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Abstract

We document that implied volatility (IV) curves of short-term equity options frequently
become concave prior to the earnings announcements day (EAD), typically reflecting a
bimodal risk-neutral distribution for the underlying stock price. Firms with concave IV
curves exhibit significantly higher absolute stock returns on EAD and higher realized
volatility after the announcement, rendering concavity an ex-ante signal for event risk.
Returns on delta-neutral straddles, delta-neutral strangles, and delta- and vega-neutral
calendar straddles are negative and significantly lower in the presence of concave IV
curves, showing that investors pay a substantial premium to hedge against the gamma
risk arising from this event.
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1 Introduction

Earnings announcements are scheduled corporate events that disseminate substantial fun-

damental information to investors. A voluminous literature has examined several features,

such as the behavior of stock returns (see, for example, Ball and Brown (1968), Ball and

Kothari (1991), Beaver (1968), and Frazzini and Lamont (2007)) and systematic risk (see,

for example, Patton and Verardo (2012) and Savor and Wilson (2016)) around these earnings

announcements days (EADs).

We posit that these scheduled announcements are often viewed as referendums on firm

value. On these occasions, investors anticipate that the underlying stock price will, more

likely than not, exhibit a large movement in either direction upon the announcement. This

anticipated stock price jump may induce bimodality in the central part of the ex-ante risk-

neutral distribution (RND) and concavity in the implied volatility (IV) curve. Using data

on very short-term options, we first empirically document that concavity in the IV curve is a

pervasive feature prior to EADs and then study the pricing implications of this phenomenon.

The possibility of stock price jumps can also translate into increased volatility around

EADs. In fact, Dubinsky, Johannes, Kaeck, and Seeger (2019, DJKS henceforth) and Patell

and Wolfson (1979, 1981) document an increase in IV in the runup to EADs and a sharp

drop afterwards. However, bimodality is a fundamentally different concept of risk relative

to a more dispersed distribution (volatility), or a negatively skewed distribution (a reflection

of tail risk), or a more fat-tailed distribution (kurtosis).

Bimodality in the central part of the RND implies that, subject to a relatively minor

risk-adjustment due to the very short option expiry, the prevailing stock price is expected

to be around either of the two identified modes. This means that the stock price after the

announcement will most likely be x% above or y% below the current price; each outcome may

also be associated with a different volatility level. This feature is, therefore, also different

from the common modeling assumption of a low-probability, randomly timed Poisson jump

(see, for example, Ball and Torous (1985) and Merton (1976)), which can lead to an IV smirk

and a left-tailed RND, capturing tail risk and explaining the expensiveness of OTM puts

(Bates (1996, 2000), Pan (2002), and Yan (2011)). We dub this ex-ante bimodality as “event

risk” for the underlying stock and argue that a concave IV curve provides an option-based

signal for this type of risk.1

We show that during our sample period (2013-2020), a large fraction (38%) of IV curves

extracted from short-expiry equity options become concave prior to EADs. This compares

1According to Liu, Longstaff, and Pan (2003, p. 231), event risk is defined as “the risk of a major event
precipitating a sudden large shock to security prices and volatilities.”
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to just 5% of IV curves exhibiting concavity on a typical trading day when option expiry

does not span an EAD. The concave IV curves that we document are typically inverse U-

shaped, S-shaped, or W-shaped. These shapes are in stark contrast with the convex volatility

smiles and smirks (or skews) that are commonly observed for equity options, where out-of-

the-money (OTM) puts trade at higher volatility relative to at-the-money (ATM) options.

Interestingly, the feature of concavity mostly disappears right after the announcement, as

the uncertainty surrounding this event is resolved, and the IV curves revert to their standard

convex shape.

We document that concavity in the IV curve is typically associated with bimodality in

the central part of the corresponding RND. Specifically, we find that 86% of the observations

with concave IV curves exhibit a bimodal RND. Whereas concavity does not axiomatically

reflect a bimodal distribution, we show that a concave IV curve provides an option-based

signal of impending event risk in the underlying stock.

Concavity appears in short- rather than long-expiry options. This feature arises due to the

relative effect between the anticipated jump and the diffusion component of the underlying

stock price process. As expiry shrinks, the effect of the anticipated jump dominates the

effect of the diffusion component; this renders the underlying RND bimodal and the IV curve

concave. On the other hand, as the expiry increases, the diffusion component dominates,

the RND reverts to unimodality and the IV curve to convexity.2

To rule out the alternative hypothesis that bimodal RNDs are driven by a behavioural

mispricing by option traders understating the probability of no news, we examine the distri-

bution of realized stock returns on EAD. We find that the distribution of daily EAD returns

following a non-concave IV curve is unimodal (with mode around 0%)—similar to the distri-

bution of daily stock returns on typical trading days. In contrast, following the formation of

concave IV curves, the central part of the corresponding stock return distribution exhibits bi-

modality, with two distinct modes away from 0%. This finding confirms that bimodal RNDs

primarily arise because large stock returns in either direction are highly likely to occur on

EADs and investors price these anticipated outcomes in the option market.

Having documented these novel features of IV curves around EADs, we examine the

informational content of concavity. Our analysis reveals that concave IV curves possess

significant predictive ability with respect to stock returns on EAD and post-EAD realized

volatility. First, we find that, on average, firms exhibiting concave IV curves have an absolute

abnormal stock return of 5.88% on EAD, which is 1.65% higher than the corresponding

2Our analysis uses options with expiry between 3 and 13 calendar days ahead. 80% (20%) of our obser-
vations are constructed using weekly (regular) options. The sparsity of short-term equity options prior to
our sample period may explain why this feature has not been previously documented in the literature.
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absolute return for firms with non-concave IV curves. Second, we find that firms with concave

IV curves exhibit an average realized stock return annualized volatility of 47.5% in the 10-

day interval after the announcement, which is 10.43% higher than the corresponding realized

volatility of firms with non-concave IV curves. These findings show that investors are able

to identify earnings announcements that trigger larger than average stock price movements

and volatility. Anticipating these effects, investors trade accordingly in the option market,

giving rise to concave IV curves, which in turn signal ex-ante the impending event risk.

The most obvious way investors could speculate on, or hedge against, large stock price

swings on EADs, regardless of their direction, is by purchasing straddles. Delta-neutral ATM

straddles have been commonly used to capture the price of volatility risk for the underlying

stock returns (Coval and Shumway (2001)). Therefore, we examine whether delta-neutral

straddle returns on EADs differ across concave and non-concave IV curves. Interestingly,

concave IV curves are followed by a negative and 4.57% lower average delta-neutral straddle

return on EAD, as compared to non-concave IV curves. In fact, we find that only in the

presence of concave IV curves do investors pay a significant premium to hedge against the

uncertainty caused by the forthcoming announcement.

To directly show that ATM straddles are particularly expensive in the presence of concave

IV curves, we introduce a simple measure of their expensiveness. Specifically, we compute

the ratio of the sum of the ATM put and call prices divided by the underlying stock price.

Intuitively, this ratio indicates the required percentage change in the underlying stock price,

in either direction, to offset the cost of the ATM straddle. Hence, this ratio is termed as the

implied move for the underlying stock price. The higher (lower) the value of this ratio, the

more (less) expensive it is to purchase an ATM straddle, ceteris paribus.

We find that, on average, the implied move prior to the EAD is 2.21% higher for concave

IV curves. This strongly significant differential confirms that ATM straddles are much more

expensive prior to EADs in the presence of concave IV curves. This finding can help explain

why these straddles yield much lower returns on EADs despite the larger than average

absolute stock returns observed following the formation of concave IV curves. This finding

also provides an alternative way to illustrate that investors pay a significant premium to

hedge against the event risk that is signaled by a concave IV curve prior to the announcement.

Delta-neutral straddles are exposed to both stochastic volatility (vega) and jump (gamma)

risk. To identify which of these two sources of risk is priced around earnings announcements,

we follow two complementary approaches. First, similar to Dew-Becker, Giglio, and Kelly

(2021), we construct strangles that yield positive payoffs only when the underlying stock price

exhibits a sufficiently large move. Hence, strangle returns can provide direct evidence on
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the price of gamma risk around EADs. Second, following Cremers, Halling, and Weinbaum

(2015), we construct delta- and vega-neutral calendar straddles (which expose investors to

gamma risk only) and delta- and gamma-neutral calendar straddles (which expose investors

to vega risk only).

We find that, on average, concave IV curves are followed by a 8.84% lower strangle return

and a 12.71% lower delta- and vega-neutral straddle return on EADs, as compared to non-

concave IV curves. In fact, the average returns of these option strategies are negative only in

the presence of concave IV curves. On the other hand, delta- and gamma-neutral straddles

yield a positive premium across concave and non-concave IV curves. These results show that

investors pay a substantial premium to hedge against the gamma risk that arises due to the

earnings announcement only in the presence of concave IV curves. They also show that the

informational content of concave IV curves is related to gamma rather than vega risk.

As mentioned above, prior literature (DJKS (2019), Patell and Wolfson (1979, 1981))

shows that in the run up to EAD, implied volatility increases, the difference between real-

ized volatility and implied volatility decreases, and the term structure of volatility becomes

downward sloping. Thus, these variables could also be perceived as alternative proxies for

event/jump risk, with the term structure of volatility explicitly suggested as such by DJKS

(2019). However, we find that concavity contains significant predictive ability with respect

to straddle, strangle and vega-neutral calendar straddle premia over and above the informa-

tional content of these option-based risk measures.

Overall, our study shows that large stock price movements are systematically anticipated

by investors prior to EAD and can be detected ex-ante because they dramatically affect the

pricing of short-expiry options. In the case of concave IV curves, we show that large stock

price movements are not just a possibility due to the announcement, but rather a very likely

outcome. This feature often gives rise to a bimodal short-term RND for the underlying stock

price (and return), which is in stark contrast with the established paradigm in asset pricing

that relies on unimodal return distributions.

Even though the main objective of our paper is empirical, to better understand the

drivers of concave IV curves, we introduce an option pricing model building on DJKS (2019)

and Piazzesi (2000). DJKS model EAD jump size to be normally distributed, leading to a

large increase in short-term ATM IV and a downward sloping term structure prior to the

announcement. In contrast, we allow the jump size to follow a mixture of normal distribu-

tions. While seemingly an innocuous modification, our assumption is more consistent with

the different conceptual underpinnings of price jump risk and volatility risk. More impor-

tantly, our modeling assumption can naturally generate a bimodal RND. In this respect, our
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model is closer in spirit to the studies that have used mixtures of log-normal distributions

to empirically fit the RNDs for various assets prior to geopolitical events or policy decisions

(see, for example, Hanke, Poulson, and Weissensteiner (2018), Leahy and Thomas (1996),

Melick and Thomas (1997), and Mirkov, Pozdeev, and Söderlind (2016)).

We contribute to various strands of the literature. Starting from the early studies of

Patell and Wolfson (1979, 1981), there is a growing literature showing that option-based

measures embed significant information prior to earnings announcements (see, for example,

Amin and Lee (1997), Barth and So (2014), Billings and Jennings (2011), Gao, Xing, and

Zhang (2018), Ni, Pan, and Poteshman (2008), and Xing, Zhang, and Zhao (2010)). We add

to this literature by showing that the curvature properties of the IV curve contain significant

predictive ability over stock returns, realized volatility, straddle and strangle returns around

EADs.

Our study is also related to the literature that uses option prices to extract information

regarding firm value following corporate announcements, such as proposed merger and ac-

quisition transactions (see, for example, Barraclough, Robinson, Smith, and Whaley (2013),

Borochin (2014), and van Tassel (2016)). However, the timing of these announcements and

the successful completion of the proposed transactions are typically uncertain. To the con-

trary, there is no uncertainty about the timing of the scheduled earnings announcements,

allowing us to model their impact via deterministically timed jumps.

Our setup is closely related to that of DJKS (2019), who also examine the impact of

predictably timed EAD stock price jumps on option pricing. However, their focus is on the

term structure of ATM IV prior to the announcement, whereas we examine the curvature

properties of the IV curve for short-term equity options. Importantly, in their model, the

EAD jump size is assumed to be normally distributed and its mean is a transformation of its

volatility. As a result, the only effect of this anticipated price jump is a large increase in short-

term ATM IV, leading to a downward sloping term structure prior to the announcement. The

distribution of stock prices remains unimodal and the jump has no effect on the curvature of

the IV curve across moneyness levels. Therefore, the model of DJKS cannot reproduce the

novel but pervasive empirical features we document in our study, namely concavity in the IV

curve and bimodality in the RND of the underlying stock price prior to the announcement.

We also build upon the literature showing that stock prices do jump upon the release

of news in the form of scheduled macroeconomic (Savor and Wilson (2013)) or earnings

announcements (Kapadia and Zekhnini (2019), Lee (2012), Lee and Mykland (2008), and

Todorov and Zhang (2023)). This is because upon the announcement, a discrete amount

of information is released over a vanishingly small period of time. When this information
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signals a shift in firm profitability or risk, the announcement can substantially impact its

valuation. This is similar to the effect of macroeconomic announcements that convey infor-

mation regarding the state of the economy (see Ai, Han, Pan, and Xu (2022) and Wachter

and Zhu (2022)) and the effect of political events that lead to a shift in government pol-

icy (see, for example, Kelly, Pástor, and Veronesi (2016) and Pástor and Veronesi (2013)).

Contributing to this literature, we show that investors are averse to gamma risk and pay

a significant premium to hedge it when they anticipate large stock price moves. In fact,

we show that investors can ex-ante identify those announcements that trigger larger than

average jumps and they price short-expiry options accordingly, leading to the formation of

concave IV curves.

The formation of concave IV curves is also consistent with the demand-based option

pricing framework of Gârleanu, Pedersen, and Poteshman (2009) and the related evidence

in Ni, Pan, and Poteshman (2008). Anticipating stock price jumps due to the impending

announcement, gamma risk averse investors trade options in certain range of strikes (for

example, buying ATM straddles or strangles) to hedge against this aspect of risk. Since jump

risk cannot be perfectly hedged, market makers would require a premium to be counterparties

in these trades (see Figlewski (1989), Gârleanu, Pedersen, and Poteshman (2009), and Green

and Figlewski (1999)). This hedging activity leads to higher option prices and implied

volatilities for the relevant range of strikes, giving rise to a concave IV curve.

2 Data and Methodology

2.1 Option Data and IV Curves

We construct IV curves using option data from OptionMetrics during the period 2013 to

2020. For each calendar year, we select 100 firms with the highest option trading volume,

requiring the underlying to be common stock (share codes 10 or 11) with share price higher

than $5. This yields a total sample of 194 firms during the entire period. The choice of the

sample period and the cross-section of firms are dictated by the availability and liquidity of

short-term options data that we require for our analysis.3 Weekly equity options have been

actively traded for a range of strikes only in the last decade. Hence, OptionMetrics provides

3Our sample firms represent, on average, 44% of the total market value across all US common stocks.
This is not a surprise because we select the firms with the highest option trading volume per year, which are
usually the largest capitalization firms. An added advantage of our (relatively small) cross-section is that
our results are not driven by small-capitalization firms.
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very sparse data for short expiries with a sufficient number of strikes prior to 2013.4

Our primary focus is on option-implied information related to earnings announcements,

so we utilize short-term options whose expiry spans the EAD. In particular, we keep options

with expiry between 3 and 13 calendar days ahead. Although our sample predominantly

consists of weekly options, we also keep regular options as long as they expire between 3 and

13 calendar days ahead. The short expiry options we employ are very liquid on the trading

day prior to EAD. Specifically, the total trading volume across all strikes is on average

(median) 36,555 (18,096) contracts. To put this figure into perspective, we compare it with

the corresponding total trading volume on the same day of the ‘next’ option with at least

30 days to expiry. We find that the total trading volume of the short expiry we use is on

average (median) 4.0 (2.5) times higher than the corresponding volume of the expiry with at

least 30 days. Therefore, the short expiry options we use are more liquid prior to the EAD

relative to the options with standard expiration often used in the literature.

To ensure that the information embedded in IV curves is meaningful, we apply a number

of standard filters to the option data. Specifically, we discard options with zero open interest,

zero trading volume, zero bid price, mid-quote price less than $0.125, non-standard settle-

ment, or missing implied volatility. We also discard options that violate standard arbitrage

bounds or when the bid is higher than the ask price. To make sure that our findings are

not driven by particularly illiquid strikes, we also discard options when the bid-ask spread

is higher than 20% of the mid-quote price.

We obtain information on the timing of quarterly EADs from I/B/E/S. Following com-

mon practice in the literature (see Barth and So (2014) and Michaely, Rubin, and Vedrashko

(2014)), if the announcement is made after the market close, the next trading day is defined

as the EAD.

To construct the IV curve, we utilize the annualized IVs of ATM and OTM options

provided by OptionMetrics. To avoid an artificial jump at the ATM region, which could

arise from ATM puts potentially trading at higher IV relative to ATM calls, we follow the

blending approach of Figlewski (2010). Specifically, we blend the IVs of puts (IVP ) and calls

(IVC) whose strike price K lies within ±2% of the underlying spot price, S, into a single

point as follows:

IV (K) = wIVP (K) + (1− w)IVC(K), (1)

where w = (Khigh − K)/(Khigh − Klow) and Khigh (Klow) is the highest (lowest) strike in

this ±2% range. To ensure a good coverage of the moneyness range, after the blending we

4For example, after imposing liquidity filters and minimum number of strikes (to be described below) we
have 2 firm-quarter observations in 2006, and still only 59 observations in 2012.
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require at least six options for a given expiry, with at least two puts and two calls.

Equipped with these IV points, we fit a quintic spline using the function spaps in MAT-

LAB.5 This yields the smoothest IV curve in the moneyness spaceK/S, subject to a tolerance

level for the sum of squared errors between the actual and the fitted IVs. In the spirit of

Bliss and Panigirtzoglou (2002, 2004), the quintic spline minimizes the following objective

function:

ρ
N∑
i=1

[
IV (Ki)− ÎV (Ki; θ)

]2
+

∫ ∞

−∞
S(3)(x; θ)2dx, (2)

where IV (Ki) is the actual implied volatility for strike Ki, ÎV (Ki; θ) is the corresponding

fitted implied volatility, which is a function of the parameter set θ that defines the quintic

spline S(θ), and ρ is a smoothing parameter that is optimally selected to ensure that the

sum of squared IV errors does not exceed a given tolerance level.6

To compute the RND corresponding to the fitted IV curve, we use the standard result

of Breeden and Litzenberger (1978). The density function is given by f(K) = erT∂2C/∂K2,

where r is the interest rate and C is the call option price as a function of the strike price

K. The fitted IV curve contains 1,001 points. These IVs are converted to call option prices

using the Black-Scholes formula. In the absence of a continuum of strikes, we compute the

second partial derivative in the above formula using finite differences and derive the RND

for the range of the available moneyness levels.

Having imposed a number of strict filters on the option data, we seek to fit well the actual

IV points, and hence we opt for a low tolerance level. This tolerance level corresponds to a

0.01% mean squared error between the actual and the fitted IVs. However, to ensure that

the fitted IV curve is not too erratic and does not correspond to an ill-behaved RND, we

impose further conditions. We require that no interpolated IV point is negative and that the

corresponding RND does not exhibit a negative density point or more than two modes. If

any of these conditions is violated, we increase the upper bound of the mean squared error in

steps of 0.005% until the conditions are met. Our final sample consists of 2,229 IV curves on

the trading day prior to EAD for the firms in our sample. 80% (20%) of these observations

are constructed using weekly (regular) options.

5A quintic spline ensures that the third derivative of the IV curve (and hence the option price function)
is continuous, yielding a well-behaved RND (see Figlewski (2010)).

6Parameter ρ controls the tradeoff between the goodness-of-fit and the smoothness of the spline function;
the latter is captured by its integrated squared third derivative. Setting a low tolerance level ensures that the
spline fits well the actual IV points at the expense of smoothness. To the contrary, setting a high tolerance
level yields a rather smooth spline that may not fit well the actual IV points.
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2.2 Definition of Concave IV Curve

We introduce a definition of concavity based on the first and second derivatives of the fitted

IV curve with respect to moneyness.7 Specifically, we define an IV curve to be concave when

the following three conditions hold. First, the second derivative of the fitted IV curve is

negative for a continuous moneyness (K/S) range of at least 0.03 points, i.e., for a continuous

range of strikes that amount to at least 3% of the underlying spot price. Second, we require

that the fitted IV curve exhibits a stationary point within the moneyness range where it

exhibits concavity. Third, this stationary point is located between the second lowest (Kmin+1)

and the second highest (Kmax−1) strikes of the actual IV points used to fit the smooth IV

curve.

These conditions address the potential concern that the documented concavity may be

an artefact of outliers or the employed smoothing spline. In particular, they ensure that our

definition does not simply capture very local infection points or marginally concave parts of

the IV curve. They also ensure that the concavity does not arise from the lowest or highest

actual strikes, which typically correspond to deep OTM options.

This definition is sufficiently general to capture various shapes of concavity, such as

the inverse U-shape, W-shape, and S-shape IV curves illustrated in Figure 1. Using this

definition, we define the dummy variable CONCAVE, which takes the value one when the IV

curve is concave and zero otherwise.

2.3 Other Variables and Data Sources

In addition to CONCAVE, we use a number of other variables in the subsequent empirical

analysis. The definition of these variables is provided in Appendix A. For each firm, we

compute at the daily frequency its market beta (BETA), the natural logarithm of market

capitalization (Ln(SIZE)) and stock price (Ln(PRICE)), five-day cumulative stock return

(RUNUP), momentum return (MOM), and stock turnover ratio (STOCKTR). The source of stock

prices, trading volumes and number of outstanding shares is CRSP. We compute the book-

to-market ratio (B/M) using quarterly data from COMPUSTAT. We also use the number

of analysts providing earnings forecasts (NUMEST), the standard deviation of these forecasts

(DISP), and the differential stock beta around EADs (ANNBETA) as in Barth and So (2014).

Analysts forecast data are obtained from I/B/E/S.

We also use a number of option-based variables. Specifically, we compute the ATM im-

plied volatility (ATMIV) and the difference (RVIV) between the realized volatility and ATMIV of

7First and second derivatives of the fitted IV curve are computed using finite differences.
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Goyal and Saretto (2009). Since our focus is on short-expiry options, we construct ATMIV and

RVIV utilizing the 10-day volatility surfaces that have been recently introduced by Option-

Metrics. In addition, we compute the Risk-Neutral Skewness (RNS) and Risk-Neutral Kur-

tosis (RNK), following the approach of Bakshi, Kapadia, and Madan (2003). We also use the

option-to-stock trading volume ratio (O/S) of Roll, Schwartz, and Subrahmanyam (2010).

Finally, we compute the term structure estimate of ATM implied volatility (TSIV) proposed

by DJKS (2019).

2.4 Summary Statistics

Table 1 presents the summary statistics for the variables used in our analysis. Their values

are computed on the day prior to EAD and they are winsorized at the 1% and 99% levels.

We find that 38.4% of the IV curves extracted prior to the EAD exhibit concavity. These IV

curves are computed from short-term options, with an average EXPIRY of 6.46 calendar days

and a large number of strikes (average STRIKES = 17.88). The latter feature is consistent

with the fact that our sample consists of very large firms, with an average (median) market

capitalization of $57,526 ($68,186) million. As a result, these firms trade at a much higher

price (average = $77.48), they exhibit low B/M (average = 0.35), and they are followed by a

very large number of analysts (average NUMEST = 23.95), as compared to the corresponding

values typically encountered in studies that utilize the entire CRSP universe.

Regarding option-based variables, the median RNS (RNK) is −0.25 (3.46). In line with the

arguments of Patell and Wolfson (1979, 1981), ATMIV is substantially higher prior to EADs,

with an average value of 45.04%. As a consequence, RVIV takes very large negative values,

with an average of −16.62%. Moreover, TSIV is almost always positive, with an average

value of 6.8%. This confirms the findings of DJKS (2019) that the term structure of ATM

implied volatility is downward sloping prior to EADs. Lastly, we also find substantial stock

trading activity prior to the EAD, with an average daily STOCKTR of 2.4%, and an even

higher trading activity in the option market, with an average O/S of 28.43%.

Table 2 reports the pairwise correlations among these variables. Our main focus is on

the correlation properties of the newly proposed variable CONCAVE. Most notably, we find

that CONCAVE is positively correlated with ATMIV, RNS, and TSIV, but negatively correlated

with RNK and RVIV. Hence, concave IV curves are associated with higher levels of ATM

implied volatility and a steeper downward sloping IV term structure prior to EAD. Moreover,

CONCAVE exhibits a positive correlation with STOCKTR, O/S, and NUMEST, which indicates that

concave IV curves more often appear when there is substantial coverage by financial analysts

as well as high trading activity by investors prior to the announcement.
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However, it should be noted that the reported correlations for CONCAVE are not partic-

ularly high (much less than 0.40 in absolute value), alleviating the potential concern that

CONCAVE may simply mimic another firm characteristic. To the contrary, Table 2 illustrates

the very high pairwise correlations between ATMIV, RVIV, TSIV, and Ln(SIZE) prior to EADs.

Table 3 compares the average values of these variables across observations of concave

and non-concave IV curves on the day prior to EAD. We find that concave IV curves are

extracted from sets of options with a somewhat shorter average expiry and a higher average

number of available strikes. We also find that concave IV curves are associated with firms

that, on average, are followed by more analysts, they are relatively smaller, and they have

lower B/M.

Moreover, we observe that concave IV curves are associated with significantly higher av-

erage values of BETA, STOCKTR, and O/S as well as higher average stock prices and returns

(Ln(PRICE), RUNUP, MOM) prior to the EAD. Consistent with the pairwise correlations pre-

sented in Table 2, we also report that concave IV curves are accompanied, on average, by

significantly higher ATMIV, RNS, and TSIV values and significantly lower RNK and RVIV values

relative to non-concave IV curves.

3 Features of Concave IV Curves

IV curves for equity options typically exhibit a smile or a smirk (see, for example, Rubinstein

(1994), Toft and Prucyk (1997), and the review of the early literature in Jackwerth (2004)),

which corresponds to a convex IV curve where OTM puts trade at higher IV than ATM

options. This pattern corresponds to an important deviation from the Black and Scholes

(1973) model, where implied volatility should be constant across moneyness levels. In sharp

contrast to the commonly documented convex IV curves for equity options, as shown in

the summary statistics, we often observe concave IV curves prior to EADs. This section

illustrates the main features of concave IV curves observed in the data.

Figure 1 provides examples of the three main types of concavity we encounter in our

sample. In this figure, circles indicate implied volatilities corresponding to actual traded

strikes, whereas the curve is fitted using a quintic spline. Panel A shows an inverse U-shape

IV curve for Twitter, computed from options with three days to expiry on 29th July, 2014.

Here the IV of OTM calls and puts is substantially lower than the IV of ATM options. Panel

B illustrates an S-shape curve for Ebay, computed from options with three days to expiry

on 29th April, 2014. This curve exhibits two stationary points. In this particular example,

the concave part of the curve is located in the OTM calls region, whereas the OTM puts
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region exhibits a typical convex shape. An interpretation of this shape is that concavity

arises in a specific moneyness range, where options are trading at higher volatility relatively

to neighboring strikes. Panels C and D provide examples of an even more intriguing type

of concavity, for Google and Netflix, respectively, computed from options with four days to

expiry on 23rd April and 16th July 2018, respectively. This W-shaped IV curve exhibits

three stationary points, with a U-shape curve followed by an inverse-U shape curve, which

is in turn followed by another U-shape curve. Here, concavity arises in specific ranges of

moneyness, with near-the-money options trading at volatility levels as high as, or even higher

than, deep OTM options.

The above shapes of concavity systematically appear in short-expiry equity options just

before EADs. We find that these shapes typically disappear right after the announcement,

with the IV curve reverting to a standard convex shape. Figure 2 illustrates this pattern

using as example the earnings announcement of Apple that took place right after the market

close on 28th October, 2013. Whereas the IV curve extracted just before the announcement

from options with four days to expiry exhibits a clear W-shape, it reverts to a smile on the

following day using options with the same expiry date.

Figure 3 further illustrates that IV curves often become concave in the runup to the EAD

but they subsequently revert to their standard convex shape. Specifically, Figure 3 reports

the fraction of concave IV curves for the firms in our sample on trading days around the

EAD d. We observe that the fraction of concave IV curves gradually increases from 20%

on day d − 5 to 26.9% on day d − 2, reaching the peak of 38.4% on the trading day prior

to EAD. Right after the announcement, there is a sharp drop in the fraction of IV curves

exhibiting concavity to only 8.7% on day d. This fraction subsequently drops further and

hovers around 5% from day d+ 1 onwards.

A potential concern is that concavity might be an artefact of blending OTM puts and

calls around the ATM region, following the approach of Figlewski (2010). To alleviate this

potential concern, we alternatively compute IV curves of puts and calls (using OTM, ATM,

and ITM options) separately. We find that concavity is present in the IV curves computed

from puts and calls separately. Therefore, the concavity feature does not arise due to our

blending approach.

Since we use American-style equity options, another potential concern is that concavity

might be an artefact of an early exercise premium. However, our dataset consists of very

short-expiry OTM and ATM options. As shown in prior literature (see Bakshi, Kapadia

and Madan (2003)), the combination of these two characteristics ensures that the early

exercise premium, and hence its impact on IVs, would be very small, if any. Nevertheless,
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we additionally filter out firms that pay dividends during the life of the options. Under

standard assumptions, calls on non-dividend paying stocks should not be exercised early,

and hence there should be no premium. Moreover, the risk-free rate during our sample

period is very low, so the early exercise premium for puts should also be negligible. As

expected, only 3.5% of the firms in our sample pay dividends during the life of these options.

Excluding these firms, we still find that 38.9% of the IV curves exhibit concavity on the day

prior to EAD.

Yet another potential concern is that concavity might be an artefact of high stock borrow

fees. Muravyev, Pearson, and Pollet (2022) argue that in the presence of high stock borrow

fees, IVs provided by OptionMetrics may be misleading because they are computed as if

this fee is zero. This is unlikely to be an issue in our study because our sample consists

of very large capitalization firms, which typically have low stock borrow fees. To address

this concern, we additionally filter out firms with high stock borrow fees. Specifically, we

utilise the categorical variable Daily Cost of Borrowing Score (DCBS) provided by Markit.

This variable takes values from 1 to 10, where 1 (10) indicates that a stock has the lowest

(highest) borrow fee. Blocher and Whaley (2015) show that stocks with DCBS of 1 have

a mean (median) fee of just 36 (27) bps per annum. Equipped with this variable, we drop

firms with DCBS greater than 1 on the day prior to EAD. Hence, we are only left with firms

exhibiting a negligible borrow fee. As expected, only 5% of the firms in our sample have a

DCBS greater than 1. Excluding this small fraction of firms, we still find that 37.7% of the

IV curves exhibit concavity on the day prior to EAD.

To emphasize how uncommon it is to find a large fraction of concave IV curves using

options whose expiry does not span an EAD, we perform the following analysis. For the firms

in our sample, we impose the same data filters and follow the same steps of the methodology

described in Section 2.1 to compute CONCAVE on all trading days during the period 2013-2020.

We extract 90,464 firm-day IV curves from very short-term options whose expiry does not

span an EAD. We find that only 4.8% out of these observations exhibit a concave IV curve.

This finding further alleviates the potential concern that the large fraction of concave IV

curves we identify in the run up to the EAD may be an artefact of our methodology or the

use of very short-expiry options.

3.1 Bimodality in RND

The main variable of interest in our analysis (CONCAVE) is defined with respect to the prop-

erties of the IV curve. To an extent, the shape of the IV curve reflects the properties of the

RND for the underlying stock price. For example, a symmetric volatility smile corresponds
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to a leptokurtic RND, whereas a volatility smirk (or skew) is typically associated with a neg-

atively skewed RND (see the related discussion in Jackwerth (2004) and Hull (2009, chapter

18)).

Figure 4 presents an example of a concave IV curve reflecting a bimodal RND for the

underlying stock price. This is a rather unusual feature. RND bimodality implies that at

option expiry, the underlying stock will most likely (under the risk-neutral measure) trade

around either of the two identified price modes. The right Panel of Figure 4 illustrates the

RND for the stock price of Amazon, extracted from options with eight days to expiry on

April 26, 2018, i.e., just before the earnings announcement that took place right after the

market close. The closing stock price was $1,517.96 on that day. The 8-day RND reveals

two price modes at expiry; one at $1,444.80 (i.e., 4.8% lower) and the other one at $1,602.00
(i.e., 5.5% higher). Following the announcement, Amazon’s stock price had a positive return

of 3.6% on April 27 and closed at $1,580.95 (i.e., 4.15% higher) on May 4, at option expiry.

An interpretation of RND bimodality prior to an EAD, as illustrated in Figure 4, is that a

discrete price movement or jump is anticipated due to the forthcoming announcement. Hull

(2009, p. 398) describes a concave inverse U-shape IV curve as a “frown” and argues that it

reflects a bimodal RND for the underlying asset price, which in turn arises “when a single

large jump is anticipated.” Therefore, we argue that a bimodal RND and a concave IV curve

provide option-based signals of impending event risk in the underlying stock. Our analysis

reveals that earnings announcements frequently give rise to event risk, which is priced in the

option market, and hence can be detected ex-ante.

Although concavity in the IV curve does not axiomatically reflect RND bimodality, we

find that 86% of the observations with CONCAVE = 1 prior to EAD exhibit a bimodal RND.8

To ensure that this bimodality feature captures distinct modes rather than local wiggles

in the RND, we further require that the identified modes are located at least 5% apart in

terms of moneyness. Using this stricter definition of bimodality, we find that 80% of the

observations with CONCAVE = 1 still exhibit a bimodal RND. To even further ensure that

the documented bimodality feature is not driven by the tails of the RND, we additionally

require that neither of the identified modes is located outside the (0.85, 1.15) moneyness

range. Imposing this additional requirement, we still find that 79% of the observations with

CONCAVE = 1 exhibit a bimodal RND.9

RND bimodality is an important feature that distinguishes our study from DJKS (2019).

8When we restrict our sample to RNDs that yield a cumulative probability of at least 70%, we find that
91% of the observations with CONCAVE = 1 exhibit a bimodal RND.

9Recall that we extract RNDs using only the available range of traded strikes, without fitting the tails
of the RND. Our procedure ensures that no mode artificially appears in the tails of the distribution due to
fitting.
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DJKS’s model allows for predictably timed price jumps on EADs. However, by assuming a

normally distributed EAD jump size, their implied RND remains unimodal, and hence their

model cannot reproduce the concave IV curves observed in the data.

We emphasize that concave IV curves predominantly appear in short expiry options.

Figure 5 illustrates an example of fitted IV curves for Amazon across different expirations

(8, 22, 36, and 50 days) on April 26, 2018. The figure shows that while the IV curve for the

8-day expiry clearly exhibits a W-shape type of concavity, this feature is much less obvious

for the 22-day expiry and disappears for longer expiries.

Intuitively, these patterns arise due to the relative effect of the anticipated stock price

jump on EAD versus the diffusion component of the underlying process. As expiry shrinks,

the effect of the anticipated price jump dominates the effect of the diffusion component,

rendering the underlying RND bimodal and the IV curve concave. To the contrary, as

time to expiry increases, the effect of the diffusion component dominates the effect of the

anticipated price jump, the RND reverts to unimodality, and the IV curve becomes convex.

Finally, while our focus is on the shape of the entire IV curve extracted from short-expiry

options, Figure 5 also shows that ATM IV is downward sloping prior to EADs, consistent

with the findings of DJKS (2019).

3.2 Bimodality in physical return distribution

We posit that the documented bimodality in the RND primarily reflects the sizeable prob-

ability of large stock price moves in either direction occurring on EADs. In other words,

we argue that prior to EAD, the distribution of short-term ahead stock returns can become

bimodal under the physical measure P, with modes away from 0%.10

An alternative hypothesis to explain RND bimodality is that option traders understate

the probability of no news on EAD, and hence they systematically misprice options. This

conjecture assumes that the probability distribution of stock returns on EAD is unimodal

under P and a behavioural mispricing by option traders would systematically render the

return distribution bimodal as we move from P to Q.

To rule out this alternative hypothesis, we examine the distribution of stock returns on

EADs. Figure 6 shows two such histograms. Panel A presents the histogram of realized stock

returns on EADs following the formation of non-concave IV curves on d− 1 (CONCAVE = 0),

whereas Panel B presents the corresponding histogram following the formation of concave

IV curves on d− 1 (CONCAVE = 1). For both histograms, each bin has a 1% width, centred

10Of course, we do not argue that the return distributions under P and Q coincide.
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around the label on the x-axis. For example, the 0% bin contains the observations with

EAD returns between −0.5% and 0.5%. For each histogram, we also plot the corresponding

density using an Epanechnikov kernel.

For CONCAVE = 0, Panel A of Figure 6 shows that the distribution of the realized stock

returns on EADs exhibits unimodality in its central part, with the mode of the distribution

located at the 0% bin. These features are similar to the ones found in the distribution of

daily stock returns on typical trading days. To the contrary, the corresponding distribution

when CONCAVE = 1 in Panel B is strikingly different. We find that the central part of the

distribution exhibits bimodality, with two distinct modes away from 0%. In fact, the left

mode is located at the −2% bin and the right mode is located at the 2% bin. Moreover, the

histogram shows that there are 9 bins with higher frequency than the frequency of the 0%

bin. Interestingly, for CONCAVE = 1, EAD returns as high as around 4% or as low as around

−4% are more likely to occur than returns around 0%.

This evidence confirms that the formation of bimodal RNDs prior to EADs when CONCAVE=

1 does not simply derive from a behavioural mispricing by option traders who systemati-

cally understate the probability of no news. To the contrary, these bimodal RNDs primarily

arise because large stock returns in either direction are highly likely to occur on EADs and

investors price these anticipated outcomes in the option market.

4 Model

Motivated by the empirical findings in the previous section, we build an option pricing model

that can generate the novel features that we document, namely concavity in the IV curve

and bimodality in the RND of the underlying stock price prior to the EAD. The model

builds upon the continuous-time model of Bates (1996), which features stochastic volatility

and random jumps. We note that it is straightforward to generalize our modeling structure

using more complicated continuous-time stochastic volatility models.

The most common modeling assumption for large stock price changes is that of a low-

probability, randomly timed Poisson jump (see, for example, Ball and Torous (1985) and

Merton (1976)). While random jumps, for example, can lead to an IV smirk and a left-tailed

RND, capturing tail risk and explaining the expensiveness of OTM puts (Bates (1996, 2000),

Pan (2002), and Yan (2011)), neither these jumps nor stochastic volatility typically generate

concave IV curves.

DJKS (2019) and Piazzesi (2000) introduce deterministically timed jumps in the continuous-

16



time path of the underlying stock price. Our model builds upon their insights.11 Let Nd
t

count EADs prior to time t so that Nd
t =

∑
j 1τj≤t, where τj is an increasing sequence of

predictable stopping times representing an EAD. Different from DJKS (2019), the jump

size occuring on EAD τj, Zj = ln
(
Sτj/Sτj−

)
, is assumed to follow a mixture of normal

distributions. Specifically, Zj = πjX
(−)
j + (1 − πj)X

(+)
j , where πj is a Bernoulli distribu-

tion with P (πj = 1) = pj and P (πj = 0) = 1 − pj, X
(−)
j

∣∣Fτj− ∼ N

(
µ
(−)
j ,

(
σ
(−)
j

)2)
and

X
(+)
j

∣∣∣Fτj−
∼ N

(
µ
(+)
j ,

(
σ
(+)
j

)2)
.

This parsimonious modeling stucture introduces event risk, which is captured by the an-

ticipated upside and downside jumps, in the continuous-time stochastic volatility model. The

model implies that on EAD, the stock price will exhibit either a “negative” jump X
(−)
j with

probability pj or a “positive” one X
(+)
j with probability 1− pj. Since EADs are predictably

timed, the martingale restriction (see Piazzesi (2000)) requires that E
[
Sτj

∣∣Fτj−
]
= Sτj−,

imposing the following restriction upon the parameters of the Zj distribution:

pj exp

(
µ
(−)
j + 0.5

(
σ
(−)
j

)2)
+ (1− pj) exp

(
µ
(+)
j + 0.5

(
σ
(+)
j

)2)
= 1.

According to our model, under the risk-neutral measure Q, the stock price and variance

processes solve the following stochastic differential equations:

dSt = (r − λJµJ)Stdt+
√

VtStdW
S
t + d

 Nd
t∑

j=1

Sτj−
(
eZj − 1

)+ d

(
Nt∑
j=1

Sτ j−

(
eZj − 1

))
dVt = κv (θv − Vt) dt+ σv

√
VtdW

v
t , (3)

where r is the risk-free rate, and W S
t and W v

t are two standard Brownian motions with corre-

lation ρdt. Price jumps may also occur at random times τ j according to a Poisson process Nt

with intensity parameter λJ and jump size Zj that is normally distributed, i.e., Zj

∣∣Fτ j− ∼
N (µJ , σ

2
J); µJ denotes the random jump compensator given by µJ = exp

(
µJ + 1

2
σ2
J

)
− 1.

Finally, θv is the long-run mean of variance, κv determines the mean-reversion rate and σv

is the volatility-of-volatility parameter.

Note that if pj = 1, the model collapses to the one of DJKS (2019). However, in this

case, the martingale restriction on Zj implies that µ
(−)
j = −0.5

(
σ
(−)
j

)2
, and hence only

a negative-mean jump can occur on EAD. Thus, our model is more general, allowing us

11Todorov (2020) develops a nonparametric test that makes use of options with different expirations to
detect the possibility of a jump in the underlying asset price at a given point in time and recover the
corresponding jump distribution.
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to capture the impact of both upside and downside anticipated jumps on the stock price

process. In the absence of EADs prior to time t (i.e., Nd
t = 0), the model collapses to the

one of Bates (1996).

The model specified in equation (3) generates a conditional probability density function

(pdf) for the log-return of the underlying stock that is a mixture of three constituent pdfs.

The first one is derived by the diffusion and random jumps component of the model. The

second and third pdfs are those of the two normally distributed upside and downside jumps

that are anticipated to occur on EAD. The mixture of these three pdfs can generate a

plethora of different distributions. These include asymmetric distributions, distributions

with fat tails and most importantly for our analysis, multi-modal distributions. To this

end, this parametric model is sufficiently flexible to reproduce RNDs that prior studies have

empirically recovered from option prices by fitting mixtures of log-normal distributions or

smoothing splines in the IV space (see, for example, Birru and Figlewski (2012), Hanke,

Poulson, and Weissensteiner (2018), Leahy and Thomas (1996), Melick and Thomas (1997),

and Mirkov, Pozdeev, and Söderlind (2016)).

The proposed model captures the increase in IV in the run up to the earnings announce-

ment and its sharp fall right after (Patell and Wolfson, 1979, 1981). In addition, similar to

DJKS (2019), the model can generate a downward sloping IV term structure prior to sched-

uled announcements due to the anticipated price jump. Different from the prior literature,

however, the model can also generate concave IV curves and bimodal RNDs, revealing the

pricing of event risk. Hence, it disentangles the effect of a scheduled event on the overall

level of IV from the corresponding effects across different levels of moneyness. As a result,

the model can provide estimates of the probability, direction, expected magnitude and dis-

persion of price jumps that are anticipated to occur. This rich set of information can help

us infer investor expectations regarding the impending event as well as the pricing of the

arising event risk.

We emphasize that we do not claim that our model is the only one that can generate a

bimodal RND. For example, in the case of the classic jump-diffusion model, a sufficiently

high probability of jump whose size exhibits a large mean but relatively low variance can

give rise to a mode in the tail of the distribution, leading to bimodality. However, our focus

is on bimodality in the central part of the RND and concavity in the IV curve; introducing

both upside and downside anticipated jumps, our model can more naturally capture these

phenomena.

In our model, the stock price is defined by the product of an affine component and a

discrete jump on EADs. Therefore, option pricing proceeds in a similar fashion to standard
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affine models, using the closed-form solution of the conditional characteristic function of the

log stock price (see Bates (1996) and Duffie, Pan, and Singleton (2000)). The characteristic

function is presented in Appendix B.

Full-scale estimation of the proposed model is not the main goal of our paper. Never-

theless, to showcase the ability of the model to generate concave IV curves and bimodal

RNDs prior to EADs, we consider the example of Apple on October 28, 2013. Recall that in

this case, a single EAD occurs prior to option expiry. The corresponding empirical IV curve

derived from fitting a quintic spline to the actual IVs is illustrated in Panel A of Figure 2.

Here, we fit our model to the actual option prices by minimizing the root mean squared error

(RMSE) between the actual and the model-implied IVs. The parameter values that mini-

mize the RMSE are: θv = 0.42, κv = 2.44, σv = 4.74, ρ = −0.01, λJ = 14.5, µJ = −0.007,

σJ = 0.078, pj = 0.444, µ
(−)
j = −0.056, σ

(−)
j = 0.006, µ

(+)
j = 0.043, σ

(+)
j = 0.007. Apart from

pronounced stochastic volatility and a random price jump whose size has a small mean but

is rather disperse, these parameter values indicate that investors anticipate with risk-neutral

probability 44.4% (55.6%), a downside (upside) price jump on EAD with mean size −5.6%

(4.3%) and low volatility.

Figure 7 shows that these parameter values generate a W-shape IV curve that fits the

actual IVs extremely well. We repeat the same process fitting the DJKS (2019) model to the

actual option prices. As illustrated in Figure 7, the latter model yields a poor fit because it

cannot generate concavity in the IV curve.

Figure 8 presents the RND for Apple’s log stock return on October 28, 2013. This RND

is derived from call option prices implied by our model for the parameter values estimated

above. It is evident that our model gives rise to a bimodal RND, which is very similar to

the empirical RND corresponding to the fitted IV curve presented in Panel A of Figure 2.

5 Implications of Concave IV Curves

5.1 Absolute Stock Returns on EAD

We now turn our focus on the informational content of CONCAVE. We first examine whether

concave IV curves can predict higher or lower absolute stock returns on EAD relative to

non-concave IV curves. To ensure that our results are not affected by market-wide price

movements or systematic factor-related returns, we use the absolute abnormal stock return

on EAD (ABSEADABRET) with respect to the Fama-French-Carhart (FFC) 4-factor model.

Specifically, we compute the abnormal stock return on EAD as the realized minus the
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expected return. The expected return is calculated on the basis of pre-estimated factor

loadings for each firm. For this estimation, we use daily returns from d−250 to d−25, where

d is the EAD, requiring at least 200 observations. This choice ensures that the estimated

factor loadings are not affected by stock returns observed in the runup to the EAD.

The summary statistics reported in Table 1 show that the average ABSEADABRET is 4.86%,

whereas the median is 3.41%. These statistics are consistent with the finding in prior liter-

ature that stock prices often exhibit very large movements around earnings announcements

(see Kapadia and Zekhnini (2019), Lee (2012), and Lee and Mykland (2008)). This feature

becomes even more striking if one takes into account that our sample consists of very big

capitalization firms. Table 3 shows that the average ABSEADABRET is 5.88% when CONCAVE =

1 and 4.24% when CONCAVE = 0. The differential return of 1.64% is strongly significant

(t-statistic = 7.71). As a result, we argue that concave IV curves can signal higher than

average absolute stock returns on EADs.

To examine this predictive relationship more formally, Table 4 presents estimates from

panel regressions of ABSEADABRET on CONCAVE plus a number of firm characteristics measured

on the day prior to the EAD.12 Columns (1) to (4) report t-statistics based on two-way clus-

tered standard errors, at the firm- and quarter-level, whereas column (5) includes quarterly

fixed effects to ensure that our results are not purely driven by specific quarters in our sample

period.

Column (1) shows that, on average, concave IV curves are followed by a 1.65% (t-statistic

= 5.45) higher absolute abnormal stock return on EAD relative to non-concave IV curves.

This differential return remains significant when we additionally control in columns (2) to

(4) for a number of firm characteristics that may be related to future stock returns and

quarterly fixed effects in column (5).13 Overall, the results in Table 4 show that concave IV

curves observed prior to EADs predict significantly higher ABSEADABRET values.

An interpretation of this predictive relationship is that investors are able to ex-ante iden-

tify earnings announcements where larger than average stock price movements are observed,

and they trade accordingly in the option market. On these occasions, IV curves become

concave and the corresponding RNDs for the underlying stock price become clearly bimodal,

indicating that a very large stock price movement is likely to be observed on EAD. Thus, the

occurrence of larger than average absolute stock returns upon these announcements verifies

the informational content of CONCAVE.

12After July 30, 2009, OptionMetrics records bid and ask option prices at 15:59 EST. This ensures that the
criticism of Battalio and Schulz (2006) on non-synchronicity bias does not apply during our sample period.

13Unreported results, which are available upon request, yield very similar conclusions when we alternatively
use gross, rather than abnormal, absolute stock returns on EAD.
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The magnitude of absolute stock returns observed on EADs following concave IV curves

is so large that it is indicative of stock price jumps. However, stocks exhibiting a higher

degree of volatility are also more likely to yield larger price moves relative to stocks charac-

terised by a lower degree of volatility. To address the potential concern that the documented

differential in absolute stock returns between concave and non-concave IV curves simply

reflects differences in volatilities, we additionally examine ratios of absolute stock returns to

realized volatilities. Such ratios have been used in prior literature as measures of stock price

jumps (see, for example, Kapadia and Zekhnini (2019)).

Specifically, we compute the ratio of ABSEADABRET to idiosyncratic volatility, which is

measured from d − 250 to d − 25 using the FFC 4-factor model. We find that the average

ratio following concave IV curves is 3.35 whereas the corresponding average ratio following

non-concave IV curves is 3.07, with their difference being significant (t-statistic = 2.44).

Similar is the conclusion if we instead compute the ratio of gross stock returns on EAD to

total realized volatility measured from d− 250 to d− 25. These results confirm that concave

IV curves genuinely signal stock price jumps on EADs that are not simply driven by higher

volatility.

5.2 Post-EAD Stock Return Volatility

Next, we examine the informational content of CONCAVE with respect to the post-EAD stock

return volatility (POSTEADVOL). We compute the (annualized) 10-day stock return volatility

from d to d+ 9, according to the standard formula:

POSTEADVOL =

√√√√252

10

d+9∑
t=d

r2t , (4)

where rt is the daily log-return.

Note that while POSTEADVOL is naturally affected by the magnitude of ABSEADABRET,

nevertheless the former is conceptually different from the latter because POSTEADVOL also

captures the stock price fluctuations occurring after the EAD. We opt for a 10-day mea-

surement window in our benchmark results to be consistent with the range of expirations

observed in our option sample.14

The mean (median) POSTEADVOL reported in Table 1 is 41.09% (33.39%). Even though we

mainly include large capitalization stocks in our sample, we still find that their returns exhibit

14We repeat the subsequent analysis using alternatively the 5-day and the 21-day post-EAD stock return
volatility. The results are very similar to the ones presented in Table 5.
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a high degree of volatility in the 10-day interval right after the earnings announcement. More

notably, Table 3 shows that the average POSTEADVOL following concave IV curves is 47.49%,

whereas the corresponding average value following non-concave IV curves is 37.11%, with

their difference being highly significant (t-statistic = 8.82). Hence, concave IV curves also

signal much higher post-announcement stock volatility.

Table 5 presents estimates from panel regressions of POSTEADVOL on CONCAVE plus a

number of firm characteristics measured on the day prior to the EAD. We confirm that

CONCAVE possesses significant predictive ability over POSTEADVOL. Column (1) indicates that

concave IV curves are followed by an average POSTEADVOL of 47.50%, whereas non-concave

IV curves are followed by an average POSTEADVOL of 37.07%, yielding a highly significant

differential of 10.43% (t-statistic = 5.30). This predictive relationship remains significant

when we additionally control in columns (2) to (4) for a number of firm characteristics that

may also be related to stock volatility. Column (5) also confirms that this differential is not

purely driven by volatility episodes in certain quarters.

In sum, the reported predictive ability of CONCAVE indicates that investors can identify the

announcements that cause a significant increase in post-EAD volatility. As a consequence,

they trade in the option market to hedge against this feature, determining prices that cor-

respond to a bimodal RND for the underlying stock return. In turn, an RND that features

bimodality in its central part implies, ceteris paribus, a higher degree of stock volatility over

the remaining life of the option. Observing higher than average POSTEADVOL for concave IV

curves verifies the informational content of CONCAVE.

5.3 Straddle Returns Around EADs

Having established that concave IV curves are typically associated with significantly higher

absolute stock returns on EADs and post-EAD realized volatility, as compared to non-

concave IV curves, we further examine the behavior of straddle returns around EADs. An-

ticipating these stock return characteristics, investors could take long positions in ATM

straddles to either speculate on or hedge against these large price swings regardless of their

direction.

We compute the returns of delta-neutral ATM straddles (STRADDLE) on EAD. Similar

to prior literature, we use the nearest-to-the-money pair of call and put options within the

moneyness (K/S) range of 0.98 to 1.02. We buy the straddle at the close of the trading day

prior to the EAD and we sell it at the close after the announcement. We use the shortest

available options, with expiry between 4 and 13 days. The return of the delta-neutral straddle
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on EAD is given by:

STRADDLE = wRc + (1− w)Rp, (5)

where Rc (Rp) is the return of the call (put) option on EAD. The weight w is given by:

w = − ∆P/P

∆C/C −∆P/P
, (6)

where ∆C (∆P ) is the delta of the call (put) provided by OptionMetrics and C (P ) is the

corresponding call (put) price at straddle formation. This weight ensures that the straddle

is delta-neutral at formation.

The summary statistics reported in Table 1 show that the median STRADDLE on EAD is

−15.43%. This finding provides support for the argument that investors most often pay a

substantial price to be hedged against the increased volatility and large stock price swings

observed around EADs. Moreover, STRADDLE exhibits a positively skewed distribution in our

sample and its average is −0.86%. Interestingly, Table 3 shows that the average STRADDLE re-

turn is −3.74% when CONCAVE = 1 and 0.91% when CONCAVE = 0, with a significant differ-

ential return of −4.65%. This evidence suggests that investors pay a significant premium to

hedge against the large price swings that arise due to earnings announcements only when IV

curves become concave.

Table 6 presents estimates from predictive panel regressions of STRADDLE on CONCAVE as

well as a number of firm characteristics measured on the day prior to the EAD.15 Here,

we also control for the expiry and the average moneyness of the pair of options used to

construct this straddle strategy, ensuring that our results are not driven by these features.

Column (1) shows that concave IV curves are followed by a 4.57% (t-statistic = −2.40)

lower average straddle return, as compared to non-concave IV curves.16 This predictive

relationship becomes even stronger when we additionally control in columns (2) to (4) for a

15We have repeated the analysis reported in Table 6 using simple instead of delta-neutral ATM straddle
returns. The results, available upon request, are very similar to the ones reported in Table 6.

16This differential straddle return is computed using mid-point option prices. To alleviate the potential
concern that this might be driven by options’ bid-ask spread, we alternatively compute straddle returns
taking this spread into account. In the most stringent version, we compute returns using bid prices to buy the
straddle at d−1 and ask prices to sell the straddle at d. Alternatively, in the spirit of Muravyev and Pearson
(2020), who argue that the effective option trading costs are lower than what the conventionally quoted
bid-ask spreads indicate, we also compute straddle returns using adjusted bid-ask spreads. Specifically, we
assume that the effective bid-ask spread on a given day is 75% or 50%, respectively, of the quoted spread.
Using these effective bid-ask spreads, we compute the corresponding bid and ask prices. Naturally, the
straddle returns are overall substantially lower when we take transaction costs into account. Nevertheless,
the differential straddle return on EAD following concave versus non-concave IV curves remains intact and
significant, similar to the one reported in Table 6. Hence, we conclude that the sign and the magnitude of
this return differential is not affected by options’ bid-ask spread.
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number of firm characteristics. Column (5) confirms that the significance of this finding is

not driven by specific quarters in our sample period.

The main conclusion from this analysis is that when IV curves become concave, investors

pay a substantial premium to hedge against the larger than average stock price swings that

are typically observed on these EADs. In fact, even though larger than average stock price

movements do occur on EADs following the formation of concave IV curves (as shown in

Table 4), these price swings are not large enough to offset the substantial cost of purchasing

straddles on these occasions. As a corollary, whereas it is known to be typically profitable

to write straddles at the firm level (see Gao, Xing, and Zhang (2018) and DJKS (2019)), we

document that it is more profitable to do so when concave IV curves are observed prior to

EADs.

To provide direct evidence that ATM straddles are particularly costly in the presence of

concave IV curves, we introduce an intuitive measure of their expensiveness. Specifically, we

calculate the following ratio:

IMPMOVE =
C + P

S
, (7)

where, as above, C (P ) is the ATM call (put) price at straddle formation, i.e., on the day

prior to EAD, and S is the corresponding price of the underlying stock. This measure roughly

indicates how much the underlying stock price should move in either direction to offset the

cost of a symmetric ATM straddle, and hence it is termed as the implied stock price move

(IMPMOVE). The higher (lower) the IMPMOVE is, the more (less) expensive it is to purchase an

ATM straddle, ceteris paribus.

To construct this measure, we use the same pair of nearest-to-the-money call and put

options that we used above to construct the delta-neutral straddle. The summary statistics

reported in Table 1 indicate an average (median) IMPMOVE of 6.53% (5.55%). Taking into

account that we utilize very short-expiry options, these statistics indicate that straddles are

quite expensive prior to EADs, as they require a substantial stock price move in either direc-

tion to offset their cost. Table 3 shows that the average IMPMOVE is 7.89% when CONCAVE =

1 and 5.69% when CONCAVE = 0, yielding a highly significant differential. This finding sup-

ports the argument that straddles are significantly more costly in the presence of concave

IV curves.

Table 7 presents estimates from contemporaneous panel regressions of IMPMOVE on CONCAVE

and a number of firm characteristics measured on the day prior to EAD.17 Column (1) in-

dicates that, on average, concave IV curves are associated with a 2.21% (t-statistic = 7.61)

17In unreported results, we additionally control for the expiry and the average moneyness of the pair of
options used to compute IMPMOVE; the results are very similar to the ones presented in Table 7.
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higher IMPMOVE relative to non-concave IV curves. This significant differential is not sub-

sumed when we control for additional firm characteristics and quarterly fixed effects in

columns (2) to (5). Overall, we find strong evidence that straddles are much more expensive

in the presence of concave IV curves.

These findings show that in the presence of concave IV curves, the underlying stock

price should exhibit a substantially larger move after the announcement to offset the cost

of purchasing the straddle. This evidence rationalizes why despite the larger than average

absolute stock returns realized on EADs following the formation of concave IV curves, the

corresponding straddle returns are still negative and much lower relative to those following

non-concave IV curves. The straddles following concave IV curves are substantially more

expensive to purchase in the first place, and hence the realized price jumps on EADs are not

sufficient to offset their cost.

The significantly higher cost of buying straddles in the presence of concave IV curves pro-

vides an alternative way to illustrate that investors pay a significantly higher price to hedge

against the event risk that arises on these occasions due to the impending announcement.

This corroborates the argument that concave IV curves provide an ex-ante signal of event

risk. Based on these findings, we conclude that investors can ex-ante identify the announce-

ments that trigger large stock price moves and they pay a substantially higher premium to

hedge against them, most obviously by purchasing straddles. As a result of this hedging

activity, the corresponding ATM options become very expensive, trading at higher volatility,

and hence the corresponding IV curves turn concave prior to EADs.

5.4 Gamma or Vega Risk?

Delta-neutral straddle returns have been often used to capture the price of volatility risk

(see, for example, Coval and Shumway (2001)). However, this interpretation holds true only

in the case of small diffusive shocks. In the presence of jumps, delta-neutral straddles expose

investors to both stochastic volatility (vega) and jump (gamma) risk and they cannot distin-

guish between these two sources of risk (see Cremers, Halling, and Weinbaum (2015)). This

is particularly important around EADs as stock prices often jump upon the announcement.

We disentangle these two effects in this section by examining whether gamma or vega

risk is priced around earnings announcements and to which source of risk concave IV curves

are related to. We follow two complementary approaches. First, similar to Dew-Becker,

Giglio, and Kelly (2021), we construct strangles and compute their returns around EADs.

Strangles yield positive payoffs only when the underlying price exhibits a sufficiently large

move. Hence, strangle returns can provide direct evidence on the price of gamma risk around

25



EADs. Second, following Cremers, Halling, and Weinbaum (2015), we compute the EAD

returns of delta- and vega-neutral ATM straddles, which expose investors to gamma risk

only, as well as the corresponding returns of delta- and gamma-neutral ATM straddles,

which expose investors to vega risk only. Since these calendar straddle strategies can isolate

each dimension of risk, their returns can be directly attributed to gamma and vega risk

exposure, respectively.

5.4.1 Strangle Returns

Different from straddles, a strangle is a portfolio of long positions in an OTM call and an

OTM put. Therefore, its payoff is typically negative unless a sufficiently large movement in

the price of the underlying asset occurs. We form delta-neutral strangles at the end of the

trading day prior to EAD and unwind the position at the close of EAD. As with straddles, we

use the shortest available options, with expiry between 4 and 13 days. Similar to Dew-Becker,

Giglio, and Kelly (2021), we use strikes that are nearest to one standard deviation (scaled

by time to expiry) away from the underlying stock price at formation.18 We require that

the absolute difference between the available (i.e., traded) and the desired moneyness (K/S)

for the OTM options does not exceed 0.01, but we typically have a very close match. The

STRANGLE return on EAD is computed in a similar fashion to equation (5), with the relevant

weights assigned to OTM options ensuring that the strangle is delta-neutral at formation.

Table 1 reports that the median STRANGLE return on EAD is −28.78%. This is almost

twice as large as the median STRADDLE return and indicates that investors most often pay a

substantial premium to hedge against the gamma risk that arises due to earnings announce-

ments. As expected, STRANGLE exhibits a positively skewed distribution and its average is

−2.32%, revealing a negative price for gamma risk around EADs. More interestingly, Ta-

ble 3 shows that the average STRANGLE return is −7.94% when CONCAVE = 1 and 1.12% when

CONCAVE = 0, with differential return of −9.05% (t-statistic = −2.45). Hence, investors pay

a substantial premium to hedge against gamma risk only when IV curves become concave

prior to the EAD. In fact, the cost of purchasing a strangle in the presence of a concave IV

curve is so high, on average, that it cannot be offset by the large stock returns that are often

observed on EADs.

Table 8 confirms this finding in a panel regression setup. Here, we also control for

the expiry of the options used to construct the strangle and the absolute difference in the

moneyness levels between the available and the desired strikes, to ensure that the reported

18We use the 30-day realized volatility that is available at d − 1 from the Historical Volatility File of
OptionMetrics.
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return differential is not driven by these features. Column (1) shows that concave IV curves

are followed by a 8.84% (t-statistic = −2.41) lower average strangle return relative to non-

concave IV curves. Columns (2) to (4) show that this differential becomes even larger as

we control for other firm characteristics, whereas column (5) shows that it remains intact in

the presence of quarterly fixed effects. In sum, we find strong evidence that in the presence

of concave IV curves, investors pay a substantial premium to hedge against the large stock

price moves observed on EADs. This finding corroborates the argument that concavity in

the IV curve is an ex-ante signal for event risk.

5.4.2 Delta- and Vega-Neutral Straddle Returns

An alternative way to isolate the effects of vega and gamma risk is to examine calendar

straddles that combine a short- and a longer-maturity delta-neutral ATM straddle. First, we

construct a delta- and vega-neutral ATM straddle (JUMPSTRADDLE), which exposes investors

to gamma risk only. We form this strategy at d−1 and unwind it at d. The strategy consists

of two legs. The first leg is a long position in a delta-neutral straddle constructed from

the nearest-to-the-money options with the shortest available expiry between 4 and 13 days.

The second leg is a short position in VS/VL delta-neutral straddles using the nearest-to-the-

money options with the longest available expiry between 100 and 180 days, where VS (VL)

denotes the vega of the shorter- (longer-) maturity straddle.19 This position ensures that

this calendar strategy is vega-neutral at formation. The JUMPSTRADDLE return on EAD is

given by:

JUMPSTRADDLE = wRS + (1− w)RL, (8)

where RS (RL) is the return of the shorter- (longer-) maturity delta-neutral straddle on EAD

and w = −(VL/VL)/(VS/VS − VL/VL), with VS (VL) denoting the value (i.e., cost) of the

shorter- (longer-) maturity straddle at formation.

Table 1 shows that the average JUMPSTRADDLE return on EAD is −2.82%, indicating

again a negative price for gamma risk. The median return of this strategy is highly negative

(−39.74%), revealing that investors typically pay a substantial premium to hedge against

the gamma risk that arises due to earnings announcements. Table 3 further shows that

this negative premium accrues from observations with a concave IV curve. The average

JUMPSTRADDLE return is −10.69% when CONCAVE = 1 and 2.29% when CONCAVE = 0, yielding

a significant differential return of −12.98% (t-statistic = −2.12). This finding supports the

argument that investors pay a substantial premium to hedge against gamma risk only in the

19We require the moneyness of the utilized calls and puts to lie within the range 0.98-1.02 for the short-
maturity straddle and 0.96-1.04 for the longer-maturity straddle, but it is typically very close to 1.
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presence of concave IV curves.

Table 9 presents estimates from predictive panel regressions of JUMPSTRADDLE on CONCAVE

and a number of firm characteristics. These regressions also control for the expiry and the

average moneyness of each pair of options used to construct this calendar strategy, ensuring

that the reported differential return is not driven by these features. Column (1) shows that

CONCAVE possesses significant predictive ability over JUMPSTRADDLE returns. Specifically,

concave IV curves are followed by a 12.71% lower average JUMPSTRADDLE return on EADs,

as compared to non-concave IV curves. This significant differential return is not subsumed

when we control for additional firm characteristics in columns (2) to (4) and quarterly fixed

effects in column (5). In sum, concave IV curves signal the substantial premium investors are

willing to pay to hedge against the gamma risk that arises due to earnings announcements.

5.4.3 Delta- and Gamma-Neutral Straddle Returns

To reinforce the argument that the informational content of concave IV curves is related to

gamma rather than vega risk, we also constuct delta- and gamma-neutral ATM straddles

(VOLSTRADDLE) in a similar fashion. The first leg of this strategy is a long position in a delta-

neutral ATM straddle constructed from options with the longest available expiry between

100 and 180 days. The second leg is a short position in ΓL/ΓS delta-neutral ATM straddles

constructed from options with the shortest available expiry between 4 and 13 days, where ΓS

(ΓL) denotes the gamma of the shorter- (longer-) maturity straddle. This position ensures

that this calendar strategy is gamma-neutral at formation. The VOLSTRADDLE return on

EAD is given by:

VOLSTRADDLE = (1− w)RS + wRL, (9)

where RS (RL) is the return of the shorter- (longer-) maturity delta-neutral straddle on

EAD and w = −(ΓS/VS)/(ΓL/VL − ΓS/VS), with VS (VL) denoting the value of the shorter-

(longer-) maturity straddle at formation.

The average (median) VOLSTRADDLE return reported in Table 1 is 1.17% (0.81%). Dis-

tinguishing between concave and non-concave IV curves, Table 3 shows that the average

VOLSTRADDLE return remains positive in both cases and the differential is insignificant. Hence,

we conclude that investors do not pay a premium to hedge against the vega risk that may

arise due to earnings announcements.

Table 10 confirms this finding in a panel regression setup, controlling also for the expiry

and the average moneyness of each pair of options used to construct this calendar strategy.

Column (1) shows that concave IV curves are actually followed by a marginally higher, not
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lower, average VOLSTRADDLE return relative to non-concave IV curves, but this differential is

insignificant. We get similar results when we control for other firm characteristics in Columns

(2) to (4) and quarterly fixed effects in Column (5). Overall, we conclude that vega risk is

not significantly priced on EADs and that the observed concavity in IV curves is not related

to this dimension of risk.

5.5 Other Option-Based Risk Measures

We have shown that straddle, strangle, and vega-neutral straddle returns are significantly

negative in the presence of concavity observed prior to EADs. However, it is well-known

that implied volatility also increases in the run up to EADs (Patell and Wolfson (1979,

1981)). Indeed, Table 3 shows that ATMIV is higher for firms that exhibit concavity versus

those that do not. In addition, we know from DJKS (2019) that TSIV typically becomes

positive as we approach the EAD, whereas RVIV substantially decreases as ATMIV increases.

Again, the descriptive statistics in Table 3 confirm that concave IV curves are associated with

significantly lower RVIV and significantly higher TSIV values. Hence, these three variables

could be perceived as alternative proxies for event/jump risk, with TSIV explicitly suggested

as such by DJKS (2019). Therefore, a natural question that arises is whether the negative

straddle and strangle premia we document are just a manifestation of increased short-term

volatility prior to EAD, as captured by ATMIV, RVIV, and TSIV, rather than of concavity per

se.

To address this question, we include ATMIV, RVIV, and TSIV as additional controls in our

regressions of STRADDLE, STRANGLE, and JUMPSTRADDLE returns. Table 11 shows that the co-

efficient on CONCAVE remains negative and strongly significant. For example, in specification

(4), the coefficient on CONCAVE is equal to −6.77 (t-statistic = −3.12) for STRADDLE returns

(versus −4.57, t-statistic = −2.40 in specification (1) of Table 6); equal to −11.83 (t-statistic

= −2.91) for STRANGLE returns (versus −8.84, t-statistic = −2.41 in specification (1) of Ta-

ble 8); and equal to −18.44 (t-statistic = −3.03) for JUMPSTRADDLE returns (versus −12.71,

t-statistic = −2.19 in specification (1) of Table 9), in Panels A, B, and C, respectively.20

This evidence confirms that concavity contains significant predictive ability with respect to

straddle, strangle and vega-neutral straddle premia over an above the informational content

of ATMIV, RVIV, and TSIV.

Summarizing the results of this section, we conclude that the negative STRADDLE, STRANGLE,

20We also estimate all other specifications (columns (2)-(5) of the Tables 6, 8, and 9), alternatively including
ATMIV, RVIV, TSIV, and all three variables jointly. The significance of CONCAVE remains intact in the presence
of these option-based risk measures.
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and JUMPSTRADDLE returns that are typically observed on EADs reflect the premium investors

pay to hedge against gamma, not vega, risk. Moreover, this evidence shows that gamma risk

is significantly priced only in the presence of concave IV curves, confirming that this feature

is a valid signal for the event risk arising due to the impending earnings announcement.

6 Conclusions

We document that the IV curves of equity options frequently exhibit concavity prior to the

EAD. This shape is in stark contrast with the convex volatility smiles or smirks that are

commonly observed for equity options. Concavity is most obvious in short-expiry options,

it typically reflects a bimodal RND for the underlying stock price, and quickly disappears

after the announcement, as the uncertainty surrounding this event is resolved.

We report evidence that firms with concave IV curves exhibit higher absolute abnormal

stock returns on EAD and higher realized volatility after the announcement. Despite the

larger than average stock price moves on EAD following the formation of concave IV curves,

we still find that the corresponding delta-neutral straddle returns are significantly lower than

those for non-concave IV curves. To rationalize this finding, we show that ATM straddles

are significantly more expensive in the presence of concave IV curves, and hence the realized

stock price jumps are not sufficient to offset the substantial cost of these straddles. We

further show that concave IV curves are followed by large negative strangle and delta- and

vega-neutral straddle returns on EADs, revealing that investors seek to hedge the gamma,

rather than vega risk that arises due to this corporate event.

Overall, we show that investors can ex-ante identify the announcements that trigger

larger than average stock price moves and they pay a substantial premium to hedge against

this event risk. This hedging activity impacts on option prices, leading to the formation

of a concave IV curve. We conclude that concavity in the IV curve constitutes an ex-ante

option-implied signal for event risk in the underlying stock arising due to the impending

announcement.

The focus of our study is on scheduled corporate earnings announcements. However, it

would be interesting to examine the features and the informational content of IV curves

around other non-corporate events that may also trigger large asset price moves. Prior

studies have argued that macroeconomic announcements and geopolitical events can give

rise to substantial risk, which can be ex-ante reflected in option prices (see Hanke, Poulsen,

and Weissensteiner (2018), Leahy and Thomas (1996), Melick and Thomas (1997), Kelly,

Pástor, and Veronesi (2016), and Savor and Wilson (2013)). We anticipate that the curvature
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properties of the IV curve around these events can reveal substantial information with respect

to the pricing of event risk and the subsequent behavior of asset prices. We leave the

explorations of these effects to future research.
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Appendix A: Definition of Variables

ANNBETA: Following Barth and So (2014), announcement beta is the estimate of coefficient
β3 from the following firm-level regression model:

xri,t = αi + β1,iMKTt + β2,iAnnDayi,t + β3,i(MKTt × AnnDayi,t) + εi,t, (A1)

where xri,t is the excess daily return of stock i on day t, MKT denotes the excess mar-
ket return, and AnnDayi,t is a dummy variable that takes the value 1 on trading days
(d − 1, d, d + 1), where d is the EAD, and 0 otherwise. We estimate this model using daily
data during the past 12 quarters. We require at least 8 EADs and at least 451 observations.

ATMIV: The average of the annualized call implied volatility with ∆CALL = 0.5 and the annu-
alized put implied volatility with ∆PUT = −0.5. Annualized implied volatilities are sourced
from the 10-day Volatility Surface File of OptionMetrics.

B/M: The ratio of firm book value of equity (CEQ) to market capitalization. Market capital-
ization is defined as the product of share price (PRC) times the number of shares outstanding
(SHROUT). We drop observations with negative book value. We use the B/M computed at
the end of the previous fiscal quarter.

BETA: The market beta estimated from the FFC 4-factor regression model. We estimate this
model at t using daily data from t − 250 to t − 25 and requiring at least 200 observations.
MKT , SMB, HML, and WML returns are from Kenneth French’s online data library.

DISP: The standard deviation of the earnings per share (EPS) forecasts for the next quar-
terly earnings announcement scaled by the absolute value of the mean EPS forecast. EPS
forecasts are sourced from I/B/E/S.

Ln(PRICE): The natural logarithm of the share price (PRC).

Ln(SIZE): The natural logarithm of the firm’s market capitalization (in million $). Market
capitalization is defined as the product of share price (PRC) times the number of shares out-
standing (SHROUT). We use the market capitalization computed at the end of the previous
fiscal quarter.

MOM: The cumulative stock return from day t − 250 to day t − 25. We require at least 200
daily observations.

NUMEST: The number of analysts providing EPS forecasts for the next quarterly earnings
announcement sourced from I/B/E/S.

O/S: The ratio of daily option trading volume to daily stock trading volume. Option trading
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volume is multiplied by 100, as each option contract corresponds to a 100-share lot. We sum
up the trading volume of all call and put options with the same expiry as the one used to
define the indicator CONCAVE.

RVIV: The difference between the annualized realized (historical) volatility and ATMIV. Real-
ized volatility is from the 10-day Historical Volatility File provided by OptionMetrics.

RUNUP: The cumulative stock return from day t− 4 to day t. We require all 5 daily observa-
tions.

RNK: The Risk-Neutral Kurtosis computed as per the definition of Bakshi, Kapadia, and
Madan (2003). We use prices of OTM and ATM options with the same expiry as the one
used to define the indicator CONCAVE. We require at least 4 options, with at least 2 calls and 2
puts. Option prices are converted to implied volatilities and vice versa via the Black-Scholes
formula. We use a cubic spline to interpolate implied volatilities between the lowest and the
highest available strikes and perform a constant extrapolation outside this range, with lower
bound K/S = 1/3 and upper bound K/S = 3.

RNS: The Risk-Neutral Skewness computed as per the definition of Bakshi, Kapadia, and
Madan (2003). We use prices of OTM and ATM options with the same expiry as the one
used to define the indicator CONCAVE. We require at least 4 options, with at least 2 calls and 2
puts. Option prices are converted to implied volatilities and vice versa via the Black-Scholes
formula. We use a cubic spline to interpolate implied volatilities between the lowest and the
highest available strikes and perform a constant extrapolation outside this range, with lower
bound K/S = 1/3 and upper bound K/S = 3.

STOCKTR: The ratio of daily stock trading volume to shares outstanding.

TSIV: The term structure estimator of ATM implied volatility proposed by DJKS (2019) and
defined as the square root of the following expression:(

σQ
i,term

)2
=

σ2
t,T1

− σ2
t,T2

T−1
1 − T−1

2

, (A2)

where σ2
t,T1

is the squared annualized ATM implied volatility corresponding to the nearest
expiry T1 and σ2

t,T2
is the squared annualized ATM implied volatility corresponding to the

second nearest expiry T2. T1 is the same as the maturity of the options used to define the
indicator CONCAVE. We use the nearest-to-the-money option to compute the ATM implied
volatility, with moneyness defined as the strike price divided by the forward price. TSIV is
not defined when σ2

t,T1
< σ2

t,T2
.
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Appendix B: Characteristic Function

Let φ(u; t, T, St, Vt) with u ∈ R be the characteristic function of logST conditional on Ft

under risk-neutral measure Q. According to our model, the log stock price is the sum
of two independent components. The first component is an affine process for which the
characteristic function, denoted as φaf (u; t, T, St, Vt), is known in closed-form (see Bates
(1996)) and it is given by:

φaf (u; t, T, St, Vt) = exp (iu lnSt + α(u; t, T ) + β(u; t, T )Vt) , (B1)

where

α(u; t, T ) = (r − λJµJ) τiu+
κvθv
σ2
v

(
q1τ − 2 log

(
1− ge∆τ

1− g

))
+λJτ ((1 + µJ)

iu e
σ2
J
2
iu(iu−1) − 1)

β(u; t, T ) =
q1
σ2
v

(
1− e∆τ

1− ge∆τ

)
, (B2)

with τ = T−t, ∆ =
√
(κv − ρσviu)2 − 2σ2

viu(iu− 1), q1 = κv−ρσviu+∆, q2 = κv−ρσviu−∆
and g = q1/q2.

The second component is a discrete process with independent deterministic jumps at
known times. Its characteristic function, also known in closed-form, is given by:

φdis(u; t, T ) =

Nd
T∏

j=Nd
t +1

φj(u), (B3)

where
φj(u) = pjM

(−)
j (u) + (1− pj)M

(+)
j (u), (B4)

whereM
(−)
j (u) = exp

(
iuµ

(−)
j + (iu)2

2

(
σ
(−)
j

)2)
andM

(+)
j (u) = exp

(
iuµ

(+)
j + (iu)2

2

(
σ
(+)
j

)2)
.

As the two components are independent, φ(u; t, T, St, Vt) is given by the product of the
characteristic functions (B1) and (B3):

φ(u; t, T, St, Vt) = φaf (u; t, T, St, Vt)φdis(u; t, T ). (B5)

Knowledge of the characteristic function of the log stock price in closed-form enables us
to price options. In particular, the price at time t of a European call option with strike price
K and expiry T , denoted as Ct(K,T ), is given by (see Heston and Nandi (2000)):

Ct(K,T ) =
1

2
St +

e−r(t−t)

π

∫ ∞

0

Re

[
K−iuφ(u− i; t, T, St, Vt)

iu

]
du

−Ke−r(T−t)

(
1

2
+

1

π

∫ ∞

0

Re

[
K−iuφ(u; t, T, St, Vt)

iu

]
du

)
. (B6)
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Pástor, Ľuboš, and Pietro Veronesi, 2013, Political Uncertainty and Risk Premia, Journal
of Financial Economics 110, 520–545.

Patell, James M., and Mark A. Wolfson, 1979, Anticipated Information Releases Reflected
in Call Option Prices, Journal of Accounting and Economics 1, 117–140.

Patell, James M., and Mark A. Wolfson, 1981, The Ex Ante and Ex Post Price Effects of
Quarterly Earnings Announcements Reflected in Option and Stock Prices, Journal of
Accounting Research 19, 434–458.

Patton, Andrew J., and Michela Verardo, 2012, Does Beta Move with News? Firm-Specific
Information Flows and Learning About Profitability, Review of Financial Studies 25,
2789–2839.

Piazzesi, Monika, 2000, Essays on Monetary Policy and Asset Pricing, PhD Thesis, Stanford
University.

Roll, Richard, Eduardo Schwartz, and Avanidhar Subrahmanyam, 2010, O/S: The Relative
Trading Activity in Options and Stock, Journal of Financial Economics 96, 1–17.

Rubinstein, Mark, 1994, Implied Binomial Trees, Journal of Finance 49, 771–818.

Savor, Pavel, and Mungo Wilson, 2013, How Much Do Investors Care About Macroeconomic
Risk? Evidence from Scheduled Economic Announcements, Journal of Financial and
Quantitative Analysis 48, 343–375.

Savor, Pavel, and Mungo Wilson, 2016, Earnings Announcements and Systematic Risk,
Journal of Finance 71, 83–138.

Todorov, Viktor, 2020, Testing and Inference for Fixed Times of Discontinuity in Semi-
martingales, Bernoulli 26, 2907–2948.

Todorov, Viktor, and Yang Zhang, 2023, Testing for Anticipated Changes in Spot Volatility
at Event Times, Econometric Theory, forthcoming.

Toft, Klaus Bjerre, and Brian Prucyk, 1997, Options on Leveraged Equity: Theory and
Empirical Tests, Journal of Finance 52, 1151–1180.

van Tassel, Peter, 2016, Merger Options and Risk Arbitrage, Federal Reserve Bank of New
York, Staff Report No. 761.

38



Wachter, Jessica A., and Yicheng Zhu, 2022, A Model of Two Days, Review of Financial
Studies 35, 2246–2307.

Xing, Yuhang, Xiaoyan Zhang, and Rui Zhao, 2010, What Does the Individual Option
Volatility Smirk Tell Us About Future Equity Returns? Journal of Financial and Quan-
titative Analysis 45, 641–662.

Yan, Shu, 2011, Jump Risk, Stock Returns, and Slope of Implied Volatility Smile, Journal
of Financial Economics 99, 216–233.

39



F
ig
u
re

1
:
T
y
p
e
s
o
f
co

n
ca

v
e
IV

cu
rv

e
s

T
h
is
fi
gu

re
sh
ow

s
d
iff
er
en
t
ty
p
es

of
co
n
ca
v
e
IV

cu
rv
es

co
m
p
u
te
d
on

th
e
d
ay

p
ri
or

to
th
e
E
A
D
.
P
an

el
A

p
re
se
n
ts

a
n
ex
a
m
p
le

o
f
a
n
in
ve
rs
e

U
-s
h
ap

e
IV

cu
rv
e
fo
r
T
w
it
te
r,
co
m
p
u
te
d
fr
om

op
ti
on

s
w
it
h
3
d
ay
s
to

ex
p
ir
y
on

J
u
ly

29
,
20

14
.
P
an

el
B
p
re
se
n
ts

a
n
ex
a
m
p
le

o
f
a
n
S
-s
h
a
p
e

IV
cu

rv
e
fo
r
E
b
ay
,
co
m
p
u
te
d
fr
om

op
ti
on

s
w
it
h
3
d
ay
s
to

ex
p
ir
y
on

A
p
ri
l
29

,
20

14
.
P
an

el
s
C

an
d
D

p
re
se
n
t
ex
a
m
p
le
s
o
f
W

-s
h
a
p
e
IV

cu
rv
es

fo
r
G
o
og

le
an

d
N
et
fl
ix
,
re
sp
ec
ti
ve
ly
,
co
m
p
u
te
d
fr
om

op
ti
on

s
w
it
h
4
d
ay
s
to

ex
p
ir
y
on

A
p
ri
l
23

a
n
d
J
u
ly

1
6
,
2
0
1
8
,
re
sp
ec
ti
v
el
y.

C
ir
cl
es

in
d
ic
at
e
im

p
li
ed

vo
la
ti
li
ti
es

co
rr
es
p
on

d
in
g
to

ac
tu
al

tr
ad

ed
st
ri
k
es
,
w
h
er
ea
s
th
e
cu

rv
e
is

fi
tt
ed

u
si
n
g
a
q
u
in
ti
c
sp
li
n
e.

P
an

el
A
:
In
ve
rs
e
U
-s
h
ap

e
P
an

el
B
:
S
-s
h
a
p
e

P
an

el
C
:
W

-s
h
ap

e
P
an

el
D
:
W

-s
h
a
p
e

40



Figure 2: Concave IV curves around EAD
This figure illustrates how a concave IV curve prior to the EAD becomes convex after the an-
nouncement. Panel A presents a concave IV curve for Apple, computed from options with 4 days
to expiry on October 28, 2013, i.e., prior to its quarterly earnings announcement. Panel B presents
a convex IV curve for the same firm, computed from options with 3 days to expiry on October 29,
2013, i.e., right after the announcement.

Panel A: Prior to EAD

Panel B: After the announcement
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Figure 3: Fraction of concave IV curves around EAD
This figure shows the fraction of firms exhibiting a concave IV curve on each trading day from
d − 5 to d + 5, where d is the quarterly EAD. The definition of a concave IV curve is provided in
Section 2.2. IV curves are computed for the 100 firms with the highest option trading activity per
year during the period 2013-2020.
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Figure 5: IV curves for short- vs. longer-expiry options
This figure shows the shape of IV curves for Amazon, computed from options with different ex-
piries (8, 22, 36, and 50 days to expiry) on April 26, 2018, i.e., just before its quarterly earnings
announcement. The IV curves are fitted using a quintic spline.
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Figure 6: Distribution of realized stock returns on EAD
This figure shows histograms of realized stock returns on EADs. Panel A illustrates the histogram
for the observations associated with a non-concave (CONCAVE = 0) IV curve observed on the day
prior to EAD. Panel B illustrates the corresponding histogram for the observations associated with
a concave (CONCAVE = 1) IV curve. Each bin in the histogram has a 1% width, centred around
the label on the x-axis. The corresponding density derived using an Epanechnikov kernel is also
plotted in each Panel. The sample consists of quarterly EADs during the period 2013-2020.

Panel A: After non-concave IV curves

Panel B: After concave IV curves
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Figure 7: Model-implied IV curve
This figure shows the fit of the model-implied IV curve (solid curve) relative to the actual IVs
(circles). Actual IVs are computed for Apple from options with 4 days to expiry on October 28,
2013, i.e., prior to its quarterly earnings announcement. The model-implied IV curve is computed
using the corresponding estimated parameter values for the model specified in Section 4. Model
parameter values are estimated by minimizing the RMSE between the actual and the model-implied
IVs. The figure also shows the corresponding IV curve (dashed curve) implied by fitting the DJKS
(2019) model to the actual IVs.
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Figure 8: Model-implied RND
This figure shows the empirical RND (solid curve) together with the model-implied RND (dashed
curve) for Apple’s log stock return, derived from options with 4 days to expiry on October 28, 2013,
i.e., prior to its quarterly earnings announcement. The empirical RND corresponds to the empirical
IV curve, which is derived from fitting a quintic spline to the actual IVs. The model-implied RND is
computed using the corresponding estimated parameter values for the model specified in Section 4.
Model parameter values are estimated by minimizing the RMSE between the actual and the model-
implied IVs.
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Table 1: Summary statistics
This table presents summary statistics for selected variables. CONCAVE is an indicator variable that
takes the value one when the IV curve is concave on the day prior to the EAD and zero otherwise.
ABSEADABRET is the absolute abnormal stock return on EAD, measured with respect to the 4-
factor FFC model. POSTEADVOL is the 10-day post-EAD annualized realized stock return volatility.
STRADDLE denotes the return of the delta-neutral ATM straddle strategy on EAD. IMPMOVE de-
notes the ratio of the sum of the ATM put and call prices divided by the underlying stock price.
STRANGLE denotes the return of the delta-neutral strangle strategy on EAD. JUMPSTRADDLE denotes
the return of the delta- and vega-neutral ATM straddle strategy on EAD. VOLSTRADDLE denotes the
return of the delta- and gamma-neutral ATM straddle strategy on EAD. The definition of the rest
of the variables is provided in Appendix A. These summary statistics are computed for a sample
of quarterly earnings announcements during the period 2013-2020.

Variable Mean St. Dev. 25th pctl Median 75th pctl Obs.

CONCAVE 0.384 0.49 0 0 1 2,229
EXPIRY 6.46 2.60 4 8 9 2,229
STRIKES 17.88 12.85 9 14 22 2,229
BETA 1.09 0.31 0.89 1.09 1.27 2,188
Ln(SIZE) 10.96 1.33 10.07 11.13 12.00 2,220
B/M 0.35 0.33 0.12 0.25 0.46 2,085
RUNUP 0.68 4.36 −1.63 0.64 2.85 2,229
MOM 18.73 46.80 −6.89 12.00 32.29 2,188
Ln(PRICE) 4.35 0.92 3.75 4.22 4.83 2,229
ATMIV 45.04 22.41 29.24 37.74 55.33 2,177
RNS −0.25 0.28 −0.42 −0.25 −0.09 2,229
RNK 3.63 0.65 3.24 3.46 3.81 2,229
RVIV −16.62 15.03 23.61 14.72 7.39 2,177
TSIV 6.80 3.79 4.02 5.73 8.65 2,217
NUMEST 23.95 7.66 18 23 29 2,219
DISP 14.70 30.21 2.56 4.84 12.00 2,209
ANNBETA 0.10 0.78 −0.29 0.07 0.49 2,112
STOCKTR 2.40 3.20 0.66 1.16 2.74 2,229
O/S 28.43 32.75 6.13 16.55 37.26 2,229
ABSEADABRET 4.86 4.72 1.60 3.41 6.36 2,188
POSTEADVOL 41.09 26.71 22.48 33.39 51.65 2,227
STRADDLE −0.86 49.00 −33.65 −15.43 18.37 2,181
IMPMOVE 6.53 3.38 4.08 5.55 8.12 2,181
STRANGLE −2.32 80.22 −55.71 −28.78 25.54 1,909
JUMPSTRADDLE −2.82 137.08 −89.79 −39.74 47.69 1,888
VOLSTRADDLE 1.17 4.35 −1.41 0.81 3.38 1,895
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Table 3: Characteristics of firms with concave vs. non-concave IV curves
This table presents the average values of selected variables for firms when they exhibit a concave
IV curve on the day prior to the EAD (CONCAVE = 1) versus the corresponding average values when
they do not exhibit a concave IV curve (CONCAVE = 0). ABSEADABRET is the absolute abnormal stock
return on EAD, measured with respect to the 4-factor FFC model. POSTEADVOL is the 10-day post-
EAD annualized realized stock return volatility. STRADDLE denotes the return of the delta-neutral
ATM straddle strategy on EAD. IMPMOVE denotes the ratio of the sum of the ATM put and call prices
divided by the underlying stock price. STRANGLE denotes the return of the delta-neutral strangle
strategy on EAD. JUMPSTRADDLE denotes the return of the delta- and vega-neutral ATM straddle
strategy on EAD. VOLSTRADDLE denotes the return of the delta- and gamma-neutral ATM straddle
strategy on EAD. The definition of the rest of the variables is provided in Appendix A. These
average values are computed for a sample of quarterly earnings announcements during the period
2013-2020. The last column contains the difference in the average values with the corresponding
t-statistic (under the null hypothesis of equal means) in parenthesis.

Variable CONCAVE = 1 CONCAVE = 0 Difference

EXPIRY 6.14 6.65 −0.52 (4.54)
STRIKES 22.15 15.22 6.93 (11.88)
BETA 1.12 1.07 0.05 (3.51)
Ln(SIZE) 10.67 11.14 −0.47 (−7.90)
B/M 0.31 0.38 −0.08 (−5.33)
RUNUP 0.94 0.52 0.42 (2.19)
MOM 24.95 14.93 10.02 (4.55)
Ln(PRICE) 4.45 4.29 0.16 (3.68)
ATMIV 53.41 39.85 13.56 (14.07)
RNS −0.14 −0.32 0.19 (17.72)
RNK 3.37 3.80 −0.43 (−17.21)
RVIV −22.24 −13.13 −9.11 (−13.61)
TSIV 8.42 5.79 2.63 (16.42)
NUMEST 25.57 22.94 2.62 (7.68)
DISP 15.31 14.31 1.00 (0.78)
ANNBETA 0.14 0.08 0.06 (1.54)
STOCKTR 3.24 1.88 1.36 (9.40)
O/S 37.84 22.58 15.27 (10.10)
ABSEADABRET 5.88 4.24 1.64 (7.71)
POSTEADVOL 47.49 37.11 10.38 (8.82)
STRADDLE −3.74 0.91 −4.65 (−2.16)
IMPMOVE 7.89 5.69 2.20 (15.24)
STRANGLE −7.94 1.12 −9.05 (−2.45)
JUMPSTRADDLE −10.69 2.29 −12.98 (−2.12)
VOLSTRADDLE 1.32 1.08 0.25 (1.19)
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Table 4: Concave IV curves and absolute abnormal stock returns on EAD
This table presents results from predictive panel regressions of the absolute abnormal stock return
on EAD (ABSEADABRET) on CONCAVE and a set of firm-level characteristics measured on the day
prior to the EAD. The abnormal stock return is computed with respect to the 4-factor Fama-
French-Carhart model. CONCAVE is an indicator variable that takes the value one when the IV
curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of
the variables is provided in Appendix A. The sample consists of quarterly earnings announcements
during the period 2013-2020. Columns (1) to (4) use two-way clustered standard errors at the
firm- and quarter-level. Column (5) includes quarterly fixed effects. t-statistics are provided in
parenthesis.

(1) (2) (3) (4) (5)

CONCAVE 1.65 0.76 0.73 0.73 0.76
(5.45) (2.82) (2.75) (2.94) (3.84)

BETA 0.55 0.53 0.40 0.36
(1.59) (1.47) (1.14) (1.12)

Ln(SIZE) −1.53 −1.55 −1.40 −1.40
(−9.93) (−9.80) (−8.62) (−15.90)

B/M −2.09 −2.01 −1.84 −1.78
(−4.78) (−4.22) (−4.00) (−5.76)

RUNUP 2.58 1.98 2.25
(1.50) (1.19) (0.97)

MOM 0.00 0.00 0.24
(−0.01) (0.00) (1.03)

Ln(PRICE) 0.11 0.07 0.05
(0.43) (0.30) (0.44)

DISP 0.63 0.67
(1.04) (2.09)

ANNBETA 0.29 0.29
(1.70) (2.40)

CNST 4.23 21.51 21.35 19.64 —
(17.43) (11.51) (11.16) (9.36)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
# observations 2,182 2,050 2,050 1,971 1,971
R2 2.89 21.26 21.35 19.89 21.67
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Table 5: Concave IV curves and 10-day post-EAD stock return volatility
This table presents results from predictive panel regressions of the post-EAD realized stock return
volatility (POSTEADVOL) on CONCAVE and a set of firm-level characteristics measured on the day
prior to the EAD. Post-EAD volatility is computed using stock returns from d to d+ 9, where d is
the EAD, and it is annualized. CONCAVE is an indicator variable that takes the value one when the
IV curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of
the variables is provided in Appendix A. The sample consists of quarterly earnings announcements
during the period 2013-2020. Columns (1) to (4) use two-way clustered standard errors at the
firm- and quarter-level. Column (5) includes quarterly fixed effects. t-statistics are provided in
parenthesis.

(1) (2) (3) (4) (5)

CONCAVE 10.43 4.26 4.11 4.44 3.61
(5.30) (2.85) (2.82) (3.25) (3.72)

BETA 8.76 8.25 8.70 8.82
(4.15) (4.00) (4.24) (5.59)

Ln(SIZE) −9.71 −9.62 −8.01 −8.83
(−12.22) (−12.49) (−10.55) (−20.57)

B/M −9.09 −8.03 −7.61 −6.97
(−4.29) (−3.76) (−3.73) (−4.62)

RUNUP 7.32 −0.11 −2.16
(0.39) (−0.01) (−0.19)

MOM 3.03 1.67 4.15
(1.17) (0.70) (3.60)

Ln(PRICE) −0.05 −0.34 −0.32
(−0.04) (−0.30) (−0.54)

DISP 11.26 9.02
(3.78) (5.74)

ANNBETA 1.04 0.23
(1.35) (0.39)

CNST 37.07 139.14 137.99 118.61 —
(18.37) (14.36) (13.27) (12.06)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
# observations 2,221 2,048 2,048 1,969 1,969
R2 3.61 29.53 29.82 28.75 37.49
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Table 6: Concave IV curves and delta-neutral straddle returns on EAD
This table presents results from predictive panel regressions of delta-neutral ATM straddle returns
(STRADDLE) computed on EAD on CONCAVE and a set of firm-level characteristics measured on the
day prior to the EAD. CONCAVE is an indicator variable that takes the value one when the IV
curve is concave on the day prior to the EAD and zero otherwise. The definition of the rest of the
variables is provided in Appendix A. Option controls include the expiry and the average moneyness
of the options used to construct the straddle strategy. The sample consists of quarterly earnings
announcements during the period 2013-2020. Columns (1) to (4) use two-way clustered standard
errors at the firm- and quarter-level. Column (5) includes quarterly fixed effects. t-statistics are
provided in parenthesis.

(1) (2) (3) (4) (5)

CONCAVE −4.57 −6.80 −6.86 −7.60 −6.77
(−2.40) (−3.32) (−3.34) (−3.49) (−2.81)

BETA −2.80 −2.45 −2.70 −3.05
(−0.89) (−0.77) (−0.78) (−0.77)

Ln(SIZE) −3.59 −3.79 −3.70 −3.31
(−3.37) (−3.72) (−3.52) (−3.08)

B/M −3.73 −4.42 −3.75 −3.43
(−1.27) (−1.39) (−1.12) (−0.90)

RUNUP 27.80 27.54 36.57
(1.77) (1.48) (1.29)

MOM −3.04 −3.34 −3.76
(−1.03) (−0.96) (−1.30)

Ln(PRICE) 0.52 0.58 0.55
(0.44) (0.51) (0.37)

DISP −2.44 −0.26
(−0.47) (−0.07)

ANNBETA 0.81 1.86
(0.68) (1.27)

CNST 195.02 211.45 205.27 298.15 —
(0.86) (0.87) (0.84) (1.22)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
Option Controls Yes Yes Yes Yes Yes
# observations 2,175 2,006 2,006 1,930 1,930
R2 0.27 1.13 1.26 1.34 3.24
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Table 7: Concave IV curves and straddle-implied stock price moves prior to
EAD

This table presents results from contemporaneous panel regressions of the implied move of the
underlying stock price (IMPMOVE) prior to the EAD on CONCAVE and a set of firm-level characteristics
measured on the day prior to the EAD. IMPMOVE denotes the ratio of the sum of the ATM put and
call prices divided by the underlying stock price. CONCAVE is an indicator variable that takes the
value one when the IV curve is concave on the day prior to the EAD and zero otherwise. The
definition of the rest of the variables is provided in Appendix A. The sample consists of quarterly
earnings announcements during the period 2013-2020. Columns (1) to (4) use two-way clustered
standard errors at the firm- and quarter-level. Column (5) includes quarterly fixed effects. t-
statistics are provided in parenthesis.

(1) (2) (3) (4) (5)

CONCAVE 2.21 1.28 1.26 1.29 1.15
(7.61) (6.36) (6.19) (7.33) (12.38)

BETA 1.13 1.04 1.09 1.17
(2.96) (2.77) (3.20) (7.73)

Ln(SIZE) −1.49 −1.47 −1.21 −1.32
(−11.83) (−11.23) (−10.37) (−31.86)

B/M −1.72 −1.55 −1.48 −1.40
(−4.96) (−4.21) (−4.29) (−9.60)

RUNUP −0.25 −1.13 −2.78
(−0.07) (−0.36) (−2.55)

MOM 0.58 0.48 0.97
(1.63) (1.66) (8.75)

Ln(PRICE) −0.05 −0.09 −0.07
(−0.22) (−0.47) (−1.29)

DISP 1.70 1.26
(4.03) (8.32)

ANNBETA 0.22 0.08
(1.77) (1.46)

CNST 5.68 21.74 21.59 18.46 —
(18.34) (13.19) (12.42) (12.18)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
# observations 2,175 2,006 2,006 1,930 1,930
R2 10.06 49.81 50.43 50.58 61.96
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Table 8: Concave IV curves and delta-neutral strangle returns on EAD
This table presents results from predictive panel regressions of delta-neutral strangle returns
(STRANGLE) computed on EAD on CONCAVE and a set of firm-level characteristics measured on
the day prior to the EAD. The strangle strategy consists of an OTM call and an OTM put, with
strikes set at one standard deviation (scaled by time to expiry) from the underlying stock price at
formation. CONCAVE is an indicator variable that takes the value one when the IV curve is concave
on the day prior to the EAD and zero otherwise. The definition of the rest of the variables is pro-
vided in Appendix A. Option controls include the expiry and the absolute difference between the
required and the available moneyness levels of the call and put options used to construct the strangle
strategy. The sample consists of quarterly earnings announcements during the period 2013-2020.
Columns (1) to (4) use two-way clustered standard errors at the firm- and quarter-level. Column
(5) includes quarterly fixed effects. t-statistics are provided in parenthesis.

(1) (2) (3) (4) (5)

CONCAVE −8.84 −11.58 −11.19 −12.92 −10.96
(−2.41) (−2.91) (−2.88) (−3.29) (−2.62)

BETA −11.72 −10.71 −9.24 −10.22
(−2.54) (−2.34) (−1.65) (−1.49)

Ln(SIZE) −6.77 −6.68 −7.05 −5.94
(−3.50) (−3.95) (−3.69) (−3.13)

B/M −3.80 −6.63 −5.82 −6.52
(−0.86) (−1.39) (−1.18) (−0.97)

RUNUP 66.24 59.74 92.74
(1.56) (1.40) (1.71)

MOM −6.90 −8.29 −8.72
(−1.43) (−1.54) (−1.57)

Ln(PRICE) −1.34 −0.82 −0.87
(−0.65) (−0.44) (−0.32)

DISP −3.72 0.01
(−0.41) (0.00)

ANNBETA −0.44 1.72
(−0.25) (0.66)

CNST −1.06 93.7 100.08 100.86 —
(−0.12) (3.00) (3.00) (2.75)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
Option Controls Yes Yes Yes Yes Yes
# observations 1,903 1,768 1,768 1,710 1,710
R2 0.40 1.48 1.7 1.95 4.50
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Table 9: Concave IV curves and delta- and vega-neutral straddle returns on
EAD

This table presents results from predictive panel regressions of delta- and vega-neutral ATM strad-
dle returns (JUMPSTRADDLE) computed on EAD on CONCAVE and a set of firm-level characteristics
measured on the day prior to the EAD. CONCAVE is an indicator variable that takes the value one
when the IV curve is concave on the day prior to the EAD and zero otherwise. The definition of
the rest of the variables is provided in Appendix A. Option controls include the expiry and the
average moneyness of each pair of options used to construct this calendar straddle strategy. The
sample consists of quarterly earnings announcements during the period 2013-2020. Columns (1)
to (4) use two-way clustered standard errors at the firm- and quarter-level. Column (5) includes
quarterly fixed effects. t-statistics are provided in parenthesis.

(1) (2) (3) (4) (5)

CONCAVE −12.71 −17.82 −17.34 −18.92 −15.59
(−2.19) (−3.03) (−2.95) (−3.10) (−2.12)

BETA −1.26 0.70 2.31 0.18
(−0.14) (0.07) (0.22) (0.02)

Ln(SIZE) −7.53 −7.61 −7.52 −6.54
(−2.46) (−2.32) (−2.33) (−1.96)

B/M −9.14 −14.26 −12.73 −9.54
(−0.67) (−1.00) (−0.81) (−0.81)

RUNUP 110.47 112.46 141.79
(2.10) (1.90) (1.61)

MOM −13.03 −13.91 −11.57
(−1.61) (−1.61) (−1.37)

Ln(PRICE) −0.55 −0.52 −0.23
(−0.17) (−0.16) (−0.05)

DISP −8.92 −3.67
(−0.70) (−0.32)

ANNBETA 0.64 3.98
(0.20) (0.92)

CNST −217.4 −345.86 −376.0 85.83 —
(−0.31) (−0.45) (−0.50) (0.11)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
Option Controls Yes Yes Yes Yes Yes
# observations 1,882 1,726 1,726 1,660 1,660
R2 0.42 0.89 1.19 1.21 3.33
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Table 10: Concave IV curves and delta- and gamma-neutral straddle returns
on EAD

This table presents results from predictive panel regressions of delta- and gamma-neutral ATM
straddle returns (VOLSTRADDLE) computed on EAD on CONCAVE and a set of firm-level characteristics
measured on the day prior to the EAD. CONCAVE is an indicator variable that takes the value 1
when the IV curve is concave on the day prior to the EAD and zero otherwise. The definition of
the rest of the variables is provided in Appendix A. Option controls include the expiry and the
average moneyness of each pair of options used to construct this calendar straddle strategy. The
sample consists of quarterly earnings announcements during the period 2013-2020. Columns (1)
to (4) use two-way clustered standard errors at the firm- and quarter-level. Column (5) includes
quarterly fixed effects. t-statistics are provided in parenthesis.

(1) (2) (3) (4) (5)

CONCAVE 0.22 0.27 0.32 0.25 0.17
(1.44) (1.64) (1.99) (1.64) (0.76)

BETA −0.69 −0.61 −0.51 −0.55
(−1.58) (−1.39) (−1.14) (−1.49)

Ln(SIZE) −0.20 −0.18 −0.14 −0.15
(−1.68) (−1.34) (−1.02) (−1.49)

B/M −0.53 −0.79 −0.91 −0.91
(−1.70) (−2.21) (−2.36) (−2.49)

RUNUP −0.99 −0.85 −0.74
(−0.32) (−0.27) (−0.27)

MOM −0.37 −0.34 −0.31
(−1.52) (−1.17) (−1.17)

Ln(PRICE) −0.13 −0.15 −0.13
(−0.97) (−1.10) (−0.89)

DISP 0.25 0.20
(0.74) (0.57)

ANNBETA −0.09 −0.05
(−0.54) (−0.34)

CNST −4.16 −5.83 −4.76 9.20 —
(−0.12) (−0.16) (−0.13) (0.28)

Clustered SE Quarter/Firm Quarter/Firm Quarter/Firm Quarter/Firm No
Fixed Effects No No No No Quarter
Option Controls Yes Yes Yes Yes Yes
# observations 1,889 1,732 1,732 1,665 1,665
R2 0.45 1.17 1.44 1.37 3.16
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Table 11: The effect of concave IV curves controlling for other option-based
risk measures

This table presents results from predictive panel regressions of delta-neutral ATM straddle re-
turns computed on EAD (STRADDLE, as in Table 6) in Panel A, delta-neutral strangle re-
turns (STRANGLE, as in Table 8) in Panel B, and delta- and vega-neutral ATM straddle returns
(JUMPSTRADDLE, as in Table 9) in Panel C on CONCAVE, ATMIV, RVIV, and TSIV. CONCAVE is an
indicator variable that takes the value 1 when the IV curve is concave on the day prior to the EAD
and zero otherwise. ATMIV, RVIV, and TSIV are defined in Appendix A. Option controls for each
specification are included and are defined in the corresponding table (Table 6 for Panel A specifica-
tions, Table 8 for Panel B specifications, and Table 9 for Panel C specifications). All specifications
also include an intercept (CNST), but its coefficient estimates are not tabulated. t-statistics using
two-way clustered standard errors at the firm- and quarter-level are provided in parenthesis. The
sample consists of quarterly earnings announcements during the period 2013-2020.

(1) (2) (3) (4)

Panel A: Delta-neutral straddles, STRADDLE

CONCAVE −5.27 −6.65 −5.49 −6.77
(−2.78) (−3.19) (−2.65) (−3.12)

ATMIV −0.14 −26.69
(−0.03) (−2.38)

RVIV −14.73 −16.16
(−2.51) (−2.77)

TSIV 32.12 133.86
(1.29) (2.06)

# observations 2,151 2,151 2,163 2,139
R2 0.32 0.51 0.33 0.74

Panel B: Delta-neutral strangles, STRANGLE

CONCAVE −10.06 −12.35 −10.38 −11.83
(−2.70) (−3.13) (−2.53) (−2.91)

ATMIV 2.72 −42.65
(0.28) (−1.91)

RVIV −31.98 −38.74
(−2.74) (−2.46)

TSIV 55.65 182.88
(1.09) (1.45)

# observations 1,883 1,883 1,894 1,874
R2 0.50 0.76 0.45 0.92

58



(1) (2) (3) (4)

Panel C: Delta- and vega-neutral straddles, JUMPSTRADDLE

CONCAVE −14.04 −17.28 −15.39 −18.44
(−2.54) (−2.82) (−2.66) (−3.03)

ATMIV −1.54 −92.35
(−0.10) (−1.74)

RVIV −33.32 −30.47
(−1.79) (−1.26)

TSIV 98.27 512.65
(1.26) (1.56)

# observations 1,862 1,862 1,872 1,852
R2 0.48 0.60 0.45 0.88
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