the equilibrium fraction of
innovators (α) as a function of the cost parameter (δ) when ∆̄ = 199. The black line segment denotes the case
when the fraction of innovators is zero, and the red chain-dotted line denotes the segment when the fraction of
innovators is positive, but as a group, they should not innovate as they destroy value. The blue dashed line
segment shows the case when the fraction of innovators is positive, and they create value as a group. The
right plot shows the equilibrium fraction of innovators (α) as a function of belief diversity (D). The black and
red-dashed line represents innovation creating value, the purple circled line signifies innovation destroying value,
while the blue dashed lines depict innovations that neither add nor destroy value. In the figure, we set H = 1000
and A = 1501.

We conclude this subsection by setting δ = 60% in our baseline example to highlight that

there is a lot of socially beneficial innovation with belief diversity.

Baseline example. Suppose there are H = 1000 different innovation strategies or projects,

and the reward of a successful innovation is very large, that is, A = 1501. Hence, δ∗ = 40% and

δ∗∗ = 99.27%. Let, ∆̄ = 199 and thus the consensus success probability and belief dispersion

is p̄success =
1+∆̄
2H

= 10% and ∆̄success =
∆̄−1
H
√
12

= 5.72%, respectively. There is no innovation

if δ < δ∗∗∗ = 23%. Suppose the cost of innovating is 40%, that is, δ = 60%. In this case the

perceived success probability has to exceed ∆∗/H = 6.98% in order for an agent to become an
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entrepreneur, the equilibrium fraction of entrepreneurs is α = 65.23%, and the ex post fraction

of successful and unsuccessful entrepreneurs is 0.065% and 65.17%, respectively.

3.4 Economic growth and belief diversity

We derive aggregate output growth and discuss the effects of belief diversity on economic growth

in this section. In equilibrium the endowment of all agents currently alive has to sum up to

aggregate output. Specifically,

∫ t

−∞
νe−ν(t−s)Ys,t ds =

∫ t

−∞
νe−ν(t−s)

(∑
i∈I

λisY
i
s,t

)
ds = Yt, (38)

where we define λit to be the measure of agents of type i = ι(h,∆) ∈ I = {se, ue, ne} with

(h,∆) ∈ {1, . . . . , H}×
[
1, ∆̄

]
and

∑
i∈I λ

i
s = 1. Specifically, there is a fraction α/H of successful

innovators with endowment stream AδYs, a fraction α(1− 1/H) of unsuccessful innovators with

endowment stream δYs, and a fraction (1− α) of non-innovators with endowment stream Ys.

Hence, we have that Y i
s,t = ωiYs and

λis =


α/H if i = se

α(1− 1/H) if i = ue

(1− α) if i = ne.

(39)

It follows that the aggregate endowment stream of birth cohort s is Ys,t = γYs with

γ =
1

Ys

∑
i∈I

λisY
i
s,t = 1 + αNCF, (40)

where NCF denotes the increase in net cash flows from innovating given by

NCF =
1

H
(Aδ − 1)−

(
1− 1

H

)
(1− δ). (41)

Hence, the decision to innovate leads to constant endowment growth of each new cohort that

22

Electronic copy available at: https://ssrn.com/abstract=4526073



consists of two components, that is, γ − 1 = αNCF. First, only the fraction α of a birth cohort

innovates in equilibrium. Second, only one out of H innovation strategies leads to success and

entrepreneurial output net cost of Aδ per unit of aggregate output, whereas the other strategies

fail with output net cost of δ per unit of aggregate output. The terms (Aδ − 1)/H > 0 and

−
(
1− 1

H

)
(1 − δ) < 0 capture the spillover effect per unit of output to future cohorts from

successful and unsuccessful innovations. Hence, there is positive growth for each birth cohort if

this spillover effect is positive.

In the model, only newborn agents can innovate, meaning that only the fraction, ν, of

endowments can be allocated towards innovations. This affects aggregate output growth in

equilibrium. Specifically,

Yt = Y0e
µY t with µY = ν(γ − 1) = ναNCF. (42)

The aggregate output growth, µY = ναNCF, is thus dependent on three factors: the proportion

of endowments allocated towards innovation, ν; the equilibrium fraction of innovators, α; and

the net cash flow (NCF) that represents the spillover per unit of output to future cohorts from

both successful and unsuccessful innovations.

The left graph of Figure 2 demonstrates the impact of these factors on the growth rate. It

presents µY as a function of the innovation cost parameter, δ. If innovation costs surpass 60%

(i.e., δ < 40%), innovation would create negative spillovers for future generations (NCF < 0),

indicating a social inefficiency. The black solid line shows that the growth rate initially stagnates

at zero for δ ≤ 23% values due to an absence of innovation, eliminating any negative spillovers.

The red chain-dotted line then shows that the growth rate dips into negative territory when δ

ranges between 23% and 40% because some agents engage in socially inefficient innovations.

However, as δ increases above 40%, innovation becomes socially beneficial (NCF > 0),

generating positive spillovers. Belief diversity plays a critical role in fostering positive spillovers

from innovation, thereby bolstering economic growth. In the absence of belief diversity (∆̄ = 1),

positive spillovers would only occur if the cost is less than 0.73% (i.e., δ ≥ A− 1
H = 99.27%).
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Figure 2: Endogenous growth. The left plot shows the endogenous output growth rate as a function of
the cost parameter δ. The black solid line segment denotes the case when the fraction of innovators is zero and
thus there is no growth. The red chain-dotted segment shows a range of relatively high costs of innovation for
which there is no social benefit from innovating but there is still a fraction of very optimistic entrepreneurs who
innovate and thus cause negative growth. The blue dashed segment shows a wide range of cost parameters for
which innovations are socially beneficial and there is a lot of innovation that results in positive output growth.
The right graph shows economic growth as a function of belief diversity for different cost parameters. It shows
that belief diversity has an immediate positive effect on growth when it is socially valuable to innovate (solid
back and chain-dotted red line) and is only socially harmful for high cost and large diversity as the circled
purple line shows. In the figure we set ν = 0.02, H = 1000, A = 1501, ∆̄ = 199.

Consequently, socially efficient innovation would only occur at very low costs. Socially optimal

innovation results in positive spillovers to future cohorts for all δ > 40%. However, in the absence

of belief diversity, the skin-in-the-game constraint prevents many socially optimal innovations.

Conversely, belief diversity alleviates this constraint and promotes positive spillovers from

innovation to future generations. The right graph of Figure 2 underscores this notion by

displaying the growth rate as a function of belief diversity under varying cost parameters. The

black and red chain-dotted lines illustrate that growth surges with diversity when it proves

socially beneficial. For the unique case of δ = 40%, growth remains unaffected by belief diversity,

given that there are no spillovers to future generations (NCF = 0). However, for extremely high

costs and large belief diversity, growth turns negative, as demonstrated by the purple circled

line.

A key point to note is the importance of entrepreneurs randomizing over multiple innovation

strategies, emphasizing the crucial role of belief diversity. In the absence of diverse beliefs, there
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is a risk of selecting non-productive innovations, leading to negative spillovers. This underlines

the significance of drawing from a diverse range of innovation strategies in a winner-takes-all

economy, highlighting the vital role of belief diversity in fostering economic growth.

The next proposition summarizes the derivations of aggregate output growth and shows

that for socially efficient innovations economic growth is strictly increasing in diversity. The

opposite is true if innovations are socially inefficient.

Proposition 4 (Belief Diversity and Economic Growth). The aggregate endowment stream of

birth cohort s is Ys,t = γYs and the decision to innovate leads to constant endowment growth

γ − 1 = αNCF. The equilibrium fraction of innovators is given in Equation (36) and both γ

and NCF are given in Equation (40) and (41), respectively. Aggregate output is Yt = Y0e
µY

with aggregate output growth rate µY given in Equation (42). Aggregate output growth, µY ,

increases with belief diversity, D, for socially efficient innovations and decreases with D for

socially inefficient ones. Specifically,

∂µY
∂D

=


1
D (1− α)NCF ≥ 0 if NCF > 0

1
D (1− α)NCF ≤ 0 if NCF < 0.

(43)

There is no growth if NCF = 0 in which case µY does not depend on belief diversity.

4 Asset Pricing and Inequality

In this section, we discuss asset prices and wealth/consumption inequality.

4.1 Asset Pricing

The derivation of the risk-free rate and price-dividend ratio is similar to derivation in the

exogenous growth economy discussed in Section 2. Specifically, the choice to become an

entrepreneur is made just prior to entering the economy, and thus, everyone trading in the

economy is facing complete markets. Agents within a birth cohort differ with respect to
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their wealth when entering the economy because they are either successful, unsuccessful, or

not entrepreneurs. Therefore the FOCs from the exogenous growth model still hold, that is,

Ci
s,t = Ci

s,se
−ρ(t−s)Ms

Mt
. Plugging the FOC into the aggregate resource constraint leads to

Yt =

∫ t

−∞
νe−(ρ+ν)(t−s)Ms

Mt

(∑
i∈I

λisC
i
s,s

)
ds, (44)

where the measure λis of agents is given in Equation (38). The ratio of total consumption of

newborns to output is

βs =

∑
i λ

i
sC

i
s,s

Ys
=
γYs
Ys

= γ ∀s. (45)

It follows from Equations (44) and (45) that

MtYt =

∫ t

−∞
νe−(ρ+ν)(t−s)βMsYs ds. (46)

The dynamics of the discount factor are dM/M = −r dt, and differentiating Equation (46)

w.r.t. time t leads to the following expression for the interest rate

r = ρ+ µY + ν (1− β) (47)

We define the market portfolio with price Pt and dividend Dt = Yt as a claim on total wealth

of all agents currently alive. The asset pricing results are given in the next proposition.

Proposition 5. The equilibrium discount factor is Mt = e−rt with the risk-free interest rate

r = ρ. The price-dividend ratio is ϕ = 1
ρ+ν

, the price of the life annuity is ψ = 1
ρ+ν

, and

β = 1 + αNCF .

Newborn agents innovate and impact aggregate output growth, but they do not determine

the interest rate when entering the economy. The interest rate is determined by all agents

currently alive, and they experience no growth in their endowments. Hence, the interest rate

is the same as in an economy without growth. Consumption of newborns relative to output

is β = 1 + αNCF = 1
ν
(1 + µY ) and the displacement effect in the interest rate due to the
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overlapping generations is ν (1− β) = −µY implying that r = ρ+ µY − µY = ρ. The market

portfolio is a claim on the total wealth of all agents currently alive, which does not include

wealth that is generated by future generations. Hence, the price-dividend ratio does not depend

on growth even though there is growth in the economy, and the discount rate does not depend

on growth.

4.2 Wealth and consumption inequality

In this section, we examine the cross-sectional distribution of consumption and wealth in

equilibrium. We know that the consumption of an agent of type i born at time s is

Ci
s,t = Ci

s,s = (ν + ρ)W i
s,s = ωiYs, (48)

and hence consumption per unit of output of agent i born at time s is

βis,t =
Ci
s,t

Yt
= ωie

−µY (t−s). (49)

There is no difference between consumption and wealth inequality because everybody has

log-utility. We define consumption/wealth inequality as the variance across types i and birth

cohorts s and derive it for positive growth in the next proposition.4

Proposition 6 (Wealth and Consumption Inequality). Let NCF > 0, then

V ≡ V ar
[
βis,t
]
=

α

1 + 2αNCF

((
A2

H
+

(
1− 1

H

))
δ2 − 2NCF

)
. (50)

Moreover, the consumption inequality as measured by V is weakly increasing in disagreement

and economic growth, that is ∂V
∂D ≥ 0 and ∂V

∂µY
≥ 0.

Belief diversity has a multifaceted impact on society, yielding both positive and negative

outcomes. On one hand, it raises consumption inequality, which is typically viewed as an

4The cross-sectional variance does not always exist for negative growth.
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Figure 3: Inequality. The left plot shows inequality, V ar
[
βi
s,t

]
, as a function of diversity, D, and the

right graph shows it as a function of economic growth, µY . All for cost parameters δ lead to social valuable
innovation. Belief diversity increases inequality and it also increases growth. Hence, there is a positive relation
between economic growth and belief diversity. In the figure we set ν = 0.02, H = 1000, A = 1501, ∆̄ = 199.

undesirable consequence. However, on the other hand, belief diversity plays a crucial role in

fostering economic growth, which is vital for overall societal progress and prosperity. The left

plot of Figure 3 demonstrates how inequality, represented by V ar
[
βis,t
]
, changes in response to

diversity, D. The right plot of Figure 3 demonstrates the relationship between inequality and

economic growth, µY . All cost parameters δ lead to valuable social innovation.

Interestingly, economic growth also brings benefits to future generations of non-innovators.

Specifically, for non-innovators (NI), the inter-generational consumption growth over ∆ years

at time t is

µNIY,∆,t ≡
1

∆
log

(
CNI
s+∆,t

CNI
s,t

)
= µY , ∀∆ > 0 and t ≥ s. (51)

This implies a positive spillover of innovations to non-innovators, albeit occurring across

different generations. Consequently, as long as NCF > 0, younger cohorts of non-entrepreneurs

experience better living standards than older cohorts, while the reverse holds true if NCF < 0.

Innovators make optimal decisions given their beliefs, and thus they are better off in expected

utility terms when they choose to innovate. However, not all innovators can be correct since

only one out of the H possible ways of innovating is successful. Hence, one might argue that a

social planner should consider the ex-post utility based on a success probability of 1
H
, that is,
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the consensus probability that a specific path leads to success. The next proposition derives

the ex-post utility gain/loss from innovating based on a representative cohort.

Proposition 7. Let EU e,0
s denote the lifetime expected utility of an entrepreneur based on

the success probability of 1/H and U se
s denote the lifetime utility from not innovating. The

difference between the utility from innovating and not innovating is

dU ≡ EU e,0
s − U se

s =
1

ρ+ ν

(
1

H
log (A) + log (δ)

)
. (52)

Moreover, dU < 0 for δ < δ∗∗ = A− 1
H .

Proposition 7 shows that from a social planner’s viewpoint, the expected utility of innovators

is less than the utility of non-innovators, unless the costs of innovation are sufficiently low,

specifically when δ > δ∗∗ = A− 1
H . In the context of our baseline model, this threshold cost is

less than 0.73%, or equivalently, δ > 99.27%. Interestingly, while a rise in belief diversity fuels

the likelihood of innovation, spurring potential economic growth, it concurrently diminishes the

welfare of innovators from a social planner’s perspective.

5 Entrepreneurial Risk Sharing

In this section, we study two different mechanisms to share entrepreneurial risk: taxes and a

venture capital fund.

5.1 Government Intervention through Taxation

In this section, we study three distinct tax scenarios. First, we examine a lump-sum tax

redistributed within birth cohorts. This tax serves as a risk-sharing mechanism, fostering

innovation by reducing the risk burden on individual entrepreneurs. However, this model

leads to a decrease in economic growth due to a reduction in entrepreneurial capital. Given

the equal tax distribution within the same birth cohorts, this approach leaves asset prices
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unaffected. Next, we investigate a flat tax with redistribution across birth cohorts. Here, taxes

are utilized to finance innovation and are evenly distributed across different generations. This

strategy results in a wealth transfer from younger generations to older ones, particularly in a

growing economy. As a consequence, interest rates and valuation ratios are impacted. Lastly,

we consider a flat tax with redistribution within birth cohorts combined with a costly effort to

innovate. In this scenario, a trade-off materializes, balancing risk-sharing against the necessity

for entrepreneurs to invest in costly innovative efforts. Consequently, a hump-shaped economic

growth trend emerges when plotted against tax rates, highlighting an optimal tax rate that

stimulates maximum economic growth.

5.1.1 Lump-Sum Tax with Redistribution within Birth Cohort

Consider birth cohort s with endowment Ys that pays the lump-sum tax Ts = τYs over their

lifetime. We refer to the tax amount as a lump sum because it does not depend on the

endowment post-innovation. The remaining endowment stream (1 − τ)Ys can be used to

innovate, and the taxes levied by the government are redistributed within the birth cohort s.

Hence, the endowment stream and its value after the innovation decision is made for all birth

cohorts s ≤ t ≤ τ and agent type’s i ∈ I = {se, ue, ne} are

Y i
s,t = ωi(1− τ)Ys + τYs, (53)

W i
s,t = (ωi(1− τ) + τ)ψYs, (54)

where ψ = 1/(ν + r) is the constant price of a life annuity and ωi captures the different wealth

of successful, unsuccessful, and non-innovators given in Equation (21). Taxes collected within

a birth cohort are redistributed within a birth cohort, and thus, the budget constraint of the

government is satisfied. Effectively, the tax imposed forces agents to take less entrepreneurial

risk.

An agent born at time s will choose to become an entrepreneur if the expected lifetime

utility from innovating is higher than the lifetime expected utility from not innovating. Hence,
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agents become entrepreneurs if their success probability exceeds the threshold

∆∗
τ

H
=

log
(
W ne
s,s/W

ue
s,s

)
log
(
W se
s,s/W

ue
s,s

) =
− log (τ + δ(1− τ))

log ((τ + Aδ(1− τ))/(τ + δ(1− τ)))
. (55)

The likelihood of innovation is

ατ = P (∆ > ∆∗
τ ) =

∆̄−∆∗
τ

∆̄− 1
. (56)

The left plot of Figure 4 shows the equilibrium fraction of innovators ατ as a function of the tax

rate τ for different cost parameters δ. The equilibrium fraction of innovators is strictly increasing

in taxes for all cost parameters that would lead to innovation if no taxes are collected, that is,

δ > 23.33% = A−∆̄/H . For a higher cost, it is weakly increasing (e.g. δ = 0.1). Strikingly, a

moderate tax rate of 30% leads to an innovation likelihood of 12% in equilibrium despite a high

cost of 90% (yellow line with stars). To determine economic growth, we plug the individual
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Figure 4: Entrepreneurial Risk Sharing with Lump Sum Taxes. The left plot shows the
equilibrium fraction of innovators ατ , and the right plot shows growth in equilibrium as a function of the
lump-sum taxes (Ts). The likelihood of innovation increases in taxes, but economic growth decreases in taxes if
innovation is socially optimal and is hump-shaped otherwise. In the figure we set ν = 0.02, H = 1000, A = 1501,
∆̄ = 199, and Ys = 1.
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endowments given in Equation (53) into the aggregate resource constraint and get

Yt =

∫ t

−∞
νe−ν(t−s)

∑
i∈I

λisY
i
s,t ds =

∫ t

−∞
νe−ν(t−s)γτYs ds, (57)

where λit is the measure of type i agents as defined in Equation (39) of the previous section, and

γτ = τ + (1− τ) (1 + ατNCF ) . (58)

The increase in net cash flows from innovating, NCF, is given in Equation (41) and does not

depend on taxes. Hence, economic growth is

µτY = ν(γτ − 1) = ν(1− τ)ατNCF. (59)

The right plot of Figure 4 shows economic growth as a function of the tax rate τ for different

cost parameters δ. Growth is strictly decreasing in the tax rate τ when innovation is socially

valuable without taxes, that is, if δ > H/(H + A− 1) = 40%. In this case, the increase in the

likelihood of innovation due to improved entrepreneurial risk sharing does not outweigh the

reduction in entrepreneurial capital because the lump sum taxes levied by the government are

not deployed for innovation. For innovations that are not socially optimal, δ < 40% growth is

hump-shaped.

5.1.2 Flat tax with redistribution across cohorts

In the case without taxes, the lifetime endowment (after the choice of innovating) of an agent

born at time t of type i is ωiYs, where ωi captures the different wealth of successful, unsuccessful,

and non innovators given in Equation (21). In this subsection, we consider the case of a flat

tax rate and tax redistribution within and across cohorts.
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It immediately follows from Equation (38) that the total tax revenue, Tt, at time t is

Tt =
∫ t

−∞
νe−ν(t−s)

∑
i∈I

λisτwiYs ds = τYt, (60)

where λit is the measure of type i agents as defined in Equation (39). The tax revenues are

equally spread among all agents, hence the total (post) transfers endowment, Y i
s,t, for all birth

cohorts s ≤ t ≤ τ and agent type’s i ∈ I = {se, ue, ne} is

Y i
s,t = ωi(1− τ)Ys + τYt. (61)

In contrast to the previous tax example taxes are equally distributed among all cohorts.

Hence, there is a wealth transfer between generations that the previous examples did not

consider. If there is growth, then this implies a net transfer from younger generations to older

generations. This transfer impacts the risk-free rate and valuation because tax transfers depend

on total output and thus individual endowments that include the tax transfer grow. This is

fundamentally different from the previous sections. Hence, the total wealth, Ws,s, of an agent

born at time s of type i is

W i
s,s = ωi(1− τ)ψ(r)Ys + τϕ(µY , r)Ys (62)

where the valuation ratios ψ(r) = 1/(ν + r) and ϕ(µY , r) = 1/(ν + r − µY ) are constants. The

reasons for the different valuation ratios is that the tax transfers are a claim to total output

whereas individual endowments before transfers do not grow. Consequently, the two claims

have different durations. As before, we can solve for the innovation threshold, ∆∗
τ (µY , r), and

the fraction of newborns that chose to innovate, ατ (µY , r). Specifically,

∆∗
τ (µY , r)

H
=

log
(
W ne
s,s/W

ue
s,s

)
log
(
W se
s,s/W

ue
s,s

) =
log
(

(1−τ)ψ(r)+τϕ(µY ,r)
(1−τ)δψ(r)+τϕ(µY ,r)

)
log
(

(1−τ)Aδψ(r)+τϕ(µY ,r)
(1−τ)δψ(r)+τϕ(µY ,r)

) (63)
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and it follows that the likelihood of innovation is

ατ (µY , r) = P (∆ > ∆∗) =
∆̄−∆∗

∆̄− 1
. (64)

The innovation likelihood depends on valuation ratios which depend on the risk-free rate and

economic growth which depends on the innovation likelihood. Hence, we have a fixed point

problem. The next proposition presents the equation that the interest rate and growth rate

have to satisfy in equilibrium.

Proposition 8. The risk-free rate r and the growth rate µY satisfy the two equations

µY = νατ (µY , r)NCF (65)

r = ρ+ µY + ν (1− βτ (µY , r)) (66)

with NCF given in Equation (41) and valuation ratios ψ(r) = 1/(ν + r) and ϕ(µY , r) =

1/(ν + r − µY ). Moreover, the average consumption of newborns relative to output is

βτ = (ρ+ ν) ((1 + ατNCF ) (1− τ)ψ + τϕ) (67)

Special cases: r = ρ when τ = 0 and r = ρ+ µY when τ approaches one.

The likelihood of innovation is increasing in the tax rate because the redistribution lowers

entrepreneurial risk as discussed in the previous section. This leads to growth when it is socially

desirable as shown in the left plot of Figure 5 by the solid black and chain-dotted red line. In

the case of socially undesirable innovation, an increase in the tax rate lowers growth as shown

by the circled purple and the starred yellow lines. The right plot of Figure 5 shows that the

interest rate, r, is strictly increasing in the flat tax rate τ when there is positive growth and

decreasing when there is negative growth. When the flat tax rate approaches one, then we have

perfect sharing of entrepreneurial risk and the same interest rate as in the exogenous growth

case without any heterogeneity, that is, r = ρ+ µY .
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Figure 5: Entrepreneurial Risk Sharing with Flat Taxes and Redistribution across
Cohorts. The left plot shows economic growth and the right plot shows interest rate in equilibrium as a
function of the flat tax rate (τ). An increase in the tax rate raises economic growth and thus interest rates
when innovation is socially desirable. The opposite is true when it is socially undesirable. In the figure we set
ν = 0.02, ρ = 0.03, H = 1000, A = 1501, and ∆̄ = 199.

5.1.3 Flat tax redistribution within birth cohorts and costly effort to innovate

In contrast to the previous sections of the paper, we explicitly model the disutility from

innovating in this section and discuss the effects of a flat tax with redistribution within birth

cohorts on economic growth.5 Specifically, consider the model from Section 3 and suppose an

agent has to put in effort when innovating. If she exerts effort, then the perceived probability

of success from choosing a specific path is ∆/H and her disutility from exerting effort is

1
ν+ρ

log(1 + e) with e ≥ 0. If e = 0, then there is no disutility from exerting effort as in Section

3. Hence, the expected utility from innovating given in Equation (34) changes to

Ei
[
U i,e
s

]
=

1

ρ+ ν
Ei
[
log
(
W i
s,s

)]
− 1

ρ+ ν
log(1 + e) + Ûs

=
1

ρ+ ν

(
∆

H
log

(
W se
s,s

W ue
s,s

)
+ log

(
W ue
s,s

1 + e

))
+ Ûs,

(68)

where Ûs is independent of the choice to become an entrepreneur and given in Equation (133) of

the Appendix. Let ωiYs denote the pretax endowment stream of a type i agent of birth cohort

5We thank our discussant at the 20th Macro Finance Society Workshop, Stavros Panageas, for suggesting
this example.
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s. Agent i is taxed at the rate τ after her innovation decision is made and all the uncertainty

about it is resolved and hence her after tax endowment stream before tax redistribution is

(1− τ)ωiYs. The total tax revenue of birth cohort s is

Ts = τ
∑
i∈I

λiswiYs = τγτ,eYs, γτ,e = ατ,eδ

(
A

H
+

(
1− 1

H

))
+ (1− ατ,e) , (69)

where λit is the measure of agents of type i given in Equation (39). The tax revenue of birth

cohort s are equally spread among all agents within birth cohort s. Hence, the time-t total

(post) transfer endowment of birth cohort s is

Y i
s,t = ωi(1− τ)Ys + τγτ,eYs. (70)

The tax amount that is equally distributed within a birth cohort depends on the fraction of

innovators ατ,e which is decreasing in disutility of effort e and thus there is a trade-off between

the improved risk sharing and the reduced incentives from taxation. However, there is no tax

redistribution across birth cohorts and thus the risk-free rate and valuation ratios are unaffected

by the tax rate τ . Hence, the total wealth, Ws,s, of an agent born at time s of type i is

W i
s,s = (ωi(1− τ) + τγτ,e)ψYs, (71)

where the valuation ratio ψ = 1/(ν + r) is constant. As before, we can solve for the innovation

threshold, ∆∗
τ,e, and the fraction of newborns that chose to innovate, ατ,e. Specifically,

∆∗
τ,e

H
=

log
(
(1 + e)W ne

s,s/W
ue
s,s

)
log
(
W se
s,s/W

ue
s,s

) =
log
(

(1+e)((1−τ)+τγτ,e)
(1−τ)δ+τγτ,e

)
log
(

(1−τ)Aδ+τγτ,e
(1−τ)δ+τγτ,e

) (72)
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and it follows that the fraction of innovators and economic growth in equilibrium are

ατ,e =
∆̄−∆∗

τ,e

∆̄− 1
(73)

µτ,eY = ν(γτ,e − 1) = νατ,eNCF, (74)

where NCF is independent of effort and taxes, and given in Equation (41). There is no

redistribution across cohorts and thus taxes do not affect the risk-free rate and the valuation

ratios, that is, they are the same as in Proposition 5. Hence, they are also not affected by effort.

There is a trade-off within a birth cohort between improved entrepreneurial risk sharing with

an increase in the flat tax and the resulting decrease in incentives to become an entrepreneur.

This trade-off is illustrated in Figure 6 that shows the equilibrium growth rate for different effort

levels as a function of tax rate in the left plot and as a function of disagreement in the right

plot. The cost parameter in both graphs is δ = 0.6 and we set the tax rate to τ = 0.5 in the

right plot. The solid black line illustrates that the economic growth rises with the tax rate when

effort involves no disutility due to better risk sharing. However, when there is disutility from

exerting effort, high tax rates suppress innovation incentives, overruling risk-sharing benefits,

and creating a non-monotonic link between the fraction of innovators and the tax rate (as

shown by the red chain-dotted, blue dashed, purple circled, and yellow star lines). The right

plot shows that diversity in beliefs raises growth for all effort levels as soon as diversity is large

enough such that there is innovation in equilibrium. Otherwise there is no growth.

5.2 Venture Capital

Consider birth cohort s with endowment Ys that can invest the fraction θ of its endowment

into a fund that invests in all H projects. There is a fund for each birth cohort that allows

entrepreneurs of the birth cohort to completely diversify all the idiosyncratic entrepreneurial
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Figure 6: Tradeoff between Entrepreneurial Risk Sharing and Innovation Incentives
trough a Flat Tax with Redistribution within Cohorts. This Figure shows economic growth
in equilibrium µY as a function of the flat tax rate τ in the left plot and as a function of belief diversity in
the right plot. We set the cost parameter to δ = 0.6 leading to positive NCF in both graphs and the tax rate
is τ = 0.5 in the right graph. The other parameters are set to ν = 0.02, ρ = 0.03, H = 1000, A = 1501, and
∆̄ = 199.

risk. Hence, the fund pays the certain amount

(
A

1

H
+

(
1− 1

H

))
δYs = (1 +NCF )Ys, (75)

where NCF is given in Equation (41). Suppose δ > 40% and thus the return of the fund,

NCF, is always positive. Every agent invests θYs in this fund and decides whether to use the

remaining fraction 1− θ to become an entrepreneur.6 Hence, the endowment stream and its

value after the innovation decision is made for all s ≤ t ≤ τ are

Y i
s,t = ωi(1− θ)Ys + θ(1 +NCF )Ys and W i

s,t = Y i
s,tψ, (76)

where ψ = 1/(ν + r) is the constant price of a life annuity and ωi captures the different wealth

of successful, unsuccessful, and non-innovators given in Equation (21). An agent born at time s

will choose to become an entrepreneur if the expected lifetime utility from innovating is higher

than the lifetime expected utility from not innovating. Hence, agents become entrepreneurs if

6The fraction θ is exogenously given but can be endogenized by introducing costly effort and moral hazard.
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Figure 7: Entrepreneurial Risk Sharing with a Venture Capital Fund.The left plot shows
the equilibrium fraction of innovators αθ and the right plot shows growth in equilibrium as a function of the
VC investment (θ). If δ > 40% and thus NCF is strictly positive, then an increase in VC investment lowers the
entrepreneurial risk and thus increases the likelihood of innovation and economic growth. In the figure we set
ν = 0.02, H = 1000, A = 1501 and ∆̄ = 199.

their probability of success exceeds the threshold

∆∗
θ

H
=

log
(
W 0
s,s/W

L
s,s

)
log
(
WH
s,s/W

L
s,s

) =
log ((1 + θNCF ) / (θ(1 +NCF ) + (1− θ)δ))

log ((θ(1 +NCF ) + (1− θ)Aδ) / (θ(1 +NCF ) + (1− θ)δ))
. (77)

The likelihood of innovation in equilibrium is

αθ = P (∆ > ∆∗
θ) =

∆̄−∆∗
θ

∆̄− 1
. (78)

The left plot of Figure 7 shows the equilibrium fraction of innovators αθ as a function of the VC

investment θ for different cost parameters δ. The equilibrium fraction of innovators is strictly

increasing in the VC investment for all cost parameters δ > 40% so that NCF is strictly positive

because the VC investment lowers entrepreneurial risk. To determine economic growth we plug

Equation (76) into the aggregate resource constraint. Specifically,

Yt =

∫ t

−∞
νe−ν(t−s)

∑
i∈I

λisY
i
s,t ds =

∫ t

−∞
νe−ν(t−s)γθYs ds, (79)
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where λit is the measure of agents of type i given in Equation (39) and

γθ = 1 + (1− (1− θ) (1− αθ))NCF. (80)

Hence, economic growth is

µθY = ν(γθ − 1) = ν (1− (1− θ) (1− αθ))NCF. (81)

The right plot of Figure 7 shows economic growth as a function of the VC investment θ for

different cost parameters δ. If δ > 40% and thus NCF is strictly positive, then an increase in

VC investment lowers the entrepreneurial risk and thus increases economic growth.

6 Conclusion

We study an equilibrium model with diverse perspectives on the likelihood of innovation

success. We show that such diversity fuels aggregate economic growth and overcomes market

failures that could otherwise occur in an equilibrium without belief diversity. This growth

enhancement through diversity, however, comes at the expense of an increase in wealth and

consumption inequality as only a few entrepreneurs succeed while the majority do not. This

provides a potential solution to the ”entrepreneurial puzzle,” wherein entrepreneurs choose

to become entrepreneurs despite significant idiosyncratic risk and low anticipated returns.

Through tax schemes and venture capital funds, risk sharing among entrepreneurs is improved,

thereby increasing the likelihood for innovation. This entrepreneurial risk reduction bolsters

growth unless high taxation drains entrepreneurial capital. Redistributing taxes across cohorts

mitigates inequality and potentially elevates interest rates. However, introducing costly effort

disincentivizes innovation when the tax burden on entrepreneurs increases. Therefore, a trade-off

emerges between risk-sharing and exerting costly effort, resulting in a hump-shaped economic

growth when graphed against tax rates.

Understanding the role of diversity in beliefs in fostering economic growth is crucial for
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several reasons. First, it promotes innovation and entrepreneurship. Belief diversity is often the

driving force behind innovation. Entrepreneurs with differing views, assumptions, and outlooks

engage in risky ventures, experimenting with different ideas, which often leads to breakthroughs

and progress. This entrepreneurial activity is critical to the dynamism of an economy and its

long-term growth. Second. it broadens economic possibilities. When there is belief diversity,

society is effectively “drawing from the entire distribution of ideas.” Hence, multiple avenues

for innovation are explored, thus broadening the scope of economic possibilities and enhancing

the prospects for economic growth. Third, it informs economic policy. Understanding belief

diversity can inform policy aimed at fostering innovation and economic growth. For instance,

policies that encourage diversity of thought and risk-taking could be implemented to stimulate

entrepreneurial activity and thus economic growth. Fourth, it leads to wealth and consumption

inequalities. Our findings about the relationship between diversity in beliefs, economic growth,

and the rise of wealth and consumption inequalities could stimulate further research on these

topics. This is important given the ongoing debates about economic inequality.

We also provide new insights into the ”entrepreneurial puzzle”. By proposing a new angle—

diversity in beliefs—we enrich our understanding of what motivates entrepreneurs to take on

substantial risk and innovate. Further, by investigating the potential costs and benefits of

diversity in beliefs (like wealth inequality and economic growth), our research provides a more

nuanced understanding of the dynamics of economic development. Finally, the unique model

introduced in this study, which employs diverse beliefs among agents and a “skin in the game”

constraint, contributes a new methodological approach that future research in the field can

build upon. This can open up new avenues for further research and contribute to the body of

knowledge on entrepreneurship and economic growth.
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A Proofs

In this Appendix, we provide comprehensive proofs for the propositions presented in the main text.
To ensure clarity and completeness, these proofs incorporate additional details of the theoretical
arguments which were necessarily omitted in the main text for the sake of brevity and focus. Each
subsection here aligns with a section of the main text.

A.1 Exogenous growth

Proof 1 (Proof of Proposition 1). We start by determining aggregate output growth, that is, we
demonstrate the validity of Equation (4). Specifically, we substitute the individual endowment of birth
cohort s, that is, Ys,t = γYs into the aggregate resource constraint given in Equation (2) which leads to

Yt =

∫ t

−∞
νe−ν(t−s)Ys,t ds = γ

∫ t

−∞
νe−ν(t−s)Ys ds. (82)
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In Equation (82) we integrate over the birth cohort variable s and subsequently use Leibniz rule to
determine the derivative of this integral w.r.t. time t, that is, we treat time t as a parameter. Hence,
the dynamics of aggregate output Yt are

dYt =

(
−ν
∫ t

−∞
νe−ν(t−s)γYs ds+ νγYt

)
dt = ν(γ − 1)Yt dt. (83)

This provides the required proof for Equation (4), that is, aggregate output growth equals µY = ν(γ− 1).
After an agent’s birth, the agent faces a dynamically complete security market consisting of the

real risk-free asset Bt and the life insurance/annuity contract Lt because the only source of uncertainty
within the economy is the uncertain time of death T . It’s worth highlighting that there is no market
agents can trade in before they are born. This restriction introduces an incompleteness in the overlapping
generations model (OLG) model, manifesting itself in the endogenous determination of each agent’s
initial consumption. Specifically, we have shown in Equation (14) that

β = (ν + ρ)γψ = (ν + ρ)γ

∫ ∞

t
e−(r+ν)u du =

ν + ρ

ν + r
γ, (84)

where the last equality follows from Equation (12) and the fact that Mu = Mte
−r(u−t). This is the

first equation the risk-free rate r and the initial consumption per unity of output β have to satisfy.
Equation (16), which we prove next, is the second equation that r and β have to satisfy. We verify
Equation (15) by combining the FOC for optimal consumption with the aggregate resource constraint

Yt =

∫ t

−∞
νe−ν(t−s)Cs,t ds =

∫ t

−∞
νe−ν(t−s)βYse

−ρ(t−s)Ms

Mt
ds. (85)

We multiply both sides of Equation (85) by the strictly positive discount factor Mt and get

MtYt =

∫ t

−∞
νe−(ν+ρ)(t−s)βYsMs ds. (86)

We use the dynamics of the DF, dM/M = −rdt, and the dynamics of aggregate output, dY/Y = µY dt,
to determine the dynamics of the left hand side of Equation (86). Specifically,

dMtYt
MtYt

=
dMt

Mt
+
dYt
Yt

= (µY − r)dt. (87)

We differentiate the right side of Equation (86) and emphasize that we integrate over the birth cohort
variable s and subsequently use Leibniz rule to determine the derivative of this integral w.r.t. time t.
Hence,

d

∫ t

−∞
νe−(ν+ρ)(t−s)βYsMs ds =

(
−(ν + ρ)

∫ t

−∞
νe−(ν+ρ)(t−s)βYsMs ds+ νβYtMt

)
dt

= − (ρ+ ν (1− β))YtMt dt.

(88)

In order for Equation (86) to hold the drift of the left hand side given in Equation (87) and the drift
of the right hand side given in Equation (88) have to be the same. Equating both drifts leads to

µY − r = − (ρ+ ν (1− β)) . (89)
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Solving Equation (89) for the risk-free rate rt leads to

r = ρ+ µY + ν(1− β) = ρ+ ν(γ − β), (90)

where we obtain the second equality in Equation (90) by using Equation (4) for growth µY . This
verifies Equation (16) of the main text and provides the second equation that β and r have to satisfy.
Plugging in for β given in Equation (84) into Equation (90) leads to

r = ρ+ ν

(
γ − ν + ρ

ν + r
γ

)
= ρ+

νγ

ν + r
(r − ρ) . (91)

Simplyfing Equation (91) and using the fact that growth is µY = ν(γ − 1) leads to the quadratic
equation (r− ρ)(r−µY ) = 0 with the two solutions r = ρ and r = µY . We rule out the second solution
because it leads to a bubble. Plugging in for r = ρ into Equation (84) leads to β = γ.

To prove Equation (17) for the wealth-output ratio, we compute total wealth in the economy by
integrating over the financial wealth of all agents currently alive. Specifically,

Wt =

∫ t

−∞
νe−ν(t−s)Ws,t ds =

1

ν + ρ

∫ t

−∞
νe−ν(t−s)Cs,t ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)βsYse

−ρ(t−s)Ms

Mt
ds =

1

ν + ρ

∫ t

−∞
νe−ν(t−s)γYse

(r−ρ)(t−s) ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)Ys,t ds =

Yt
ν + ρ

= ψYt,

(92)

We obtain the second equality by using Equation (13), the third equality by using Equation (10) and
Cs,s = βsYs, the forth equality by using the solution γ for β, the fifth equality by using the definition of
individual endowments Ys,t = γYs, the sixth equality by using the resource constraint given in Equation
(2), and the last equality by plugging in for the price of the life annuity ψ = 1/(ν + ρ).

The total wealth in the economy is equal to Wt = ψYt and thus the price-dividend ratio of the
market portfolio is ψ = 1/(ν + ρ) since the market portfolio is defined as a claim on the total wealth of
all agents currently alive. Plugging the risk-free rate r = ρ into optimal demand for consumption leads
to optimal consumption in Equilibrium, that is,

Cs,t = Cs,se
(r−ρ)(t−s) = Cs,s, ∀ s ≤ t ≤ T. (93)

Hence, there is no individual consumption growth in the economy and there is no consumption inequality
within a birth cohort. Plugging in for β = γ leads to

Cs,t = βsYs = γYs = Ys,t, ∀ s ≤ t ≤ T. (94)

This proves Equation (18). Hence, consumption growth across birth cohorts is equal to aggregate output
growth since ∀∆ > 0 we have that

1

∆
log

(
Cs+∆,t

Cs,t

)
=

1

∆
log

(
γYs+∆

γYs

)
=

1

∆
log

(
Ys+∆

Ys

)
= µY , s ≤ t ≤ T. (95)

This proves Proposition 1.

Proof 2 (Proof of Proposition 2). There is no endowment heterogeneity and thus the time-t value of
the endowment of an agent born at time s is Ys,t = Yt. The market is complete and thus each agent
chooses consumption to maximize her expected utility given in Equation (7) subject to the static budget
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constraint given in Equation (8). Solving the first order condition of this maximization problem leads
to the optimal path for consumption given in Equation (10). Inserting optimal consumption into the
static budget condition leads to the optimal time-t total wealth of an agent born at time s given in
Equation (13). To pin down optimal consumption, we still need to solve for initial consumption Cs,s
or, equivalently, the initial consumption per unit of output defined as βs = Cs,s/Ys. To determine βs
we value the endowment stream of an agent and then use the fact that agents consume a constant
fraction out of their wealth (see Equation (13)).

So far the derivations are the same as in our benchmark exogenous growth model with heterogeneity
across birth cohorts. We now value the individual endowment stream Ys,t = Yt and thus we have to
deviate from the previous case. Specifically, the value of the endowment stream (Ys,t = Yt) of birth
cohort s at time t is

Hs,t = Et

[∫ T

t

Mu

Mt
Ys,u du

]
=

∫ ∞

t
e−(r+ν)(u−t)Mu

Mt
Yu du = Ytϕ, ∀ s ≤ t ≤ T, (96)

where ϕ is the valuation ratio of a variable annuity that continuously pays aggregate output until time
of death T . We use the aggregate resource constraint and Equation (13) to determine aggregate wealth.
Specifically,

Yt =

∫ t

−∞
νe−ν(t−s)Cs,tds = (ρ+ ν)

∫ t

−∞
νe−ν(t−s)Ws,tds = (ρ+ ν)Wt (97)

where Wt denotes wealth of all agents currently alive. Hence, from Equation (97) follows that the
wealth-consumption ratio is constant and given by

ϕ ≡ Wt

Yt
=

1

ρ+ ν
. (98)

Since every newborn agent receives an endowment stream that is the same as aggregate output, the
initial wealth of a newborn is equal to the total wealth and thus βs = 1 for all s. Specifically,

βs =
Cs,s
Ys

= (ν + ρ)
Ws,s

Ys
= (ν + ρ)

Hs

Ys
= (ν + ρ)

Ws

Ys
= 1. (99)

We plug the optimal demand for consumption given in Equation (10) into the aggregate resource
constraint given in Equation (2) and use the fact that βt = 1 ∀t to get

MtYt =

∫ t

−∞
νe−(ν+ρ)(t−s)YsMs ds (100)

Similar to Proposition 1 we differentiate both sides of Equation (100) w.r.t. time t by applying Leibniz’s
integral rule and solve for the risk-free rate. Specifically, equating the drifts of both sides of Equation
(100) leads to

µY − r = −ν − ρ+ ν ⇒ r = ρ+ µY . (101)

The price of the life annuity is

ψ = Et

[∫ T

t

Mu

Mt
du

]
=

∫ ∞

t
e−(ν+r)(u−t) du =

1

ν + r
=

1

ν + ρ+ µY
. (102)

Plugging the risk-free rate r = ρ+µY into optimal demand for consumption leads to optimal consumption
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in equilibrium, that is,

Cs,t = Cs,se
(r−ρ)(t−s) = Cs,se

µY (t−s) = Yse
µY (t−s) = Yt, ∀ s ≤ t ≤ T. (103)

Hence, individual consumption growths at the same rate as the economy. This proves Proposition 2.

A.2 Endogenous growth

We first provide more specific details regarding the theoretical arguments, and thereafter we will
present the proofs of Propositions 3 and 4. The endogenous growth model described in Section 3 can
be thought of a two stage decision-making process for each agent within a birth cohort: the ex-ante
and the ex-post stages. The ex-ante stage occurs before the agent makes her decision to innovate. Here,
agents compare the utility from not innovating to the expected utility from innovating. Following the
ex-ante stage is the ex-post stage. This stage occurs after the decision to innovate has been made
and the results of that decision—whether successful or unsuccessful—are known. At this point, all
uncertainty related to the innovation process has been resolved. At this stage every agent solves a
static consumption-investment problem factoring in the different circumstances determined by the
innovation outcomes. Specifically, they maximize expected utility given in Equation (29) subject to
the static budget constraint given in Equation (30), where the latter depends on their respective
endowment streams, which could be the endowment stream Ys, the augmented endowment stream
AδYs due to successful innovation, or the reduced endowment stream δYs due to failed innovation.
This leads to an expected utility level for the three different types—successful innovators, unsuccessful
innovators, and non innovators—that agents maximize over in the ex-ante stage. Importantly, the
optimal ex-ante and ex-post decision is the same for each birth cohort but depends on the agent’s
type, (h,∆) ∈ {1, . . . . , H} ×

[
1, ∆̄

]
, at the ex-ante stage and the type, i = ι(h,∆) ∈ I = {se,ue, ne},

at the ex-post stage, in which the latter type is the result of the innovation decision that we capture
by the function ι(h,∆). Before we solve this two stage decision problem we emphasize that the second
stage is a dynamic problem that leads to the optimal consumption process,{Cis,t}{s≤t≤T}, that can be
solved as a static optimization problem which we discuss in detail in Section 2 and that was originally
developed in Cox and Huang (1989) and Karatzas and Shreve (1998).

We solve the model by backward induction and start with summarizing the derivation of the
ex-post stage provided in the main text before we provide the results of the ex-ante stage in the proof
of Proposition 3. Specifically, we identify a type (h,∆) agent with the index i = ι(h,∆) ∈ I because
we know the realization of the innovation decision. The FOC for the static optimization problem leads
to the optimal consumption process given in Equation (31). The consumption process Cis,t depends on
initial consumption Cis,s, which due to log utility equals (ρ+ ν)W i

s,s. Moreover, we can derive initial
wealth from the static budget constraint given in Equation (30). Specifically,

W i
s,s = Es

[∫ T

s

Mt

Ms
Y i
s,t dt

]
=

∫ ∞

s
e−(ν+r)(t−s)Y i

s,t dt =

∫ ∞

s
e−(ν+r)(t−s)ωiYs dt = ωiYsψ. (104)

The valuation ratio is equal to the price of a life annuity, ψ = 1/(ν+ r), given in Equation (12) because
the endowment stream is constant over time for all i ∈ I = {se, ue,ne}. There are three different
levels for the endowment streams described by ωi that is given in Equation (21). Plugging optimal
consumption Cis,t into expected utility given in Equation (29) and substituting (ρ+ ν)ωiYsψ for initial
consumption Cis,s leads to

U is =
log
(
ωi
)

ρ+ ν
+ Ūs (105)

after some algebra with Ūs given in Equation (33). This concludes the derivation of the ex-post stage.
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Proof 3 (Proof of Proposition 3). In the ex-ante stage an agent of type (h,∆) decides whether to
become an entrepreneur or not. If she does not innovate, then, ι(h,∆) = ne, and her lifetime expected
utility is

EUnes ≡ Unes =
log (1)

ρ+ ν
+ Ūs. (106)

If she decides to innovate and is successful, then, ι(h,∆) = se, and her lifetime expected utility is

U ses =
log (Aδ)

ρ+ ν
+ Ūs. (107)

If she decides to innovate and is unsuccessful, then, ι(h,∆) = ue, and her lifetime expected utility is

Uues =
log (δ)

ρ+ ν
+ Ūs. (108)

The perceived success probability of a type (h,∆) agent is ∆/H and thus her expected utility from
innovating is

EU es ≡ ∆

H
U ses +

(
1− ∆

H

)
Uues =

∆

H

log (Aδ)

ρ+ ν
+

(
1− ∆

H

)
log (δ)

ρ+ ν
+ Ūs. (109)

Hence, it is optimal for agent (h,∆) to innovate if here expected utility from innovating exceeds the
utility from not innovating, that is, EU es > EUnes . Let ∆∗/H denote the threshold probability for which
an agent is indifferent between innovating and not innovating. We have that

∆∗

H
log (Aδ) +

(
1− ∆∗

H

)
log (δ) = log (1) ⇒ ∆∗ = −H log δ

logA
≥ 0. (110)

Hence, a type (h,∆) agent innovates if ∆ > ∆∗ and does not innovate if ∆ ≤ ∆∗. This concludes the
derivation of the ex-ante stage and thus the derivation of the agent’s decision problem.

The threshold probability ∆∗/H is the same for each of the H different strategies to innovate
and only one of the strategies leads to a successful innovation., Hence, the probability that there is
innovation in equilibrium is α = P (∆ > ∆∗). The parameter ∆ is uniformly distributed on the interval
[1, ∆̄]. Moreover, there is no innovation if ∆∗ ≤ 1 and there is always innovation if ∆∗ ≥ ∆̄. If
1 < ∆∗ < ∆̄, then

α = P (∆ > ∆∗) = 1− P (∆ ≤ ∆∗) = 1− ∆∗ − 1

∆̄− 1
=

∆̄ +H log(δ)
log(A)

∆̄− 1
=

1 +D +H log(δ)
log(A)

D
, (111)

where D = ∆̄− 1 denotes the belief diversity index. The success probability α is strictly increasing if
1 < ∆∗ < ∆̄ because

∂α(D)

∂D
=

1− α(D)

D
> 0. (112)

Hence, α is weakly increasing for all ∆∗. There is a continuum of investors for each of the H different
strategies to innovate and thus the equilibrium innovation probability coincides with the ex-post fraction
of innovators in equilibrium. Only one of the H possible strategies leads to success. Hence, we have in
equilibrium that for every birth cohort s the fraction α/H is successful and has total wealth AδψYs,
the fraction α(1− 1/H) is unsuccessful and has total wealth δψYs, and the fraction (1− α) does not
innovate and has total wealth ψYs.
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Proof 4 (Proof of Proposition 4). We know that for every birth cohort there are three types of agents
after the innovation uncertainty is resolved. Specifically, (i) the fraction α/H of successful innovators
with endowment stream AδYs, (ii) the fraction α(1− 1/H) of unsuccessful innovators with endowment
stream δYs, and the fraction (1− α) of non-innovators with endowment stream Ys. Hence, we have
that Y i

s,t = ωiYs and λis is given in Equation (39). It follows that∑
i∈I

λisY
i
s,t =

∑
i∈I

λisω
iYs = γYs (113)

with γ given in Equation (40). Plugging into the aggregate resource constraint leads to∫ t

−∞
νe−ν(t−s)γYs ds = Yt, (114)

Following the same arguments as in Section 2 and differentiating both sides of Equation (114) w.r.t.
time t (by applying Leibniz‘s integral rule to the lhs) leads to to the equilibrium aggregate output growth
rate µY = ν(γ − 1) = ναNCF with NCF given in Equation (41).

The first derivative of economic growth with respect to belief diversity D is

∂µY (D)

∂D
=
νNCF∂α(D)

∂D
=
ν (1− α(D))NCF

D
. (115)

If NCF is positive, then economic growth is weakly increasing in diversity and the opposite is true if
NCF is negative.

A.3 Asset Pricing and Inequality

Proof 5 (Proof of Proposition 5). The derivation of the equilibrium interest rate is similar to the
exogenous growth case discussed in Propositions 1 and 2 of Section 2. The difference to the exogenous
growth case is that there is also heterogeneity within a birth cohort, that is, there are agents that do
not innovate and agents that innovate are either successful or not. We know from Equation (31) that
the FOC of a type i = (h,∆) agent is

Cis,t = Cis,se
−ρ(t−s)Ms

Mt
. (116)

Plugging consumption Cs,t into the aggregate resource constraint leads to

Yt =

∫ t

−∞
νe−ν(t−s)

(∑
i∈I

λisC
i
s,t

)
ds =

∫ t

−∞
νe−(ρ+ν)(t−s)

(∑
i∈I

λisC
i
s,s

)
Ms

Mt
ds. (117)

Define average consumption of the newborns relative to the economy wide average, that is,

βs =

∑
i∈I λ

i
sC

i
s,s

Ys
= β ∀s. (118)

We verify below that β is constant. Hence, we get

YtMt =

∫ t

−∞
νe−(ρ+ν)(t−s)βYsMs ds. (119)
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after multiplying with Mt. Equation (119) is identical to Equation (15) and thus following the same
steps as in the proof of Proposition 1 we get

dMt

Mt
= −r dt, with r = ρ+ µY + ν(1− β). (120)

The beta differs from the beta in the exogenous growth case which we compute next. Due to log utility
we have that

βi =
Cis,s
Ys

= (ν + ρ)
W i
s,s

Ys
= ωi(ν + ρ)ψ, (121)

where the last equality follows from Equation (30). Plugging βi into Equation (118) and plugging in
for λis given in Equation (38) leads to

β =

∑
i∈I λ

i
sC

i
s,s

Ys
= γ(ν + ρ)ψ (122)

Plugging in for endogenous growth in Equation (120) leads to

r = ρ+ ν(γ − 1) + ν(1− β) = ρ+ ν(γ − β). (123)

Hence, we have two equations that r and β have to simultaneously satisfy. Suppose both r and β are
constant. Then the price of the life annuity is

ψ = Et

[∫ T

t

Mu

Mt
du

]
=

∫ ∞

t
e−(ν+r)(u−t) du =

1

ν + r
. (124)

Hence, β = γ(ν + ρ)/(ν + r) and we have that

r = ρ+ ν(γ − β) = ρ+ νγ
r − ρ

ν + r
⇔ r2 − (µY + ρ)r + µY ρ = 0 (125)

There are two solutions to this quadratic equation r = ρ and r = µY . We exlude the second solution
because it leads to a bubble. Plugging r = ρ into the price of life annuity leads to ψ = 1/(ν + ρ). We
plug the solution for r into Equation (122) to get β, that is,

β = γ = 1 + αNCF. (126)
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Total wealth of all agents currently alive is

Wt =

∫ t

−∞
νe−ν(t−s)

(∑
i∈I

λisW
i
s,t

)
ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)

(∑
i∈I

λisC
i
s,t

)
ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)

(∑
i∈I

λisC
i
s,s

)
e−ρ(t−s)

Ms

Mt
ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)βsYse

−ρ(t−s)Ms

Mt
ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)γYse

(r−ρ)(t−s) ds

=
1

ν + ρ

∫ t

−∞
νe−ν(t−s)Ys,t ds =

Yt
ν + ρ

.

(127)

Hence, the price-dividend ratio is ψ = 1/(ν + ρ).

Proof 6 (Proof of Proposition 6). Let NCF > 0. Before we determine the variance of βis,t, we verify
that average βis,t in equilibrium is one. Specifically,

E
[
βis,t
]
=

∫ t

−∞

(∑
i∈I

λisβ
i
s,t

)
νe−ν(t−s) ds =

∫ t

−∞

(∑
i∈I

λisω
ie−µY (t−s)

)
νe−ν(t−s) ds

=

∫ t

−∞
γνe−(ν+µY )(t−s) ds =

γν

ν + µY
=

γν

ν + ν(γ − 1)
= 1.

(128)

We obtain the second equality by plugging in the value for βis,t given in Equation (49), the third equality
by plugging in the value for

∑
i∈I λ

i
sω

i which is γ and was derived in Equations (38)-(40), the fourth
equality by computing, the integral, and the fifth equality by plugging in the value for µY given in
Equation (42). The variance of βis,t is

Var
[
βis,t
]
= E

[(
βis,t
)2]− E

[
βis,t
]2

= E
[(
βis,t
)2]− 1

=

∫ t

−∞
e−2µY (t−s)

(∑
i∈I

ω2
i λ

i
s

)
νe−ν(t−s) ds− 1

=

(
A2δ2

α

H
+ δ2α

(
1− 1

H

)
+ (1− α)

)
ν

ν + 2µY
− 1.

(129)

We obtain the third equality by plugging in the value for βis,t and the fourth equality by plugging in the
value for ωi given in Equation (21), the value for λi given in Equation (39) and deriving the sum.
The remaining steps are straightforward algebra and plugging in the value for µY given in Equation
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(42). Specifically,

Var
[
βis,t
]
= α

((
A2

H
+

(
1− 1

H

))
δ2 − 1

)
ν

ν + 2µY
+

ν

ν + 2µY
− 1

=
α

1 + 2αNCF

((
A2

H
+

(
1− 1

H

))
δ2 − 1

)
+

1

1 + 2αNCF
− 1

=
α

1 + 2αNCF

((
A2

H
+

(
1− 1

H

))
δ2 − 2NCF

)
.

(130)

The variance is positive and thus the term inside the bracket of Equation (130), which is independent
of disagreement is positive. The first term is strictly increasing in α and thus consumption inequality
is strictly increasing in α. We know from Proposition 3 that α is weakly increasing in disagreement
and thus consumption inequality is weakly increasing in disagreement. We know from Proposition 4
that economic growth is weakly increasing in disagreement if NCF is positive. Hence, inequality is
weakly increasing in economic growth.

Proof 7 (Proof of Proposition 7). The lifetime expected utility of an entrepreneur based on the success
probability of 1/H is

EU e,0s =
1

H
U ses +

(
1− 1

H

)
Uues =

1

ν + ρ

(
1

H
log(A) + log(δ)

)
+ Ūs, (131)

where U ses and Uues are given in Equations (107) and (108), respectively. The lifetime utility from not
innovating is given in Equation (106), that is, U ses = Ūs. Hence,

EU e,0s − U ses =
1

ν + ρ

(
1

H
log(A) + log(δ)

)
. (132)

A.4 Entrepreneurial risk sharing

In order to provide additional details of the theoretical arguments in Subsections 5.1.1, 5.1.2, 5.1.3,
and 5.2 we first rewrite the utility given in Equation (30) as follows

U is =
log
(
W i
s,s

)
ρ+ ν

+
log (ρ+ ν)

ρ+ ν
+

∫ ∞

s
e−(ρ+ν)(t−s) log

(
Ms

Mt

)
dt︸ ︷︷ ︸

=Ûs

,
(133)

where the second term of lifetime utility is independent of the agent’s type. Following the same
arguments as in Section 3 the probability ∆∗/H for which an agent is indifferent between innovating
and not innovating has to satisfy

∆∗

H
log
(
W se
s,s

)
+

(
1− ∆∗

H

)
log
(
W ue
s,s

)
= log

(
W ne
s,s

)
. (134)

Solving this equation for ∆∗ leads to

∆∗ =
log
(
W ne
s,s/W

ue
s,s

)
log
(
W se
s,s/W

ue
s,s

) . (135)

Plugging the wealth levels of the different tax examples given in Equations (54) and (62) leads to ∆∗
τ

given in Equations (55) and (63), respectively. Similarly, plugging the wealth level from the venture
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capital example given in Equation (76) leads to ∆∗
θ given in Equation (77). If we allow for costly effort

as in Section 5.1.3, then

∆∗ =
log
(
W ne
s,s/(W

ue
s,s/(1 + e))

)
log
(
(W se

s,s/(1 + e))/W ue
s,s/(1 + e))

) =
log
(
(1 + e)W ne

s,s/(W
ue
s,s

)
log
(
W se
s,s)/W

ue
s,s

) . (136)

Plugging in for the wealth levels given in Equation (71) leads to ∆∗
τ given in Equation (73). The

likelihood of innovation is always equal to

ατ,e = P (∆ > ∆∗) =
∆̄−∆∗

∆̄− 1
(137)

where ∆∗ differs across the three tax and the venture capital scenarios. We know from the exogenous
growth benchmark derived in Section 2 and the endogenous growth model in Section 3 that aggregate
growth is given by

µY = ν(γ − 1). (138)

The same is true in this section in all three tax scenarios and the venture capital fund. However,
the γ, which we derive by plugging in individual endowments in the aggregate resource constraint, is
different in the four scenarios. Specifically, plugging for the individual endowments given in Equations
(53), (61), (70), and (76) leads to

γ =
∑
i∈I

λis
Y i
s,t

Ys
=


τ + (1− τ)

∑
i∈I λ

i
sω

i in Tax Scenario 1
τ(Yt/Ys) + (1− τ)

∑
i∈I λ

i
sω

i in Tax Scenario 2
τ + (1− τ)

∑
i∈I λ

i
sω

i in Tax Scenario 3
θ(1 + NCF) + (1− θ)

∑
i∈I λ

i
sω

i in VC Scenario

(139)

with ∑
i∈I

λisω
i =

α

H
Aδ + α

(
1− 1

H

)
δ + (1− α)

= 1 + α

(
1

H
(Aδ − 1)−

(
1− 1

H

)
(1− δ)

)
= 1 + αNCF.

(140)

The growth rate in Tax Scenario 1, 3, and the VC Scenario are given in Equations (59), (74), and
(81). Moreover, the risk-free rate is r = ρ in all three scenarios. The proof is identical to the sections 2
and 3 and thus omitted.

The last part we need to derive is the growth rate and risk-free rate in Tax scenario 2. The results
are summarized in Proposition 8 which we prove next.

Proof 8 (Proof of Proposition 8). Recall that

γ(s, t) = τ(Yt/Ys) + (1− τ)
∑
i∈I

λisω
i = τ(Yt/Ys) + (1− τ) (1 + ατ (r, µY )) (141)

Plugging back into the aggregate resource constraint leads to

Yt =

∫ t

−∞
νe−ν(t−s)γ(s, t)Ys ds = τYt + (1− τ) (1 + ατ (r, µY )NCF)

∫ t

−∞
νe−ν(t−s)Ys ds. (142)
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Subtracting τYt from the left hand side and dividing by (1− τ) leads to

Yt = (1 + ατ (r, µY )NCF)

∫ t

−∞
νe−ν(t−s)Ys ds. (143)

This is the same equation that we got in Subsection 3.4. Hence, differentiating both sides w.r.t time t
leads to the same equation for growth as in Subsection 3.4, that is, Equation (42), but with a different
innovation likelihood ατ (µY , r). Specifically,

µY = νατ (r, µY )NCF (144)

with NCF given in equation (41). Similar to Subsection 4.1 we determine the ratio of total consumption
of newborns to output. Specifically, v

βs =

∑
i∈I λ

i
sC

i
s,s

Ys
= (ν + ρ)

∑
i∈I λ

i
sW

i
s,s

Ys
≡ βτ (r, µY )

= (ν + ρ) ((1− τ)ψ(r)(1 + ατ (r, µY )NCF) + τϕ(r, µY )) .

(145)

where the last equality follows from plugging in Equation (62) for the wealth of newborns and using the
fact that ∑

i∈I
λisω

i = 1 + ατ (r, µY ).

Following the same steps as in the proof of Proposition 5 but with a different β leads to

r = ρ+ µY + ν(1− βτ (r, µY )). (146)

This concludes the proof of this proposition.
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