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Abstract

We study the optimal execution problem in a principal-agent setting. A client (e.g., a

pension fund, endowment, or other institution) contracts to purchase a large position from a

dealer at a future point in time. In the interim, the dealer acquires the position from the market,

choosing how to divide his trading across time. Price impact may have temporary and permanent

components. There is hidden action in that the client cannot directly dictate the dealer’s trades.

Rather, she chooses a contract with the goal of minimizing her expected payment, given the

price process and an understanding of the dealer’s incentives. Many contracts used in practice

prescribe a payment equal to some weighted average of the market prices within the execution

window. We explicitly characterize the optimal such weights: they are symmetric and generally

U-shaped over time. This U-shape is strengthened by permanent price impact and weakened by

both temporary price impact and dealer risk aversion. In contrast, the first-best solution (which

reduces to a classical optimal execution problem) is invariant to these parameters. Back-of-the-

envelope calculations suggest that switching to our optimal contract could save clients billions

of dollars per year.
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1 Introduction

When trading large volumes in financial markets, two frictions play important roles: price impact

and agency conflicts. Owing to price impact, it is typically desirable to split a larger ‘parent order’

into a number of smaller ‘child orders’ rather than to trade all at once. Determining precisely

how to create that split is a complex problem, as one must consider how each child order will

affect the prices obtained for future child orders. A literature on optimal execution considers that

problem, addressing how an institution ought to behave if handling execution in house. Yet, pension

funds and other institutions often outsource execution, in which case agency conflicts also become

relevant. While such agency conflicts are deeply appreciated by practitioners and regulators, they

have so far received little attention in the literature. Analyzing a setting with both price impact

and agency conflict, we show that they in fact interact in important and subtle ways.

Specifically, we model a situation in which an institution (‘the client’ henceforth) contracts with

a dealer, agreeing to conduct a block trade: a single, large off-market transaction. The complexities

of execution are thus shifted to the dealer, who would then pursue offsetting trades on the market.

The client and dealer then need only agree on how their block trade should be priced. In practice,

many trading arrangements prescribe a payment equal to some weighted average of the market

prices prevailing over the execution window. For example, it is common for the dealer to be paid

at the time-weighted average price (TWAP) prevailing on the market, as in a guaranteed TWAP

contract, or at the price prevailing at the end of the execution window, as in a guaranteed market-

on-close (MOC) contract. Because these payment rules transfer some of the price risk burden onto

the client, one economic justification for them is risk aversion on the part of the dealer. Indeed, it

is appropriate to account for risk aversion because these trades are often large, and because dealers

may be reluctant to take on risk due to regulation requiring them to hold capital in amounts

corresponding to their exposure. Yet, questions remain: Are either of these common payment rules

optimal for the client—or at least optimal in some class? If not, how could she do better for herself?

To answer these questions, we formulate the general arrangement as a problem of contracting

under moral hazard, with the client as the principal and the dealer as the agent. The friction is

that the client cannot directly observe the on-market trades that the dealer makes, but only the

realized time series of market prices. Because the dealer’s trading creates price impact, market

prices are signals of the dealer’s actions, but only noisy ones. We begin by solving the model in

discrete time, then characterize the continuous-time limit. Although the contract that we derive

as optimal is in general neither of the commonly-used contracts mentioned above, interestingly

and perhaps surprisingly, it does incorporate features of both: in the continuous-time limit, the

optimal contract puts discrete weights on the initial and terminal prices, and it weights interior

prices according to a constant density.

These results apply to situations faced by pension funds, mutual funds, endowments, or other

institutions when outsourcing execution of their large trades in fixed income, foreign exchange, or

equity blocks. These large trades are typically accompanied by large transactions costs: for exam-

ple, Nasdaq (2022) and SIFMA (2021) estimate institutional transaction costs for U.S. equities of
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around $70 billion per year, nearly all of which are attributable to the price impact of trading. Given

the complexities of order execution and the sums involved, this setting is rife with potential conflict

between the interests of dealers and clients. Cognizant of this, FINRA Rule 5270 prohibits dealers

from trading on “non-public market information concerning an imminent block transaction,” also

called “front-running.” However, that same rule provides an exemption “for the purpose of fulfill-

ing, or facilitating the execution of, the customer block order” (FINRA, 2013), leaving ample scope

for conflict regarding the timing of trades made for this purpose. The potential for conflict is also

recognized by umbrella agreements between dealers and their institutional clients.1 Furthermore,

ample anecdotal evidence highlights that these conflicts of interest have real and sizable implica-

tions for transaction costs (e.g., Traders Magazine, 2005a,b; Bloomberg, 2020, 2022a,b,c,d,e; WSJ,

2022a,b,c,d). These transaction costs might be reduced if prevailing arrangements were modified

to more closely resemble the contractual arrangements that we derive.

Model. At time zero, the client offers a contract to the dealer. A contract is an agreement that

the client and dealer will conduct an off-market trade at time T + 1, the price of which will be a

function of market prices (p1, . . . , pT )>. If the dealer accepts the offered contract, then he prepares

by pursuing offsetting trades on the market during the trading periods {1, . . . , T}. In modeling

how these trades affect the dynamics of prices, we assume a canonical market model that allows for

price shocks and both permanent and temporary price impact. Finally, at time T + 1, the client

and dealer conduct their agreed-upon off-market trade.

Mathematically, the client’s problem is to choose a contract and a recommended trading strategy

for the dealer to pursue subject to individual rationality and incentive compatibility constraints.

The first-best benchmark is what would be optimal in lieu of the hidden-action friction, that is,

if the dealer’s on-market trades were observable to the client. In that case, the problem in fact

reduces to a well-known optimal execution problem whose classic solution entails trading an equal

amount in each period. Our main results highlight how outcomes change due to agency conflicts,

as well as which contractual arrangements are optimal in light of them.

Results. What is the optimal contract? Its precise form depends on the parameters of the

model: the market parameters that govern price impact and the dealer’s degree of risk aversion.

Our analysis optimizes over contracts that are weighted averages of market prices. This is for both

analytical tractability and realism, as more exotic functions of prices are likely to be prohibitively

complex. Indeed, many of the contracts that are commonly used in practice are in this class. What

is not obvious, however, is whether these commonly-used contracts are optimal in this class—and if

not, what the optimum is. Our main result for the discrete-time formulation provides a solution for

the optimal such contract, which we denote τ ∗ = (τ∗1 , . . . , τ
∗
T )>, where τ∗t represents the weight on

1For example, in relation to orders of institutional equities clients, HSBC Securities Inc. (HSI) states that “[p]rior
to the execution of a guaranteed price order, HSI may establish a hedge through single or multiple trades that serve
to offset HSI market risk associated with facilitating these transactions. This hedge will usually involve principal
trades (possibly throughout the day) in the same security. . . such activity may ultimately affect the agreed guaranteed
benchmark price” (HSBC, 2022). Such disclosures are standard (e.g., Goldman Sachs, 2017; Morgan Stanley, 2022).
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the period-t price. Although in closed form, the general formula for τ ∗ is complicated and difficult

to analyze. Nevertheless, numerical experimentation suggests a great deal of interesting structure

(all of which is consistent with what we subsequently prove to hold in the continuous-time limit).

It suggests that the optimal contract is U-shaped (i.e., τ∗1 ≥ τ∗2 ≥ · · · ≥ τ∗dT/2e ≤ · · · ≤ τ∗T−1 ≤ τ∗T ),

with a severity that is strengthened by permanent price impact, weakened by temporary price

impact, and weakened by the dealer’s risk aversion. We also show formally that the optimal

contract is symmetric (i.e., τ∗t = τ∗T+1−t for all t).

We also derive a closed-form solution for the trading behavior that the dealer selects in response

to the optimal contract τ ∗. This behavior can be described by a vector of trades x∗ = (x∗1, . . . , x
∗
T )>,

where x∗t is the volume traded in period t. Numerical experimentation suggests that x∗ is front-

loaded in the sense of first-order stochastic dominance (i.e.,
∑t

s=1 x
∗
s ≥ t

T for all t), with a severity

that is strengthened by permanent price impact, weakened by temporary price impact, and weak-

ened by the dealer’s risk aversion.

To understand the intuition for these patterns, consider first the dealer’s trading incentives.

His profit is the difference between what he receives from the client (determined by the contract)

and the costs of his on-market trades. So, given an offered weighted-average price contract, he can

guarantee himself a profit of zero by selecting trading weights that perfectly mirror the contract

weights. But he can do better by shifting some trading volume from periods with high expected

prices to periods with low expected prices. Permanent price impact raises later prices relative to

earlier ones and consequently generates a frontloading motive for the dealer—an incentive to select

a trading strategy that differs from the offered contract by weighting early periods more heavily.

This incentive to frontload is consistent with dealer behavior observed in various asset classes,

including foreign exchange (Bloomberg, 2016), interest rates swaps (Risk.net, 2021), and options

(Bloomberg, 2019).

Turning now to the client’s problem, the optimal contract reflects a balance between two forces.

On the one hand, permanent price impact leads prices to rise over the trading interval. Thus, if the

dealer’s trading strategy—and hence price dynamics—were fixed, the client would prefer weighting

earlier periods in her contract. On the other hand, the dealer’s trading strategy is endogenous.

Moreover, permanent price impact means that frontloaded trading strategies raise all prices. The

client would therefore prefer for the dealer to use a less frontloaded strategy, but, given the dealer’s

aforementioned frontloading motive, this requires the client to weight later periods in her contract.

The combination of these incentives to weight early and late periods leads to a symmetric and

U-shaped optimal contract. Moreover, because permanent price impact drives these incentives, it

tends to strengthen the severity of both the U-shape and the dealer’s ultimate frontloading. In

contrast, temporary price impact and risk aversion induce other motives for the dealer and opposite

effects.

Finally, we turn to the continuous-time limit of our discrete-time model. In this limit, the

optimal contract takes a strikingly simple form, which can be thought of as an extreme U-shape:

atoms of equal mass at the two extreme times and a constant density at interior times. The dealer’s
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best response is similarly simple: it entails the same constant density at interior times, as well as

atoms at the extreme times where, reflecting his frontloading motive, the initial atom is three times

larger than the terminal atom. We also prove comparative statics for this continuous-time limit

that are consistent with the aforementioned numerical experimentation for the discrete-time model.

The mass at the extreme times—and hence the severity of the optimal contract’s U-shape and the

severity of the dealer’s frontloading—is increasing in permanent price impact and decreasing in

the dealer’s risk aversion. Interestingly, temporary price impact does not affect the solution in

this limit, as the result of two opposing forces that offset each other: on the one hand, temporary

price impact raises prices and hence the client’s costs (if the dealer’s trades are held fixed), but on

the other hand, temporary price impact also partially counteracts the dealer’s frontloading motive,

reducing the client’s costs.

To quantify our findings, we perform a back-of-the-envelope calculation in which we compare

our optimal contract against the two commonly-used contracts mentioned before. We argue that,

for realistic parameters, transaction costs (as measured by implementation shortfall) under our

optimal contract are 9.8 percent lower than those under the guaranteed TWAP contract and 40.1

percent lower than those under the guaranteed MOC contract. For a trade valued at $100 million,

the cost savings could be hundreds of thousands of dollars. While we hesitate, in this paper, to

precisely quantify these gains, this analysis highlights that it is possible to improve substantially

upon the status quo, even while staying within the class of weighted-average-price contracts.

Related literature. There is a long tradition of models that study contracting in financial

settings. Often studied are delegated portfolio management, where the agent selects a financial

portfolio (e.g., Bhattacharya and Pfleiderer, 1985; Carpenter, 2000; Buffa, Vayanos and Woolley,

2022), and delegated asset management, where the agent manages capital invested in a risky asset

and can secretly divert returns (e.g., DeMarzo and Fishman, 2007; Di Tella and Sannikov, 2021).

In this paper, the agent performs a different financial task—namely, scheduling the execution of a

large trade. The agent’s actions are unobserved by the client, and, therefore, this problem belongs

to the large literature on moral hazard.2

Another connection is to principal-agent models in which the agent controls when an action is

taken. For example, this is the case if the agent makes an irreversible stopping decision (e.g., Kruse

and Strack, 2015; Grenadier, Malenko and Malenko, 2016) or chooses the timing of a disclosure

(e.g., Curello and Sinander, 2021) or report (e.g., Madsen, 2022). Such problems also arise in

the literature on revenue management (e.g., Board and Skrzypacz, 2016; Garrett, 2016), in which

consumers decide when to buy.

The trading aspects of our model closely relate to the literature on optimal execution (e.g.,

Bertsimas and Lo, 1998; Almgren and Chriss, 2001; Obizhaeva and Wang, 2013). In that literature,

a trader solves how to optimally work an order across time, taking as given an exogenously-specified

2Particularly related are models set in continuous time (e.g., Holmström and Milgrom, 1987; Sannikov, 2008) and,
especially, analyses of the continuous-time limits of discrete-time models (e.g., Hellwig and Schmidt, 2002; Biais,
Mariotti, Plantin and Rochet, 2007).
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‘market model’ that governs how her trades affect the dynamics of prices. Solving for the first-

best benchmark of our model is equivalent to such an optimal execution problem. Moreover, our

specification of the market model follows the baseline cases of some of those classic models. Our

derivation of the first-best trading strategy therefore replicates classic results from that literature.

Nevertheless, we depart from that literature in that our primary focus is on the second-best problem,

where the key friction is that the dealer’s on-market trades are actions hidden to the client.

The most related paper is Baldauf, Frei and Mollner (2022).3 It begins with a certain commonly-

used contract—the ‘guaranteed VWAP’ contract, in which the client pays the dealer according to the

market’s volume-weighted average price—then derives conditions on the market model that would

rationalize this contract as optimal. Among the conditions required for that contract’s optimality is

that price impact has no permanent component. This paper takes the opposite approach: it begins

instead with a canonical market model that allows for both permanent and temporary price impact,

then derives the optimal weighted-average-price contract. Outside of special cases, this optimum is

not a commonly-used contract in itself—nevertheless, it suggests simple and useful modifications

to prevailing arrangements. The key innovation is allowing for permanent price impact, which not

only allows this paper to speak to a much broader class of settings but also makes the problem

conceptually different: it becomes genuinely dynamic in the sense that the ordering of time periods

matters.

Outline. The remainder of the paper is organized as follows. Section 2 formulates the model in

discrete time. Section 3 solves for the first-best benchmark. Section 4 provides a general discrete-

time solution for the second-best, discusses its comparative statics, and considers several special

cases. Section 5 analyzes the continuous-time limit. Section 6 concludes.

2 Model

A client (the principal) offers her dealer (the agent) a contract regarding a trade between them.4

If the dealer accepts, he prepares for the trade by acquiring an offsetting position from the market.

The main friction is hidden action: the client cannot observe the dealer’s precise sequence of on-

market trades.

2.1 Contracting environment

Client. The client needs to trade a fixed quantity of a particular security, which we normalize to

a purchase of one share. She is risk-neutral.

3Edelen and Kadlec (2012) study a related problem involving delegated trading. The primary difference is that
they study agency trading (where the client pays the realized execution costs). The friction is that effort, which can
lead to a better execution price, is unobservable to the client. In contrast, we study principal trading (where the
payment is contracted in advance and need not equate to realized execution costs). The friction is that the on-market
trades, which influence the contracted payment, are unobservable to the client.

4In assuming a preexisting bilateral relationship between the client and the dealer, we abstract away from the
question of how the client should select a dealer. See Baldauf and Mollner (2022) for an analysis of such an issue.
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Dealer. The dealer has constant absolute risk aversion (CARA), with coefficient λ. To economize

on notation, we use u(w) = −exp(−λw) to denote the dealer’s utility function.

Time. At time 0, the client offers the dealer a contract, which he either accepts or rejects. The

contract specifies terms under which the client would purchase one share from the dealer at time

T + 1. In between are a discrete number of trading periods t ∈ {1, . . . , T}, where pt denotes the

market price in period t.

Contracts. We focus on contracts that are weighted averages of the market prices. Although

these weights will be nonnegative in the optimum, we do not impose this as a constraint. Thus, a

contract can be thought of as a vector τ ∈ T ≡
{

(τ1, . . . , τT )> ∈ RT
∣∣∑T

t=1 τt = 1
}

, which stipulates

that the client will pay the dealer
∑T

t=1 τtpt. When we wish to highlight its dependence on the

number of periods, we sometimes write T T .

Thus, the client can contract only on prices. In particular, she cannot contract directly on the

dealer’s trades. This assumption reflects the fact that on-market trading is anonymous in most

settings.

Remark 1. Although it is restrictive to focus only on contracts that are weighted averages of

market prices (rather than on arbitrary functions), this does nest some important examples of

commonly-used contracts. For example, special cases include τTWAP =
(

1
T , . . . ,

1
T

)>
and τMOC =

(0, . . . , 0, 1)>, which respectively correspond to what are known in practice as a guaranteed TWAP

contract and a guaranteed MOC contract. While a general contract space may be interesting from

a theoretical perspective, it would permit contracts that are unrealistic, either in their complexity

or in the severity of the punishments that they prescribe for certain price-path realizations.5 We

interpret our analysis as a search for the best contract among those comparable in complexity to

those already in use.6

Remark 2. Of the contracts not of the weighted-average price form and hence outside T , perhaps

the most notable are fixed-price contracts (analogous to ‘sell-the-firm’ contracts in classical con-

tract theory). The absence of such contracts is particularly relevant if the dealer is risk-neutral.

(Although our focus is on settings where the dealer is risk averse, our formulation allows for a

risk-neutral dealer.) In such cases, it is immediate that a fixed-price contract—if feasible—would

give the client her first-best payoff and would be an optimal contract overall. All our analysis can

be extended to accommodate fixed-price contracts. In Appendix OA.B, we repeat the analysis

for the case in which the feasible contracts are all affine functions of prices; such a contract can

5Indeed, Mirrlees has observed that in classic moral hazard settings with normally-distributed noise and where
arbitrarily large punishments are possible, the contracting friction essentially disappears, in the sense that the first-
best outcome can be approximated arbitrarily closely using contracts that prescribe massive punishments for very
low realizations of output (Bolton and Dewatripont, 2004, Sec. 4.3). Given the structure of our model, similar issues
could arise here were we to optimize over a general contract space.

6Studying a different problem—how to formulate a manipulation-resistant benchmark price from a set of
transactions—Duffie and Dworczak (2021) take a related approach, restricting attention to benchmarks that are
weighted averages of transaction prices.
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be thought of as a vector (τ0, τ1, . . . , τT ) ∈ RT+1, which stipulates that the client will pay the

dealer τ0 +
∑T

t=1 τtpt. However, the optimal weighted-average-price contract is arguably even more

interesting.

2.2 Market model

On-market trades. If the dealer accepts the contract, then he must purchase the required share

on the market. Effectively, the dealer will intermediate between the client and the market. Letting

xt denote the number of shares purchased by the dealer in period t, we therefore require
∑T

t=1 xt = 1.

Price dynamics. Recalling that pt denotes the market price in period t, we assume the dynamics

pt = p0 + γxt + θ
t∑

s=1

xs +
t∑

s=1

εs.

Thus, θ ≥ 0 parametrizes permanent price impact,7 γ ≥ 0 parametrizes temporary price impact,

and p0 parametrizes the initial price level. Finally, εs represents the price shock in period s, which

we assume is an independent draw from N(0, σ2), where σ > 0. To avoid degenerate solutions, we

assume throughout that at least one of θ and γ is strictly positive.

Remark 3. In addition to being simple and tractable, this specification captures many empirical

facts about markets, for example that liquidity is limited over the trading horizon (even when trade

is known to be for reasons other than information). This specification is, furthermore, canonical

and standard in the literature. For example, it nests the basic case of Bertsimas and Lo (1998), it

is nested by Gârleanu and Pedersen (2013), and it closely relates to the linear case of Almgren and

Chriss (2001). Finally, although these price dynamics are taken as exogenous for the purposes of

our analysis, both these and related dynamics can be readily micro-founded (as in, e.g., Gârleanu

and Pedersen, 2016; Kyle, Obizhaeva and Wang, 2018).

Information sets. In each period t, the dealer selects xt with knowledge of the history ht =

(ps, xs)
t−1
s=1. Let Ht be the set of period-t histories. From an ex-ante perspective (i.e., from the

moment after accepting the contract), the dealer can equivalently be thought of as choosing a

trading strategy: a vector of measurable functions x = (x1, . . . , xT )> such that xt : Ht → R and∑T
t=1 xt = 1 almost surely. We denote the set of trading strategies by X .

Remark 4. A special class of trading strategies are those in which the dealer does not condition on

previously-realized prices in selecting his on-market trades, so that the entire trajectory of trades

is determined ex ante. Such a trading strategy can also be thought of as a vector x ∈ RT . We refer

to these as the static trading strategies.

7As is common in the literature, we intend “permanent” to refer to whatever price impact does not revert over
the trading horizon. For example, if the trading horizon is one day, then price impact that reverts the next morning
can be called permanent for our purposes, even though it does not literally last forever.
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Remark 5. The requirement
∑T

t=1 xt = 1 precludes any net change in the dealer’s inventory. The

dealer merely intermediates between the client and the market, neither trading with the client out

of his own inventory nor taking on a proprietary position of his own. We therefore shut down certain

dealer misbehavior: the dealer’s trading in our model does not meet the definition of illegal front-

running, but rather that of permitted transactions for the purpose of fulfilling a client block order,

under FINRA Rule 5270. This also distinguishes our model from the literature on dual trading (e.g.,

Röell, 1990; Fishman and Longstaff, 1992; Bernhardt and Taub, 2008), which considers dealer-client

conflicts that arise if the dealer can either front-run or trade alongside a client order. Instead, our

analysis focuses on conflicts pertaining to timing of the dealer’s hedging trades.

2.3 The client’s problem

The client’s problem is to choose a contract and a recommended trading strategy for the dealer to

pursue subject to individual rationality and incentive compatibility constraints.8 There is hidden

action in that the client cannot directly observe the dealer’s trades; hence, the contract must make

the recommended trading strategy incentive compatible. Note that, although the client can observe

prices, these constitute only a noisy signal of the dealer’s trades because prices are also affected by

shocks. Mathematically, the client solves the following program

min
τ∈T ,x∈X

Ex[τ · p] subject to

Ex[u(τ · p− x · p)] ≥ u(0), (IR)

(∀x̂ ∈ X ) : Ex[u(τ · p− x · p)] ≥ Ex̂[u(τ · p− x̂ · p)]. (IC)

The form of the (IR) and (IC) constraints follow from the facts that the dealer’s revenue (from the

client) is τ · p and his cost (from on-market trading) is x · p.

3 First-Best Benchmark

Before solving the client’s problem itself, we begin by solving for the first-best benchmark. For

this benchmark, we remove the friction of hidden action—that is, we assume the client can observe

the dealer’s trades. We therefore modify the set of feasible contracts accordingly: to preserve

comparability with the main analysis, we assume that the feasible contracts are weighted averages

of the market prices, but—for this section only—where those weights can depend on the realized

trajectory of trades. Mathematically, a contract is a function τ : {x ∈ RT :
∑T

t=1 xt = 1} → T ,

which maps a trajectory of trades into weights for the market prices.

Given concavity of u, it is optimal to satisfy (IR) by choosing τ to be the identity function when

the dealer acts according to the recommended trading strategy. In fact, note that by choosing τ to

8In allowing the client to recommend a trading strategy to the dealer, this formulation follows classical models
of moral hazard (e.g., Holmström, 1979). Effectively, it assumes that the client can break the dealer’s indifference
however she likes. This assumption is, however, irrelevant, as subsequent analysis reveals that the dealer has a unique
best response to any contract τ ∈ T (cf. Lemma 2).
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be the identity function on the entire domain, the dealer is rendered indifferent among all trading

strategies, so that (IC) is trivially satisfied.9 Plugging τ · p = x · p into her objective, the client’s

problem reduces to

min
x∈X

Ex[x · p].

In other words, solving for the first-best trading strategy reduces to a problem of optimal execution.

In fact, given that our market model is essentially the baseline case considered by Almgren and

Chriss (2001), their results apply to this problem. The first-best solution corresponds to what they

would derive as the optimal trading strategy in the case where all weight is put on minimizing the

mean of implementation shortfall and no weight is put on the variance. The classic result (also

found by others, e.g., Bertsimas and Lo, 1998) is that under these baseline conditions, the optimal

strategy is to trade an equal amount in each period. We therefore obtain the following result:

Proposition 1. The first-best trading strategy is

xFB =

(
1

T
, . . . ,

1

T

)>
.

In the first best, the client’s expected costs of execution are p0 + γ
T + θ(T+1)

2T .

For completeness, we also include a proof of this classic result in Appendix A.

Remark 6. Note that this first-best trading strategy is static; that is, the entire trajectory of trades

is determined ex ante. As we will see with Lemma 2 in the next section, an analogous result holds

for the second-best problem.

Remark 7. In the same way that canonical contracting models take it as an exogenous constraint

that the principal cannot herself perform the agent’s action, we assume that the client cannot

access the market and directly implement xFB herself.10 Several considerations might motivate

this approach. First, the client might lack the dealer’s infrastructure, including market access,

order-handling capabilities, risk management, and compliance—each of which requires substantial

fixed-cost investments. Second, on-market trading might be more complex than its reduced-form

representation in our model (e.g., it might entail order splitting across multiple venues in each

period), so that optimal trading might not be as simple as the expression for xFB suggests. Rather,

optimal trading might depend on specialized knowledge of market structure, which the dealer is

more likely than the client to possess. One way to cast this idea within the language of the model is

to suppose that when the dealer trades, he creates price impact according to the dynamics described

above (with price impact coefficients γ and θ), but if the client were to trade directly on the market,

she would do so less efficiently (with price impact coefficients γclient > γ and θclient > θ).

9In canonical hidden-action models, the standard method for solving the first-best problem would have been to
point out that the principal can use a forcing contract to give the agent a strict incentive to take the desired action.
Given the structure of T , it would be mathematically complex to describe an appropriate forcing contract in our
setting. For simplicity, we therefore use this alternative argument in which (IC) is satisfied, albeit only with equality.

10For models of endogenous choice between trading on the market and trading with a dealer, see, e.g., Seppi (1990);
Lee and Wang (2022).
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4 Discrete-Time Solution

Having solved for the first-best benchmark, this section turns to the second-best problem (as

formulated in Section 2.3). Although we are predominantly interested in the continuous-time limit,

we find it helpful to begin by deriving the general discrete-time solution and discussing its features.

To that end, we consider several special cases, which illuminate the economic forces underpinning

the comparative statics of this general solution.

4.1 The dealer’s best response

Our first step in solving the client’s problem is to note that the (IR) constraint can be eliminated.

Indeed, an attractive feature of the set of weighted-average-price contracts T is that for any τ ∈ T ,

the dealer can guarantee himself the payoff u(0) by selecting the static trading strategy x = τ .

Intuitively, under this choice of x, the dealer’s costs (from his on-market trades) are the same

weighted average of the market prices that determines his payment from the client. He would then

obtain a profit of zero, regardless of the realized price shocks. Because the dealer can in this way

always guarantee himself his outside option, it follows that (IC) actually implies (IR).

Our second step is to simplify the (IC) constraint. Lemma 2 states that, for any contract τ ∈ T ,

the dealer has a unique best response. Thus, (IC) simply requires that the recommended trading

strategy be this best response.

Lemma 2. Define T × T matrices A, E, and F by

A =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 1


,

E =



θ + γ + λσ2 −γ 0 0 0 · · ·
λσ2 θ + γ + λσ2 −γ 0 0 · · ·
λσ2 λσ2 θ + γ + λσ2 −γ 0 · · ·

...
...

. . .
. . .

λσ2 λσ2 θ + γ + λσ2 −γ
1 · · · 1 1


,

F =



1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
...

. . .
. . .

0 · · · −1 1


.

(1)
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For any τ ∈ T , the dealer has a unique best response in X , which is the static trading strategy

x = FA−1Eτ .

According to the lemma, the dealer’s best response is in fact a static trading strategy. To see

the intuition, suppose that after accepting a contract τ ∈ T , the dealer makes a tentative plan to

pursue a particular static trading strategy x. After implementing x1, the dealer observes p1, which

reveals the realization of ε1. Would he want to re-optimize (x2, . . . , xT )? The answer is no. The

intuition is that ε1 affects not only p1 but also every future price. Then, given that the dealer’s

revenue τ ·p and costs x ·p are both weighted averages of the prices, ε1 does not affect his terminal

wealth, so learning it is irrelevant. More generally, suppose that after implementing xt, the dealer

learns εt. Would he want to re-optimize (xt+1, . . . , xT )? Again, the answer is no. This is because

εt shifts the dealer’s terminal wealth by the constant εt
∑t−1

s=1(xs − τs):

T∑
t=1

(τt − xt)pt =

T∑
t=1

(τt − xt)

(
p0 + γxt + θ

t∑
s=1

xs +

t∑
s=1

εs

)

=

T∑
t=1

εt

T∑
s=t

(τs − xs)︸ ︷︷ ︸
=
∑t−1
s=1(xs−τs)

+

T∑
t=1

(τt − xt)

(
p0 + γxt + θ

t∑
s=1

xs

)
.

And because the dealer has CARA utility, this constant shift in the distribution of his terminal

wealth does not affect his preferences over his remaining choices (xt+1, . . . , xT ).11

One implication of Lemma 2 is that the (IC) constraint generally renders the first-best unachiev-

able. Indeed, it follows from the analysis in Section 3 that if the client could choose a contract and

a recommended trading policy free of the (IC) constraint, then she would select τTWAP and xFB,

both of which are the equally-weighted vectors
(

1
T , . . . ,

1
T

)>
. These choices implement the efficient

action, while also leaving the dealer perfectly insured and with zero surplus. Unfortunately for

the client, it is not generally true that FA−1EτTWAP = xFB, so that by Lemma 2, these choices

are inconsistent with (IC). In particular, inequality obtains whenever θ > 0, and the departure

from equality has a particular structure: it is frontloaded in the sense of first-order stochastic

dominance.12

Proposition 3. FA−1EτTWAP is frontloaded relative to xFB, with equality iff θ = 0.

Proposition 3 implies that permanent price impact creates a frontloading motive for the dealer,

in the sense that if θ > 0, then the client cannot obtain her first-best payoff. The intuition is

as follows. Suppose the dealer is offered τTWAP. If he selects xFB, then his trading costs and

his payment from the client are both a simple average of the prices, so that regardless of the

11Several model components therefore combine to imply the optimality of a static trading policy. For example, the
dealer’s best response might not be static if he had non-constant absolute risk aversion, if he was facing a nonlinear
contract, or if the random walk component of the price process were replaced by an AR(1).

12Formally, we define frontloading as follows. Given two T -dimensional vectors a and b, each of whose elements
sum to one, we say that a is frontloaded relative to b if

∑t
s=1 as ≥

∑t
s=1 bs for all t. We also say that a vector is

frontloaded if it is frontloaded relative to ( 1
T
, . . . , 1

T
).
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realized prices, he is guaranteed a profit of zero. But he can do better by frontloading his trading.

Suppose the dealer deviates from xFB by shifting volume from a period t′′ to a period t′ < t′′.

The direct effect of this deviation is to reduce his expected costs at the rate E[pt′′ ] − E[pt′ ] =

θ
∑t′′

t=t′+1 x
FB
t +γ(xFBt′′ −xFBt′ ) = θ t

′′−t′
T . And the indirect effect (through prices) is vanishing, because

as we have noted, xFB insures the dealer against price fluctuations. Moreover, the effect on the

variance of his profit is second-order. It follows that when θ > 0, some sufficiently small deviation

from xFB allows the dealer to make himself better off. In general, the dealer’s best response trades

off this incentive to frontload against the risk of tracking error and excess temporary-impact costs.

In the special case of θ = 0, this incentive to frontload does not arise, and the proposition

implies that the first-best outcome can in fact then be achieved via τTWAP, the (IC) constraint

notwithstanding.13 Hence, our model predicts that τTWAP might yield reasonably good outcomes

when applied to settings or securities for which permanent price impact is relatively small. However,

when permanent price impact is a major factor then τTWAP ought not be expected to perform as

well, which is what motivates the subsequent analysis.

4.2 The general solution

Having eliminated the (IR) constraint and characterized the (IC) constraint, the client’s problem

reduces to

min
τ∈T

Ex[τ · p] subject to x = FA−1Eτ .

Our next result concerns the solution to this problem. It provides explicit formulas for the optimal

weighted-average-price contract τ ∗ (henceforth, simply the “optimal contract”) and the incentive-

compatible trading strategy x∗ = FA−1Eτ ∗ that the client recommends to the dealer. The formulas

are complicated, but they are fully explicit and easy to compute.

Proposition 4. The weights of the optimal contract and the dealer’s on-path trading strategy are

given by τ ∗ = 1
1>M−11

M−11 and x∗ = 1
1>M−11

FA−1EM−11, where 1 = (1, 1, . . . , 1)> denotes a

T -dimensional vector of ones and

M = θA−1E + θE>(A−1)> + γFA−1E + γE>(A−1)>F>. (2)

The client’s expected costs of execution are p0 + 1
21>M−11

.

To establish this as the form of the optimal contract, the proof shows that the client’s expected

payment under a contract τ can be expressed as 1
2τ
>Mτ . By symmetry of M , the optimal contract

13This aspect of the result and the economic forces behind it are similar to why the guaranteed VWAP contract—
under which the client pays the dealer at the market’s volume-weighted average price (VWAP)—is optimal in the
setting of Baldauf, Frei and Mollner (2022). One subtlety is that in that paper, each trading period has an associated
‘market condition,’ about which the dealer has superior information. The optimal contract weights prices by market
volume so as to incentivize the dealer to properly trade on his information about market conditions. In contrast, this
paper uses a canonical market model in which such market conditions do not feature (or do not differ across periods).
Hence, the optimal contract need not weight by volumes, and a simple average of prices achieves the optimum.
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weights satisfy Mτ ∗ = µ1, where µ is the Lagrange multiplier on the constraint τ>1 = 1. The

constraint then implies τ ∗ = 1
1>M−11

M−11, as the proposition says. Applying Lemma 2, we also

obtain x∗ = 1
1>M−11

FA−1EM−11.

The problem and its solution are mathematically complex, and so it is difficult to provide

intuition for the precise form of the general solution exhibited in Proposition 4. Nevertheless, the

logic of the solution can be explained through three special cases: (i) when permanent price impact

is the dominant consideration (i.e., θ → ∞), (ii) when temporary price impact is the dominant

consideration (i.e., γ →∞), and (iii) when price risk is the dominant consideration (i.e., λ→∞).14

We next consider each of these special cases in turn, then build upon them to explain the features

and the comparative statics of the general solution.

4.3 When permanent price impact is the dominant consideration

For the case in which permanent price impact is the dominant consideration, suppose that there is

no temporary price impact and that the dealer is risk-neutral.

Corollary 5. Assume that there is no temporary price impact (γ = 0) and that the dealer is

risk-neutral (λ = 0).

(i) For any τ ∈ T , the dealer’s best response is xt = 1
T −

∑T
s=1

s
T τs +

∑T
s=t τs.

(ii) The weights of the optimal contract are τ ∗ = (1
2 , 0, . . . , 0,

1
2)>, so that the dealer’s on-path

trading strategy is x∗ = (T+1
2T , 1

2T , . . . ,
1

2T )>. The client’s expected costs of execution are

p0 + θ(3T+1)
4T .

For the arguments below, let us assume that both contract weights τ and the dealer’s trading

strategy x are restricted to entail nonnegative weights. This is only for simplicity of the exposition.

Indeed, given Corollary 5(ii), this restriction does not bind, and in fact, many of the arguments

below could be formulated in reverse to rule out putative solutions entailing negative weights. With

this in hand, we proceed by backward induction:

The dealer’s problem. Consider how the dealer would respond to an arbitrary contract τ ∈ T .

Beginning from any static trading strategy x, consider a perturbation that shifts volume from xt+1

to xt. The dealer’s expected profit E[τ · p− x · p] is affected in two ways:

• Direct effect. The direct effect is positive: E[pt+1] − E[pt] = θxt+1. Intuitively, prices tend

to increase over time because of the permanent price impact of the dealer’s trades. Thus, if

prices were held fixed, the dealer would reduce the cost of his on-market trading by shifting

volume to earlier periods.

14Case (i) is equivalent to what obtains if θ > 0 and γ = λ = 0. Likewise, case (ii) is equivalent to what obtains
if γ > 0 and θ = λ = 0. Because the exposition is simpler if limits are avoided, this is what Sections 4.3 and 4.4
consider. On the other hand, Section 4.5 does treat the limiting case of λ → ∞. Although λ > 0 and θ = γ = 0
leads to the same dealer’s best response, it does not lead to a unique optimal contract, as without price impact, all
contracts lead to identical outcomes for the dealer. Mathematically, if θ = γ = 0, the matrix M in (2) is the zero
matrix so that the inverse (needed in the formula for τ ∗ in Proposition 4) is not well defined. Thus, Section 4.5
maintains the assumption that at least one of θ and γ is strictly positive, instead considering the limit as λ→∞.
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• Indirect effect. Of course, prices will not hold fixed. In particular, this shift affects E[pt],

creating the following indirect effect: (τt − xt)
(
∂E[pt]
∂xt︸ ︷︷ ︸
=θ

− ∂E[pt]
∂xt+1︸ ︷︷ ︸

=0

)
= (τt − xt)θ.15

Note that if xt = τt, then the indirect effect is zero—intuitively, the dealer is perfectly insured

with respect to pt if xt = τt—leaving the positive direct effect to dominate. It follows that the

optimal xt must exceed τt. This argument applies for any t < T , implying that the dealer has a

frontloading motive in this case: his best response is to choose an x that is frontloaded relative to

the offered τ .16

Summing both effects, the total derivative is θ[xt+1 + τt − xt]. Thus, if x were a best response

to τ , we would have xt+1 = xt − τt for all t < T . Having assumed all entries of τ are nonnegative,

we conclude from these first-order conditions that (xt)
T
t=1 is a weakly decreasing sequence. These

conditions moreover imply

xt =
1

T
−

T∑
s=1

s

T
τs +

T∑
s=t

τs, (3)

as claimed by Corollary 5(i).

The client’s problem. For intuition into why τ ∗ = (1
2 , 0, . . . , 0,

1
2)> is optimal in this case of a

risk-neutral dealer and no temporary price impact, we first explain why the optimal contract puts

weight only on the extremal prices. Starting from an arbitrary τ , consider a perturbation that

implements a mean-preserving spread of the contract weights. Both the direct and indirect effects

of this perturbation are advantageous for the client:

• Direct effect. As mentioned while analyzing the dealer’s problem, (xt)
T
t=1 is a weakly decreas-

ing sequence. As a positive affine transformation of the partial sums of (xt)
T
t=1, (E[pt])

T
t=1 is

therefore a weakly concave sequence. Thus, if the prices were held fixed, the client’s payment

would be weakly lower under a mean-preserving spread of τ .

• Indirect effect. Of course, prices will not hold fixed, as a change in τ leads to a change in the

dealer’s best response x, affecting price dynamics. Using (3), we compute

t∑
s=1

xs =
t

T
+

t∑
s=1

s

(
1− t

T

)
τs +

T∑
s=t+1

t
(

1− s

T

)
τs. (4)

Observe that for all t, the coefficients on (τ1, . . . , τT )> in this expression form a weakly concave

sequence.17 Thus, a mean-preserving spread of τ leads the dealer to backload his trading,

15There are no other indirect effects: (i) this shift does not affect the earlier prices p1, . . . , pt−1; and (ii) because
price impact is purely permanent, it also does not affect the later prices pt+1, . . . , pT .

16This is for any τ and is therefore a stronger conclusion than that of Proposition 3, which applies only if the offered
contract is τTWAP. On the other hand, Proposition 3 holds for general parameters, whereas this section specializes
to the case of γ = λ = 0.

17More precisely, the coefficients on (τ1, . . . , τT )> constitute an inverted-V , which is maximized at the coefficient
on τt. The intuition is that

∑t
s=1 xs is increasing in each of (x1, . . . , xt), and given the dealer’s frontloading motive,
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in the sense of first-order stochastic dominance. Given that E[pt] = p0 + θ
∑t

s=1 xs, such

backloading weakly reduces each price, which benefits the client.

The client therefore unambiguously benefits from mean-preserving spreads of the contract weights.

It follows that τ∗2 = · · · = τ∗T−1 = 0, so that the optimal contract is a U-shape.18 To see that it is

also symmetric, begin from an arbitrary contract whose interior weights are all zero and consider a

perturbation that shifts weight from period T to period 1. Unlike the mean-preserving perturbation

considered above, here the direct and indirect effects have opposite signs:

• Direct effect. On the one hand, given the permanent price impact, prices are expected to rise

over the trading interval. Thus, if the dealer’s trading strategy—and hence price dynamics—

were fixed, the client would prefer to put full weight on the first period.

• Indirect effect. On the other hand, price dynamics will respond to the contract. All else

equal, the client prefers low prices. Given the permanent price impact, each price is lowest

when the dealer backloads his trading as much as possible. Taking into account the contract’s

influence on the dealer’s trading strategy (i.e., that his trading will be frontloaded relative to

the contract), prices are then lowest when the client puts full weight on the last period.

The optimal contract must balance these two considerations. Due to the linearity of price impact,

these two effects offset when τ1 = τT = 1
2 .19

4.4 When temporary price impact is the dominant consideration

For the case in which temporary price impact is the dominant consideration, suppose that there

is no permanent price impact and that the dealer is risk-neutral. In this case, the client optimally

offers the guaranteed TWAP contract, which weights each trading period equally. It induces the

dealer to use the first-best trading strategy, which similarly puts equal weight on each period. And

in this case, the client obtains her first-best payoff.

an increase in τt leads each of (x1, . . . , xt) to increase. Let us contrast that with τt−1 and τt+1. An increase in τt−1

leads (x1, . . . , xt−1) to increase but does not lead xt to increase. An increase in τt+1 also leads (x1, . . . , xt) to increase,
but the effect is more muted because τt+1 also works to increase xt+1.

18That the optimal contract puts relatively less weight on prices of interior periods is also intuitive because these
prices are the easiest for the dealer to manipulate, in the following sense. Fixing any static trading strategy x̄ as a
baseline, imagine that in choosing his trading strategy x, the dealer is constrained not only by

∑T
s=1 xs = 1 but also

by xt ∈ [x̄t − δ, x̄t + δ] for all t. This means that
∑t
s=1 x̄s − δmin{t, T − t} ≤

∑t
s=1 xs ≤

∑t
s=1 x̄s + δmin{t, T − t},

so that the dealer can manipulate pt by θδmin{t, T − t} in either direction.
19Indeed, we have E[pt] = p0 + θ

∑t
s=1 xs = p0 + θ

[
t
T

+
(
1− t

T

)
τ1
]
, using equation (4) and τ2 = · · · = τT−1 = 0.

Thus, the direct effect of perturbing τ = (τ1, 0, . . . , 0, τT )> so as to shift weight from period T to period 1 is

E[p1]− E[pT ] = θ

[
1

T
+
(

1− 1

T

)
τ1 − 1

]
= −θ

(
1− 1

T

)
(1− τ1).

And the indirect effect is

τ1

(
dE[p1]

dτ1
− dE[p1]

dτT︸ ︷︷ ︸
=0

)
+ τT

(
dE[pT ]

dτ1︸ ︷︷ ︸
=0

− dE[p1]

dτT︸ ︷︷ ︸
=0

)
= τ1θ

(
1− 1

T

)
.
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Corollary 6. Assume that there is no permanent price impact (θ = 0) and that the dealer is

risk-neutral (λ = 0).

(i) For any τ ∈ T , the dealer’s best response is x = 1
2τ + 1

2

(
1
T , . . . ,

1
T

)>
.

(ii) The weights of the optimal contract are τ ∗ =
(

1
T , . . . ,

1
T

)>
, so that the dealer’s on-path trading

strategy is x∗ =
(

1
T , . . . ,

1
T

)>
. The client’s expected costs of execution are p0 + γ

T .

Claim (i) says that the dealer has a smoothing motive in this case: his best response is to choose

an x that partially smooths the offered τ . To understand this, suppose that the dealer did not

smooth at all, selecting the trading strategy x = τ . His trading costs and his payment from the

client would therefore be the same weighted average of the prices, so that he would be guaranteed

a profit of zero. But he can do better by smoothing his trading. Suppose the dealer deviates from

x = τ by shifting volume from a period t′′ to a period t′ where τt′ < τt′′ . The direct effect of this

deviation is to reduce his expected costs at the rate E[pt′′ ]−E[pt′ ] = γ(xt′′ −xt′) = γ(τt′′ − τt′) > 0.

And the indirect effect (through prices) is vanishing, because as we have noted, x = τ insures the

dealer against price fluctuations. That a risk-neutral dealer optimally smooths precisely one half

of the variation in τ is due to the linearity of price impact.

In particular, if the dealer is offered the guaranteed TWAP contract τTWAP =
(

1
T , . . . ,

1
T

)>
,

then he selects x = ( 1
T , . . . ,

1
T )>, which is in fact the efficient action (i.e., xFB). This outcome also

leaves the dealer with zero surplus. It follows that τTWAP gives the client her first-best payoff.

Clearly, nothing can do better than that, meaning that this contract must be optimal.

4.5 When price risk is the dominant consideration

For the case in which price risk is the dominant consideration, fix θ and γ, and consider the limit as

λ→∞. According to claim (ii) of the following result, the outcome is similar to the case in which

temporary price impact is the dominant consideration: the guaranteed TWAP contract is optimal,

it induces the dealer to use the first-best trading strategy, and the client obtains her first-best

payoff. But it is for a different reason, as according to claim (i), there is a difference in the dealer’s

best response function.

Corollary 7. Consider the limit as the dealer becomes infinitely risk averse (λ→∞).

(i) For any τ ∈ T , the dealer’s best response converges to x = τ .

(ii) The weights of the optimal contract converge to τ ∗ =
(

1
T , . . . ,

1
T

)>
, so that the dealer’s on-

path trading strategy converges to x∗ =
(

1
T , . . . ,

1
T

)>
. The client’s expected costs of execution

converge to p0 + γ
T + θ(T+1)

2T .

Claim (i) says that the dealer has a mirroring motive in this case: his best response is to

choose an x equal to the offered τ . The intuition is the following. As the dealer becomes more

risk averse, he places a greater emphasis on insuring himself against price shocks. In fact, he can

perfectly insure himself by selecting a static trading strategy with weights that mirror the contract

he is offered. In the limit of infinite risk aversion, this is exactly what he does. In particular,
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τTWAP =
(

1
T , . . . ,

1
T

)>
induces the dealer to select the efficient action xFB =

(
1
T , . . . ,

1
T

)>
. This

outcome moreover leaves the dealer perfectly insured and with zero surplus. It follows that τTWAP

gives the client her first-best payoff, and must therefore be optimal.

This result reflects an interesting contrast relative to classical models of moral hazard (e.g.,

Holmström, 1979). Those classical models feature an insurance-incentives tradeoff: the agent can

be induced to take the efficient action (i.e., high effort) only if he is exposed to risk. And if the

agent is very risk averse, then he must be paid a significant risk premium for that. The principal’s

payoff then typically declines as the agent becomes more risk averse. In contrast, given the special

structure of our setting, inducing the efficient action (i.e., xFB) does not always require exposing

the dealer to risk. In fact, in this limit of an infinitely risk averse dealer, τ = ( 1
T , . . . ,

1
T )> induces

the dealer to select xFB without exposing him to any risk at all. In consequence, the client’s payoff

is not monotonically decreasing in λ.

4.6 Discussion of the general solution

The general model can be thought of as a combination of the three aforementioned special cases.

Accordingly, the general formula for the dealer’s best response reflects a mixture of the frontloading,

smoothing, and mirroring motives respectively discussed in the previous sections. And the general

formula for the optimal contract similarly combines the features of the optimal contracts from those

special cases. One notable feature shared by all three special cases is that the optimal contract is

symmetric, in the sense that τ∗j = τ∗T+1−j for all j. In fact, such symmetry holds in general.

Corollary 8. The optimal contract weights are symmetric: τ∗j = τ∗T+1−j for all j = 1, . . . , T .

The intuition for why symmetry obtains in general can be thought of as a combination of the

various reasons for why it obtains in each of the three special cases discussed before.

To illustrate the general solution provided by Proposition 4, Figures 1–3 display τ ∗ and x∗

for various choices of the parameters θ, γ, and λ.20 The optimal contract weights are depicted in

the left panels of these figures; consistent with Corollary 8, they are indeed symmetric. The right

panels depict the dealer’s on-path trading strategy.

Figures 1–3 suggest that the general solution exhibits several additional qualitative patterns.

First, the optimal contract weights are U-shaped: τ∗1 ≥ τ∗2 ≥ · · · ≥ τ∗dT/2e ≤ · · · τ
∗
T−1 ≤ τ∗T .21

Second, the dealer responds with a trading strategy that is frontloaded in the sense of first-order

stochastic dominance:
∑s

t=1 x
∗
t ≥ s

T for all s = 1, . . . , T . Third, the severity of both this U-shape

and this frontloading is strengthened by θ (the coefficient of permanent price impact), weakened

by γ (the coefficient of temporary price impact), and weakened by λ (the dealer’s coefficient of

absolute risk aversion).

20Note that λ and σ affect the solution only through the quantity λσ2. Hence, Figure 3, which depicts how the
solution changes with λ, speaks also to how the solution changes with σ.

21In fact, a stronger property appears to hold. The figures suggest that the optimal contract weights are convex
in the sense that τ∗1 − τ∗2 ≥ τ∗2 − τ∗3 ≥ · · · ≥ τ∗T−2 − τ∗T−1 ≥ τ∗T−1 − τ∗T . Given that the weights are symmetric (cf.
Corollary 8), this convexity condition implies the U-shape condition τ∗1 ≥ τ∗2 ≥ · · · ≥ τ∗dT/2e ≤ · · · τ∗T−1 ≤ τ∗T .
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Figure 1: The optimal contract weights and trading strategy for different levels of permanent price
impact. When there is no permanent price impact (θ = 0), both the optimal weights and the trading
strategy are constant over time. When the permanent price impact becomes larger, the optimal
weights become more U-shaped, and the dealer’s trading strategy becomes more frontloaded. The
other parameters are γ = 1, λ = 1, σ = 1, and T = 20.
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Figure 2: The optimal contract weights and trading strategy for different levels of temporary price
impact. When there is no temporary price impact (γ = 0), the optimal weights are the same for all
periods except for the first and last periods, and the dealer’s trading strategy is frontloaded. When
the temporary price impact becomes larger, the curves for the optimal weights become smoother,
and the dealer’s trading strategy becomes less frontloaded. The other parameters are θ = 1, λ = 1,
σ = 1, and T = 20.

The intuition for these patterns can be understood through the aforementioned special cases.

With permanent price impact as the dominant consideration, we have τ ∗ = (1
2 , 0, . . . , 0,

1
2)>,
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Figure 3: The optimal contract weights and trading strategy for different levels of risk aversion.
When risk aversion becomes larger, the optimal weights become less U-shaped, and the dealer’s
trading strategy becomes less frontloaded. The other parameters are θ = 1, γ = 1, σ = 1, and
T = 20.

which is the maximally-severe U-shape, and x∗ = (T+1
2T , 1

2T , . . . ,
1

2T )>, which is strictly front-

loaded. With either temporary price impact or price risk as the dominant consideration, we have

τ ∗ = ( 1
T , . . . ,

1
T )>, which is the minimally-severe U-shape, and x∗ = ( 1

T , . . . ,
1
T )>, which represents

minimally-severe frontloading.

The intuition for why the U-shape and frontloading (weakly) obtain in general can be thought

of as a combination of the different reasons for why they obtain in each of the three special cases

discussed before. The comparative statics can also be understood in these terms. An increase in θ

moves us toward the limiting case of Section 4.3, so it increases both the severity of the U-shape

and the severity of the frontloading. Increases in γ and λ reduce those severities because they move

us toward the limiting cases of Sections 4.4 and 4.5, respectively.

We stress that these observations about the U-shape of the optimal contract and the frontloading

of the dealer’s on-path trading come only from numerical experimentation and do not correspond

to any formal result that we have been able to derive from our closed-form solution to the general

discrete-time model. We do, however, prove analogues of these observations for the continuous-time

limit analyzed in the next section.

5 Continuous-Time Limit

In light of ambiguity regarding what precisely a trading period represents, as well as recent trends

toward progressively high-frequency trading, we are motivated to consider the continuous-time

limit of our discrete-time model. For this limit, we let the number of trading periods diverge (i.e.,

T → ∞). And at the same time, we also let the distance between consecutive trading periods

vanish, so as to hold the execution horizon constant. To capture the latter in this model, we shrink
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the variance of price shocks to zero (i.e., σ2 → 0) in such a way that Tσ2 remains constant.

5.1 The optimal contract

To illuminate the underlying patterns, the following result is stated in terms of cumulative values

through quantiles q of the execution period:
∑dqT e

t=1 τ∗t and
∑dqT e

t=1 x∗t . And to ensure that the

convergence is well behaved, we focus on the case of a strictly risk-averse dealer.

Proposition 9. Assume the dealer is strictly risk-averse (λ > 0). Consider a sequence of execution

horizons (Tk)
∞
k=1 and a sequence of price-shock variances (σ2

k)
∞
k=1 such that limk→∞ Tk = ∞ and

Tkσ
2
k = Tσ2 for all k. For each k, let τ ∗k ∈ T Tk be the associated optimal contract, and let x∗k be

the dealer strategy that best responds to τ ∗k. For all q ∈ [0, 1],

lim
k→∞

dqTke∑
t=1

τ∗kt =


0 if q = 0

1−a
2 + aq if q ∈ (0, 1)

1 if q = 1

and lim
k→∞

dqTke∑
t=1

x∗kt =


0 if q = 0

3(1−a)
4 + aq if q ∈ (0, 1)

1 if q = 1

where a = 1
1+ 4θ

λTσ2

. The client’s expected costs of execution converge to p0 + 3−a
4 θ.

The optimal contract in the continuous-time limit takes a surprisingly simple form, which can in

fact be thought of as an extreme U-shape: the interior times are weighted with a constant density

of a, and the two boundary instants are weighted with atoms of 1−a
2 each.22 For the dealer’s best

response, interior times are also weighted with a constant density of a, but there is frontloading in

terms of the boundary weights: the initial atom is three times larger than the terminal atom.

Comparative statics. Note that this density a is increasing in (λ, T, σ2) and decreasing in θ.

Because a is inversely related to the severity of the optimal contract’s U-shape, these relationships

are consistent with what the earlier numerical experimentation suggests holds in general. To explain

the intuition, note that permanent price impact generates an expected gap between the initial and

terminal prices, creating a frontloading motive for the dealer: by frontloading, the dealer expects

to buy low and sell high. A larger θ implies a larger expected gap and a larger frontloading motive.

On the other hand, larger Tσ2 implies a larger variance for this gap, hence more price risk, and

a smaller frontloading motive. Larger λ means less risk-bearing capacity, and a similarly smaller

frontloading motive. Finally, to see the connection between the frontloading motive and a, consider

what would happen if the frontloading motive were to disappear entirely so that the dealer’s trades

perfectly mirrored the weights of the offered contract. In that case, the client could obtain her

first-best payoff from a guaranteed TWAP contract (i.e., the case of a = 1). By similar logic,

smaller (larger) frontloading motives imply larger (smaller) values of a.

22Studying an optimal execution problem, Obizhaeva and Wang (2013) derive a very similar form for the optimal
trading strategy: interior times weighted with a constant density and boundary instants weighted with equal atoms.
But the similarity is only superficial. They solve a different problem (a problem of optimal execution rather than one
of optimal contracting) under a different set of assumptions.
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In the continuous-time limit considered in Proposition 9, the client’s expected costs of execution

exceed the execution cost of the first best by 1−a
4 θ, resulting as the difference between p0 + 3−a

4 θ

and p0 + 1
2θ.

23 This wedge is decreasing in a, as larger values of a mean smaller frontloading of the

optimal contract and a trading strategy that is closer to the first best.24,25

Temporary price impact. If trading were everywhere sufficiently diffuse, then temporary price

impact would vanish in the limit. Indeed, trading costs due to temporary price impact are

γ
∑Tk

t=1(xkt )
2, which, for example, vanish under the first-best trading policy, xFB,k =

(
1
Tk
, . . . , 1

Tk

)
.

More generally, a sufficient condition for vanishing temporary price impact is that max1≤t≤Tk |xkt |
is o(1/

√
Tk).

However, under the best response to the optimal contract, trading is not everywhere diffuse in

this sense (unless θ = 0), and temporary price impact does not vanish. So it is for subtle reasons

that temporary price impact does has no effect on the limit characterized by Proposition 9. This

invariance obtains because temporary price impact creates two effects. On the one hand, if the

dealer’s trading schedule were held fixed, then an increase in γ would raise prices and hence the

client’s payment. But on the other hand, an increase in γ creates a smoothing motive for the

dealer, which reduces the extent of the dealer’s frontloading and hence the client’s payment. In the

continuous-time limit, these two considerations offset under the optimal contract.

Convergence. Although temporary price impact has no effect on the continuous-time limit, it

does affect convergence to this limit. Without temporary price impact, the first and last contract

weights converge to the atoms of the continuous-time limits so that

lim
k→∞

τ∗k1 = lim
k→∞

τ∗kTk =
1− a

2
and lim

k→∞
τ∗kj+1 = lim

k→∞
τ∗kTk−j = 0 for any fixed j ≥ 1.

In contrast, with temporary price impact, we have a sequence of discrete weights

lim
k→∞

τ∗kj+1 = lim
k→∞

τ∗kTk−j =
θγj

(θ + γ)j+1

1− a
2

for any fixed j ≥ 0.

23A related observation is that, using the notation introduced in Remark 7, the client benefits from contracting
with a dealer (rather than trading directly on the market) if p0 + 3−a

4
θ < p0 + 1

2
θclient, or if θclient > 3−a

2
θ.

24Because a is increasing in (λ, T, σ2), it follows that this wedge is decreasing in those parameters. Moreover, θ
enters the expression for this wedge both directly and through a. Because a is decreasing in θ, both effects go in the
same direction: the wedge is increasing in θ.

25Appendix A.11 decomposes this wedge as the sum of the dealer’s expected profit and an inefficiency due to
suboptimal trading (i.e., the fact that x∗ 6= xFB):

1− a
4

θ︸ ︷︷ ︸
wedge between first-best

and second-best payments

=
1− a

2
θ − (1− a)2

4

θ2

θ + 2γ︸ ︷︷ ︸
dealer’s expected profit

+
(1− a)2

4

θ2

θ + 2γ
− 1− a

4
θ.︸ ︷︷ ︸

inefficiency from suboptimal trading
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Note that the sum of each of the two sequences equals

∞∑
j=0

θγj

(θ + γ)j+1

1− a
2

=
θ

θ + γ

1

1− γ
θ+γ

1− a
2

=
1− a

2
,

which coincides with what Proposition 9 specifies for the jumps of limk→∞
∑dqTke

t=1 τ∗kt at q = 0 and

q = 1. Figure 4 illustrates this convergence.26

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimal cumulative contract weights 

Figure 4: The optimal contract for a large k (such that Tk = 2,000). There are two sequences of
discrete weights at the beginning and end of the trading times while the weights are smooth for
interior times. The parameters are θ = 1, γ = 1, λ = 1, T = 1, and σ = 1.

Interestingly, the optimal trading strategy has a different form: it has a sequence of discrete

weights only at the beginning, but not at the end of the trading times.27 Without temporary price

impact, only the first element of the trading strategy converges to a nonzero value

lim
k→∞

x∗k1 =
1− a

2
, lim

k→∞
x∗kj+2 = 0, lim

k→∞
x∗kTk−j = 0 for any fixed j ≥ 0.

26Although λ affects a, and hence the total amount of weight in these sequences, it does not affect how this total is
divided across the elements of the sequences (in the limit). This is intuitive because when the time periods become
shorter, price fluctuations between consecutive periods become smaller, so that for the purposes of these periods
around the boundary times, the dealer behaves in the limit as if he were risk-neutral (regardless of λ). The role of
γ is exactly the opposite: it affects the division of weight across the sequences, but not the weight assigned to the
sequences in total.

27This observation is consistent with the best-response form x = FA−1Eτ in Lemma 2: We can check that τ

given by τj+1 = c θγj

(θ+γ)j+1 for a constant c > 0 and all j = 0, 1, . . . , T − 1 is an eigenvector of the matrix FA−1E

to eigenvalue 1. Hence, x = τ for such a τ , which explains why the contract and trading strategy have the same
sequence of discrete weights at the beginning of the trading times. The same argument does not apply to the weights

at the end of the trading times. Indeed, if we set xk = FA−1Eτ k for τ k given by τkTk−j = c θγj

(θ+γ)j+1 for a constant

c > 0 and all j = 0, 1, . . . , Tk − 1, we can compute limk→∞ x
k
Tk−j = 0 for all j.
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When there is temporary price impact, we have

lim
k→∞

x∗kj+1 =
θγj

(θ + γ)j+1

1− a
2

, lim
k→∞

x∗kTk−j = 0 for any fixed j ≥ 0. (5)

However, the jumps of limk→∞
∑dqTke

t=1 x∗kt at q = 0 and q = 1 are not determined only by these

sequences of discrete weights. As stated in Proposition 9, the jump at q = 0 is 3(1−a)
4 , consisting of

not only
∑∞

j=0
θγj

(θ+γ)j+1
1−a

2 = 1−a
2 from (5), but also another infinite sum whose terms individually

converge to zero but whose sum converges to 1−a
4 . This is illustrated in Figure 5, where we see

both the sequence of discrete weights at zero and a piece of the curve near zero that converges to

a vertical line as k →∞. Likewise, the jump at q = 1 is 1−a
4 , which comes entirely from an infinite

sum of terms that individually all converge to zero.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The cumulative trading strategy for a large k (such that Tk = 2,000). There is a sequence
of discrete weights at the beginning of the trading times while the weights are smooth for interior
times and towards the end (although part of the smooth curve converges to a vertical line). The
parameters are γ = 1, θ = 1, λ = 1, T = 1, and σ = 1.

Proof strategy. We begin by conjecturing three different regions of convergence for the contract:

the first Sk periods, the last Sk periods, and the middle Tk − 2Sk periods, where Sk → ∞ and
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S3
k
Tk
→ 0.28,29 We demonstrate that the limiting optimal contract entails a constant density in the

middle region. Given an arbitrary such density a, we demonstrate that the initial and terminal

regions converge to the limits described above. Plugging in, the client’s cost in the limit can be

expressed as a quadratic function of a, which is minimized at the a reported in the proposition.

To explain in more detail why the limiting optimal contract entails a constant density at interior

times, define Xq = limk→∞
∑dqTke

t=1 xkt and Vq = limk→∞
∑dqTke

t=1 τkt . In the proof, we demonstrate

that the continuous-time limit of the dealer’s best response function as defined by Lemma 2 is

Xq = θ
λTσ2 V̇q+Vq for all q ∈ (0, 1). This equation reflects the dealer’s frontloading motive: provided

V̇q ≥ 0 (as holds in the optimum), we have Xq ≥ Vq. It likewise indicates that this frontloading

motive is strengthened by θ and weakened by (λ, T, σ2). Plugging in this best response, the client’s

expected costs due to permanent price impact at the interior times q ∈ (0, 1) are

θ

∫ 1

0
Xq dVq =

θ2

λTσ2

∫ 1

0
V̇ 2
q dq + θ

∫ 1

0
VqV̇q dq︸ ︷︷ ︸

= θ
2

(
V 2

1−−V 2
0+

) . (6)

In fact, permanent price impact is the client’s only consideration at interior times—that temporary

price impact is avoided follows from continuity of Xq and Vq on q ∈ (0, 1).30 Given arbitrary values

for V1− and V0+, the client’s problem for the interior times therefore distills to choosing Vq to

minimize the objective (6), which is done by choosing V̇q to be a constant. This constant density at

the interior times is the key for understanding the shape of the optimal contract—intuitively, the

atoms at the boundary instants follow because they are then the only way to render a U-shape.

5.2 Discussion of outcomes under common contracts

Although not optimal in our model, two contracts that are nevertheless commonly used are τTWAP

and τMOC. Natural questions include: What trading behavior is induced by these common con-

tracts? By how much do they underperform the optimal contract? Under what situations, if any,

do they deliver outcomes that are close to the client’s second-best payoff? The following result

allows us to answer these.

28This proof strategy is not fully rigorous because it assumes that the cumulative weights of the optimal contracts
converge to a smooth function (except for jumps at 0 and 1) and determines the limit under this assumption. Although
this assumption is consistent with numerical experimentation, a fully rigorous proof would also demonstrate the nature
of the convergence. For the special case of no temporary price impact, we can produce such a proof, and we include
it in Appendix OA.A.2. We also note that this proof strategy relies on a conjecture only about the convergence of
the optimal contract—and no analogous conjecture about the dealer’s best response, whose convergence behavior is
somewhat more complicated (i.e., the convergence of part of the curve to a vertical line illustrated by Figure 5).

29The reason we require
S3
k
Tk
→ 0 rather than simply Sk

Tk
→ 0 will become clear in the proof. In short, it is because

we approximate the client’s expected costs in the continuous-time limit by terms with errors of order
S3
k
Tk

, where S3
k

comes from multiple layers of sums related to the permanent price impact and the contract.
30Indeed, both max1+Sk≤t≤Tk−Sk

|x∗kt | and max1+Sk≤t≤Tk−Sk
|τ∗kt | are O( 1

Tk
), meaning that the client’s expected

costs due to temporary price impact at these interior times are γ
∑Tk−Sk
t=1+Sk

x∗kt τ
∗k
t → 0.
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Proposition 10. Assume the dealer is strictly risk-averse (λ > 0). Consider a sequence of execu-

tion horizons (Tk)
∞
k=1 and a sequence of price-shock variances (σ2

k)
∞
k=1 such that limk→∞ Tk = ∞

and Tkσ
2
k = Tσ2 for all k.

(i) For each k, let xTWAP,k be the dealer strategy that best responds to τTWAP,k. For all q ∈ [0, 1],

lim
k→∞

dqTke∑
t=1

xTWAP,k
t =


0 if q = 0

θ
λTσ2 + q if q ∈ (0, 1)

1 if q = 1

(7)

The client’s expected costs of execution converge to p0 + 1
2θ + θ2

λTσ2 .

(ii) For each k, let xMOC,k be the dealer strategy that best responds to τMOC,k. For all q ∈ [0, 1],

lim
k→∞

dqTke∑
t=1

xMOC,k
t =

0 if q ∈ [0, 1)

1 if q = 1
(8)

The client’s expected costs of execution converge to p0 + θ + γ2

θ+2γ .

According to part (i) of the proposition, τTWAP leads the dealer to frontload his trading so

much that he actually overbuys, before selling a discrete amount at the terminal instant. The

client can deter this overbuying—and consequently do better—by collecting contract weights from

interior times near the end of the window into an atom on the terminal instant.31 Hence, introduc-

ing a terminal atom is one way in which the optimal contract improves upon τTWAP. According

to part (ii) of the proposition, τMOC leads the dealer to concentrate all his trading at the terminal

instant, behavior that is sometimes referred to as ‘banging the close’ in practice. Such extraordi-

narily concentrated trading is inefficient, and one way in which the optimal contract improves upon

τMOC is to deter it.

Back-of-the-envelope calculation. To quantify our findings, we consider a reasonable parametriza-

tion for the continuous-time limit of our model. Consider a client who desires to trade a position,

currently valued at V = $100 million, in a certain stock. Let the parameters be p0 = $100, θ =

2×10−6, γ = 0, λ = 2×10−6, T = 1, and σ2 = 6.1.32 Under these parameters, the optimal contract

31In terms of the notation introduced earlier, we have V TWAP
q = q, so that XTWAP

q = θ
λTσ2 V̇

TWAP
q + V TWAP

q =
θ

λTσ2 + q for q ∈ (0, 1). Suppose we modify it by collecting contract weights from interior times after q = 1 − θ
λTσ2

into an atom on the terminal instant. This yields an alternative contract defined for q ∈ (0, 1) by

Vq =

{
q if q ≤ 1− θ

λTσ2

1− θ
λTσ2 if q > 1− θ

λTσ2

which induces Xq =

{
θ

λTσ2 + q if q ≤ 1− θ
λTσ2

1 if q > 1− θ
λTσ2

thereby eliminating overbuying. The resulting outcome is better for the client, because it weights the terminal price
rather than interior prices that would have been inflated by the dealer’s overbuying.

32These parameter values are consistent with the following facts. Abel Noser (2021) describes a dataset of portfolio
transitions, with a median size of $145 million. The median S&P 500 stock price was $112 as of April 27, 2022.
Cartea and Jaimungal (2016, Tables 7 and 8) estimate the coefficient of permanent price impact for 17 stocks, with
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puts 19.8 percent of its weight on the opening price, 19.8 percent of its weight on the closing price,

and 60.4 percent of its weight on the intraday time-weighted average price.

We then use our results to compute model-implied transaction costs (measured by implementa-

tion shortfall) under various scenarios. Whereas our theoretical analysis normalized the trade size

to one share, we are now contemplating a trade of V/p0 = 1 million shares. In our model, transac-

tion costs grow with the square of volume, so we therefore scale up by a factor of one trillion. Doing

so, we find the following. First-best transaction costs are 1012
(

1
2θ
)

= $1 million, or 100 bps of the

value of the trade, which is the correct order of magnitude for trades of block sizes (e.g., SEC, 2005;

Abel Noser, 2021; WSJ, 2022a,b). Second-best transaction costs are 1012
(

1
2θ + θ2

4θ+λTσ2

)
= $1.2

million (or 120 bps). Under τTWAP, transaction costs are 1012
(

1
2θ + θ2

λTσ2

)
= $1.33 million (or

133 bps). Under τMOC, transaction costs are 1012
(
θ + γ2

θ+2γ

)
= $2 million (or 200 bps).

The calculations reported in the previous paragraph indicate that switching to the optimal

contract from τTWAP would reduce transaction costs by 13 bps. The gains of a switch from τMOC

would be even larger, 80 bps. In either case, such a switch closes a sizable portion of the gap relative

to the first-best outcome and represents a cost saving on the order of hundred(s) of thousands

of dollars per trade. Scaling up by the market-wide volume of such trades, these cost savings

extrapolate to billions of dollars per year.33 Of course, additional cost savings could be achieved

by optimizing over an even larger set of contracts (e.g., the set of affine contracts considered in

Appendix OA.B, or a fully general set as discussed in footnote 5). Nevertheless, it is striking that

such substantial cost savings can be obtained, even while staying within the relatively simple class

of weighted-average-price contracts.

6 Conclusion

This paper formulates a contracting problem in which a client (the principal) contracts to purchase

a position from a dealer (the agent) at some future point in time. In the interim, the dealer

acquires the position from the market. The friction is hidden action, in that the client cannot

observe the dealer’s on-market trades, but only the evolution of market prices, so that the dealer

has an incentive to frontload his trading. Eliminating this friction and solving for the first-best

benchmark, the problem becomes a classic one of optimal execution. Indeed, our analysis of the

first-best problem recovers classic results from that literature about the optimality of trading at a

constant rate.

results ranging from 0.63×10−6 to 2.03×10−4. Choosing γ = 0 is to be maximally conservative, biasing our analysis
in favor of finding a small difference between the performance of τMOC and our optimal contract. Campo, Guerre,
Perrigne and Vuong (2011, Table 2) estimate a coefficient of absolute risk aversion of 2 × 10−6. T = 1 reflects an
execution window of one day. Avramov, Chordia and Goyal (2006, Table 1) find that the standard deviation of daily
returns is 2.47%, which for a $100 stock equates to a variance of 6.10.

33We start with a conservative estimate of institutional transaction costs of $70 billion per year (Nasdaq, 2022;
SIFMA, 2021). Assuming that this figure represents 133 bps (200 bps) of the traded value and that a switch to our
optimal contract would save 13 bps (80 bps) of that value implies total cost savings of $6.8 billion ($28 billion) per
year.
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However, we depart from the optimal execution literature by analyzing the implications of these

agency conflicts. Focusing on contracts that are weighted averages of market prices, we characterize

the second-best solution in discrete time, then take the continuous-time limit. The optimal contract

in this limit is an extreme U-shape: it consists of two atoms of equal mass at the two extreme times

and a constant density at interior times. The mass at the extreme times—and hence the severity

of the U-shape—is increasing in permanent price impact, decreasing in the dealer’s risk aversion,

and constant in temporary price impact.

These results shed light on the interplay between price impact and agency conflicts in financial

markets. They could also aid in reducing the transaction costs of pension funds, endowments, or

other institutional traders who sometimes outsource the execution of large trades. In particular,

guaranteed TWAP contracts (and similar guaranteed VWAP contracts) are common in practice.

Although our results rationalize the practice of putting equal weight on interior prices, they also

indicate that these contracts themselves are unlikely to be optimal unless price impact is predom-

inantly temporary or the dealer is highly risk averse. Guaranteed MOC contracts, which put full

weight on the closing price, are also commonly used. Although our results rationalize the practice

of putting substantial weight on the closing price, they also recommend that the opening price

receive equally substantial weight, so that the contract more closely resembles the U-shape that

is optimal in the model. As regulators review best practices in relation to over-the-counter block

trading, they may revisit the wisdom of various pricing benchmarks in light of our analysis.
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A Proofs of Results Stated in the Main Text

Except for the proof of Proposition 9, where σk depends on k, we assume for all proofs that σ = 1

without loss of generality. (For cases of σ 6= 1, we would simply replace λ by λσ2 throughout.)

A.1 Proof of Proposition 1

Lemma 11. For any trading strategy x ∈ X ,

E

[
T∑
t=1

xt

t∑
s=1

εs

]
= 0.

Proof of Lemma 11. We start by writing

E

[
T∑
t=1

xt

t∑
s=1

εs

]
= E

[
T∑
t=1

xt

(
T∑
s=1

εs −
T∑

s=t+1

εs

)]
= E

[
T∑
t=1

xt

T∑
s=1

εs

]
− E

[
T∑
t=1

xt

T∑
s=t+1

εs

]
.

We complete the proof by showing that each of these two terms evaluates to zero

E

[
T∑
t=1

xt

T∑
s=1

εs

]
= E

[
T∑
s=1

εs

T∑
t=1

xt

]
= E

[
T∑
s=1

εs

]
= 0,

E

[
T∑
t=1

xt

T∑
s=t+1

εs

]
= E

[
T∑
t=1

xt

T∑
s=t+1

E [εs|xt]

]
= 0.

Proof of Proposition 1. Given an arbitrary trading strategy x ∈ X , the expected costs of execution

are

E

[
T∑
t=1

xtpt

]
= E

[
T∑
t=1

xt

(
p0 + γxt + θ

t∑
s=1

xs +
t∑

s=1

εs

)]

= p0E

[
T∑
t=1

xt

]
+ γE

[
T∑
t=1

x2
t

]
+ θE

[
T∑
t=1

xt

t∑
s=1

xs

]
+ E

[
T∑
t=1

xt

t∑
s=1

εs

]
.

The first term evaluates to p0. The last term evaluates to zero by Lemma 11. Observe that ε has

fallen out of the expression. Thus, the first-best trading strategy, which minimizes this expression,

will not be a function of ε—in other words, it will be static. This first-best trading strategy solves

the program

min
(x1,...,xT )>∈RT

p0 + γ

T∑
t=1

x2
t + θ

T∑
t=1

xt

t∑
s=1

xs subject to
T∑
t=1

xt = 1.
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Taking the Lagrangian (with µ as the multiplier on the constraint), we obtain

2γxFBt + 2θxFBt + θ
∑
s 6=t

xFBs = µ for all t = 1, . . . , T.

These imply xFB1 = · · · = xFBT . And from the constraint, we must therefore have xFB1 = · · · =

xFBT = 1
T . To obtain the expected costs of execution under this strategy, we compute

E

[
T∑
t=1

xFBt pt

]
= p0 + γ

T∑
t=1

(
1

T

)2

+ θ
T∑
t=1

1

T

t∑
s=1

1

T
= p0 +

γ

T
+
θ(T + 1)

2T
.

A.2 Proof of Lemma 2

Proof. The dealer’s expected utility equals

Ex[u(τ · p− x · p)] = −Ex

[
exp

(
λ

T∑
t=1

(xt − τt)pt

)]

= −Ex

[
exp

(
λ

T∑
t=1

(xt − τt)

(
t∑

j=1

(θxj + εj) + γxt

))]

= −Ex

[
exp

(
λ

T∑
t=1

(xt − τt)

(
t∑

j=1

θxj + γxt

)
+ λ

T∑
j=1

εj

T∑
t=j

(xt − τt)

)]
.

Instead of maximizing this expression over xt subject to
∑T

t=1 xt = 1, we set Xj =
∑j

t=1 xt with

X0 = 0 and XT = 1, and minimize

−Ex[u(τ ·p−x·p)] = Ex

[
exp

(
λ

T∑
t=1

(Xt−Xt−1−τt)
(
θXt+γ(Xt−Xt−1)

)
−λ

T∑
t=1

εt

(
Xt−1−

t−1∑
j=1

τj

))]
(9)

over X1, X2, . . . , XT−1. We denote by Ft the σ-algebra generated by ε1, . . . , εt. Because Xt needs to

be chosen before the price in period t is observable, Xt is Ft−1-measurable. We start by conditioning

(9) on FT−1 and will then go backward subsequently. From the law of iterated expectations, we
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obtain

− Ex[u(τ · p− x · p)]

= Ex

[
Ex

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−1∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))∣∣∣∣∣FT−1

]]

= Ex

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× Ex

[
exp

(
− λεT

(
XT−1 −

T−1∑
j=1

τj

))∣∣∣∣∣FT−1

]]

= Ex

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

)

+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= Ex

[
exp

(
λ

T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]
,

where we used that XT−1 is FT−2-measurable and thus also FT−1-measurable, along with the fact

that εT is independent of FT−1. We note that XT−1 appears only in the last line, but not in the

penultimate line, and the dependence on XT−1 is quadratic. Therefore, the optimal XT−1 is given

by the first-order condition

− λ
(
θXT + γ(XT −XT−1)

)
− λγ(XT −XT−1 − τT ) + λ(θXT−1 + γXT−1 − γXT−2)

+ λ(θ + γ)(XT−1 −XT−2 − τT−1) + λ2

(
XT−1 −

T−1∑
j=1

τj

)
= 0,

which we rewrite as

−
(
θ + 2γ

)
XT +

(
λ+ 2θ + 4γ

)
XT−1 − (θ + 2γ)XT−2 = −γτT + (θ + γ)τT−1 + λ

T−1∑
j=1

τj , (10)
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This implies thatXT−1 is FT−3-measurable because so isXT−2 and all other terms are deterministic.

Next, we condition on FT−2 to obtain

Ex

[
exp

(
λ
T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= Ex

[
Ex

[
exp

(
λ

T−2∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−2∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))∣∣∣∣∣FT−2

]

× exp

(
λ

T∑
t=T−1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]

= Ex

[
exp

(
λ

T∑
t=1

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
− λ

T−3∑
t=1

εt+1

(
Xt −

t∑
j=1

τj

))

× exp

(
λ2

2

(
XT−2 −

T−2∑
j=1

τj

)2

+
λ2

2

(
XT−1 −

T−1∑
j=1

τj

)2)]
.

The terms within the exponential function that depend on XT−2 are

λ

T−1∑
t=T−2

(Xt −Xt−1 − τt)
(
θXt + γ(Xt −Xt−1)

)
+
λ2

2

(
XT−2 −

T−2∑
j=1

τj

)2

so that the first-order condition implies

−(θ + 2γ)XT−1 + (λ+ 2θ + 4γ)XT−2 − (θ + 2γ)XT−3 = −γτT−1 + (θ + γ)τT−2 + λ
T−2∑
j=1

τj .

Because XT−1 is a function of XT−2 in the optimum by (10) and XT−3 is FT−4-measurable while

all other terms are deterministic, this implies that XT−2 is FT−4-measurable. And, using again

that XT−1 is a function of XT−2, this implies that XT−1 is FT−4-measurable as well. Continuing

this procedure, we obtain in the end that all Xt are deterministic and satisfy

−(θ+2γ)Xt+1 +(λ+2θ+4γ)Xt−(θ+2γ)Xt−1 = −γτt+1 +(θ+γ)τt+λ

t∑
j=1

τj , t = 1, 2, . . . , T −1.

(11)

This linear system of equations can be written as AX = Eτ using the T × T matrices A and E

from (1). We conclude that x = FX = FA−1Eτ .
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A.3 Proof of Proposition 3

Proof. We can write A = ĨÃ, where

Ã =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 λσ2 + 2θ + 4γ


,

Ĩ =



1 0 · · · 0 0

0 1 · · · 0 0
...

. . .
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1
λσ2+2θ+4γ


.

Note that Ã is a Z-matrix (i.e., a square matrix where all off-diagonal entries are nonpositive). In

fact, Ã is an M-matrix. Indeed, we can express Ã = (λσ2 + 2θ + 4γ)I − B̃, where

B̃ =



0 θ + 2γ 0 0 · · ·
θ + 2γ 0 θ + 2γ 0 · · ·

0 θ + 2γ 0 θ + 2γ
...

. . .
. . .

. . .

θ + 2γ 0 θ + 2γ

0 · · · 0 0


is a matrix whose eigenvalues (i.e., ±(θ + 2γ)

√
2 and 0) are bounded in magnitude by λσ2 + 2θ +

4γ. Because Ã is an M-matrix, its inverse is a nonnegative matrix. Hence, A−1 = Ã−1Ĩ−1 is

also nonnegative. Next, observe that EτTWAP = 1
T (θ + λσ2, θ + 2λσ2, . . . , θ + (T − 1)λσ2, T )>,

and AF−1xFB = 1
T (λσ2, 2λσ2, . . . , (T − 1)λσ2, T )>, so EτTWAP ≥ AF−1xFB (where ≥ is in the

component-wise sense). Using the fact that A−1 is nonnegative,

F−1FA−1EτTWAP = A−1EτTWAP ≥ F−1xFB,

which is precisely what it means for FA−1EτTWAP to be frontloaded relative to xFB. For the final

claim, note that all the inequalities can be replaced with equalities if and only if θ = 0.
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A.4 Proof of Proposition 4

Proof. The client’s expected cost of a contract τ · p is

Ex[τ · p] = Ex

[
T∑
t=1

τtpt

]
= Ex

[
T∑
t=1

τt

(
p0 +

t∑
j=1

(θxj + εj) + γxt

)]
= p0 +

T∑
t=1

τt

(
t∑

j=1

θxj + γxt

)

= p0 + θ
T∑
t=1

τtXt + γ
T∑
t=1

τt(Xt −Xt−1) = p0 + θτ>A−1Eτ + γτ>FA−1Eτ

= p0 +
1

2
τ>Mτ (12)

where F and M are defined in (1) and (2), respectively. Therefore, we minimize 1
2τ
>Mτ subject

to τ>1 = 1, where 1 = (1, 1, . . . , 1)> denotes a T vector of ones. From the Lagrange method (and

using the symmetry of M), it follows that

Mτ ∗ − µ1 = 0,

hence τ ∗ = µM−11 and 1>τ ∗ = µ1>M−11 = 1. We obtain µ = 1
1>M−11

and thus τ ∗ =
1

1>M−11
M−11 and x∗ = FA−1Eτ ∗ = 1

1>M−11
FA−1EM−11, using Lemma 2. We can compute the

client’s expected costs of execution under τ ∗ = 1
1>M−11

M−11 as

p0 +
1

2
(τ ∗)>Mτ ∗ = p0 +

1

2
(1>M−11)−21>(M−1)>MM−11 = p0 +

1

21>M−11
.

A.5 Proof of Corollary 5

Proof. Claim (i): It follows from (11) with γ = λ = 0 that

−xt+1 + xt = τt for t = 1, 2, . . . , T − 1,

which implies

xt = xt+1 + τt = xt+2 + τt + τt+1 = . . . = c+

T∑
s=t

τs

for some constant c and all t. To determine c, we use that
∑T

t=1 xt = 1, hence

c =
1

T
− 1

T

T∑
t=1

T∑
s=t

τs =
1

T
−

T∑
s=1

s

T
τs.

Claim (ii): Define G as the T × T matrix whose first column and last row are all 1, and otherwise

the ij entry is i(T +1− j)/T for j ≥ i and i(T +1− j)/T − i+ j for j < i. In this case of γ = λ = 0,

it can be checked that E = AG. It follows that A−1E = G. Note that for all t:

Gt1 +G>t1 +GtT +G>tT = Gt1 +G1t +GtT +GTt = 1 + (T + 1− t)/T + t/T + 1 = 3 + 1/T.

37



Next, define v = (1
2 , 0, . . . , 0,

1
2)>. We compute

Mv = θ(A−1E + E>(A−1)>)v = θ(G+G>)v =
θ

2
(3 + 1/T )1.

This implies that M−11 = 2T
θ(3T+1)v and 1>M−11 = 2T

θ(3T+1) . Thus, τ ∗ = 1
1>M−11

M−11 = v, as

claimed. We also compute

x∗ = FA−1Ev = FGv =
1

2
F (1 + 1/T, 1 + 2/T, . . . , 2)> =

1

2
(1 + 1/T, 1/T, . . . , 1/T )>,

as claimed. Finally, the client’s expected costs of execution are p0 + 1
21>M−11

= p0 + θ(3T+1)
4T , as

claimed.

A.6 Proof of Corollary 6

Proof. Claim (i): It follows from (11) with θ = λ = 0 that

−2xt+1 + 2xt = −τt+1 + τt for t = 1, 2, . . . , T − 1,

which implies

xt = xt+1 −
1

2
τt+1 +

1

2
τt = xt+2 −

1

2
τt+2 +

1

2
τt = · · · = c+

1

2
τt

for some constant c and all t. To determine c, we use that
∑T

t=1 xt = 1, hence

c =
1

T
− 1

2T

T∑
t=1

τt =
1

2T
.

Claim (ii): To prove τ ∗ =
(

1
T , . . . ,

1
T

)>
, it is enough to show that 1 is an eigenvector of M because

Mτ ∗ = 1
1>M−11

1 by Proposition 4. To aid in showing that, we first define

v1 =
(
λ, 2λ, . . . , (T − 1)λ, T

)>
, v2 = (0, . . . , 0, 1)> and v3 = (1, 2, . . . , T )>.

In this case of θ = 0, observe that v1 = Av3, which implies A−1v1 = v3. Observe also that

v>2 = v>2 A, which implies (A−1)>v2 = v2. We then compute

M1 = γFA−1E1+γE>(A−1)>F>1 = γFA−1v1+γE>(A−1)>v2 = γFv3+γE>v2 = γ1+γ1 = 2γ1,

(13)

establishing that 1 is an eigenvector of M , as required. For the dealer’s trading strategy, we deduce

from Proposition 4 that

x∗ =
1

1>M−11
FA−1EM−11 =

2γ

T
FA−1E

1

2γ
1 =

1

T
1,
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where the second equality uses (13) to obtain 1
1>M−11

= 2γ
T and M−11 = 1

2γ1. Finally, we compute

the client’s expected costs of execution as p0 + 1
21>M−11

= p0 + γ
T .

A.7 Proof of Corollary 7

Proof. Claim (i): Dividing (11) by λ and then letting λ go to infinity gives Xt =
∑t

j=1 τj for

t = 1, 2, . . . , T − 1, hence xt = τt for all t = 1, 2, . . . , T .

Claim (ii): Let Q be the lower-triangular matrix with all entries of 1 on and below the diagonal;

let Λ be the diagonal matrix that has λ everywhere on its diagonal except for the last entry, which

equals 1:

Q =


1 0 · · · 0

1 1 · · · 0
...

. . .
...

1 1 · · · 1

 , Λ =


λ 0 · · · 0

0 λ · · · 0
...

. . .
...

0 0 · · · 1

 .

We begin by showing limλ→∞A
−1E = Q. To this end, we note that Λ−1 is a diagonal matrix that

has 1/λ everywhere on its diagonal except for the last entry which equals 1, and we then compute

lim
λ→∞

Λ−1E

= lim
λ→∞



(θ + γ + λ)/λ −γ/λ 0 0 0 · · ·
1 (θ + γ + λ)/λ −γ/λ 0 0 · · ·
1 1 (θ + γ + λ)/λ −γ/λ 0 · · ·
...

...
. . .

. . .

1 1 (θ + γ + λ)/λ −γ/λ
1 · · · 1 1


= Q,

lim
λ→∞

Λ−1A

= lim
λ→∞



(λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ 0 0 · · ·
−(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ 0 · · ·

0 −(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ
...

. . .
. . .

. . .

−(θ + 2γ)/λ (λ+ 2θ + 4γ)/λ −(θ + 2γ)/λ

0 · · · 0 1


= I,

where I denotes the T×T identity matrix. The latter implies limλ→∞A
−1Λ = limλ→∞

(
Λ−1A

)−1
= I.

Thus, we obtain

lim
λ→∞

A−1E = lim
λ→∞

A−1ΛΛ−1E =
(

lim
λ→∞

A−1Λ
)(

lim
λ→∞

Λ−1E
)

= IQ = Q.
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So from (2), we deduce

lim
λ→∞

M = θ

(
lim
λ→∞

A−1E

)
+ θ

(
lim
λ→∞

A−1E

)>
+ γ

(
F lim
λ→∞

A−1E

)
+ γ

(
F lim
λ→∞

A−1E

)>

= θQ+ θQ> + γFQ+ γ(FQ)> = θQ+ θQ> + 2γI =


2θ + 2γ θ · · · θ

θ 2θ + 2γ · · · θ
...

. . .
...

θ θ · · · 2θ + 2γ

 .

Thus, (limλ→∞M)1 = [2γ + θ(T + 1)]1, which implies that

lim
λ→∞

M−11 =
1

2γ + θ(T + 1)

(
lim
λ→∞

M−1

)(
lim
λ→∞

M

)
1

=
1

2γ + θ(T + 1)

(
lim
λ→∞

M−1M

)
1 =

1

2γ + θ(T + 1)
1,

and hence limλ→∞ 1>M−11 = T
2γ+θ(T+1) . We can then compute

lim
λ→∞

τ ∗ = lim
λ→∞

(
1

1>M−11
M−11

)
=

1

limλ→∞ 1>M−11
lim
λ→∞

M−11

=
2γ + θ(T + 1)

T

1

2γ + θ(T + 1)
1 =

1

T
1,

lim
λ→∞

x∗ = lim
λ→∞

FA−1Eτ ∗ = F

(
lim
λ→∞

A−1E

)(
lim
λ→∞

τ ∗
)

= FQ

(
1

T
1

)
= I

(
1

T
1

)
=

1

T
1,

each of which is as claimed. Finally, the client’s expected costs of execution converge to

lim
λ→∞

(
p0 +

1

21>M−11

)
= p0 +

1

2

2γ + θ(T + 1)

T
= p0 +

γ

T
+
θ(T + 1)

2T
,

which is also as claimed.

A.8 Proof of Corollary 8

Proof. Define the T × T anti-diagonal matrix

P =


0 · · · 0 1

0 · · · 1 0
...

...

1 0 · · · 0

 ,
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and we begin by showing that A(θI+γF )−1PE> is symmetric. To that end, define T ×T matrices

A1 =


1 0 · · · 0

0 1 0
...

. . .
...

0 0 · · · 0

 A2 =



0 1 0 · · · 0

1 0 1
...

0 1 0
. . . 0

...
. . .

. . . 1

0 · · · 0 0


A3 =


0 0 · · · 0

0 0 0
...

. . .

0 0 · · · 1

 ,

so that A = (λ+ 2θ + 4γ)A1 − (θ + 2γ)A2 +A3. Define also the T × T matrices

E1 =


1 0 · · · 0

0 1 0
...

. . .

0 0 · · · 0

 E2 =



0 0 · · · 0

1 0
...

0 1
. . . 0

...
. . . 0

0 0 · · · 0



E3 =


0 1 1 · · · 0

0 0 1 0
...

. . .
. . .

...

0 · · · · · · · · · 0

 E4 =


0 0 · · · 1

0 0 1
...

. . .
...

0 0 · · · 1

 ,

so that E> = (λ+ γ + θ)E1 − γE2 + λE3 + E4. Observe that we can also write

(θI + γF )−1P =


0 · · · 0 b1

0 b1 b2
...

...

b1 · · · bT−1 bT

 ,

where bt+1 = γ/(γ+ θ)bt for all t ∈ {1, 2 . . . , T − 1}.34 Each of the following matrices is symmetric:

A1(θI + γF )−1PE1 =



0 0 · · · 0 0

0 0 · · · b1 0
...

...
...

...

0 b1 · · · bT−2 0

0 0 · · · 0 0


34We also have b1 = 1/(γ + θ), although that will not be relevant for the following arguments.
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A1(θI + γF )−1PE2 =



0 · · · 0 b1 0

0 · · · b1 b2 0
...

...
...

...

b1 b2 · · · bT−1 0

0 0 · · · 0 0



A1(θI + γF )−1PE3 =



0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 b1 · · · 0 0
...

. . .
...

0 0 0 · · ·
∑T−3

t=1 bt 0

0 0 0 · · · 0 0



A2(θI + γF )−1PE1 =



0 · · · 0 b1 0

0 · · · b1 b2 0

0 · · · b2 b1 + b3 0

0 · · · b1 + b3 b2 + b4 0
...

...
...

...
...

...
...

b1 b2 b1 + b3 b2 + b4 · · · bT−3 + bT−1 0

0 0 0 0 · · · 0 0



A2(θI + γF )−1PE2 =



0 · · · 0 b1 b2 0

0 b1 b2 b1 + b3 0

0
... b2 b1 + b3 b2 + b4 0

b1
...

...
...

...
...

b2 b1 + b3 b2 + b4 · · · bT−2 + bT 0

0 0 0 · · · 0 0



A2(θI + γF )−1PE3 =



0 0 · · · 0 0

0 0 · · · b1 0
...

...
...

...

0 b1 · · ·
∑T−2

t=1 bt 0

0 0 · · · 0 0



A3(θI + γF )−1PE4 =


0 0 · · · 0

0 0 0
...

. . .
...

0 0 · · ·
∑T

t=1 bt


To show that A(θI+γF )−1PE> is indeed symmetric, it only remains to show that [(λ+2θ+4γ)A1−
(θ+ 2γ)A2](θI + γF )−1PE4 is the transpose of A3(θI + γF )−1P [(λ+ γ + θ)E1 − γE2 + λE3]. The

former has nonzero entries only in the first T − 1 entries of its last column, while the latter has
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nonzero entries only in the first T − 1 entries of its last row. We check these nonzero entries. For

t < T , the (t, T )-element of [(λ+ 2θ + 4γ)A1 − (θ + 2γ)A2](θI + γF )−1PE4 is

(λ+ 2θ + 4γ)
t∑

s=1

bs − (θ + 2γ)

[
t+1∑
s=1

bs +
t−1∑
s=1

bs

]
= −(θ + 2γ)bt+1 + (λ+ θ + 2γ)bt + λ

t−1∑
s=1

bs.

For t < T , the (T, t)-element of A3(θI + γF )−1P [(λ+ γ + θ)E1 − γE2 + λE3] is

(λ+ γ + θ)bt − γbt+1 + λ

t−1∑
s=1

bs.

Computing the difference:[
(λ+ γ + θ)bt − γbt+1 + λ

t−1∑
s=1

bs

]
−

[
−(θ + 2γ)bt+1 + (λ+ θ + 2γ)bt + λ

t−1∑
s=1

bs

]
= (θ + γ)bt+1 − γbt,

which equals zero because bt+1 = γ/(γ + θ)bt. We conclude that A(θI + γF )−1PE> is symmetric,

as claimed. Mathematically,

A(θI + γF )−1PE> = EP>(θI> + γF>)−1A> = EP (θI + γF>)−1A>,

which implies

PE>(A−1)>(θI + γF>) = (θI + γF )A−1EP.

Letting M1 = (θI+γF )A−1E, we can rewrite this as M1P = PM>1 . Because P−1 = P , we also have

PM1 = M>1 P . Together, these imply (M1 +M>1 )P = P (M1 +M>1 ). Then using M = M1 +M>1 , we

conclude MP = PM , hence MPM−11 = 1, and hence PM−11 = M−11. Therefore, we conclude

Pτ ∗ =
1

1>M−11
PM−11 =

1

1>M−11
M−11 = τ ∗,

hence τj = τT+1−j for all j = 1, . . . , T .

A.9 Proof of Proposition 9

Proof. In the following analysis, we verify the statements about the limit of the optimal contract

and trading strategy made earlier in this section. Throughout, we assume θ > 0 since the results

for θ = 0 follow from Corollary 6. We note that a model with price-shock variance σ2
k = Tσ2

Tk

is equivalent to a model with price-shock variance normalized to 1 while λ is replaced by λTσ2

Tk
.

Therefore, (11) becomes

Xk
q +

θ + 2γ

λTσ2

2Xk
q −Xk

q+ 1
Tk

−Xk
q− 1

Tk

1/Tk
=

γ

λTσ2

2V k
q − V k

q+ 1
Tk

− V k
q− 1

Tk

1/Tk
+

θ

λTσ2

V k
q − V k

q− 1
Tk

1/Tk
+V k

q (14)
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for all q ∈ (0, 1), where Xk
q =

∑dqTke
t=1 xkt and V k

q =
∑dqTke

t=1 τkt for τ k ∈ ∆Tk and a dealer strategy xk

in the kth model. Throughout this analysis, we assume that the limiting processes Xq = limk→∞X
k
q

and Vq = limk→∞ V
k
q exist and are continuously differentiable, except for jumps at 0 and 1. Thus,

given any q ∈ (0, 1),

lim
k→∞

V k
q − V k

q− 1
Tk

1/Tk
= lim

ε→0

Vq − Vq−ε
ε

= V̇q

lim
k→∞

2V k
q − V k

q+ 1
Tk

− V k
q− 1

Tk

1/Tk
= lim

ε→0

(
Vq − Vq−ε

ε
− Vq+ε − Vq

ε

)
= V̇q − V̇q = 0,

lim
k→∞

2Xk
q −Xk

q+ 1
Tk

−Xk
q− 1

Tk

1/Tk
= lim

ε→0

−(Xq+ε −Xq) + (Xq −Xq−ε)

ε
= −Ẋq + Ẋq = 0.

Thus, it follows from (14) that

Xq =
θ

λTσ2
V̇q + Vq (15)

for all q ∈ (0, 1). Furthermore, the jumps of Vq at 0 and 1 are given by

V0+ = lim
q↘0

Vq = lim
k→∞

Sk∑
t=1

τkt = lim
k→∞

Sk∑
t=1

(
V k

t
Tk

− V k
t−1
Tk

)
,

V1 − V1− = V1 − lim
q↗1

Vq = lim
k→∞

Sk∑
t=1

τkTk−(t−1) = lim
k→∞

Sk∑
t=1

(
V k

1− t−1
Tk

− V k
1− t

Tk

)
,

where Sk is a sequence chosen so that both Sk →∞ and S3
k/Tk → 0. From (14), it follows that

2Xk
1
Tk

−Xk
2
Tk

=
γ

θ + 2γ

(
2V k

1
Tk

− V k
2
Tk

)
+

θ

θ + 2γ
V k

1
Tk

+O

(
1

Tk

)
,

2Xk
t
Tk

−Xk
t+1
Tk

−Xk
t−1
Tk

=
γ

θ + 2γ

(
2V k

t
Tk

− V k
t+1
Tk

− V k
t−1
Tk

)
+

θ

θ + 2γ

(
V k

t
Tk

− V k
t−1
Tk

)
+O

(
1

Tk

)
,

where ak = bk +O
(

1
Tk

)
means lim supk→∞

|ak−bk|
1/Tk

<∞, and thus

xk1 − xk2 =
γ

θ + 2γ

(
τk1 − τk2

)
+

θ

θ + 2γ
τk1 +O

(
1

Tk

)
,

xkt − xkt+1 =
γ

θ + 2γ

(
τkt − τkt+1

)
+

θ

θ + 2γ
τkt +O

(
1

Tk

)
.
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Assuming xkSk = O
(

1
Tk

)
and τkSk = O

(
1
Tk

)
, we obtain

xkt = xkt+1 +
γ

θ + 2γ

(
τkt − τkt+1

)
+

θ

θ + 2γ
τkt +O

(
1

Tk

)
=

γ

θ + 2γ

Sk∑
j=t

(
τkj − τkj+1

)
+

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk
Tk

)

=
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk
Tk

)
, (16)

and likewise if xkTk−Sk = O
(

1
Tk

)
and τkTk−Sk = O

(
1
Tk

)
,

xkTk−t = xkTk−(t+1) −
γ

θ + 2γ

(
τkTk−(t+1) − τ

k
Tk−t

)
− θ

θ + 2γ
τkTk−(t+1) +O

(
1

Tk

)
= − γ

θ + 2γ

Sk∑
j=t

(
τkTk−(j+1) − τ

k
Tk−j

)
− θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk
Tk

)

=
γ

θ + 2γ
τkTk−t −

θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk
Tk

)
. (17)

Therefore, the expected costs for the client are

Ex[τ k · p] = p0 + θ

Tk∑
t=1

Xk
t
Tk

(
V k

t
Tk

− V k
t−1
Tk

)
+ γ

Tk∑
t=1

(
Xk

t
Tk

−Xk
t−1
Tk

)(
V k

t
Tk

− V k
t−1
Tk

)
= p0 + θ

∫ 1

0
Xq dVq + θ

Sk∑
t=1

Xk
t
Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t + θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1)

+ γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) +O

(
1

Tk

)
. (18)

We next analyze each of the following three terms:

1. θ
∫ 1

0 Xq dVq,

2. θ
∑Sk

t=1X
k
t
Tk

τkt + γ
∑Sk

t=1 x
k
t τ

k
t ,

3. θ
∑Sk

t=1X
k
1− t−1

Tk

τkTk−(t−1) + γ
∑Sk

t=1 x
k
Tk−(t−1)τ

k
Tk−(t−1).

For the first term, we use (15) to write∫ 1

0
Xq dVq =

∫ 1

0

(
θ

λTσ2
V̇q + Vq

)
V̇q dq =

θ

λTσ2

∫ 1

0
V̇ 2
q dq +

1

2
V 2

1− −
1

2
V 2

0+, (19)
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where the second equality is implied by∫ 1

0
VqV̇q dq =

1

2
V 2

1− −
1

2
V 2

0+,

which in turn follows from integration by parts∫ 1

0
VqV̇q dq = V 2

1− − V 2
0+ −

∫ 1

0
V̇qVq dq.

Set a = V1− − V0+. By Corollary 8, optimal contract weights are symmetric, so we have V0+ =

1 − V1− = (1 − a)/2. Moreover, the minimizer of
∫ 1

0 V̇
2
q dq subject to a = V1− − V0+ is V̇q = a

almost everywhere on (0, 1) by Jensen’s inequality. Therefore, (19) in the optimum becomes∫ 1

0
Xq dVq =

θ

λTσ2

∫ 1

0
V̇ 2
q dq +

1

2
V 2

1− −
1

2
V 2

0+ =
θ2

λTσ2
a2 +

θ(1 + a)2

8
− θ(1− a)2

8
. (20)

Using V0+ = 1− V1− = (1− a)/2, we also have

Sk∑
t=1

τkt =
1− a

2
+O

(
1

Tk

)
,

Sk∑
t=1

τkTk−(t−1) =
1− a

2
+O

(
1

Tk

)
.

Next, we analyze the minimization of

θ

Sk∑
t=1

Xk
t
Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t . (21)

subject to
∑Sk

t=1 τ
k
t = 1−a

2 . Using (16), we write

θ

Sk∑
t=1

Xk
t
Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t

= θ

Sk∑
t=1

t∑
`=1

(
γ

θ + 2γ
τk` +

θ

θ + 2γ

Sk∑
j=`

τkj

)
τkt + γ

Sk∑
t=1

(
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj

)
τkt +O

(
S3
k

Tk

)

= θ

Sk∑
t=1

(
γ

θ + 2γ

t∑
`=1

τk` +
θ

θ + 2γ

Sk∑
j=1

min{j, t}τkj

)
τkt + γ

Sk∑
t=1

(
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj

)
τkt +O

(
S3
k

Tk

)
.
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We can simplify two terms

θ

Sk∑
t=1

γ

θ + 2γ

t∑
`=1

τk` τ
k
t + γ

Sk∑
t=1

θ

θ + 2γ

Sk∑
j=t

τkj τ
k
t =

θγ

θ + 2γ

Sk∑
t=1

Sk∑
`=1

τk` τ
k
t +

θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

Sk∑
t=1

1− a
2

τkt +
θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
+

θγ

θ + 2γ

Sk∑
t=1

(
τkt
)2
.

Therefore, the optimization problem (21) becomes

θγ

θ + 2γ

(1− a)2

4
+

θ2

θ + 2γ

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj +
θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

subject to
∑Sk

t=1 τ
k
t = 1−a

2 . The first-order condition from the Lagrange multiplier method implies

0 =
∂

∂τks

(
θ2

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj + (θγ + γ2)

Sk∑
t=1

(
τkt
)2)

+ λ1

= θ2
Sk∑
j=1

min{j, s}τkj + θ2
Sk∑
t=1

τkt min{s, t}+ 2(θγ + γ2)τks + λ1

= 2θ2
Sk∑
j=1

min{j, s}τkj + 2(θγ + γ2)τks + λ1 (22)

for all s = 1, 2, . . . Specifically, for γ = 0, this implies with s = 1 that λ1 = −θ2(1− a); with s = 2

that λ1 = −θ2(1−a)−
∑Sk

j=2 τj , implying
∑Sk

j=2 τj ; and iteratively comparing different s, we obtain

τk1 = 1−a
2 and τkj = 0 for all j > 1.

For γ > 0, we deduce

0 = 2θ2
Sk∑
j=1

(
min{j, s+ 1} −min{j, s}

)
τkj + 2(θγ + γ2)

(
τks+1 − τks

)
= 2θ2

Sk∑
j=s+1

τkj + 2(θγ + γ2)
(
τks+1 − τks

)
= 2θ2

(
1− a

2
−

s∑
j=1

τkj

)
+ 2(θγ + γ2)

(
τks+1 − τks

)

47



for all s = 1, 2, . . ., so that

τks+1 = τks −
θ2

γθ + γ2

(
1− a

2
−

s∑
j=1

τkj

)
, s = 1, 2, . . .

Its solution is

τkj =
θγj−1

(θ + γ)j
1− a

2
, j = 1, 2, . . . , (23)

which satisfies

s∑
j=1

τkj =
s∑
j=1

θγj−1

(θ + γ)j
1− a

2
=

θ

θ + γ

1− γs

(θ+γ)s

1− γ
θ+γ

1− a
2

s→∞→ 1− a
2

.

We also note that it follows from (16), (17), and (23) that

xkt =
γ

θ + 2γ
τkt +

θ

θ + 2γ

Sk∑
j=t

τkj +O

(
Sk
Tk

)

=
γ

θ + 2γ

θγt−1

(θ + γ)t
1− a

2
+

θ

θ + 2γ

Sk∑
j=t

θγj−1

(θ + γ)j
1− a

2
+O

(
Sk
Tk

)

=
γ

θ + 2γ

θγt−1

(θ + γ)t
1− a

2
+

θ

θ + 2γ

θγt−1

(θ + γ)t
1

1− γ
θ+γ

1− a
2

+O

(
Sk
Tk

)
=

θγt−1

(θ + γ)t
1− a

2
+O

(
Sk
Tk

)
,

xkTk−t =
γ

θ + 2γ
τkTk−t −

θ

θ + 2γ

Sk∑
j=t+1

τkTk−j +O

(
Sk
Tk

)

=
γ

θ + 2γ
τkt+1 −

θ

θ + 2γ

Sk∑
j=t+2

τkj +O

(
Sk
Tk

)

=
γ

θ + 2γ

θγt

(θ + γ)t+1

1− a
2
− θ

θ + 2γ

Sk∑
j=t+2

θγj−1

(θ + γ)j
1− a

2
+O

(
Sk
Tk

)

=
γ

θ + 2γ

θγt

(θ + γ)t+1

1− a
2
− θ

θ + 2γ

θγt+1

(θ + γ)t+2

1

1− γ
θ+γ

1− a
2

+O

(
Sk
Tk

)
= O

(
Sk
Tk

)
. (24)

For s = 1, (22) simplifies to

0 = 2θ2
Sk∑
j=1

τkj + 2(θγ + γ2)τk1 + λ1,
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which implies

λ1 = −2θ2
Sk∑
j=1

τkj − 2(θγ + γ2)τk1 = −2θ2 1− a
2
− 2(θγ + γ2)

θ

θ + γ

1− a
2

= −2(θ2 + γθ)
1− a

2
.

We also derive from (22) that

2θ2
Sk∑
j=1

min{j, t}τkj = −2(θγ + γ2)τkt − λ1 = −2(θγ + γ2)τkt + 2(θ2 + γθ)
1− a

2
,

hence the optimization problem becomes

θγ

θ + 2γ

(1− a)2

4
+

θ2

θ + 2γ

Sk∑
t=1

τkt

Sk∑
j=1

min{j, t}τkj +
θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
− θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

+
1

θ + 2γ

Sk∑
t=1

τkt (θ2 + γθ)
1− a

2
+
θγ + γ2

θ + 2γ

Sk∑
t=1

(
τkt
)2

=
θγ

θ + 2γ

(1− a)2

4
+

1

θ + 2γ

Sk∑
t=1

τkt (θ2 + γθ)
1− a

2

=
θγ

θ + 2γ

(1− a)2

4
+
θ2 + γθ

θ + 2γ

(1− a)2

4

= θ
(1− a)2

4
. (25)

Finally, we analyze the minimization problem

θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1) + γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1)

subject to
∑Sk

t=1 τ
k
Tk−(t−1) = 1−a

2 . However, as per (24), the jumps of the trading strategy in the

limit disappear so that xkTk−(t−1) = O
(
Sk
Tk

)
and Xk

1− t−1
Tk

= 1 + O
(S2

k
Tk

)
. Therefore, the value of the

minimization problem becomes

θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1) + γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) = θ

Sk∑
t=1

τkTk−(t−1) +O

(
S3
k

Tk

)
= θ

1− a
2

+O

(
S3
k

Tk

)
.

(26)
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In summary, using (20), (25), and (26), the expected costs from (18) in the optimum are

Ex[τ k · p] = p0 + θ

∫ 1

0
Xq dVq + θ

Sk∑
t=1

Xk
t
Tk

τkt + γ

Sk∑
t=1

xkt τ
k
t + θ

Sk∑
t=1

Xk
1− t−1

Tk

τkTk−(t−1)

+ γ

Sk∑
t=1

xkTk−(t−1)τ
k
Tk−(t−1) +O

(
S3
k

Tk

)
= p0 +

θ2

λTσ2
a2 +

θ(1 + a)2

8
− θ(1− a)2

8
+ θ

(1− a)2

4
+ θ

1− a
2

+O

(
S3
k

Tk

)
= p0 +

θ2

λTσ2
a2 + θ

(1− a)2

4
+
θ

2
+O

(
S3
k

Tk

)
, (27)

minimized over a. The first-order condition gives

θ2

λTσ2
2a− θ1− a

2
= 0

so that

a =
θ
2

θ
2 + 2θ2

λTσ2

=
1

1 + 4θ
λTσ2

. (28)

We conclude for q ∈ (0, 1) that

Vq = V0+ + (Vq − V0+) =
1− a

2
+ aq,

Xq =
θ

λTσ2
V̇q + Vq =

θa

λTσ2
+

1− a
2

+ aq,

using (15), which implies the formulas for the limits of the optimal contract and dealer’s trading

strategy. Thanks to (27) and (28), the client’s expected costs converge to

p0 +
θ2

λTσ2
a2 + θ

(1− a)2

4
+
θ

2
= p0 +

θ

4

(
1 +

4θ

λTσ2

)
a2 − a

2
θ +

3

4
θ = p0 +

3− a
4

θ.

A.10 Proof of Proposition 10

Proof. This proof builds on the first half of the proof of Proposition 9.

Claim (i): In the case of a TWAP contract, we have

V TWAP
q = lim

k→∞
V TWAP,k
q = lim

k→∞

dqTke∑
t=1

τTWAP,k
t = q

for all q ∈ (0, 1) so that (15) becomes

XTWAP
q =

θ

λTσ2
V̇ TWAP
q + V TWAP

q =
θ

λTσ2
+ q
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for all q ∈ (0, 1). Along with the conditions XTWAP,k
0 = 0 and XTWAP,k

1 = 1 for all k, this shows

(7). Because V TWAP
q does not have any jumps, it follows from (18) that the expected costs for the

client under a TWAP contract are

lim
k→∞

Ex[τTWAP,k · p] = p0 + θ

∫ 1

0
XTWAP
q dV TWAP

q = p0 + θ

∫ 1

0

(
θ

λTσ2
+ q

)
dq = p0 +

θ2

λTσ2
+

1

2
θ.

Claim (ii): In the case of a MOC contract, we have

V MOC
q = lim

k→∞
V MOC,k
q = lim

k→∞

dqTke∑
t=1

τMOC,k
t = 0

for all q ∈ (0, 1) so that (15) becomes

XMOC
q =

θ

λTσ2
V̇ MOC
q + V MOC

q = 0

for all q ∈ (0, 1). Along with the conditions XMOC
0 = 0 and XMOC

1 = 1, this shows (8). The

expected costs for the client are

Ex[τMOC,k · p] = p0 + θ

Tk∑
t=1

XMOC,k
t
Tk

(
V MOC,k

t
Tk

− V MOC,k
t−1
Tk

)
+ γ

Tk∑
t=1

(
XMOC,k

t
Tk

−XMOC,k
t−1
Tk

)(
V MOC,k

t
Tk

− V MOC,k
t−1
Tk

)
= p0 + θXMOC,k

1 + γ
(
XMOC,k

1 −XMOC,k
Tk−1

Tk

)
= p0 + θ +

γ2

θ + 2γ
+O

(
Sk
Tk

)
,

using that

XMOC,k
1 −XMOC,k

Tk−1

Tk

= xMOC,k
Tk

=
γ

θ + 2γ
+O

(
Sk
Tk

)
by (17).

A.11 Decomposition of the wedge between the first-best and second-best

As observed in the text, the wedge between the first-best and second-best payments (in the

continuous-time limit) is 1−a
4 θ, where a = 1

1+ 4θ
λTσ2

. Footnote 25 claims that this wedge can be

decomposed in the following way:

1− a
4

θ︸ ︷︷ ︸
wedge between first-best

and second-best payments

=
1− a

2
θ − (1− a)2

4

θ2

θ + 2γ︸ ︷︷ ︸
dealer’s expected profit

+
(1− a)2

4

θ2

θ + 2γ
− 1− a

4
θ︸ ︷︷ ︸

inefficiency from suboptimal trading

.
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Formally, this decomposition follows from the subsequent result. As an aside, the presence of γ in

this decomposition highlights that—although it does not affect the client’s execution costs when

the contract is chosen optimally—temporary price impact does not vanish and does play a role in

the continuous-time limit.

Proposition 12. Assume the dealer is strictly risk-averse (λ > 0). Consider a sequence of execu-

tion horizons (Tk)
∞
k=1 and a sequence of price-shock variances (σ2

k)
∞
k=1 such that limk→∞ Tk = ∞

and Tkσ
2
k = Tσ2 for all k. For each k, let τ ∗k ∈ T Tk be the associated optimal contract, and let

x∗k be the dealer strategy that best responds to τ ∗k. The dealer’s expected profit under τ ∗k and x∗k

converges to
1− a

2
θ − (1− a)2

4

θ2

θ + 2γ
, (29)

where a = 1
1+ 4θ

λTσ2

.

Proof. To simplify notation throughout this proof, we write simply τ k and xk instead of τ ∗k and

x∗k. The dealer’s expected profit is given by

Exk
[
τ k · pk − xk · pk

]
=

Tk∑
t=1

(
τkt − xkt

)(
p0 + θXk

t
Tk

+ γxkt

)
=

Tk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
,

using for the second equality that
∑Tk

t=1 τ
k
t =

∑Tk
t=1 x

k
t = 1. Arguing similarly to (18), this expression

converges to

lim
k→∞

Tk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
= θ

∫ 1

0
Xq d(Vq −Xq) + lim

k→∞

Sk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
(30)

+ lim
k→∞

Sk∑
t=1

(
τkTk−(t−1) − x

k
Tk−(t−1)

)(
θXk

1− t−1
Tk

+ γxkTk−(t−1)

)
.

We analyze the terms on the right-hand side of (30). The first term can be written as

θ

∫ 1

0
Xq d(Vq −Xq) = θa

∫ 1

0
Xq dq −

θ

2
X2

1− +
θ

2
lim
k→∞

(
X0+ −

Sk∑
t=1

xkTk−(t−1)

)2

= θa

∫ 1

0

(
3(1− a)

4
+ aq

)
dq − θ

2

(
3 + a

4

)2

+
θ

2

(
3(1− a)

4
− 1− a

2

)2

= θa
3(1− a)

4
+ θa2 1

2
− θ

2

(
3 + a

4

)2

+
θ

2

(
1− a

4

)2

=
θ

4
(3a− a2 − 1− a)

= −θ
4

(1− a)2. (31)
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Using (5) and (25), the second term on the right-hand side of (30) can be computed as

lim
k→∞

Sk∑
t=1

(
τkt − xkt

)(
θXk

t
Tk

+ γxkt

)
= lim

k→∞

(
θ

Sk∑
t=1

X∗,kt
Tk

τ∗,kt + γ

Sk∑
t=1

x∗,kt τ∗,kt − θ
Sk∑
t=1

X∗,kt
Tk

x∗,kt − γ
Sk∑
t=1

(
x∗,kt

)2)

= θ
(1− a)2

4
− θ

∞∑
j=1

j∑
`=1

θγ`−1

(θ + γ)`
1− a

2

θγj−1

(θ + γ)j
1− a

2
− γ

∞∑
j=1

(
θγj−1

(θ + γ)j
1− a

2

)2

=
(1− a)2

4

(
θ − θ3

γ2

γ

θ + γ

∞∑
j=1

1−
( γ
θ+γ

)j
1− γ

θ+γ

γj

(θ + γ)j
− θ2

γ

∞∑
j=1

(
γ

θ + γ

)2j
)

=
(1− a)2

4

(
θ − θ3

γ2

γ
θ+γ

1− γ
θ+γ

(
γ
θ+γ

1− γ
θ+γ

−
(

γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)
− θ2

γ

(
γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)

=
(1− a)2

4

(
θ − θ3

γ2

( γ
θ+γ

)2
1− γ

θ+γ

1

1−
( γ
θ+γ

)2 − θ2

γ

(
γ

θ + γ

)2 1

1−
( γ
θ+γ

)2
)

=
(1− a)2

4

(
θ − θ2

θ + 2γ

)
. (32)

Because xk has no persistent jumps at the end time by (24), the third term on the right-hand side

of (30) becomes

lim
k→∞

Sk∑
t=1

τkTk−(t−1)

(
θXk

1− t−1
Tk

+ γxkTk−(t−1)

)
= θ

1− a
2

(33)

by (26). Substituting (31)–(33) into (30), we obtain that the dealer’s expected profit converges to

(29).
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Online Appendix to

“Principal Trading Arrangements:
Optimality under Temporary and Permanent Price Impact”

Markus Baldauf Christoph Frei Joshua Mollner

OA.A Additional Special Cases

With various sections of the main text, we have already considered several special cases of the

model. This appendix considers four more special cases. Appendix OA.A.1 considers the case of

two trading periods (i.e., T = 2), and provides further intuition for the optimality of symmetric

contract weights. Appendix OA.A.2 considers the case of no temporary price impact (i.e., γ = 0),

demonstrating that the optimal contract in this case is a U-shape with a ‘flat bottom,’ in that all

interior weights are the same. Finally, Appendix OA.A.3 considers the limiting case of an infinite

execution horizon (i.e., T →∞), demonstrating that the client obtains her first-best payoff in this

limit.

OA.A.1 Two trading periods

To provide additional intuition for the optimal contract’s symmetry, this appendix considers the

version of the model with T = 2 trading periods. Our approach is to provide intuition by connecting

our setup to a rudimentary microeconomics-based calculation.

Monopolist with linear demand. Consider the problem of a monopolist facing a linear inverse

demand curve P = a−bQ and a marginal cost c. Following the standard derivation, the monopolist

optimally sets

Q∗ =
a

2b
− c

2b
and P ∗ =

a

2
− c

2
.

Let us use Q∗0 and P ∗0 to denote these optimal values in the special case of c = 0. In particular, it

holds that

Q∗0 =
a

b

dP ∗

dc
.

As we demonstrate below, this relationship is a consequence of the linear nature of demand; a
b is

the appropriate scaling factor, which can be interpreted as the quantity demanded at a price of

zero.

In fact, an analogous relationship holds even more generally. Suppose the monopolist faces an

additional cost that is quadratic in P − c, so that her objective is (P − c)Q− λ
2 (P − c)2, which can

be written

(a− bQ− c)Q− λ

2
(a− bQ− c)2.
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In the case of λ = 0, this reduces to the classic problem mentioned above. We obtain

Q∗ =
a− c
b

1 + bλ

2 + bλ︸ ︷︷ ︸
≡φ

. (34)

The interpretation of the first factor in (34) is the quantity demanded at marginal-cost pricing.

The precise form of the second factor does not matter for the subsequent arguments, so we simply

label it φ; it can be interpreted as the monopolist’s optimal amount of quantity reduction. That

this is a constant is due to the linear nature of demand. It follows from (34) that Q∗0 = a
bφ. The

intuition is that Q∗0 must equal the quantity demanded at a price of zero (which, as mentioned is
a
b ) times quantity reduction from marginal-cost pricing (which we have denoted φ). It also follows

from (34) that

P ∗ = a− bQ∗ = a(1− φ) + φc.

That P ∗ should be this weighted average of a and c is intuitive because φ = 1 corresponds to no

quantity reduction (i.e., marginal-cost pricing) and φ = 0 corresponds to full quantity reduction

(i.e., pricing so that zero quantity is demanded). Hence, dP ∗

dc = φ. We conclude that

Q∗0 =
a

b
φ =

a

b

dP ∗

dc
,

as claimed.

The dealer’s problem. To see the connection to our setting, suppose that T = 2, and parametrize

(x1, x2) =
(1

2
+ x,

1

2
− x
)

and (τ1, τ2) =
(1

2
+ τ,

1

2
− τ
)
.

Given any τ , the dealer’s problem is to choose x to maximize

(x− τ)
(
E[p2]− E[p1]

)
− λσ2

2
(τ − x)2.

Because E[p2]−E[p1] = θ
2 − (θ+ 2γ)x, this objective is of the same form that was analyzed above,

with the roles of (P,Q, c, a, b, λ) now played by
(
x,E[p2]− E[p1], τ, θ

2θ+4γ ,
1

θ+2γ , λσ
2
)
. We conclude

that when τ = 0, it will hold that E[p2]− E[p1] = θ
2
dx∗

dτ .

The client’s problem. The client’s problem is to choose τ to minimize(1

2
+ τ
)
E[p1] +

(1

2
− τ
)
E[p2],

taking into account how τ influences x∗, and hence prices. Suppose we begin at τ = 0 and perturb

τ upward. This produces two effects:
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• The direct effect. The direct effect of this perturbation is to increase the objective at the rate

E[p1]− E[p2],

which is equal to − θ
2
dx∗

dτ by the above observation. Intuitively, permanent price impact leads

us to have E[p2] > E[p1] (given the dealer’s best response to τ = 0), and so the direct effect

of increasing τ is to put more weight on the lower price, which is beneficial to the client.

• The indirect effect. The indirect effect of this perturbation (through its effect on expected

prices) is to increase the objective at the rate

1

2

(
dE[p1]

dx︸ ︷︷ ︸
=γ+θ

+
dE[p2]

dx︸ ︷︷ ︸
=−γ

)
dx∗

dτ
.

Intuitively, this increase in τ leads the dealer to trade more in the first period, which—

because of permanent price impact—leads p1 to increase more than p2 decreases. At τ = 0,

the client’s payment is an equally-weighted average of these two prices, so the indirect effect

of this perturbation is harmful to the client.

By the arguments above, these two effects cancel out, so it follows that it is optimal for the client

to select τ = 0.

OA.A.2 No temporary price impact

This appendix considers the case in which price impact has no temporary component (i.e., is purely

permanent). We begin by considering the optimal contract in discrete time, demonstrating that it

is a U-shape with a ‘flat bottom,’ in that all interior weights are the same. We then consider the

continuous-time limit, producing a more rigorous proof of the result of Proposition 9 for the case

without temporary price impact.

OA.A.2.1 The optimal contract in discrete time

Without temporary component (i.e., when γ = 0), we obtain the following as a corollary of the

general solution given by Proposition 4.

Corollary 13. Assume that there is no temporary price impact (γ = 0). Then the weights of the

optimal contract satisfy τ∗i = τ∗j for all i, j ∈ {2, 3, . . . , T − 1}. Moreover, the solution depends on

(λ, σ, θ) only through λσ2

θ .

Corollary 13 says that in this case of only permanent price impact, the optimal contract puts

the same weight on all interior periods. From Proposition 4, we know that the extremal elements

of τ ∗ are also equal, but they differ from the interior weights, which can also be seen in the left

panel of Figure 2 for the curve γ = 0.0. From Figure 6, we observe that the extremal weights of
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the optimal contract are greater than 1/T and decreasing in α ≡ λσ2

θ so that the dominance of the

extremal weights over the inner weights is stronger for small values of α. In fact, it follows from

Corollaries 5 and 7 that the extremal weights converge to 1/2 for α→ 0 and to 1/T for α→∞.

Figure 6: The upper surface shows the extremal weights of the optimal contract as a function of T
and α = λσ2

θ when there is no temporary price impact. As a visual comparison, the lower surface
represents 1/T . The extremal weights are greater than 1/T and decreasing in α.

As mentioned, numerical experimentation suggests that the dealer’s best response to the optimal

contract is frontloaded relative to the contract itself. In this case of no temporary price impact,

we can formally prove a limited version of this general conjecture: that the first component of

the dealer’s trading strategy dominates the first weight of the optimal contract. Indeed, without

temporary price impact, the dealer’s best response x to any symmetric contract with equal inner

weights; that is, of the form
(1−a(T−2)

2 , a, . . . , a, 1−a(T−2)
2

)
for 0 ≤ a ≤ 1

T−2 and with T ≥ 3 satisfies

x1 >
1− a(T − 2)

2
, (35)

as we show in Appendix OA.A.2.3.

Proof of Corollary 13. We start by writing

M−1 =
(
θA−1E + θE>(A−1)>

)−1
=

1

θ

(
A−1E + E>(A−1)>

)−1
=

1

θ

(
A−1

(
E +AE>(A−1)>

))−1

=
1

θ

(
E +AE>(A−1)>

)−1
A =

1

θ

(
(EA> +AE>)(A−1)>

)−1
A (36)

=
1

θ
A>
(
EA> +AE>

)−1
A =

1

θ
A>
(
EA> +AE>

)−1
A

and

EA> +AE> = B + vv> (37)
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where v = λ(1, 1, . . . , 1)> and

B =



4θ2 + λ2 + 2λθ −2θ2 λθ · · · −λ2 + λ+ θ

−2θ2 4θ2 + λ2 −2θ2 − θλ 0 −λ2 + λ

λθ −2θ2 − θλ 4θ2 + λ2 −2θ2 − θλ −λ2 + λ

λθ 0 −2θ2 − θλ 4θ2 + λ2
...

...
...

. . .
. . . −λ2 + λ

−λ2 + λ+ θ −λ2 + λ · · · −λ2 + λ 2− λ2


,

which is a tridiagonal matrix except for the first and last rows and the first and last columns. The

Sherman-Morrison formula implies

(
B + vv>

)−1
= B−1 − B−1vv>B−1

1 + v>B−1v
. (38)

We also note that B = (2θ + λ)A+ V , where

V =



2λθ λθ · · · −λ2 + λ+ θ

λθ 0 · · · −λ2 + λ

λθ 0 · · ·
...

...
...

. . . λ− λ2 + θ(λ+ 2θ)

−λ2 + λ+ θ −λ2 + λ · · · 2− λ2 − λ− 2θ


,

hence

A =
1

2θ + λ
(B − V ). (39)

Combining (36)–(39) yields

(1>M−11)τ ∗ = M−11 =
1

θ
A>
(
EA> +AE>

)−1
A1 =

1

θ
A>
(
B + vv>

)−1
A1

=
1

θ
A>
(
B−1 − B−1vv>B−1

1 + v>B−1v

)
A1 =

1

θ(2θ + λ)
(B − V >)

(
B−1 − B−1vv>B−1

1 + v>B−1v

)
A1

=
1

θ(2θ + λ)

(
A1− vv>B−1

1 + v>B−1v
A1− V >

(
B−1 − B−1vv>B−1

1 + v>B−1v

)
A1

)
.

Let us now consider a T vector ν which equals τ ∗, except that elements j, i ∈ {2, 3, . . . , T − 1} are

flipped. We write ν = Pτ ∗ for a permutation matrix P , which is a diagonal matrix with 1 on the

diagonal except for the ith and jth elements on the diagonal which are zero, and P (i, j) = 1 and

P (j, i) = 1. We check directly that

PA1 = A1, PV > = V >, Pv = v

OA-5



so that

ν = Pτ ∗ =
1

θ(2θ + λ)(1>M−11)

(
PA1− Pvv>B−1

1 + v>B−1v
A1− PV >

(
B−1 − B−1vv>B−1

1 + v>B−1v

)
A1

)
=

1

θ(2θ + λ)(1>M−11)

(
A1− vv>B−1

1 + v>B−1v
A1− V >

(
B−1 − B−1vv>B−1

1 + v>B−1v

)
A1

)
= τ ∗,

which shows τ∗i = τ∗j and thus proves τ∗i = τ∗j for all i, j ∈ {2, 3, . . . , T − 1}.
For the second statement that the weights of the optimal contract and the dealer’s trading

strategy depend on (λ, σ, θ) only through α = λσ2

θ , we recall the comment at the beginning of this

Appendix that the case of a general σ is equivalent to replacing λ by λσ2 and then setting σ = 1.

For the dependence structure on θ, it can be seen in the case γ = 0 that minimizing the client’s

expected costs Ex[τ · p] = p0 + θ
∑T

t=1 τtXt in (12) is equivalent to minimizing
∑T

t=1 τtXt, which

does not directly depend on θ. Moreover, for γ = 0 and θ 6= 0, the constraint (11) can be rewritten

as

−Xt+1 +

(
λ

θ
+ 2

)
Xt −Xt−1 = τt +

λ

θ

t∑
j=1

τj , t = 1, 2, . . . , T − 1.

which depends on θ only through λ
θ , hence so must the optimizers.

OA.A.2.2 Alternative proof of Proposition 9 for the case of no temporary price im-

pact

We now consider the continuous-time limit of the model in this case with no temporary price

impact. In this case, we can build upon Corollary 13 to provide a more rigorous proof of the result

of Proposition 9 than the general proof given in Appendix A.

As in Proposition 9, we consider a sequence of execution horizons (Tk)
∞
k=1 and a sequence of

price-shock variances (σ2
k)
∞
k=1 such that limk→∞ Tk = ∞ and Tkσ

2
k = Tσ2 for all k. In this case

of no temporary price impact, Corollary 13 implies that the optimal contract in discrete time is a

U-shape with a ‘flat bottom,’ in that all interior weights are the same. Thus, without temporary

price impact, we know for each fixed k the optimal contract up to a single parameter, say ak. We

then derive a recursive system of linear equations to characterize the trading policy that the dealer

selects in response to any ak. Solving this system for the trading policy and plugging that in, the

client’s optimization problem becomes quadratic in ak, so that we can readily solve for the optimal

ak. The formula for the optimal ak is complicated, but it simplifies in the limit as k → ∞. That

expression in turn allows us to compute the limits of the optimal contract and trading policy, which

are indeed as stated in Proposition 9.

Proof. Assume γ = 0. We consider a fixed k and note that a model with price-shock variance

σ2
k = Tσ2

Tk
is equivalent to a model with price-shock variance normalized to 1 while λ is replaced by
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λTσ2

Tk
. From Corollary 13, it follows that the optimal contract is of the form

τ k =

(
1− (Tk − 2)ak

2
, ak, ak, . . . , ak,

1− (Tk − 2)ak
2

)>
(40)

for some constant ak. Therefore, (11) with γ = 0 becomes

Xk
1 +

Tkθ

λTσ2

(
2Xk

1 −Xk
2

)
=

(
Tkθ

λTσ2
+ 1

)
1− (Tk − 2)ak

2
,

Xk
t +

Tkθ

λTσ2

(
2Xk

t −Xk
t+1 −Xk

t−1

)
=

1− (Tk − 2)ak
2

+
Tkθ

λTσ2
ak + ak(t− 1), t = 2, 3, . . . , Tk − 1.

Let us define

Y k
t = Xk

t −
1− (Tk − 2)ak

2
− Tkθ

λTσ2
ak − ak(t− 1), t = 1, 2, . . . , Tk, (41)

which satisfies

Y k
1 +

Tkθ

λTσ2

(
2Y k

1 − Y k
2

)
= −

T 2
k θ

2ak
λ2T 2σ4

, (42)

Y k
t +

Tkθ

λTσ2

(
2Y k

t − Y k
t+1 − Y k

t−1

)
= 0, t = 2, 3, . . . , Tk − 1.

We set Zkt = Y k
t+1 for t = 0, 1, . . . , Tk − 1 so that

Zkt =

(
λTσ2

Tkθ
+ 2

)
Zkt−1 − Y k

t−1 and Y k
t = Zkt−1, t = 2, 3, . . . , Tk − 1,

which we can write as(
Zkt

Y k
t

)
= Mk

(
Zkt−1

Y k
t−1

)
for Mk =

(
λTσ2

Tkθ
+ 2 −1

1 0

)
, t = 2, 3, . . . , Tk − 1.

By iteration, we obtain(
Zkt

Y k
t

)
= Mk · · ·Mk︸ ︷︷ ︸

t− 1 times

(
Zk1
Y k

1

)
= M t−1

k

(
Y k

2

Y k
1

)
, t = 1, 2, . . . , Tk − 1.

Next, we note that Mk is diagonalizable with eigendecomposition Mk = VkDkV
−1
k for

Dk =

(
1 + αk − βk 0

0 1 + αk + βk

)
and Vk =

(
1 + αk − βk 1 + αk + βk

1 1

)
,
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where αk = λTσ2

2Tkθ
and βk =

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1
)
. We can compute

M t−1
k = VkD

t−1
k V −1

k

=
1

2βk

(
(1 + αk + βk)t − (1 + αk − βk)t (1 + αk − βk)t(1 + αk + βk)− (1 + αk + βk)t(1 + αk − βk)

(1 + αk + βk)t−1 − (1 + αk − βk)t−1 (1 + αk − βk)t−1(1 + αk + βk)− (1 + αk + βk)t−1(1 + αk − βk)

)
,

so that we obtain

ZkTk−1 =
1

2βk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1
)
Y k

2

+
1

2βk

(
(1 + αk − βk)Tk−1(1 + αk + βk)− (1 + αk + βk)

Tk−1(1 + αk − βk)
)
Y k

1 .

From (41), we also have

ZkTk−1 = Y k
Tk

= 1− 1− (Tk − 2)ak
2

− Tkθ

λTσ2
ak − ak(Tk − 1) =

1

2
− 1

2

(
Tk −

1

αk

)
ak.

Hence,

βk − βk
(
Tk −

1

αk

)
ak =

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1
)
Y k

2

+
(
(1 + αk − βk)Tk−1(1 + αk + βk)− (1 + αk + βk)

Tk−1(1 + αk − βk)
)
Y k

1

Combining this with (42), which can be written as(
1 +

1

ak

)
Y k

1 −
1

2αk
Y K

2 = − ak
4α2

k

,

we obtain

Ak

(
Y k

1

Y k
2

)
=

(
−βkTk − βk

αk

− 1
4α2
k

)
ak +

(
βk

0

)
,

where

Ak =

(
A11
k A12

k

1 + 1
αk
− 1

2αk

)
A11
k = (1 + αk − βk)Tk−1(1 + αk + βk)− (1 + αk + βk)

Tk−1(1 + αk − βk)

A12
k = (1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1

so that

Y k
t =

(
vkt
)>
A−1
k

(
−βkTk − βk

αk

− 1
4α2
k

)
ak +

(
vkt
)>
A−1
k

(
βk

0

)
, t = 1, 2, . . . , Tk
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for

(
vkt
)>

=
(

0 1
)
M t−1
k

(
0 1

1 0

)

=
1

2βk

(
(1 + αk − βk)t−1(1 + αk + βk)− (1 + αk + βk)

t−1(1 + αk − βk)
(1 + αk + βk)

t−1 − (1 + αk − βk)t−1

)>
.

For future reference, we also compute

A−1
k =

2αk
A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

1 + 1
αk
−A11

k

)
A11
k + 2A12

k (αk + 1) = (1 + αk + βk)
Tk − (1 + αk − βk)Tk .

Thus, we deduce from (41) that

Xk
t = ηkt ak + κkt , t = 1, 2, . . . , Tk, (43)

where

ηkt =
(
vkt
)>
A−1
k

(
−βkTk − βk

αk

− 1
4α2
k

)
− Tk − 2

2
+

1

2αk
+ t− 1, (44)

κkt =
(
vkt
)>
A−1
k

(
βk

0

)
+

1

2
. (45)

By (12) with γ = 0, the client’s expected cost of the contract is

p0 + θ

Tk∑
t=1

τkt X
k
t = p0 + θak

Tk∑
t=1

τkt η
k
t + θ

Tk∑
t=1

τkt κ
k
t

= p0 + θak

(
τk1 η

k
1 + τkTkη

k
Tk

+

Tk−1∑
t=2

τkt η
k
t

)
+ θ

(
τk1 κ

k
1 + τkTkκ

k
Tk

+

Tk−1∑
t=2

τkt κ
k
t

)

= p0 + θak

(
1− (Tk − 2)ak

2

(
ηk1 + ηkTk

)
+ ak

Tk−1∑
t=2

ηkt

)
+ θ

(
1− (Tk − 2)ak

2

(
κk1 + κkTk

)
+ ak

Tk−1∑
t=2

κkt

)

= p0 + θa2
k

(
− Tk − 2

2

(
ηk1 + ηkTk

)
+

Tk−1∑
t=2

ηkt

)
+ θak

(
ηk1 + ηkTk

2
− Tk − 2

2

(
κk1 + κkTk

)
+

Tk−1∑
t=2

κkt

)

+ θ
κk1 + κkTk

2
. (46)
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The first-order condition yields

ak =

ηk1 +ηkTk
2 − Tk−2

2 (κk1 + κkTk) +
∑Tk−1

t=2 κkt

(Tk − 2)(ηk1 + ηkTk)− 2
∑Tk−1

t=2 ηkt
. (47)

We will next show

lim
k→∞

ηkdqTke

Tk
=

−1
2 + θ

λTσ2 + q if q ∈ (0, 1),

0 if q = 1,
(48)

lim
k→∞

κkdqTke =

1
2 if q ∈ (0, 1),

1 if q = 1,
(49)

lim
k→∞

ηk1
Tk

= −1

2
, (50)

lim
k→∞

κk1 =
1

2
. (51)

In the following limit computations, we will repeatedly use the fact that

lim
n→∞

(
1 +

c√
n

)n
= lim

m→∞

(
1 +

c

m

)m2

= lim
m→∞

((
1 +

c

m

)m)m
= lim

m→∞
ecm =


0 if c < 0,

1 if c = 0,

∞ if c > 0,

and that exponential convergence is faster than any power convergence.

To illustrate how we use this fact, first note that we have

1 + αk + βk = 1 +
λTσ2

2Tkθ
+

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1

)
≥ 1 +

√
λTσ2

Tkθ

and that for sufficiently large Tk, we also have

1 + αk − βk = 1 +
λTσ2

2Tkθ
−

√
λTσ2

Tkθ

(
λTσ2

4Tkθ
+ 1

)
≤ 1− 1

2

√
λTσ2

Tkθ
.

So the fact implies that for any C ∈ (0, 1], we have both (1+αk+βk)
CTk →∞ and (1+αk−βk)CTk →

0. The reason is that βk converges to zero only like 1√
Tk

while αk converges to zero like 1
Tk

. Because

of the slow convergence of βk, it dominates the other terms.

To show (48), we first compute

lim
k→∞

1

Tk

(
vkdqTke

)>
A−1
k

(
−βkTk − βk

αk

− 1
4α2
k

)
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= lim
k→∞

1

Tk

(
vkdqTke

)> 2αk
A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

1 + 1
αk
−A11

k

)(
−βkTk − βk

αk

− 1
4α2
k

)

= lim
k→∞

1

Tk

(
vkdqTke

)> 1

A11
k + 2A12

k (αk + 1)

(
−βkTk − βk

αk
− A12

k
2αk

2(1 + αk)
(
− βkTk − βk

αk

)
+

A11
k

2αk

)

= lim
k→∞

1

2Tkβk(A
11
k + 2A12

k (αk + 1))

((
(1 + αk − βk)dqTke−1(1 + αk + βk)

− (1 + αk + βk)
dqTke−1(1 + αk − βk)

)(
− βkTk −

βk
αk
−
A12
k

2αk

)
+
(

(1 + αk + βk)
dqTke−1 − (1 + αk − βk)dqTke−1

)(
2(1 + αk)

(
− βkTk −

βk
αk

)
+
A11
k

2αk

))

= lim
k→∞

1

2Tkβk(A
11
k + 2A12

k (αk + 1))

(
(1 + αk − βk)dqTke−1

(
(1 + αk + βk)

×
(
− βkTk −

βk
αk
−
A12
k

2αk

)
− 2(1 + αk)

(
− βkTk −

βk
αk

)
+
A11
k

2αk

)
+ (1 + αk + βk)

dqTke−1

(
− (1 + αk − βk)

(
− βkTk −

βk
αk
−
A12
k

2αk

)
+ 2(1 + αk)

(
− βkTk −

βk
αk

)
+
A11
k

2αk

))

= lim
k→∞

(1 + αk + βk)
dqTke−1

2Tkβk((1 + αk + βk)Tk − (1 + αk − βk)Tk)

×
(
− (1 + αk − βk)

(
− βkTk −

βk
αk

+
(1 + αk − βk)Tk−1

2αk

)
+ 2(1 + αk)

(
− βkTk −

βk
αk

)
+

(1 + αk − βk)Tk−1(1 + αk + βk)

2αk

)
= lim

k→∞

(1 + αk + βk)
dqTke−1

(
(1 + αk + βk)

(
− βkTk − βk

αk

)
+ (1 + αk − βk)Tk−1 βk

αk

)
2Tkβk((1 + αk + βk)Tk − (1 + αk − βk)Tk)

= lim
k→∞

(1 + αk + βk)
dqTke−Tk

(
− βkTk − βk

αk
+ (1 + αk − βk)Tk−1 βk

αk(1+αk+βk)

)
2Tkβk

(
(1+αk−βk)Tk

(1+αk+βk)Tk
+ 1
)

=


0 if q ∈ (0, 1),

lim
k→∞

−βkTk−
βk
αk

2Tkβk
= lim

k→∞

(
− 1

2 −
1

2Tkαk

)
= −1

2 −
θ

λTσ2 if q = 1.
(52)
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Therefore, we deduce from (44) that

lim
k→∞

ηkdqTke

Tk
= lim

k→∞

(
1

Tk

(
vkdqTke

)>
A−1
k

(
−βkTk − βk

αk

− 1
4α2
k

)
− 1

2
+

1

2Tkαk
+ q

)

=

−1
2 + θ

λTσ2 + q if q ∈ (0, 1),

0 if q = 1,

which shows (48). Similarly, for (49), we first compute

lim
k→∞

(
vkdqTke

)>
A−1
k

(
βk

0

)

= lim
k→∞

(
vkdqTke

)> 2αk
A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

1 + 1
αk
−A11

k

)(
βk

0

)

= lim
k→∞

(
vkdqTke

)> 1

A11
k + 2A12

k (αk + 1)

(
βk

2βk(1 + αk)

)

= lim
k→∞

(
1
2

(
(1 + αk − βk)dqTke−1(1 + αk + βk)− (1 + αk + βk)

dqTke−1(1 + αk − βk)
)

A11
k + 2A12

k (αk + 1)

+

(
(1 + αk + βk)

dqTke−1 − (1 + αk − βk)dqTke−1
)
(1 + αk)

A11
k + 2A12

k (αk + 1)

)

= lim
k→∞

−1
2(1 + αk + βk)

dqTke−1(1 + αk − βk) + (1 + αk + βk)
dqTke−1(1 + αk)

(1 + αk + βk)Tk

= lim
k→∞

1

2
(1 + αk + βk)

dqTke−Tk

=

0 if q ∈ (0, 1),

1
2 if q = 1,

(53)

so that by (45) we obtain

lim
k→∞

κkdqTke =

1
2 if q ∈ (0, 1),

1 if q = 1,
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which proves (49). To show (50), we begin by computing from (44)

ηk1 =
(
vk1
)>
A−1
k

(
−βkTk − βk

αk

− 1
4α2
k

)
− Tk − 2

2
+

1

2αk

= (1, 0)
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

1 + 1
αk
−A11

k

)(
−βkTk − βk

αk

− 1
4α2
k

)
− Tk

2
+ 1 +

1

2αk

=
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

)( −βkTk − βk
αk

− 1
4α2
k

)
− Tk

2
+ 1 +

1

2αk

=
−βkTk − βk

αk
− A12

k
2αk

A11
k + 2A12

k (αk + 1)
− Tk

2
+ 1 +

1

2αk

=
−βkTk − βk

αk
− 1

2αk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1
)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
− Tk

2
+ 1 +

1

2αk
. (54)

We then compute the limit

lim
k→∞

ηk1
Tk

=
−βk − βk

αkTk
− 1

2αkTk

(
(1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1
)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
− 1

2
+

1

Tk
+

1

2αkTk

= lim
k→∞

− βk
(1+αk+βk)Tk−1−(1+αk−βk)Tk−1

(
1 + 2θ

λTσ2

)
− θ

λTσ2

(1+αk+βk)Tk−1(1+αk+βk)−(1+αk−βk)Tk−1(1+αk−βk)

(1+αk+βk)Tk−1−(1+αk−βk)Tk−1

− 1

2
+

θ

λTσ2

= lim
k→∞

− θ
λTσ2

1 + αk + βk
− 1

2
+

θ

λTσ2
= −1

2
,

which proves (50). Finally, for (51), we begin by computing from (45)

κk1 =
(
vk1
)>
A−1
k

(
βk

0

)
+

1

2

= (1, 0)
2αk

A11
k + 2A12

k (αk + 1)

(
1

2αk
A12
k

1 + 1
αk
−A11

k

)(
βk

0

)
+

1

2

=
βk

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

1

2
, (55)

so that limk→∞ κ
k
1 = 1

2 , which concludes the proof of (47)–(51). Additionally, we note that the

convergence in (52) and (53) is uniform in q on compact sets in (0, 1). To see this, note that

the expressions in the limits (52) and (53) depend on q only through (1 + αk + βk)
dqTke−Tk and

(1 +αk − βk)dqTke−1, which both converge to zero uniformly in q on compact sets in (0, 1). Indeed,
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for every 0 < q0 < Q0 < 1, we have

0 ≤ lim
k→∞

sup
q∈[q0,Q0]

(1 + αk + βk)
dqTke−Tk ≤ lim

k→∞
(1 + αk + βk)

dQ0Tke−Tk = 0,

0 ≤ lim
k→∞

sup
q∈[q0,Q0]

(1 + αk − βk)dqTke−1 ≤ lim
k→∞

(1 + αk − βk)dQ0Tke−1 = 0,

which shows

lim
k→∞

sup
q∈[q0,Q0]

(1 + αk + βk)
dqTke−Tk = 0 and lim

k→∞
sup

q∈[q0,Q0]
(1 + αk − βk)dqTke−1 = 0.

This implies that for every 0 < q0 < Q0 < 1 and every ε > 0, there exists k0 such that∣∣∣∣∣η
k
dqTke

Tk
+

1

2
− θ

λTσ2
− q

∣∣∣∣∣ < ε and

∣∣∣∣κkdqTke − 1

2

∣∣∣∣ < ε

for all k > k0 and q ∈ [q0, Q0]. Note that k0 may depend on q0, Q0 and ε, but it does not depend

on q because of the uniform convergence. We can also deduce from (52) and (53) that there exists

k0 such that
∣∣ ηkt
Tk

∣∣ ≤ 1 + θ
λTσ2 and |κkt | ≤ 3

2 for all k ≥ k0 and t = 1, 2, . . . , Tk. Therefore, for every

0 < q0 < Q0 < 1 and every ε > 0, there exists k0 such that∣∣∣∣∣ 1

Tk

Tk−1∑
t=2

κkt −
Tk − 2

2Tk

∣∣∣∣∣ =
1

Tk

∣∣∣∣∣
Tk−1∑
t=2

(
κkt −

1

2

)∣∣∣∣∣
≤ 1

Tk

(
2
(
dq0Tke − 1

)
+ (Tk − 2)ε+ 2

(
d(1−Q0)Tke − 1

))
< 2q0 + ε+ 2(1−Q0),∣∣∣∣∣ 1

T 2
k

Tk−1∑
t=2

ηkt +
Tk − 2

2Tk
− θ(Tk − 2)

λTσ2Tk
− (Tk − 2)(Tk − 1)

2T 2
k

∣∣∣∣∣ =
1

Tk

∣∣∣∣∣
Tk−1∑
t=2

(
ηkt
Tk

+
1

2
− θ

λTσ2
− t− 1

Tk

)∣∣∣∣∣
≤ 1

Tk

((
3 +

2θ

λTσ2

)(
dq0Tke − 1

)
+ (Tk − 2)ε+

(
3 +

2θ

λTσ2

)(
d(1−Q0)Tke − 1

))
<

(
3 +

2θ

λTσ2

)
q0 + ε+

(
3 +

2θ

λTσ2

)
(1−Q0)

for all k > k0. Letting q0 → 0, Q0 → 1 and ε→ 0, we deduce

lim
k→∞

1

Tk

Tk−1∑
t=2

κkt =
1

2
and lim

k→∞

1

T 2
k

Tk−1∑
t=2

ηkt = −1

2
+

θ

λTσ2
+

1

2
=

θ

λTσ2
. (56)

Together with (47)–(51), this implies

lim
k→∞

Tkak = lim
k→∞

ηk1 +ηkTk
2Tk

− 1
2(κk1 + κkTk) + 1

Tk

∑Tk−1
t=2 κkt

ηk1 +ηkTk
Tk

− 2
T 2
k

∑Tk−1
t=2 ηkt

=
−1

4 −
3
4 + 1

2

−1
2 −

2θ
λTσ2

=
1

1 + 4θ
λTσ2

. (57)
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Combining this with (40) and setting a = 1
1+ 4θ

λTσ2

, we find

lim
k→∞

dqTke∑
t=1

τ∗kt =


0 if q = 0,

lim
k→∞

(
1−(Tk−2)ak

2 +
(
dqTke − 1

)
ak

)
= 1−a

2 + qa if q ∈ (0, 1),

1 if q = 1.

Similarly, using (43), (48), (49), and (57), we derive

lim
k→∞

Xk
dqTke =


0 if q = 0,

lim
k→∞

(
ηkdqTkeak + κkdqTke

)
=
(
− 1

2 + θ
λTσ2 + q

)
a+ 1

2 = θa
λTσ2 + 1−a

2 + aq if q ∈ (0, 1),

lim
k→∞

(
ηkTkak + κkTk

)
= 0 + 1 = 1 if q = 1.

Finally, the client’s expected costs of execution converge to

lim
k→∞

(
p0 + θa2

k

(
− Tk − 2

2

(
ηk1 + ηkTk

)
+

Tk−1∑
t=2

ηkt

)
+ θak

(
ηk1 + ηkTk

2
− Tk − 2

2

(
κk1 + κkTk

)
+

Tk−1∑
t=2

κkt

)

+ θ
κk1 + κkTk

2

)

= lim
k→∞

(
p0 + θ a2

kT
2
k︸ ︷︷ ︸

→ 1

(1+ 4θ
λTσ2 )2

(
− 1− 2/Tk

2︸ ︷︷ ︸
→ 1

2

ηk1 + ηkTk
Tk︸ ︷︷ ︸
→− 1

2

+
1

T 2
k

Tk−1∑
t=2

ηkt︸ ︷︷ ︸
→ θ
λTσ2

)

+ θ akTk︸︷︷︸
→ 1

1+ 4θ
λTσ2

(
ηk1 + ηkTk

2Tk︸ ︷︷ ︸
→− 1

4

− 1− 2/Tk
2︸ ︷︷ ︸
→ 1

2

(
κk1 + κkTk

)︸ ︷︷ ︸
→ 3

2

+
1

Tk

Tk−1∑
t=2

κkt︸ ︷︷ ︸
→ 1

2

)
+ θ

κk1 + κkTk
2︸ ︷︷ ︸
→ 3

4

)

= p0 +
θ(

1 + 4θ
λTσ2

)2(− 1

2
·
(
− 1

2

)
+

θ

λTσ2

)
+

θ

1 + 4θ
λTσ2

(
− 1

4
− 1

2
· 3

2
+

1

2

)
+ θ

3

4

= p0 +
θ

4
(
1 + 4θ

λTσ2

) − θ

2
(
1 + 4θ

λTσ2

) +
3θ

4

= p0 +
1 + 6θ

λTσ2

2
(
1 + 4θ

λTσ2

)θ
= p0 +

3− a
4

θ

for a = 1
1+ 4θ

λTσ2

, where we used (46), (48)–(51), (56), and (57).
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OA.A.2.3 Proof of equation (35)

Proof of (35). According to (43), Xk
1 = ηk1ak + κk1, which by (54) and (55) can be computed as

Xk
1 = ηk1ak + κk1

=

(−βkTk − βk
αk
− 1

2αk
((1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
− Tk

2
+ 1 +

1

2αk

)
ak

+
βk

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

1

2

=
1− (Tk − 2)ak

2
+
βk(1− akTk)− akβk

αk
− ak

2αk
((1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

ak
2αk

.

To conclude the proof, we need to show that

βk(1− akTk)− akβk
αk
− ak

2αk
((1 + αk + βk)

Tk−1 − (1 + αk − βk)Tk−1)

(1 + αk + βk)Tk − (1 + αk − βk)Tk
+

ak
2αk

> 0.

For ak = 0, this inequality is satisfied, and for ak > 0, it is equivalent to

(1 + αk + βk)
Tk−1(αk + βk)− (1 + αk − βk)Tk−1(αk − βk) > −2αkβk(1/ak − Tk) + 2βk. (58)

Because of ak ≤ 1
Tk−2 , equation (58) follows from

(1 + αk + βk)
Tk−1(αk + βk) + (1 + αk − βk)Tk−1(−αk + βk)

= (αk + βk)

Tk−1∑
j=0

(
Tk − 1

j

)
βjk(1 + αk)

Tk−1−j + (−αk + βk)

Tk−1∑
j=0

(
Tk − 1

j

)
(−βk)j(1 + αk)

Tk−1−j

= 2αk

b(Tk−1)/2c∑
j=0

(
Tk − 1

2j + 1

)
β2j+1
k (1 + αk)

Tk−2j−2 + 2βk

b(Tk−1)/2c∑
j=0

(
Tk − 1

2j

)
β2j
k (1 + αk)

Tk−1−2j

≥ 2βk(1 + αk)
Tk−1

> 2βk + 2(Tk − 1)αkβk

≥ 2βk + 4αkβk,

where we used that Tk ≥ 3.

OA.A.3 Infinite execution horizon

Besides the continuous-time limit considered in Section 5, another limit of economic interest con-

cerns what happens as the execution horizon T diverges to infinity, holding all other parameters

fixed. In particular, σ would be held fixed, so the distance between consecutive trading periods

should not be interpreted as going to zero, distinguishing this from the continuous-time limit.

Rather, this limit can be interpreted as speaking to how the optimal contract changes as the client
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becomes progressively more patient.

As we did when analyzing the continuous-time limit, the following result is stated in terms of

the cumulative values through quantiles q of the execution period, and we focus on the case of a

strictly risk-averse dealer to ensure well-behaved convergence.

Proposition 14. Assume γ = 0 and that the dealer is strictly risk-averse (λ > 0). For each

execution horizon T ∈ N, let τ ∗T ∈ T T be the optimal contract, and let x∗T be the dealer strategy

that best responds to τ ∗T . For all q ∈ [0, 1],

lim
T→∞

dqT e∑
t=1

τ∗Tt = q and lim
T→∞

dqT e∑
t=1

x∗Tt = q

The client’s expected costs of execution converge to p0 + θ
2 .

This result states a sense in which, as the execution horizon T diverges, (i) the optimal contract

τ ∗T converges to guaranteed TWAP, and (ii) the dealer’s trading strategy x∗T converges to the

first best. It follows that the client receives her first-best payoff in the limit.35

For the intuition, note that in general, the dealer’s frontloading motive reflects a balance between

two considerations: given an offered contract τ , if the dealer deviates from x = τ to an alternative

that differs from τ , then he may increase his expected profit, but he also exposes himself to price

risk. As T → ∞, the dealer must take on more and more price risk in order to create the same

increase in expected profit, so that such deviations become progressively less attractive, and the

dealer’s best response converges to a trading strategy that mirrors the contract weights. Thus, the

limit resembles the case in which the dealer’s best response is to choose x = τ . And in that case,

it is optimal for the client to induce the first-best policy, which she can achieve with a guaranteed

TWAP contract.

Proof of Proposition 14. In this setting, (11) becomes

Xk
q +

θ + 2γ

λσ2

(
2Xk

q −Xk
q+ 1

Tk

−Xk
q− 1

Tk

)
=

γ

λTσ2

(
2V k

q −V k
q+ 1

Tk

−V k
q− 1

Tk

)
+

θ

λTσ2

(
V k
q −V k

q− 1
Tk

)
+V k

q

(59)

for all q ∈ (0, 1), where Xk
q =

∑dqTke
t=1 xkt and V k

q =
∑dqTke

j=1 τkj for τ k ∈ ∆Tk and a dealer strategy

xk in the kth model. Assuming that the limiting processes Xq = limk→∞X
k
q and Vq = limk→∞ V

k
q

exist and are continuous, we have

Xq = lim
k→∞

Xk
q = lim

k→∞
Xk
q+ 1

Tk

= lim
k→∞

Xk
q− 1

Tk

and Vq = lim
k→∞

V k
q = lim

k→∞
V k
q+ 1

Tk

= lim
k→∞

V k
q− 1

Tk

,

hence we obtain from (59) by letting k go to ∞ that Xq = Vq for all q ∈ [0, 1], and the client’s

expected costs converge to p0 + θ
2 . Consequently, the client chooses the first-best strategy as the

35Indeed, Proposition 1 states that, under the first best, the client’s expected costs of execution are p0 + γ
T

+ θ(T+1)
2T

.
Taking the limit as T →∞, we obtain p0 + θ

2
, as in Proposition 14.
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contract weights in the limit. Formally, this can be shown by analysis similar to that in the proof of

Proposition 9 in Appendix A. One would follow the computations related to the client’s expected

costs in (18), while using Xq = Vq for all q ∈ [0, 1].
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OA.B Affine Contracts

Our main result, Proposition 4, provides explicit formulas for the optimal contract and the dealer’s

trading strategy when the feasible contracts are weighted averages of the market prices. When

the feasible contracts are affine functions of the market prices, we can still give explicit results,

although the formulas become more complicated.

For the purposes of this appendix, a contract is a vector (τ0, τ1, . . . , τT ) ∈ RT+1, which stipulates

that the client will pay the dealer τ(p) = τ0 +
∑T

t=1 τtpt. For notational convenience, we write

τ = (τ1, . . . , τT )>, excluding the constant τ0. The weighted average price contracts considered in the

main text correspond to restricting to such contracts (τ0, τ1, . . . , τT ) with τ0 = 0 and
∑T

t=1 τt = 1.

We provide a mathematical characterization of the optimal affine contract in Appendix OA.B.1.

Then we illustrate with numerical examples and discuss the solution in Appendix OA.B.2. Of special

interest is the case of a risk-neutral dealer, which we discuss in Appendix OA.B.3.

OA.B.1 Characterization of the optimal affine contract

The problem that we analyze here is the same as the formulation in Section 2.3, except that the

contract space is different. The proof of the following result goes along the same lines as that of

Lemma 2 and is therefore omitted.

Lemma 15. Recall the T × T matrix F from (1) and define T × T matrices Ã and Ẽ by

Ã =



λσ2 + 2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) λσ2 + 2θ + 4γ −(θ + 2γ)

0 · · · 0 λσ2


,

Ẽ =



θ + γ −γ − λσ2 −λσ2 · · ·
0 θ + γ −γ − λσ2 −λσ2 · · ·
0 0 θ + γ −γ − λσ2 −λσ2 · · ·
...

...
. . .

. . .

0 0 θ + γ −γ − λσ2

0 · · · 0 0


.

For any affine contract with τ = (τ1, . . . , τT )>, the dealer has a unique best response in X , which

is the static trading strategy x = FÃ−1Ẽτ + λσ2FÃ−11, where 1 = (1, 1, . . . , 1)> denotes a T -

dimensional vector of ones.

Likewise, the following result is the analogue to Proposition 4 for the space of affine contracts.

While the formulas look complicated, they are fully explicit and can be computed directly.
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Proposition 16. We define

G =



1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
...

. . .
. . .

0 · · · 0 1


,

M = θF> + θF + 2γF>F + λσ2F>G>GF,

N = Ẽ>Ã−>MÃ−1Ẽ + λσ2G>G− λσ2G>GFÃ−1Ẽ − λσ2Ẽ>Ã−>F>G>G, (60)

v = λ2σ4G>GFÃ−11− λσ2Ẽ>Ã−>MÃ−11.

The optimal affine contract and the dealer’s trading strategy are given by

τ ∗ = N−1v,

x∗ = FÃ−1ẼN−1v + λσ2FÃ−11,

τ∗0 = p0(1− 1>τ ∗) + (x∗ − τ ∗)>(θF−1x∗ + γx∗) +
λσ2

2
(x∗ − τ ∗)>G>G(x∗ − τ ∗). (61)

Under them, the client’s expected costs of execution are

p0 +
1

2
λ2σ41>Ã−>MÃ−11− 1

2
v>(N−1)2v.

The proof of Proposition 16 is deferred to Appendix OA.B.4.

OA.B.2 Illustration and discussion of the optimal affine contract

Illustration. To illustrate the solution provided by Proposition 16, Figures 7–9 display the op-

timal contract and dealer’s trading strategy for various choices of the parameters θ, γ, and λ. For

the left panels, note that τ∗t corresponds to the weight on pt for t ∈ {1, . . . , T} and to the additive

constant for t = 0.
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Figure 7: The optimal affine contract and trading strategy for different levels of permanent price
impact. When there is no permanent price impact (θ = 0), the first best is achieved. In this case,
the optimal contract satisfies τj = 1/T for all j = 1, . . . , T and τ0 = 0, while the trading strategy
is constant over time. The other parameters are γ = 1, λ = 1, σ = 1, p0 = 0, and T = 20.
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Figure 8: The optimal affine contract and trading strategy for different levels of temporary price
impact. The other parameters are θ = 1, λ = 1, σ = 1, p0 = 0, and T = 20.

Comparison to the baseline analysis. Several features of our baseline analysis (with weighted-

average-price contracts) extend to the case of affine contracts. One similarity is that the dealer’s

best response continues to reflect a frontloading motive. In the main text, this frontloading motive

was formalized by Proposition 3. The availability of additional contracts is irrelevant to that result,

so that the proposition carries over unchanged. Likewise, the right panels of Figures 7–9 suggest

that the dealer’s trading policy in response to the optimal contract is frontloaded (in the sense that∑t
s=1 x

∗
s ≥ t

T for all t), just as in our baseline analysis (cf. the right panels of Figures 1–3).

In terms of the optimal contract, the main qualitative similarity to our baseline analysis is that
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Figure 9: The optimal affine contract and trading strategy for different levels of risk aversion. The
other parameters are θ = 1, σ = 1, p0 = 0, and T = 20. For λ = 0, the trading strategy is flat,
coinciding with the first best. Interestingly, the shape of the trading strategy changes significantly
when comparing λ = 0.0 and λ = 0.2.

there continue to be large weights on late prices, as illustrated by the left panels of Figures 7–9.

The main qualitative difference—besides the obvious presence of the constant—is that there are no

longer large weights on early prices. Here is the intuition for those patterns. In the baseline, the

reason to weight earlier prices was because, holding prices fixed, the client can reduce her payment

by shifting weight from later prices (which are high in expectation) to earlier prices (which are low

in expectation). With affine contracts, the client has two additional tools for reducing her payment:

(i) reducing the total weight put on prices (as
∑T

t=1 τt is no longer fixed at one), and (ii) reducing

the fixed-payment component τ0.As a result, she no longer has the same reason to weight early

prices. However, her rationale for weighting later periods remains—and for the same reasons as

discussed before.

OA.B.3 The case of a risk-neutral dealer

A notable case is that in which the dealer is risk-neutral (i.e., λ = 0), in which case the client

obtains her first-best payoff. For example, she can achieve this by offering the dealer a suitable

fixed-price contract (analogous to a ‘sell-the-firm’ contract in classical models of moral hazard),

which she can do because the set of affine contracts includes all fixed-price contracts. However,

such a contract is not unique in implementing first best; many contracts are optimal when λ = 0.

In fact, we prove the following proposition in Appendix OA.B.4.

Proposition 17. When λ = 0, an affine contract (τ0, τ ) is optimal if and only if (i) τ =

c
(
θ+γ
γ , (θ+γ)2

γ2 , . . . , (θ+γ)T

γT

)>
for some c ∈ R, and (ii) τ0 is chosen to make the (IR) constraint

bind.
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In the language of Proposition 17, the optimal fixed-price contract entails c = 0. As illustrated

in Figure 9, the optimal contract identified by Proposition 16 entails a c > 0 when λ converges to

zero.36

OA.B.4 Proofs of results in Appendix OA.B

Proof of Proposition 16. It follows from (IR) that

τ0 ≥ p0−p0

T∑
t=1

τt+
T∑
t=1

(Xt−Xt−1−τt)
(
θXt+γ(Xt−Xt−1)

)
+
λσ2

2

T∑
t=1

(
Xt−1−1+

T∑
j=t

τj

)2

, (62)

with equality if (IR) is binding. The client’s expected cost of a contract τ(p) is

Ex[τ(p)] = τ0 + Ex

[
T∑
t=1

τtpt

]

= τ0 + Ex

[
T∑
t=1

τt

(
p0 +

t∑
j=1

(θxj + εj) + γxt

)]

= τ0 +
T∑
t=1

τt

(
p0 +

t∑
j=1

θxj + γxt

)

≥ p0 +

T∑
t=1

(Xt −Xt−1)
(
θXt + γ(Xt −Xt−1)

)
+
λσ2

2

T∑
t=1

(
Xt−1 − 1 +

T∑
j=t

τj

)2

, (63)

with equality if (IR) is binding. Using matrices, we can rewrite this when (IR) is binding as

Ex[τ(p)] = p0 +X>F>(θX + γFX) +
λσ2

2
(x− τ )>G>G(x− τ )

= p0 +
1

2
X>MX +

λσ2

2
τ>G>Gτ − λσ2τ>G>Gx

= p0 +
1

2
τ>Ẽ>Ã−>MÃ−1Ẽτ +

λσ2

2
τ>G>Gτ − λσ2τ>G>GFÃ−1Ẽτ − λ2σ4τ>G>GFÃ−11

+ λσ21>Ã−>MÃ−1Ẽτ +
λ2σ4

2
1>Ã−>MÃ−11,

where F is defined in (1), and G and M are given in (60). We can write this as

Ex[τ(p)] =
1

2
τ>Nτ − v>τ + p0 +

λ2σ4

2
1>Ã−>MÃ−11,

where N and v are defined in (60). From the first-order condition, the minimizer is given by

τ ∗ = N−1v. It now follows from Lemma 15 that x∗ = FÃ−1ẼN−1v+λσ2FÃ−11. We deduce (61)

36If we plug λ = 0 in the formula of Proposition 16, it will not be well defined because Ã is not invertible.
Proposition 16 gives a unique optimal contract for every λ > 0, converging to a unique limiting contract as λ↘ 0.
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from (62). For the expected costs under this contract, we write

Ex[τ(p)] =
1

2
(τ ∗)>Nτ ∗ − v>τ ∗ + p0 +

λ2σ4

2
1>Ã−>MÃ−11

=
1

2
(τ ∗ −N−1v)>N(τ ∗ −N−1v)− 1

2
v>(N−1)2v + p0 +

λ2σ4

2
1>Ã−>MÃ−11

= −1

2
v>(N−1)2v + p0 +

λ2σ4

2
1>Ã−>MÃ−11,

which concludes the proof.

Proof of Proposition 17. By Proposition 1, the expected costs of execution are p0 + γ
T + θ(T+1)

2T

under the first-best trading strategy xFB =
(

1
T , . . . ,

1
T

)>
. We will find all τ with

Ex[τ(p)] = p0 +
γ

T
+
θ(T + 1)

2T
.

To do so, we first note that the best response to all such τ must be xFB. Indeed, (63) for λ = 0

gives

Ex[τ(p)] ≥ p0 + γ

T∑
t=1

x2
t + θ

T∑
t=1

xt

t∑
s=1

xs ≥ p0 +
γ

T
+
θ(T + 1)

2T
, (64)

where the second inequality follows from the proof of Proposition 1. Equality holds in the first

part of (64) if and only if (IR) is binding. There is equality in the second part of (64) if and only

if x = xFB. Next, we rewrite the best-response formula in Lemma 15 for λ = 0 as AF−1x =

Eτ + (0, . . . , 0, 1)>, where

A =



2θ + 4γ −(θ + 2γ) 0 0 · · ·
−(θ + 2γ) 2θ + 4γ −(θ + 2γ) 0 · · ·

0 −(θ + 2γ) 2θ + 4γ −(θ + 2γ)
...

. . .
. . .

. . .

−(θ + 2γ) 2θ + 4γ −(θ + 2γ)

0 · · · 0 1


,

E =



θ + γ −γ 0 · · ·
0 θ + γ −γ 0 · · ·
0 0 θ + γ −γ 0 · · ·
...

...
. . .

. . .

0 0 θ + γ −γ
0 · · · 0 0


.

We compute AF−1xFB = (0, . . . , 0, 1)>. Therefore, a contract is optimal if and only if (i) Eτ = 0

and (ii) τ0 is chosen to make the (IR) constraint bind. The condition Eτ = 0 is equivalent to

(θ + γ)τt = γτt+1 for all t = 1, . . . , T − 1, or τ = c
(
θ+γ
γ , (θ+γ)2

γ2 , . . . , (θ+γ)T

γT

)>
for some c ∈ R.
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