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Abstract

We model platform competition with endogenous data generation, collection, and sharing,

thereby providing a unifying framework to evaluate data-related regulation and antitrust

policies. Data are jointly produced from users’ economic activities and platforms’ in-

vestments in data infrastructure. Data improves service quality, causing a feedback loop

that tends to concentrate market power. Dispersed users do not internalize the impact

of their data contribution on (i) service quality for other users, (ii) market concentration,

and (iii) platforms’ incentives to invest in data infrastructure, causing inefficient over- or

under-collection of data. Data sharing proposals, user privacy protections, platform com-

mitments, and markets for data cannot fully address these inefficiencies. We introduce

and analyze user union, which represents and coordinates users, as a potential solution

for antitrust and consumer protection in the digital era.
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In the era of digital platforms and big data, customers and their data actively contribute to

firms’ production of goods and services. For instance, the data users generate affect future product

innovation and improvements, and one user’s adoption of a platform or product affects the other

users’ service utility (through content creation and network externalities), leading to dynamic

data feedback and network effects that interact. These phenomena pose challenges to traditional

antitrust laws (e.g., the Sherman Act) and recent policies targeting privacy protection and data

sharing.1 Meanwhile, computer and data scientists are actively exploring how privacy-perserving

computation and user-centric data ownership can empower people and communities (e.g., Zyskind,

Nathan, and Pentland, 2015; Pentland, Lipton, and Hardjono, 2021). To formulate appropriate

antitrust policies, regulate data-driven platforms, and unleash the potential of big data, it is crucial

to understand the economic forces underlying the new economy.

To this end, we build a tractable two-period model of firm/platform competition incorporating

the defining features of a data economy and key channels through which users contribute to digital

platforms or business ecosystems. Naturally, a platform offering better products (potentially due

to existing data advantage) increases user adoption, spurs data collection, and enjoys a bigger

advantage in future by utilizing data to improve its products. We further innovate by modeling

the joint data projection by users and platforms as well as the dispersed nature of users relative to

platforms, which allow us to capture for the first time the externalities of user participation and data

contribution on platform service quality, market power, and incentives at the same time. We thus

identify novel sources of inefficiencies that can lead to both under- and over-collection of data, and

offer a unifying framework to analyze the effectiveness of a wide array of data-related antitrust and

regulatory policies, including privacy protection regulation (e.g., GDPR or CCPA), data sharing

initiatives (e.g., open banking), and approaches involving data markets and intermediaries. We

introduce user union as a potential solution for antitrust and consumer protection, which is novel

in the literature and, as we show, can better mitigate the inefficiencies than existing approaches.

In our model, two firms/platforms compete for users through price and potentially differ in

1Many companies increasingly rely on the platforms or ecosystems they foster and the world’s largest publicly-
traded companies (Amazon, Alphabet, Meta, Apple) are all (digital) platforms. Even conventional (non-platform)
firms and manufacturers such as Tesla increasingly rely on userbase scale (e.g., more users leading to more charging
stations) and user-generated data (e.g., for training self-driving car algorithms). Though many believed around the
turn of the century that extant antitrust laws were sufficient to deal with the new economy (Posner, 2017), lawyers
and policy-makers are increasingly aware of how they largely fail to address the challenges posed by digital markets
which facilitate uniquely durable market power and digital inequality (Newman, 2019) through. e.g., suboptimal
allocation of data control (Fisher and Streinz, 2021). Platforms such as Alibaba and Google have a staggering
capability for tracking users’ behavior across a wide range of their activities both online and offline (Varian, 2010),
subjecting users to data risks and exploitation (Economist, 2018). Economists have also the antitrust implications of
networks (Elliott and Galeotti, 2019), learning algorithms on digital platforms (Vaitilingam, 2020), and new forms
of algorithmic collusion (Johnson and Sokol, 2020). Recent initiatives concerning data sharing include open banking
that has received significant attention (He, Huang, and Zhou, 2022; Goldstein, Huang, and Yang, 2022).
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baseline quality and abilities in processing data to improve service quality. They sell services to

a continuum of users with privacy concerns whose payoff in each period depends on the intrinsic

product quality, heterogeneous user preference, network adoption, and quality improvements from

analyses of historical data. The stock of data, by-products of users’ historical activities on each

platform, depends on a platform’s infrastructure investment for data generation and collection, user

adoption, and endogenous data sharing by users and potentially also platforms.

In the first period, platforms decide how much to invest in data generation and collection, what

compensation or perks they provide users who contribute data, as well as what price they set for

their goods (i.e. platform services). Users then each choose a platform to adopt and exercise their

discretion, if any, over how much of the data generated to share with the platforms, trading off

privacy costs for compensation for data contribution. In the second period, platforms process the

data collected to improve service quality, set prices, and compete again for the users. Importantly,

users can switch between the platforms without friction or costs, which reflects the rising platform

interoperability and ease of multi-homing in practice.

In equilibrium, data-driven platforms initially underprice (i.e., set low service prices) and subsi-

dize adoption to gather data, which improves service quality and leads to a competitive advantage

in the second period allowing to charge high prices. Data accumulation and quality improvement

through data induce a dynamic feedback loop which tends to amplify an initial advantage one

platform has over another (e.g., in terms of user base, market share, or data processing technol-

ogy). For instance, a greater market share of a platform in the first period leads to accumulating

more data, improving product quality, and gaining a large market share in the second period. This

data feedback effect allows the stronger platform to gain high market power and, whilst improving

service quality, weakens price competition in the second period, which hurts users.

Because users are dispersed and atomistic—a key assumption in our model, they do not inter-

nalize the broader impact of their actions (e.g., data contribution and sharing) on (i) future service

or product quality which affects all users, (ii) concentration of market power, and (iii) platforms’

incentives to invest in data infrastructure and to collect data. Since platforms compete with price,

service prices as well as the platforms’ profits need not internalize these effects either. As such,

the equilibrium level of data collection generally does not maximize user welfare and hence is inef-

ficient. We analyze the resulting inefficiencies in the presence of both data feedback and network

effects, and provide a simple framework to assess various policy interventions including the General

Data Protection Regulation (GDPR), California Consumer Privacy Act of 2018 (CCPA), Payment

Services Directive Two (PSD2), and Open Banking Standard. Whereas extant policies cannot fully
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address these issues, we show how a simple setup of user union or data trust can more effectively

coordinate users to contribute and share data to improve consumer welfare.

Several defining features of a data economy have been well-studied in the literature. For ex-

ample, data are by-products of economic activities and non-rival (e.g., Jones and Tonetti, 2020;

Veldkamp and Chung, 2022), and data are associated with data subjects (users) who have privacy

and other costs when contributing data (e.g., Ichihashi, 2020; Liu, Sockin, and Xiong, 2020). Our

model adds by underscoring new inefficiencies once we consider how data are jointly generated

by dispersed users, who decide how much data to share or contribute, and by platforms, which

undertake costly investment to collect, generate, or process data.2 In our model, both inefficient

under-collection of data (due to low platform investment in data collection), which compromises

service quality, and over-collection of data, which concentrates market power and reduces price

competition, can arise. When the two platforms are relatively symmetric, price competition is

fierce and users’ failure to internalize their effect on platform incentives and quality improvement

from data dominates. Under-collection and under-sharing of data ensue. In contrast, if the asym-

metry (e.g., in terms of data processing technology) between platforms is sufficiently large, users’

failure to internalize the impact of data contribution on market power can dominate, leading to

over-collection of data, high market power of the dominant platform, and thus high service prices.3

Our model enables a general qualitative evaluation of data regulation and antitrust policies that

include privacy protection proposals, open data initiatives, and even decentralized or market-based

innovations which facilitate trading of data among platforms and users, in terms of how they help

or fail to address inefficient under- or over-collection/contribution of data.4

First, we find that privacy protection proposals, such as the GDPR or CCPA, have no material

effect on economic outcomes, as the additional costs they cause for platforms are passed on to

consumers via higher service/product prices. Next, we show that mandatory data sharing, such as

2The Data Freedom Act of RadicalXChange aptly puts it, “Data about people is always the output of a network
of social activity. Even apparently “individual” data, such as a particular consumer’s shopping habits or travel
itinerary, is a product of the social world in which that person lives.” Unlike other products, data or information is
dispersed at inception and, if siloed, is of very limited value. This implies that aggregation, exchange, and sharing of
data from individuals are key. However, dispersed individuals cannot coordinate to efficiently share data nor do they
internalize the impact of their actions on market concentration, service quality improvement, or platform incentives.
These issues are not restricted to platforms, but digitization and network effects on platforms amplify them.

3In our setting, over-collection of data implies high market power of one platform which, in turn, harms users
through high service prices. One could easily introduce other channels through which high market power or the
over-collection of data harms users without changing the paper’s key findings, such as price discrimination by the
dominant platform, inverse selection, etc (see, e.g., Ichihashi (2020); Montes, Sand-Zantman, and Valletti (2019);
Brunnermeier, Lamba, and Segura-Rodriguez (2021).

4Similarly, it helps us understand the consequences of market-wide regulatory changes concerning data even beyond
tech firms or banks. One salient example is the ongoing debate regarding consolidated tape on exchanges in Europe
under MIFID II.
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the open banking initiative in Europe, helps reduce the market power of dominant platforms that

arises due to data feedback. However, mandatory data sharing also implies a classical freerider

problem regarding data collection and leads to under-collection of data as well as increases in

service prices in the first period due to platforms’ reduced incentives to attract users for data. Our

findings even reveal a striking paradox: Data sharing — often intended to increase platforms’ stock

of available data to improve services — can backfire and reduce platforms’ stock of available data.

We then introduce a market for data in two specifications. First, we consider that users own

data generated through their previous interactions with a platform and can sell them. As data

are non-rival, users tend to sell their data to all platforms including ones which they have not

adopted. This outcome erodes data exclusivity, and undermines platforms’ incentives to invest in

data infrastructure and to collect data, although it can help reduce market power. Similar to the

baseline, the key inefficiency is that dispersed users do not internalize their impact on platform

incentives when they sell their data to platforms, thereby causing inefficiently low data collection.

Second, we consider that platforms own data and can strategically sell or share them with each

other. Interestingly, the stronger platform then buys data from the weaker one, aggravating the

concentration of market power and reducing price competition. In other words, a market for data

leads to a novel form of anti-competitive “data collusion.”

Overall, any of the discussed policy interventions — that is, privacy protection, mandatory data

sharing, or markets for data — fail to address both potential inefficiencies, i.e., the under-collection

of data curbing quality improvements and the over-collection of data weakening competition, and

can backfire and harm users under certain circumstances. We therefore introduce and model the

concept of user union, which recognizes users’ decentralized nature, as well as their fundamental

role in a platform’s production or service provision. User union represents and coordinates users in

order to maximize their welfare, and unlike other policy interventions and market-based solutions,

it unambiguously raises user welfare by addressing both inefficiencies. First, because user union

considers the joint payoff of all users, it internalizes the externality of individual data contribution

on service quality affecting all users. Second, with coordination, it takes into consideration the

impact of the aggregate data contribution on platforms’ market power and investment incentives.

We then discuss several ways that the user union can curb excessive (data-induced) market

power of large platforms, whilst mitigating the possible under-collection of data compromising

service quality. In particular, we show that through appropriately subsidizing (or taxing) users’ in-

dividual data contribution, the user union can stimulate (or curb) data collection if under-provision

(or over-provision) of data ensues. Alternatively, the user union could be organized as a data trust
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that collects and accesses user data and then sells these data at a price (potentially determined via

“collective” bargaining) to the different platforms, taking into account potential inefficiencies when

setting the price and inducing an efficient allocation and generation of data.

Literature. Our study adds to what is now a large literature on the data economy. Jones and

Tonetti (2020), Farboodi and Veldkamp (2021), Veldkamp and Chung (2022), and Cong, Wei,

Xie, and Zhang (2022) study how data affects economic growth. Eeckhout and Veldkamp (2021)

examine data and market power to show that firms’ data-driven reallocation of production to the

goods consumers desire can explain the divergence between product, firm and industry markups.

We abstract from issues concerning macroeconomics and informational asymmetry (Ichihashi, 2020;

Ichihashi and Smolin, 2022; Brunnermeier et al., 2021), to focus on how endogenous data generation

by both users and platforms improves product quality and affects market concentration. The

interaction of data feedback effect and product pricing complements earlier studies on how network

effects affect platforms’ strategic pricing (Fainmesser and Galeotti, 2016, 2020). In addition, we

identify data-related inefficiencies and evaluate various protocols for data collection and sharing.

While existing literature has documented inefficient over- or under- supply/sharing of data, we

contribute by rationalizing both in one unified model in the presence of dynamic data feedback.5

The idea of data feedback is not new (see surveys by Biglaiser, Calvano, and Crémer, 2019; Calvano

and Polo, 2021) and is related to the learning-by-doing literature (e.g., Dasgupta and Stiglitz, 1988;

Cabral and Riordan, 1994). For example, Prüfer and Schottmüller (2021) describe conditions under

which a data advantage leads to market tipping with dynamic R&D competition.6 De Corniere

and Taylor (2020) and Hagiu and Wright (2021) study how different types or uses of data affect

competition. In particular, Hagiu and Wright (2021) find that data-enabled learning leads to

5On that front, a number of studies point to an under-supply of data. Data are non-rival (Jones and Tonetti,
2020; Cong, Xie, and Zhang, 2021) and they improve allocation of online resources such as advertising space (Stigler,
1980; Posner, 1981; Goldfarb and Tucker, 2011; Bergemann, Brooks, and Morris, 2015; Farboodi and Veldkamp,
2021). Empirical evidence on the aggregate value of data is also abundant (e.g., Bajari, Chernozhukov, Hortaçsu,
and Suzuki, 2019; Schaefer, Sapi, and Lorincz, 2018). For example, data-driven, efficient decision-making in U.S.
manufacturing nearly tripled between 2005 and 2010 (Brynjolfsson and McElheran, 2016). Failure to consider the
aggregate net benefit naturally creates under-supply, sharing, and utilization of data. Meanwhile, other studies argue
that consumers may over-supply data and data are over-shared in equilibrium, because consumers easily surrender
their data or underestimate the costs of data breaches, contrary to what policy regulations such as GDPR implicitly
assume (e.g., Taylor, 2004; Carrascal, Riederer, Erramilli, Cherubini, and de Oliveira, 2013; Acquisti, Taylor, and
Wagman, 2016; Athey, Catalini, and Tucker, 2017; Agarwal, Ghosh, Ruan, and Zhang, 2020). In addition, gatekeeper
and copycat externalities, as well as informational externality of individuals’ data sharing due to, e.g., the correlation
in user types can create over-supplies or over-sharing of data (e.g., Acemoglu, Makhdoumi, Malekian, and Ozdaglar,
2019; Bergemann, Bonatti, and Gan, 2022; Choi, Jeon, and Kim, 2019).

6The authors identify market power spillover in connected markets and positive net effects of data sharing when
data feedback is strong. We link data to endogenous pricing, demonstrating inefficiencies under potentially symmetric
platforms without tipping.
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socially efficient outcomes in an infinite horizon, with a single firm capturing the entire market.7

Different from these papers, we endogenize data collection, in that it depends both on users’

endogenous data sharing and platforms’ investments to collect data, and emphasize the inefficiencies

in platform investment, data collection/sharing, and pricing. Note that our study differs from the

patenting literature in which firms make innovation decisions themselves without users’ discretion.

Also closely related to our paper are studies evaluating the various arrangements of data owner-

ship. Among them, Campbell, Goldfarb, and Tucker (2015) show that opt-in privacy regulation can

entrench monopolies, and Easley, Huang, Yang, and Zhong (2018) incorporate microfounded use of

information in production to show how under-sharing can be corrected through a profit-maximizing

data vendor. Instead, we focus on antitrust and regulation and the decentralized nature of data

subject (and thus their lack of coordination) in the presence of platform investment and potential

network effect. Parlour, Rajan, and Zhu (2022) also discuss how data privacy or sharing policies

aimed to give consumers more direct control can have unintended consequences through a negative

payment data externality due to information asymmetry in the lending market. We do not consider

data spillovers across markets, and focus on non-information-based data externality that can be

positive (through product quality improvement) or negative (through increasing platforms’ market

power or reducing their investment incnetives). We also differ from all these studies by generating

both under- and over-provision of data, as well as proposing/analyzing the concept of user union.

Among the earliest studies on privacy protection and data sharing, Bouckaert and Degryse

(2013) employ a two-period model of localized competition and find that opt out is the socially

preferred consumer default option. More recently, Fainmesser, Galeotti, and Momot (2022) show

that a firm may over-collect data and under-invest in data protection, an inefficiency correctable by

regulation. Jin et al. (2018) and Acquisti et al. (2016) provide comprehensive surveys highlighting

that firms do not internalize data harms to consumers and cannot commit to consumer-friendly

data policy, which our model captures. Dosis and Sand-Zantman (2019) study optimal data al-

location between a monopolist platform and users to resolve the issues arising from such lack of

commitment or incomplete contracts. Garratt and Lee (2021) suggest that privacy-preserving CB-

DCs would improve consumer welfare without catalyzing data monopolies. Tang (2019) and Liu

et al. (2020), among others, provide empirical measurement and theoretical microfoundations for

consumer privacy. We contribute by analyzing whether privacy protection policies such as GDPR

7Hagiu and Wright (2021) distinguish across-user and within-user data and allow richer dynamics whereas we
incorporate data-sharing-dependent privacy costs, platforms’ data-related investment incentives, and consumer het-
erogeneity (which effectively creates horizontal product differentiation). Moreover, whereas Hagiu and Wright (2021)
consider asymmetric Bertrand competition resulting in one firm covers the entire market each period, we analyze
monopolistic competition and its resulting market concentration which antitrust and regulatory proposals target.
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or CCPA mitigate inefficiencies in data sharing and platform competition.

Beyond data privacy policies, we also add to recent studies on open banking and open data

initiatives, which are a part of a bigger data/infrastructure neutrality issue (Easley, Guo, and

Krämer, 2017). For example, Goldstein et al. (2022) and He et al. (2022) theoretically demonstrate

how open banking either hinders efficient resource allocation or hurts borrowers’ welfare. We add by

highlighting that platforms also contribute to data generation and open data initiatives can distort

their incentives.8 Our model predicts that mandatory data sharing reduces platforms’ incentives

to collect data via (i) investment in data collection and (ii) low service prices to attract users,

potentially harming users. These results are consistent with the empirical findings of Martens,

De Streel, Graef, Tombal, and Duch-Brown (2020), who find that user welfare is not maximized

under mandatory data sharing due to increases in product price, and of Babina, Buchak, and

Gornall (2022), who show that customer-directed data sharing increases entry but can reduce ex-

ante information production. Also in line with our findings, Jin and Vasserman (2021) estimate

that requiring auto-insurance firms to publicly share monitoring data leads to less monitoring, data

elicitation, and lower consumer welfare in equilibrium.9

The user union we introduce can be interpreted as a special type of data intermediary which

— different from the ones studied in the literature (see, e.g., Ichihashi, 2021a; Bergemann et al.,

2022) — maximizes users’ payoff instead of its own. It has been recognized that users should be

compensated for data contributions and data may need joint management (Posner and Weyl, 2018;

Arrieta-Ibarra, Goff, Jiménez-Hernández, Lanier, and Weyl, 2018). Multiple law articles argue

that recent regulatory policies fail to resolve the issues and create new challenges, and advocate

for alternative legal frameworks (e.g., Delacroix and Lawrence, 2019; Houser and Bagby, 2022),

potentially aided by new technologies such as blockchains. Our model exactly provides the economic

foundation for returning the power of aggregated data to individuals through such mechanisms.

Finally, our study is broadly related to the literature on multi-sided platforms (Rochet and

Tirole, 2003, 2006; Armstrong, 2006) and network effects (Katz and Shapiro, 1985; Becker, 1991).

We add dynamic data feedback to network effects (current platform adoption improves current

product quality). Unlike prior studies, our findings do not rely on switching cost (Von Weizsäcker,

8Complementary to our study concerning the incentives of the platforms, Fang and Kim (2022) introduce a
new hypothetical regulation called data neutrality to demonstrate how non-discriminatory and open access to a
platform’s data does not necessarily make consumers better off because the platform optimally reduces the amount
of data provision under the regulation.

9Monitoring programs have been introduced in the auto-insurance (“pay-how-you-drive” program in the United
States), life insurance (e.g., Vitality program from John Hancock), and lending (e.g., Ant Financial) industries where
firms collect consumer data to better assess accident/medical risks and adjust future premiums/interests (Jin and
Vasserman, 2021).
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1984; Klemperer, 1987, 1995; Farrell and Klemperer, 2007), platform multi-sidedness (Weyl, 2010;

Cong, Tang, Xie, and Miao, 2021), focality-based arguments, or higher order beliefs (Akerlof,

Holden, and Rayo, 2021; Halaburda and Yehezkel, 2019; Halaburda, Jullien, and Yehezkel, 2020).

A future competitive advantage for platforms with higher user base may similarly arise in a model of

platform competition with switching cost (sticky customers), yet the implications and mechanisms

fundamentally differ: First, data are non-rival whereas user base is generally rival, and users’

adoption and data sharing decisions interact to affect other users’ product quality and platform

incentives. Second, data feedback effects depend on users’ and platforms’ endogenous data sharing,

as well as platforms’ data-related investments, whereby users may contribute data to a platform

different from their service provider. These elements absent in models of dynamic network effects

or switching cost allow us to evaluate a wide array of policies and regulations in practice.

1 Model Setup

We study an economy with two periods, t = 1, 2, and no time discounting, in which two digital

platforms, indexed by x ∈ {A,B}, compete for a unit measure of atomistic users indexed by

z ∈ [0, 1].10 Data generated in the first period as by-products of economic activities improves

platform services in the second period.

Platforms and users. In each period, all platforms produce and sell perishable services (“prod-

ucts”) to users under price competition. The role of the platforms and their services or products

can be interpreted broadly. For instance, the platforms could represent digital marketplaces — such

as Amazon or Alibaba — where the service is to facilitate transactions among their users.11 In each

period t, an individual user buys at most one unit of service from either A or B. Users can switch

platforms without friction or cost, which is akin to (intertemporal) multi-homing and captures the

rising platform interoperability and ease in multi-homing in practice. The platform produces the

service at zero cost, and sells it to users at price pxt in terms of the numeraire (“dollars”); we do

not model price discrimination. The price pxt can also be seen as a fee for using the platform or its

services. We denote by Nx
t the measure of users who buy the service from platform x at t, which

10The model features only two periods, because it is the minimum number of periods required to model dynamic
data collection and usage which lead to the key economic mechanisms we are after. These key mechanisms that our
model captures as well as our main results would likely arise in a setting with more time periods too.

11The platform could also represent social networks such as Meta or Instagram. Given this broad interpretation, our
model describes platforms with diverse structures, including both one-sided and two-sided platforms. For simplicity,
we model network effects in reduced form and abstract away from the finer details of multi-sided platforms (e.g.,
Rochet and Tirole, 2003).
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we also refer to as the level of platform adoption.

Platform services and quality. As in a canonical Hotelling model, users are uniformly dis-

tributed on the interval [0, 1] with location index z and platforms A and B are located at 0 and 1

respectively. The service or product of platform x at t then gives user z a utility Y x
t −κx(z), where

Y x
t is the service quality (discussed below), and κx(z) is user z’s “transport cost” taking the form:

κx(z) =


κ̂z for x = A

κ̂(1− z) for x = B,

(1)

with constant κ̂ > 0. As such, any platform x has some local market power regarding the users z

that are located “close by.” As κ̂ decreases, competition among the two platforms becomes more

fierce, whereby the limit case κ̂→ 0 results in a Bertrand competition.12

We specify the quality of the service that platform x provides to each user in t to be:

Y x
t = Kx + φxDx I{t=2} + γxNx

t , (2)

where Kx, γx, and φx are positive constants and Dx is platform x’s endogenous amount of data

used in production in period t = 2 (which has been generated in period t = 1); here, I{·} is an

indicator function which equals one if {·} is true and zero otherwise.13 The usefulness of platforms,

digital marketplaces, or social networks generally depends on their adoption and user base, giving

rise to network effects, which we capture by the service quality being increasing in the adoption

level Nx
t . The parameters γx for x = A,B quantify the (marginal) strength of these network effects.

In addition, data lie at the core of the business model of many platforms. Indeed, in the digital

era, most firms and social networks collect and process an enormous amount of data to improve

their products and services. Following the literature (e.g., Farboodi et al., 2019), we assume data

are by-product of economic activity, and platforms use accumulated data to improve efficiency

12Without local market power and, in particular, in the limit κ̂ → 0, the outcome of competition between two
non-identical platforms would generally feature — due to network effects — “winner takes all,” whereby all users
adopt one single platform.

13In the specification of (2), data exhibits constant returns to scale (i.e., service quality is linear in data). Existing
literature considers both increasing and decreasing returns to scale. Eeckhout and Veldkamp (2021) model data’s
increasing returns to scale and how firms’ aversion to risk affects product and firm-level markups. By raising Dx

to a power less than 1, our framework can model decreasing returns to the data scale discussed in Farboodi, Mihet,
Philippon, and Veldkamp (2019). While there is empirical evidence for the diminishing returns to data when used
for a particular task or product (e.g., Chiou and Tucker, 2017; Bajari et al., 2019), there have not been empirical
studies on data complementarities and how data diversity enhances prediction accuracy. It is generally taken as given
that more data gives a firm or platform advantages (Prüfer and Schottmüller, 2021; Biglaiser et al., 2019). We note
that our key findings would remain similar, if we assumed decreasing or increasing returns to scale. That is, our key
findings arise as long as data improves service quality.
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or product/service quality. In other words, a platform’s service quality Y x
2 increases with Dx,

i.e., the quantity of data generated in period t = 1 from users’ activities that platform x uses

in production at t = 2, a notion that we will make precise shortly. Dx is public knowledge.14

The parameter φx quantifies the extent to which data improves platform services.15 Platforms are

potentially heterogeneous in their ability to generate, collect, process, or exploit data, so φx differs

across platforms. Arguably, firms such as Amazon, Google, and Apple are already leaders in data

accumulation historically. This unequal landscape can be captured through one platform’s having

greater Kx (historical data enable it to offer better products) or φx (experience in analyzing data

make them more capable of extracting information from data).

Data collection and generation. Data are by-products of economic activities and, in particular,

of platform usage. The data that user z contributes can include personal data (such as sign-up

information) or transaction data. For mere simplicity, data are homogeneous in our model and any

unit of data has the same effects on platform service quality Y x
2 specified in (2). Data are collected

only in period t = 1, and improves product quality in period t = 2; for simplicity, there is no more

data collection in t = 2 because it is the terminal period.

One key feature that distinguishes our paper from related works is that it endogenizes data

collection in the following way.16 The “effective” amount of data Ixθx, generated through a user

z’s interaction with platform x at t = 1, depends on (i) the user z’s willingness to share data

with the platform θx ∈ [0, 1] and (ii) the platform’s (publicly) observable investment to collect,

to generate, or to process data, Ix ∈ [0, 1] in period t = 1. Investment Ix comes with quadratic

(and private) cost 1
2λ(Ix)2 for the platform for a constant λ ≥ 0, and is bounded from above by

1. Intuitively, when z buys platform x’s service in t = 1, Ix units of data are generated/collected,

and z then decides on the fraction θx ∈ [θ, 1] of these data that she shares with platform x.17 Here,

14We follow the literature (e.g., Gal-Or, 1985; Vives, 1988) to assume that the amount of data acquired, whether
through purchase from vendors or not, is public. In other words, firms do not engage in secret information acquisition
(see, e.g., Hauk and Hurkens, 2001).

15More broadly, φx may be related to platform x’s existing stock of data or the platform’s past experience in
processing data, reflecting the idea that any additional unit of data becomes more useful the larger the existing stock
of data are, i.e., data have non-decreasing returns to scale. For instance, machine learning or AI algorithms often
require a large training data set before they can deliver useful results, giving rise to increasing returns of scale of
data. Our framework can be extended to multiple periods with decay of data usefulness and long-run diminishing
returns to scale of data on specific tasks, as documented in Farboodi and Veldkamp (2021).

16Studies such as Jones and Tonetti (2020); Farboodi and Veldkamp (2021); Prüfer and Schottmüller (2021);
Hagiu and Wright (2021) do not consider users’ endogenous decisions to share data or firms’ investments in data
technology/innovation/collection. Our paper crucially differs in this regard because it endogenizes data collection in
that way and therefore identifies both inefficient under- and over-collection of data.

17Because any user z’s privacy cost as well as perks from contributing data (introduced later below) depends on
the platform x that she adopts but not on her location on the Hotelling line, it follows that z’s choice on whether to
contribute data to platform x, i.e., θx, only depends on x and not on z.
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θ ∈ {0, 1}. When the user z must share the data with the platform, e.g., because the platform can

require users to share data in order to use platform services (and there is no legal privacy protection

in place precluding that), then one sets θ = 1 so that mechanically θx = 1. When users can opt

out of sharing data, then θ = 0.18

We denote by D̂x := θxIxNx
1 the quantity of data generated on platform x up to the beginning

of time t = 2 (i.e., in time t = 1), and by D the total stock of data at the beginning of time t = 2,

i.e., D := D̂A + D̂B. Next, Dx denotes the amount of data that platform x uses for production

at t = 2. These data may also include data that has been generated on a competing platform and

can be accessed by platform x, for instance, due to data sharing, so that Dx ≥ D̂x. The stock of

data Dx that platform x uses in its operations satisfies Dx ≤ D. However, because the use of data

as a resource is non-rival, DA +DB = D need not hold. Both platforms could in principle use the

entire stock of data for their “production” in which case DA = DB = D.

At time t = 1, any user z collects payoff (qx − cx)θxIx from sharing fraction θx of its stock of

data Ix, which has been generated through z’s consumption of x’s service with platform x investing

Ix. First, any user gets an endogenous reward or “perk” qxIxθx from platform x as compensation

for sharing fraction θx of its data with x. Second, users have privacy concerns in that z incurs a

(privacy) cost or disutility cxIxθx for given cx when platform x has access to her data from period

t = 1. Importantly, the privacy cost also depends on whether platform x shares or sells user data

to other platforms. To capture this feature, we write cx = c(1 + ηx) for a constant c and ηx ∈ [0, 1]

denotes the (possibly endogenous) fraction of data that platform x shares with or sells to the other

platform −x at the beginning of period t = 2. In the baseline, only platform x has access to the

data of its users, so ηx = 0 and cx = c.19 In other variants of the model, ηx might be non-zero, e.g.,

due to required data sharing by regulation (e.g., Open Finance), or be an endogenous equilibrium

quantity that depends on platforms’ optimized decisions on whether to sell or share data.

Note that the “privacy disutility” cxθxIx may not only capture the adverse consequences of

sharing data — such as the loss of privacy — but also the potential positive effects of sharing

(personal) data (e.g., when cx < 0) — such as improved service quality or customization from

the use of personal and user-specific data by the platform.20 Unless otherwise specified, we only

18This would be the case under regulatory proposals and privacy protection regulation, like GDPR and CCPA.
19Notice that in case z shares data at intensity θx with platform x, which exerts investmentIx, and the competitor

platform −x can use fraction ηx of this data, then the total privacy cost of z becomes (c+ ηxc)Ixθx.
20That is, negative cx < 0 would capture (in reduced form) the benefits of learning from user-specific data, with

the overall benefits θxIxcx scaling with platform investment in data infrastructure Ix: A platform might utilize user
z’s data to tailor the services to z’s needs, which benefits z. In contemporaneous work, Hagiu and Wright (2021) refer
to this effect as “within-user learning” (as opposed to “across-user learning” capturing that data improves service
quality for all users).
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consider cx, c ≥ 0, i.e., sharing data generates disutility for users. That said, we note that model

solution and equilibrium remain the same in case cx < 0.

Payoffs. When user z buys one unit of service from platform x (i.e., when user z adopts platform

x) at time t, she derives a net utility payoff

uxt (z) = Y x
t − pxt − κx(z) + (qx − cx)Ixθx I{t=1}, (3)

where Y x
t is the service quality from (2), pxt is the service fee/price, κx(z) is the cost of consuming

platform x’s services from (1), and the last term with the indicator function captures users’ net

payoff from sharing data with the platform. When user z consumes platform x’s service at t = 1,

she also decides on the amount of data she is willing to contribute through her choice of θx ∈ [θ, 1],

so as to maximize (qx− cx)Ixθx taking the price (“reward”) for contributing data qx as given. This

leads to the optimal choice:

θx =


θ if qx < cx

θ̂ ∈ [θ, 1] if qx = cx

1 if qx > cx.

(4)

Notice that because any user is atomistic, she does not internalize the broader effects of her data

sharing (for instance, on period-2 payoffs or market structure) and thus finds it privately optimal

to share data if and only if the reward from doing so exceeds the cost, that is, if and only if qx ≥ cx.

Platform x’s payoff πx2 in period t = 2 is the revenue from selling Nx
2 service units at price px2 ,

i.e., πx2 := Nx
2 p

x
2 . In period t = 1, platform x pays a direct transfer qx to its users for accessing

their data. For prices pxt and qx and investment Ix, platform x’s payoff at time t = 1 reads

πx1 := Nx
1 p

x
1 − qxNx

1 I
xθx +Nx

2 p
x
2 −

λ(Ix)2

2
. (5)

We assume that both platforms operate in the market in both periods t = 1 and t = 2; Section 5.1

studies an extension in which platforms decide on whether to enter the market in period t = 1.

Equilibrium concept. Given prices pxt , q
x and investment Ix, user z decides at time t whether

to consume platform services and, if so, which platform to adopt. Throughout, we assume that

parameters are such that all users participate, so that NA
t + NB

t = 1.21 Then, user z buys the

21As will become clear later, platform competition and price levels depend on the difference between KA and
KB but not on their level, so we can choose KA and KB sufficiently large to ensure full participation, in that
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service of platform x if uxt (z) ≥ u−xt (z).22 We look for a subgame perfect equilibrium in pure

strategies over the two periods t = 1, 2 where platforms x maximize their payoffs. The timing in

period t = 2 is as follows: Platforms choose their prices px2 simultaneously to maximize πx2 = Nx
2 p

x
2

(taking the choice of the competing platform −x as given) and, given prices pA2 and pB2 , users decide

which platform to join. Next, we discuss the timing in period 1. First, platforms x choose rewards

qx, service prices px1 , and investment Ix simultaneously to maximize πx1 from (5), taking the choices

of the other platform (q−x, p−x1 , I−x) as given. Second, users, who observe Ix, px1 , and qx, decide

on whether to buy platform services and, if so, which platform they buy at (recall that any user z

buys a service from at most one platform). They also decide on their optimal data contribution,

which is characterized in equilibrium by θx in (4).23 At time t = 1, platform x cannot commit to a

future price px2 ; as shown in Section 5.3, commitment to future prices does not change the outcomes

or equilibrium.

2 Equilibrium Characterization and Baseline Solutions

2.1 General Characterization

Platform adoption and user decisions. We characterize the demand for platform services in

period t, given pxt , q
x, Ix and θx for x = A,B. First, we conjecture Nx

t ∈ (0, 1) and solve for the

marginal user ẑt who is indifferent between adopting platform A and adopting platform B. Then

uAt (ẑt) = uBt (ẑt), N
A
t = ẑt, and NB

t = 1 − ẑt. Using uxt (z) from (3), Y x
t from (2), and κx(z) from

(1), we can show (details in Appendix A.1):

ẑt =
1

2
+

∆K − (pAt − pBt ) +
[
φADA − φBDB

]
I{t=2} +

[
IAθA(qA − cA)− IBθB(qB − cB)

]
I{t=1}

2κ
,

(6)

where we define, assuming κ̂ > γA+γB

2 ,

κ := κ̂− γA + γB

2
and ∆K := KA −KB +

γA − γB

2
.

When the expression for ẑt from (6) lies outside the interval [0, 1], then the “winner takes it all”

outcome prevails with one platform covering the whole market, in that NA
t = 1 or NB

t = 1. As our

max{uAt (z), uBt (z)} ≥ 0 at all times t = 1, 2 and for all z ∈ [0, 1].
22As there is a continuum of users, it is without loss of generality to assume that user z joins platform A if indifferent

between A and B.
23It does not matter whether users choose which platform x to adopt and θx simultaneously or sequentially, in a

way that any user z first decides on which platform x she consumes and then decides on the fraction of data θx she
contributes.
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focus is on platform competition, we focus on parameter configurations under which any platform

x has non-trivial market share in at least one period; a sufficient condition is

3κ > max{∆K + φA − φB,−∆K − φA + φB}, (7)

which we assume to hold throughout.24 Furthermore and without loss of generality, we consider

throughout the paper that platform A is weakly stronger than B in t = 2, in that ẑ2 ≥ 1/2.

Notice that the marginal user ẑt depends on transport cost κ̂ and network effects γx only via

κ and ∆K . Thus, an increase in the strength of network effects (i.e., an increase in γA or γB) has

similar effects to a decrease in κ. When network effects are sufficiently strong (i.e., κ → 0), the

expression for ẑt in (6) tends to either ±∞, when one platform dominates, or to 1/2, when platforms

are symmetric. That is, sufficiently strong network effects precipitate “market tipping” and the

“winner takes it all” outcome. In addition, KA and KB affect user choice only via ∆K . For most

of the analysis, we only have to keep track of ∆K and κ instead of Kx, γx and κ̂ separately. Having

characterized equilibrium demand for platform services, we now solve for the subgame perfect

equilibrium in the baseline solution. To do so, we start by characterizing the (Nash) equilibrium of

the subgame in period t = 2. Then, we move backward to period t = 1.

Solution in the second period. Given a stock of data Dx that is used in production, platforms

chooses their prices px2 simultaneously maximize period-2 payoff, i.e., maxpx2 N
x
2 p

x
2 . The trade-offs

that determine the optimal price px2 are standard, leading to the following equilibrium.

Lemma 1. The subgame in period t = 2 admits a unique Nash equilibrium. In equilibrium, period-2

service prices read px2 = 2κNx
2 . Period-2 platform payoffs read πA2 =

(3κ+∆K+DAφA−DBφB)
2

18κ and

πB2 =
(3κ−∆K−DAφA+DBφB)

2

18κ . The marginal user ẑ2 (i.e., platform A’s market share) is

ẑ2 =
1

2
+

∆K +DAφA −DBφB

6κ
.

Users’ payoff in period t = 2 reads u2 = NA
2 (Y A

2 −pA2 )+NB
2 (Y B

2 −pB2 )− κ̄2, with the total/aggregate

transport cost κ̄2 :=
κ̂
(

(NA
2 )2+(NB

2 )2
)

2 .

Notice that πx2 may depend on Nx
1 for x = A,B, as Nx

1 affects data accumulation and therefore

platform service quality Y x
2 . Moreover, platform A’s market share ẑ2 captures A’s market and price

setting power: Holding κ fixed, an increase in market power ẑ2 allows platform A to charge a higher

price to the detriment of users.

24Lemma 1 reveals that (7) implies ẑ2 ∈ (0, 1), so Nx
2 ∈ (0, 1) for x = A,B.
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Solution in the first period. In period t = 1, the platforms simultaneously solve maxqx,px1 ,Ix π
x
1 ,

where the objective function πx1 is characterized in (5). In general, the data in period t = 2, i.e., Dx

for x = A,B, is a function of platforms’ choices in period t = 1, specifically, Dx = dx(NA
1 I

A, NB
1 I

B)

for a function dx(·, ·). The optimal price level px1 for platform x’s service solves then the first-order

condition

∂πx1
∂px1

= Nx
1 +

(
∂Nx

1

∂px1

)
px1︸ ︷︷ ︸

Static revenue maximization

+
∑

x′=A,B

(
∂πx2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
︸ ︷︷ ︸

Data benefits

−
(
∂Nx

1

∂px1

)
Ixθxqx︸ ︷︷ ︸

Data cost

= 0. (8)

As illustrated by (8), the choice of price px1 reflects dynamic considerations: A higher price px1 raises

revenue per user, but curbs the demand for platform services and thus generates less data, which

hampers growth in platform quality. That is, the price px1 affects platform adoption Nx
1 which may

affect the data stock of platforms A and B. In setting its price px1 , platform x takes into account

the future data-driven competition. Lowering the price px1 , platform x not only boosts demand

for its own services and thus its data accumulation, but also limits demand for the competitor

platform’s services and in turn the data accumulation of the competitor platform. All these effects

are captured by the “data benefits” term in (8). The “data cost” term reflects the privacy-related

cost of data collection, in that privacy-concerned users require compensation qx for sharing data

(if they have the choice).

Next, we study the platforms’ incentives to generate and to collect data via Ix. If optimal

investment is interior (i.e., Ix ∈ (0, 1)), it solves the first-order condition:

∂πx1
∂Ix

=

(
∂Nx

1

∂Ix

)
px1︸ ︷︷ ︸

Static revenue maximization

+
∑

x′=A,B

(
∂πx2
∂Dx′

[
∂Dx′

∂Ix
+
∂Dx′

∂Nx′
1

∂Nx′
1

∂Ix

])
︸ ︷︷ ︸

Data benefits

−
((

∂Nx
1

∂Ix

)
Ixθxqx + θxNx

1 q
x + λIx

)
︸ ︷︷ ︸

Data cost

= 0. (9)

Similar to price-setting, the choice of investment reflects dynamic and strategic considerations.

Higher Ix comes at the expense of users’ privacy and additional costs and, all else equal, reduces

period-1 payoff, but increases the stock of data and platform x’s payoff in period t = 2.

Proposition 1 below shows that it is optimal for platform x to implement θx = 1.25 Another

25If θx < 1, then the platform could profitably reduce investment Ix and increase θx, reducing the cost of the effort
for generating data whilst holding data collection intensity θxIx fixed. Also, when Ix = 0, then the level of θx does
not matter.
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notable result is that platforms pass the direct monetary costs of collecting data, i.e., the compen-

sation for sharing data paid to users qxIxθx, one-to-one on to users through prices px1 in a way

that qx does not affect user welfare, market concentration, or platforms’ payoffs. Specifically, an

increase in qx implies a commensurate increase in px1 and the exact value qx is payoff-irrelevant.

The intuition is that users require a compensation for their privacy-related cost when joining a

platform and accordingly contributing data to this platform which can come in the form of a direct

reward qx or lower service price px1 , i.e., they are substitutes in compensating for privacy costs.

User welfare reads u1 =
∑

x=A,B N
x
1

[
Y x

1 − px1 + (qx − cx)θxIx
]
− κ̄1 + u2, where u2 is the period-2

user welfare from Lemma 1 and κ̄t :=
κ̂
(

(NA
t )2+(NB

t )2
)

2 is the aggregate transport cost in t.

Proposition 1. In a subgame perfect equilibrium, Lemma 1 characterizes the subgame in t = 2.

Each platform chooses qx to induce θx = 1, and px1 = p̄x1 + Ixqx, where p̄1
x does not depend on qx

′

for x′ ∈ {A,B}, and satisfy
∂px1
∂qx = Ix as well as

∂px1
∂q−x = 0.

Note that the exact level of qx is payoff-irrelevant (as long as it induces θx = 1), in a sense

that all other equilibrium quantities (that is, Nx′
t , ẑt, p

x′
2 , ut, π

x′
2 , Ix

′
) do not depend on qx for

t ∈ {1, 2}, x, x′ ∈ {A,B}. The platforms are indifferent between different levels of qx as long as it

induces θx = 1. The exact value of θ also does not affect investment Ix, user welfare u1, πxt , px2 ,

p̄x1 = px1−Ixqx, and Nx
t . We have characterized the essentially unique equilibrium, without making

any specific assumptions on data collection, i.e., the relation between Dx and Nx
1 . Thus, Proposition

1 remains valid in the following sections with data sharing (which affects the relationship between

Dx and Nx
1 ). The equilibrium choice of qx is not pinned down as long as it induces θx = 1. The

price can be rewritten as px1 = p̄x1 + Ixqx, where p̄x1 does not depend on Ix or qx, so one could set

(without loss of generality) qx = cx. When λ is sufficiently large in that Ix ∈ (0, 1), the equilibrium

in t = 1 is then characterized by four non-linear equations, i.e., (8) and (9) for x = A,B, which in

general have to be solved numerically for p̄x1 := px1 − I and Ix.26 In what follows, we assume that a

unique solution and thus a unique equilibrium (up to qx) exists, with unique values for ẑt, I
x, πx1 ,

u1, and p̄x1 as well as px2 .

2.2 Benchmark Under Laissez-Faire Database Directives

We now present the model analysis of the baseline with ηx = 0, i.e., there is no data sharing, and

users cannot opt out from sharing data, i.e., θ = 1 implying θx = 1. To gain some preliminary

26As we shall see, an exception is the symmetric platform case, in which we can solve for the unique symmetric
equilibrium in closed-form.
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insights, we start by analyzing the symmetric platform case, with ∆K = 0 and φA = φB. This is

essentially the laissez-faire situation under the conventional database directives.27

Proposition 2. Consider η = 0, θ = 1, cx = c, and that both platforms are symmetric. In a

symmetric equilibrium, Nx
t = 1/2, pAt = pBt , IA = IB, θA = θB = 1, and qA = qB. In period t = 2,

prices satisfy px2 = κ. In period t = 1, prices and investment satisfy:

px1 = κ+ Ix
(
qx − 2φx

3

)
and Ix = min

{[
φx − 3c

6λ

]+

, 1

}
,

where [x]+ = max{x, 0}. User welfare reads u1 = const+Ix
(

7φx

6 − c
)

and increases with Ix, where

const is a constant that is independent of Ix or px1 and only depends on (exogenous) parameters.

Interestingly, in period t = 1, both platforms compete fiercely for users and their data via

relatively low prices that decrease with φx, which benefits users: For instance, setting qx = 0

(which is possible due to θ = 1) would imply that period-1 prices decrease with Ixφx and are

strictly lower than period-2 prices, notably, even though there are no switching costs. Also notice

that investment Ix decreases with users’ privacy concerns c: When increasing Ix, platform x must

pay users higher compensation qxθxIx or reduce service prices px1 , in order not to lose customers

to −x and to maintain market share Nx
1 . That is, to induce users to join the platform and

accordingly to share data with platform x as θx = 1, users require compensation for their privacy

cost c either directly via qx or indirectly via low prices px1 , which makes data collection costly for

platforms and curbs investment.28 Individual (atomistic) users do not internalize that their data

contribution (i) improves service quality in period t = 2, both for themselves and for other users,

as well as (ii) affects platform incentives to invest, so they effectively require their “private” cost

c as compensation for sharing data. As platforms compete with price, service prices (e.g., px2 = κ

in t = 2) do not internalize these effects (i) and (ii) either. The resulting level of investment

Ix is therefore inefficiently low from the user perspective, i.e., user welfare increases with Ix and

users would in aggregate benefit, if they required less compensation for sharing data and platforms’

investment in data collection Ix were higher.

When platforms are not symmetric, data collection also affects market A’s market power ẑ2 in

t = 2, which in turn affects period-2 service prices. As we are primarily interested in how data and

27Efforts to create exclusive ownership rights in electronic data started with the Database Directive (1996). Data
subjects are not the sole creators of data. Platforms also invest in data infrastructure and maintain databases.
Database Directive was justified as an incentive for EU firms to invest more in the production of electronic databases
and help the EU to catch up with other countries, in particular the United States, in this respect.

28Again, recall from Proposition 1 that compensating for privacy cost via low service prices px1 or via the reward

qx are (perfect) substitutes, i.e.,
∂px1
∂qx

= Ix.
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data collection/sharing affect competition, we focus (unless otherwise mentioned) on the case that

A’s market power in t = 2 derives (mainly) from its superior data processing ability, i.e., φA ≥ φB,

rather than from an advantage independent of data (e.g., large ∆K > 0). The next Proposition

presents equilibrium properties when A has superior ability to process data (i.e., φA > φB).

Proposition 3. Consider φA > φB, η = 0, and θ = 1. In equilibrium, platform A’s market share

ẑ2 in t = 2 increases with its “data advantage” (φAIA−φBIB). If ∆K ≥ 0 and c ≥ 0 are sufficiently

small, the following holds: (i) IA > IB, (ii) pA1 < pB1 (considering qx ≤ cx), (iii) pA2 > pB2 , and (iv)

ẑt > 1/2 for t = 1, 2.

An interesting case to study is the case in which platforms only differ in their ability to collect,

process, or utilize data, i.e., ∆K = 0 and φA > φB, and the privacy-induced costs of data collection

(captured by c) are not prohibitively large. Then, platform A benefits more from data in period

t = 2 than platform B does, so it tends to reduce prices more aggressively to attract users in t = 1

(pA1 < pB1 ) and invests more in data collection (IA > IB). Platform A’s data edge translates into

high market power in period t = 2 which allows A to charge high prices in t = 2, i.e., pA2 > pB2 .

Figure 1 graphically illustrates these findings by plotting equilibrium prices and market shares

for different values of φA, starting from φA = φB = 1. An increase in φA boosts platform A’s

incentives to collect data in the first period t = 1, reducing price pA1 and increasing investment

IA, whilst crowding out investment IB from the competitor platform B. The lower price pA1 puts

pressure on B to lower its first-period price as well, so pB1 decreases with φA. When φA and φB are

close to each other, competition among platforms is fierce in both periods, which limits platforms’

abilities to benefit from data in period t = 2 and curbs A’s investment in period t = 1. As A

collects more data upon an increase in φA, A’s market power, i.e., ẑt for t = 1, 2, as well as its

price-setting power and the time-2 price pA2 , rise. Importantly, users do not internalize that sharing

data boosts A’s market power in t = 2, which may harm them through high prices. The following

Lemma characterizes when such an increase in A’s market power in t = 2 reduces user welfare.

Lemma 2. In period 2, higher market concentration ẑ2 (i.e., platform A’s market share) harms

users and their welfare, in that ∂u2
∂ẑ2

< 0, if and only if γB > 2κ(1+ẑ2)+γAẑ2
1−ẑ2 .

Unless otherwise mentioned, we focus on the case that γB is sufficiently large so that u2 de-

creases with A’s market share ẑ2, i.e., that (ceteris paribus) more intense price competition in

t = 2 is welfare-improving and high market concentration harms users. One interpretation of why

network effect strength γB is large for the weaker/smaller platform (and possibly exceeds γA) is

that the marginal network effect strength decreases with platform adoption, so total network effect
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Figure 1: Baseline Solution and Laissez-Faire Equilibrium. Comparative statics with respect to φA. The
relevant parameters are λ = κ = φB = 1 and ∆K = 0. The model’s qualitative outcomes are robust to the choice of
these parameters.

strength (i.e., γxNx
t ) is concave in adoption (see, e.g., Cong, Li, and Wang, 2022). This assumption

is intuitive and sensible: The incremental value an additional user adds to a platform (e.g., a mar-

ketplace or social network) tends to be larger when the number of existing users is small.29 While

in our setting high market power ẑ2 (mainly) harms users through high service prices, we note that

our key findings would likely not change much, if we introduced different channels through which

high market power may harm consumers.30

3 Policy Interventions and Market-Based Solutions

In what follows, we study how data-driven competition affects user welfare. We call an equilibrium

“inefficient” relative to another one if it leads to lower user welfare.31 Indeed, the focus on user

welfare as the key objective is consistent with data-related antitrust and regulatory proposals which

often aim to improve consumer protection and privacy or to break excessive market power and “data

29For instance, take an online marketplace where buyers and sellers meet and trade products, such as Amazon
or Alibaba. Then, quite likely, buyers (of a specific product) value the arrival of the first seller (of this product),
whose arrival is necessary for any trade to occur, more than the arrival of the n’th seller, whose arrival is not
necessary for trade to occur but may (slightly) improve the terms of trade (when n is large). A more formal way
to capture this would be to assume that γx = γ(Nx

t ) is function of Nx
t with γ(·) being decreasing in its argument

(e.g., γ(x) = γA + (γB − γA)I{Nx
t <0.5}), which is similar to the specification in Cong et al. (2022). In this case, total

network effect strength, that is, γx(Nx
t )Nx

t , is concave in Nx
t .

30For examples such channels, see, for instance, Bergemann et al. (2015) or Brunnermeier et al. (2021).
31We thus do not focus on total surplus or platforms’ payoff when evaluating different antitrust policies.
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monopolies.” Section 5.2 provides an extended discussion of our objective.

Our previous analysis highlights two potential inefficiencies regarding data collection. First,

there can be over-collection of data when φA is sufficiently larger than φB: Data collection, while

improving product quality, concentrates market power which harms users via high prices. Second,

there can be under-collection of data when the platforms are (approximately) symmetric, because

users’ privacy concerns and fierce price competition in t = 2 reduce platforms’ incentives to invest.

We now discuss several potential policy interventions or, more generally, solutions to improve

user welfare, which, depending on the parameters, require reducing market dominance by platform

A or stimulating data-related investment. We evaluate four different scenarios: (i) Giving data

sharing options to users (as, e.g., implemented by GDPR), (ii) data sharing (as, e.g., implemented

in open data and finance initiatives), (iii) a market for data when users own data and sell these data

to platforms and (iv) a market for data in which platforms trade data. Points (iii) and (iv) suggest

potential market solutions that could also be organized by private entities or data intermediaries

facilitating trade (see, e.g., Ichihashi, 2021a).

In a nutshell, the remainder of Section 3 shows that none of the approaches (i), (ii), (iii), and (iv)

can address both inefficient under- or over-collection and thus, depending on the type of inefficiency

ensuing, backfire and reduce user welfare relative to the laissez-faire benchmark (“baseline”) from

Section 2.2. Accordingly, we introduce in Section 4 user union, which coordinates and represents

users, and shows that user union unambiguously improves user welfare.

3.1 Data Privacy Protection

Privacy protection policies such as GDPR (implemented by the European Union) or CCPA in the

U.S. strengthen individual ownership rights over personal data by granting rights to access, correct,

and delete personal data held by firms. Generally speaking, under privacy protection policies, firms

can only process personal data under limited and specific circumstances, such as an individual’s

explicit opt-in consent.32 Without other frictions, explicit opt-in or opt-out consents can be easily

modeled in our framework through endogenizing θ ∈ [θ, 1].

However, as we show in Proposition 1, the equilibrium quantities and, in particular, user welfare

is independent of the “data price” qx or θ. Thus, if — by regulation — users own their data and

can opt out or opt in of providing data to platforms for free, then θ = 0 (instead of θ = 1) holds

32Additional background information about privacy protection regulation can be found in Appendix F.4. In the
U.S., opt out is the most prevalent default option. Examples include the 1999 Gramm-Leach-Bliley Act, the 2000
Fair Credit Repor 2000 Telephone Consumer Protection Act. In the European Union, the opt-in system underlie
Parliament and Council Directive 95/46/EC and the European Uni Directive of 1995.
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in our framework, and platforms could incentivize users to share their data by setting qx = cx

(possibly instead of qx = 0). While users now earn additional payoffs from sharing their data, the

platforms pass the additional cost of collecting data onto users via higher service prices (relative to

a situation with θ = 1 and qx = 0), which exactly cancels out the additional user payoff from the

compensation. As a result, user welfare and the market share of platform A remain unchanged when

regulation transfers data ownership to users and in particular do not depend on the exact value of

θ (see Proposition 3). Consequently, within our framework, data privacy protection through opting

in or opting out of data contribution has no meaningful effects. This changes drastically when the

data can be ported out of the platform where they are generated, which we discuss later when we

analyze data markets with user or platform ownerships.

3.2 Data Sharing and Open Data Initiatives

While policies such as GDPR have focused on data ownership rights, open data initiatives, e.g.,

in the form of data sharing initiatives, have emphasized data access. Recently, there have been

many attempts to promote open data access, including Open Banking and Open Finance initiatives

(He et al., 2022; Goldstein et al., 2022). For example, the International Data Spaces Association

constitutes a private investment for secure data sharing (Richter and Slowinski, 2019).33 China

and South Korea have built open platforms for data sharing to aggregate scattered, isolated, and

varied data to help integrate technology and business data to lower information barriers.34 The

EU proposed the Digital Market Act (DMA) in 2020, explicitly emphasizing data sharing for a fair

competition. Extended background information on open data initiatives can be found in Appendix

F.4. We now study the effect of open data initiatives and (mandatory) data sharing through the

lens of our model. The following Proposition analytically characterizes the effects of data sharing

when platforms are symmetric, whereby x must share fraction η of its data with its competitor −x

“for free,” so that Dx = D̂x + ηD̂−x.

Proposition 4. Suppose that the platforms are symmetric. Consider a symmetric equilibrium

whereby platform x shares fraction η of its data at the beginning of period t = 2 with platform −x

at zero cost. In period t = 2, prices satisfy px2 = κ. In period t = 1, prices and investment satisfy

px1 = κ+ Ix
(
qx − 2(1− η)φx

3

)
and Ix = min

{[
φx(1− η)− 3c(1 + η)

6λ

]+

, 1

}
.

33See the Digital Markets Act by the European Commission.
34See here.
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Price px1 increases and investment Ix decreases with η, so that the data generated on platform x

(i.e., D̂x = Ix/2) decreases with η. Provided Ix ∈ (0, 1), data sharing decreases the amount of data

Dx = (1 + η)D̂x that platforms use in period t = 2, in that ∂Dx

∂η < 0. Under data sharing with

η > 0, user welfare u1 is (strictly) lower than under the baseline with η = 0 (when φx > 3c). User

welfare (strictly) decreases with η (when φx > 3c).

Data sharing promises two potential benefits: First, it increases any platform’s stock of data

and thus overall service quality and, second, it may reduce excessive market power. However, quite

strikingly, Proposition 5 shows that data sharing does not succeed in the first pursuit, as it leads

to less investment in data collection and even reduces rather than increases a platform’s stock of

data Dx in period t = 2 (i.e., ∂D
x

∂η < 0 when Ix ∈ (0, 1)). Data sharing requirement (η) undermines

platforms’ incentives to collect data via investment Ix and low prices in period t = 1, in that Ix

decreases and px1 increases with η. The reason is that data sharing creates a free-rider problem with

respect to platforms’ incentives to collect data. With data sharing, individual platforms bear the

cost of gathering data but the benefits are mutualized. In addition, data sharing makes users’ data

more widely available and therefore raises the privacy-induced cost of data collection cx = c(1 +η).

Anticipating that their data are eventually shared with other platforms too, users require then

higher compensation (either indirectly via low prices px1 or directly via qx) for sharing data with

platform x in the first place.

As a result, when platforms are symmetric and market power is not a concern, data sharing

leads to under-collection of data as well as increases period-1 services prices due to platforms’

reduced incentive to attract users for data. Data sharing then unambiguously hurts user welfare,

in that user welfare u1 decreases with data sharing intensity η. These findings are consistent with

recent empirical studies on open data initiatives. Martens et al. (2020) find that user welfare is

not maximized under mandatory data sharing due to increases in product price, and Babina et al.

(2022) find that customer-directed data sharing can reduce ex-ante information production.

Next, to illustrate how data sharing can mitigate the concentration of market power in t = 2, we

consider the general case in which platforms are not necessarily symmetric with full data sharing,

η = 1. That is, Dx = IANA
1 + IBNB

1 , and there are no monetary transfers associated with data

sharing. The following Proposition characterizes the equilibrium.

Proposition 5. Consider η = 1, and φA ≥ φB. Then, in equilibrium, only platform A collects data,

so that IA ≥ 0 = IB and D = Dx = NA
1 I

A. Suppose that φA > φB, in which case IA > 0 = IB.

When λ > 0 and c > 0 are sufficiently small, then platform A’s market share in t = 2 is strictly

lower than under the baseline.
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Figure 2: The Effects of Data Sharing. Comparative statics with respect to η. The relevant parameters are
λ = κ = φB = 1, and ∆K = 0. The low level of φA is 1.25, the medium level is 1.75, and the high level is 2.5.

Similar to Proposition 4, data sharing undermines incentives to collect data, leading to the

stark outcome IB = 0. We can show that under certain parameter conditions (i.e., when λ and

c are not too large), data sharing reduces the market share and therefore price-setting power of

platform A in period t = 2. Figure 2 graphically illustrates these results by showing that total

data D (Panel A), market power in t = 2 (Panel F), as well as platform investments (Panels D and

E) decrease with the extent of data sharing η for different levels of φA. Strikingly, data sharing

reduces platform A’s stock of data DA
2 in period t = 2 (see Panel B), platform B’s stock of data

DB
2 (see Panel C), except when φA is sufficiently large, and total data D (see Panel A). As such,

the following paradox arises: Data sharing agreements — put in place with the goal of maximizing

available data — can actually reduce platforms’ overall stock of data.

3.3 Data Market When Users Own Data

As the mandatory data-sharing requirement appears mechanical and inefficient, we now examine

a market-based solution to data sharing, potentially operating via data intermediaries (Ichihashi,

2021a).35 Suppose that users own their data, including data that is generated with their interactions

on platforms, and can sell their data to platforms at the beginning of t = 2 (before period-2 prices

are chosen), while platforms must buy these data to access it. In the baseline and all other model

35For simplicity, we do not explicitly model data intermediaries and view them as a perfect passthrough. The IO,
Pricing, and design issues in data intermediation are interesting on their own and worthy of separate studies such as
those pioneered in Ichihashi (2022) and Bergemann, Bonatti, and Smolin (2018).
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variants that we have considered so far, users’ consumption on the platform and their contribution to

the platform in the form of data were linked or “bundled.” A market for data unbundles consumption

and contribution. Users can contribute their data to platforms they do not use and, similarly, can

consume on platforms on which they do not contribute. Notably, this is different from privacy

protection analyzed in Section 3.1, where users could sell their data exclusively to the platform

which they adopted in t = 1. As such, with the data market, the period-1 marginal user satisfies

ẑ1 = 1
2 +

∆K−(pA1 −pB1 )
2κ , i.e., relative to (6), which holds in the baseline and with mandatory data

sharing, the terms related to users’ data contribution decision θx drop out.36

In more detail, consider any user z who has consumed at platform x in t = 1 and therefore

owns Ix units of data which, notably, depend on the platform’s investment. User z is willing to

sell data to platform x′ ∈ {A,B} as long as the price compensates for her privacy loss, i.e., user z

requires at least a payment of cIx dollars (or a per unit price of c).37 When buying data, platform

x′ optimally offers user z per unit price of data of c dollars (i.e., in total Ixc dollars), which is the

lowest price possible to induce any user to accept trade at this price.38

Given Ix and Nx
1 , the total stock of data reads D = IANA

1 + IBNB
1 . After the market for

data in period t = 2 determining Dx, the platforms simultaneous choose prices to maximize Nx
2 p

x
2 ,

leading to the outcomes in Lemma 1. At the beginning of period t = 2, platform x decides on the

quantity of data Dx that it wishes to buy to maximize: maxDx∈[0,D] π
x
2 − cDx, taking the choice of

the other platform D−x as given and taking into account the data-dependent (continuation) payoff

πx2 in Lemma 1. At the beginning at time t = 1, platform x optimizes:

max
px1 ,I

x

(
Nx

1 p
x
1 −

λ(Ix)2

2
+ max
Dx∈[0,D]

[
πx2 − cDx

])
, (10)

whereby period-1 demand is characterized by ẑ1 = 1
2 +

∆K−(pA1 −pB1 )
2κ and D = NA

1 I
A +NB

1 I
B.

Proposition 6 studies the equilibrium under this model variant in the symmetric platform case.

Proposition 6. Suppose that both platforms are symmetric. When users own data and can sell

36As data contribution and consumption decisions are now unbundled and independent, all terms in (6) that are
multiplied by θx drop out, which is akin to setting θx = 0. More in detail, anticipating that she does not make a
gain from selling data in t = 2 (i.e., any user breaks even from selling data in t = 2), the net utility of user z in t = 1
equals ux1(z) = Y x1 − px1 − κx(z). The marginal user satisfies uA1 (ẑ1) = uB1 (ẑ1). This leads then to the marginal user

ẑ1 = 1
2

+
∆K−(pA1 −p

B
1 )

2κ
, pinning down market shares in t = 1, i.e., NA

1 = ẑ1 and NB
1 = 1− ẑ1.

37The structure is as follows: platform x′ sets a per unit price for data and the atomistic users take this price as
given and decide whether to sell their data to x′.

38Intuitively, as users are atomistic and the platforms are “large,” the platforms can therefore extract the whole
surplus from data trading in t = 2. Also notice that a Nash bargaining solution to determine the price of a data
trade between an individual user and a platform, whereby atomistic users have zero bargaining power, would imply
that users just break even and receive per unit price c for data.
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these data in a market that opens at the beginning of period t = 2 (before platforms set prices px2),

then, in the (unique) symmetric equilibrium, prices satisfy px1 = px2 = κ. Platforms’ investment is

Ix = 0, so Dx = D = 0. User welfare is (strictly) lower than under the baseline (when φx > 3c).

Proposition 6 illustrates that — just like data sharing with η = 1 (compare Proposition 4) —

the market for data wipes out platforms’ incentives to invest. Notably, key equilibrium quantities,

such as market concentration and platform investments, are identical under data sharing with η = 1

and the model variant with a market for data in which users can sell their data. Paradoxically,

the market for data, in which users own and sell their data, harms users and their welfare when

platforms are symmetric. The intuition behind this result is as follows. Because data are non-rival,

users are tempted to sell their data to both platforms and, in particular, also to platforms that

they did not join in t = 1, leading to Dx = D as under data sharing with η = 1. The fact that data

generated on platform x is also used by platform −x implies a free-rider problem regarding data

collection investment, causing under-collection of data. The key inefficiency here is that individual

users do not internalize the adverse effect of their data sales on investment. The next Proposition

highlights that the market for data, whilst curbing data collection, can mitigate A’s market power.

Proposition 7. When users own data and can sell these data in a market that opens at the

beginning of period t = 2 (before platforms set prices px2), then there exists a unique equilibrium

with the following properties. First, platforms either buy all available data or no data at all, in

that Dx ∈ {0, D}. Second, when φA ≥ φB, only platform A collects data, so that IA ≥ 0 = IB

and D = Dx = NA
1 I

A. Suppose that φA > φB, in which case IA > 0 = IB. When λ and c are

sufficiently small, then Dx = D and platform A’s market share in period t = 2 is strictly lower

than under the baseline.

3.4 Data Market When Platforms Own Data

We now consider a market for data when platforms own the stock of data collected in period t = 1.

Suppose that at the beginning of period t = 2, before platforms set prices px2 , a market for data

opens that allows the two platforms to trade data. We denote the stock of data of platform x

before the data trade by D̂x = Nx
1 I

x (assuming θx = 1 in optimum) and the stock of data of

platform x after the data trade by Dx. As data are non-rival, Dx ≥ D̂x, i.e., if platform x sells

data to platform −x, the stock of data of platform −x increases but the stock of data of platform x

does not decrease. Since our setup features only two platforms, we consider that the two platforms

determine the optimal allocation of data and the transfer via Nash Bargaining, whereby platforms
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A and B have, for simplicity, equal Nash bargaining weight 1/2.39 The following Lemma shows how

the two platforms determine the optimal allocation of data at the beginning of t = 2 to maximize

their joint continuation surplus.

Lemma 3. Suppose that D̂AφA + ∆K ≥ D̂BφB as well as φA ≥ φB. Then, the two platforms’

joint payoff πA2 + πB2 is maximized upon DA = D̂A + D̂B and DB = D̂B. Nash Bargaining at the

beginning of t = 2, after data in t = 1 has been collected and before prices px2 are set, therefore leads

to the optimal allocation of data of DA = D̂A + D̂B and DB = D̂B. When D̂AφA + ∆K < D̂BφB,

we relabel the platforms (and interchange ∆K with −∆K) and above statements apply too.

The lemma illustrates that the stronger platform A buys data from the weaker one (i.e., B)

but not the other way around, which also implies cA = c < cB = 2c.40 Even if platforms are ex-

ante symmetric and enter period t = 2 with identical stock of data D̂x, the market for data would

inevitably lead to concentration of data ownership. As a result, platform A possesses higher market

power after this data trade and users may suffer from this increased market power. Platforms share

and trade data to intentionally create a situation in which one platform possesses higher market

power, preventing that their period-2 payoffs are dissipated by fierce price competition. Because

an appropriate transfer compensates the platform that gives up market share, both platforms are

better off. This outcome can be interpreted as “data killer acquisition,” whereby the stronger

“incumbent” platform acquires data of the weaker “entrant,” or as “data collusion.”

The detailed description and solution of this model variant, including the first-order conditions

with respect to price px1 and investment effort Ix, is presented in Appendix C.5. Figure 3 plots key

equilibrium quantities (under numerical solution) against φA both under the baseline (solid black

line) and under the model variant with a market for data that is owned and traded by platforms

(dotted red line). Panel B shows that indeed the presence of a data market, in which platforms trade

data, unambiguously concentrates market power in period t = 2. As Panels C and D illustrate,

investment IA by platform A is similar under both model variants (yet weakly higher with a data

market), while investment IB and total stock of data can be higher or lower in either variant.

Finally, to analytically characterize how the market for data affects investment, Appendix F.1

considers ex-ante symmetric platforms A and B (e.g., with φA = φB and ∆K) and studies a model

extension with symmetric equilibrium in the subgame in t = 1 and thus IA = IB and pA1 = pB1 .

39Alternatively, data intermediaries, as in Ichihashi (2021a), could facilitate this trade too. With perfect compe-
tition among intermediaries, the intermediary sector would likely be just a pass-through. We leave this for future
research.

40When users share data with platform B in t = 1, they anticipate that B will sell these data to A in t = 2, so
they incur privacy-related dis-utility of cB = 2c.

26



1 1.5 2 2.5

0.1

0.2

0.3

0.4

1 1.5 2 2.5

0.55

0.6

0.65

0.7

1 1.5 2 2.5

0.2

0.3

0.4

0.5

0.6

1 1.5 2 2.5

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3: Data Market When platforms Own and Trade Data. Comparative statics with respect to
φA.The relevant baseline parameters are λ = κ = φB = 1 and ∆K = 0.

Notably, we show in Appendix F.1 that when c is low, the market for data, whilst concentrating

market power, stimulates data collection by both platforms, leading to lower period-1 prices px1 and

higher investment Ix in period t = 1 than in the baseline.

3.5 User Welfare Under Policy Interventions and Market-Based Solutions

We now evaluate the welfare effects of the previously discussed policies and market-based solutions.

To this end, Figure 4 plots user welfare under the baseline from Section 2.2 (solid black line), data

sharing from Section 3.2 with η = 1 (dashed orange line), market for data with users owning data

from Section 3.3 (dotted purple line), and market for data with platforms owning data from Section

3.4 (yellow line) against φA starting from φA = φB = 1.

Recall that data sharing or a market for data with users owning data reduces market concen-

tration but curb investment and increase (period-1) service prices: As such, these approaches tend

to increase user welfare (relative to the baseline) when the asymmetry between the two platforms is

large and excessive market power is a concern, but reduce it when the platforms are (approximately)

symmetric. A market for data with platforms owning the data concentrates market power, which

under the chosen parameters (large γB) reduces user welfare. Overall, none of the proposed policy

interventions and market-based approaches constitutes a robust means to improving user welfare.

In particular, any of the policies and market-based approaches can backfire and reduce user welfare

(relative to the baseline) under certain parameter configurations. Next, we introduce and model
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Figure 4: Welfare Effects and Comparison.The relevant baseline parameters are λ = κ = φB = 1 and ∆K = 0
as well as γB = 15 > γA = 0. High levels of γB (relative to γA) imply in our model that high market concentration
ẑ2 in t = 2 has a sufficiently negative impact on user welfare (see Lemma 2).

user union, which, by construction, always increases user welfare relative to the baseline.

4 User Union: Coordinating and Protecting Users

The fundamental inefficiency in our data economy is that users do not internalize the broader effects

of their participation and data contribution. We now introduce and evaluate user union and data

trust as an alternative solution. Whereas all other policy interventions discussed thus far (e.g, data

sharing or a market for data) reduce user welfare under certain circumstances, coordinating users’

decisions via a “user union” unambiguously improves user welfare.41

4.1 Implementation of User Union

We introduce an implementation of a user union or data trust when there is no data sharing by

platforms (ηx = 0 and Dx = Nx
1 I

xθx) and users can (but are not required to) contribute data to

the platform they joined in t = 1, i.e., θ = 0. Consider for now that all users z ∈ [0, 1] are members

of this user union.

The user union commits at time t = 1, before platforms choose prices and investments, to a

reward level of f to induce optimal investment in data collection and to maximize user welfare as

follows. The union pays users f dollars per unit of data contributed on any platform x (i.e., in

total fθxIx dollars); when f < 0, then users pay the union a fee per unit of data contributed. In a

nutshell and as will become clearer later, the user union is analogous to a planner who subsidizes

41Note that user union is akin to labor union or firm merger (which has a large literature) in that they all increase
the bargaining power of dispersed players against an upstream or larger player. Data sharing and its interaction with
network effects distinguish our setting.
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or taxes users to incentivize efficient data sharing and collection.

The reward f transforms the privacy cost in a sense that cx = c − f ; contributing one unit

data, users incur privacy cost c but also receive a reward f from the union, leading to effective cost

cx = c − f . For simplicity, the reward f is the same across platforms. Given f , which affects the

equilibrium only via cx = c − f , the (continuation) equilibrium is characterized in Proposition 1,

yielding user (continuation) welfare u1. Importantly, because of θ = 0, platforms must compensate

users in the union for their privacy cost and set qx ≥ cx for all users in the union.42

Total rewards T := fθAIANA
1 + fθBIBNB

1 that the user union distributes for data contribu-

tions in t = 1 are financed by the users through a membership fee (for being part of the union)

which is paid at inception (i.e., before prices and effort are chosen). User z pays, at inception,

a membership fee m(z) to the union, where m(z) might vary across z (i.e., type z is observable

or contractible for the union) and may become negative negative (membership subsidy). Total

rewards T must then equal total membership fees M :=
∫ 1

0 m(z)dz, i.e., T = M . Importantly, in

the current implementation, the user union is completely self-financed and does not make or receive

any transfers to or from the platforms.43

If z ≤ ẑ1, user z joins platform A and contributes data to this platform; otherwise, z joins

B. We stipulate the membership fee to be m(z) = fIAI{z ≤ ẑ1} + fIBI{z > ẑ1}, which ensures

that any user z pays ex-ante the same amount of membership fee that she expects to receive later

on as a reward for data contributions.44 Moreover, this membership fee satisfies by construction∫ 1
0 m(z)dz = T . We emphasize that the membership m(z) is not contingent on users’ decision

which platform to adopt in t = 1, but rather it is contingent on user type z in anticipation of the

equilibrium level of ẑ1.

The user union maximizes total (ex-ante) payoff/welfare of its member:

max
f

(
u1 − fθAIANA

1 + fθBIBNB
1

)
, (11)

where u1, θx, and Ix are characterized in Proposition 1 and M = T = f [θAIANA
1 + θBIBNB

1 ] is

the dollar amount of users’ ex-ante membership fee as well as cx = c− f . We note that user union

does not take into account platform payoff and that it is assumed that platforms are active. The

42In addition to the reward f paid by the user union, users receive compensation qx from platform x. Thus, user z
(joining platform x) chooses the fraction of data θx she shares with x according to maxθx∈[0,1] I

xθx(qx − cx), so that
θx = 1 only if qx ≥ cx = c− f .

43Such design can prove beneficial in practice when, for instance, bargaining or contracting with platforms is hard
or infeasible.

44For instance, user z ≤ ẑ1 joins platform A and shares IA units of data leading to reward fIA which equals the
membership fee m(z) that she pays.
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above implementation of user union does not require any direct interactions (such as negotiations)

between user union and platforms; rather, user union resembles a (social) planner or “government”

that taxes and subsidizes data contribution by users to induce an efficient allocation of data.

4.2 Analysis

Through adjusting f , the user union makes individual users internalize the broader effects of their

data contributions, which helps address the two potential inefficiencies discussed earlier. Setting f <

0, the user union can curb data collection by effectively taxing individual users’ data contributions,

which limits market power and preserves competition in period t = 2 at the expense of foregone

service quality improvements from data. In contrast, setting f > 0, the user union stimulates data

collection by effectively subsidizing individual users’ data contributions, possibly boosting market

power of the dominant platform. When high market power is not an issue (e.g., when platforms

are symmetric), the user union subsidizes data collection to boost platform investments relative to

the baseline. The following Proposition formalizes this result.

Proposition 8. Suppose that platforms are symmetric and focus on a symmetric equilibrium.

When 6c ≥ 7φx, the user union sets f = 0 and implements Ix = 0. When 6c < 7φx, the user

union induces investment Ix = 1 which exceeds investment in the baseline equilibrium, data sharing

equilibrium, or the equilibria with markets for data. The optimal fee satisfies f = f∗ = 6λ+3c−φx
3 .

Next, when φA is large compared to φB and data collection leads to excessive market concen-

tration ẑ2 in period t = 2, the more pressing inefficiency harming user welfare is the lack of period-2

competition. Then, the user union effectively taxes data collection through f < 0, thereby reducing

investments and market concentration relative to the baseline. Figure 5 graphically illustrates this

result by plotting total data collected (Panel A), A’s investment (Panel B), B’s investment (Panel

C), the optimal reward f solving (11) (Panel D), and market concentration in t = 1 (Panel E)

and t = 2 (Panel F) against φA, both under the baseline (solid black line) and with the user union

(dotted red line). Indeed, for low values of φA, the user union stipulates f > 0 to boost data

investments Ix, raising market concentration and the total stock of data relative to the baseline.

For larger values of φA, the user union stipulates f < 0 to curb data investments, reducing market

concentration and data collection relative to the baseline. Also note that to the extent a higher

φx corresponds to firms with a large amount of historical data and experience handling data, user

union remedies an unequal landscape by reducing overall data contribution and platform invest-

ment. The discontinuity in Figure 5 corresponds to the point at which the user union effectively
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Figure 5: The effects of a with user union.Comparative statics with respect to φA. The relevant baseline
parameters are λ = κ = φB = 1, ∆K = 0, and γB = 15 > γA = 0. High levels of γB (relative to γA) imply in our
model that high market concentration ẑ2 in t = 2 has a sufficiently negative impact on user welfare (Lemma 2).

switches from the objective of boosting data collection to the objective of curbing data collection

in favor of competition.

By construction, user union always improves user welfare compared with the baseline. Thus, the

implementation of a user union is a robust means to improve user welfare relative to the baseline,

whereas other policy interventions or market-based solutions do not lead to unambiguous welfare

gains (see Section 3.5). The reason underlying this result is that the user union is the only policy

intervention that can address both potential inefficiencies (albeit not always simultaneously), i.e.,

(i) under-collection or (ii) over-collection of data. All other policy interventions target at most

one inefficiency. Data sharing or a market for data operated by users may reduce market power

by one platform but curbs platforms’ investment (see Figure 2). A market for data operated by

platforms may increase investment, but leads to concentration of market power in the long run (see

Figure 3). Finally, Figure 6, which is similar to Figure 4 but adds user welfare under user union

(solid red line), highlights how under our baseline parameters user union dominates all other policy

interventions and the baseline.

4.3 Incentives to Join the User Union

Depending on the exact implementation and regulatory environment regarding user union in the

future, union membership may be voluntary or (implicitly) required, e.g., when union membership
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Figure 6: Welfare Effects and Comparison with User Union.The relevant baseline parameters are λ = κ =
φB = 1 and ∆K = 0 as well as γB = 15 > γA = 0. High levels of γB (relative to γA) imply in our model that high
market concentration ẑ2 in t = 2 has a sufficiently negative impact on user welfare (see Lemma 2).

is a prerequisite for joining an ecosystem/platform or there are (unmodelled) costs associated with

leaving the union.45 It is interesting to study users’ incentives to deviate by not joining the user

union through the lens of our model (whenever this is possible), starting from the equilibrium

with full union membership characterized before. We assume that, after user z joins platform x,

platform x can observe whether z is member of the union (i.e., a user cannot fake membership as

is the case, e.g., for labor union). If user z is not member of the union, platform x can offer z

a potentially different data price q̂x (e.g., q̂x < qx) than the data price qx that it offers to union

members. This reflects the idea that members of the “data union” receive different and potentially

better compensation for contributing data than non-members, which has its natural analogue in

the context of labor unions where non-members might be paid different wages than members.

Appendix E.3 formally analyzes users’ incentives to join user union under these circumstances and

our implementation of user union. In particular, Appendix E.3 shows that when IA > 0 and

IB > 0, there exists an equilibrium (unique up to qx) in which users find it privately optimal to

join user union (i.e., union membership is incentive compatible) under the optimal choice f solving

(11). Then, all equilibrium quantities (given f) follow from Proposition 1.

4.4 An Alternative Implementation

Another implementation of user union is a “data trust” which collects data from all users (generated

by their interactions with platforms) in period t = 1 and sells these data to platforms on users’

45We do not impose constraints on incentive compatibility of membership in the formal optimization (11) but
rather assume that all users are members of the union, which could be because it is incentive compatible to join (see
conditions in Appendix E.3), because membership is required to join the platforms, or because there are unmodelled
costs of not joining the union.
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behalf at endogenous (per unit) price q, where we assume that both platforms can buy data at the

same price (i.e., there is no price discrimination by the trust). The proceeds from data sales are

then distributed to users via payouts. Specifically, suppose that user union collects all user data

generated on platform x through users’ interactions, that is, Nx
1 I

x units of data. The amount of

data depends on platform investment Ix, but the data are owned by the trust and can be bought

by platforms. To prevent a free-rider problem regarding data collection, we stipulate that the data

trust limits the amount of data platform x can buy, so that Dx ≤ D
x
, with the limit D

x
being

increasing in the amount of data D̂x that has been generated on platform x. For simplicity, we

consider D
x

= D̂x, so that Dx ≤ D̂x and x cannot acquire more data than it has generated.46 We

expect that our results remain similar under a (slightly) different constraint.

With data trust implementation, x decides at the beginning of period t = 2 how much data to

buy from the trust at price q. That is, x solves maxDx∈[0,Nx
1 I

x] π
x
2 − qDx, with πx2 from Lemma 1.

It is clear that Dx = Nx
1 I

x = D̂x in optimum; if Dx < Nx
1 I

x, platform x could profitably reduce

costly investment Ix at time t = 1. In period t = 1, no data is yet shared with platforms, so,

to account for that, we set θx = 0 (e.g., in (6)) when calculating market shares in period t = 1.

Instead, data are allocated according to the market that opens at the beginning of t = 2. Users do

not incur direct privacy costs from sharing data with the union/data trust, but only incur privacy

losses if the trust shares these data with platforms. The data trust mandates pro-rata payouts to

any user (irrespective of which platform she attends) of NA
1 I

Aq + NB
1 I

Bq dollars which are the

total proceeds from data sales, and maximizes

max
q

[
u1 +NA

1 I
A(q − c) +NB

2 I
B(q − c)

]
, (12)

which is the sum of user utility from consumption u1 and the proceeds from data sales net of

privacy cost. As payouts are independent of adoption, adoption decisions do not directly depend

on Ix. The following Proposition summarizes the equilibrium when platforms are symmetric.

Proposition 9. Suppose that both platforms are symmetric and focus on a symmetric equilib-

rium. When 6c ≥ 7φx, data trust sets q = 0 and implements Ix = 0. When 6c < 7φx, the data

trust induces investment Ix = 1 which exceeds investment in the baseline equilibrium, data sharing

46Equivalently, we could assume that platform x has the exclusive right to buy data, which has been generated
on platform x, from the data trust at per-unit price q. That is, platform x (−x) cannot buy data generated on the
competing platform −x (x). The assumption Dx ≤ D̂x is for simplicity, but could be easily relaxed or dealt with by
using a more sophisticated implementation. In principle, we could allow user union to optimally price-discriminate,
leading to two different data prices qA 6= qB and thereby controlling data allocation to platforms, or to implement
a pricing schedule qx(Dx), whereby price qx(Dx) increases with the amount of data Dx sold to x, so as to induce
D̂x ≥ Dx.
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Figure 7: The effects of a data trust. Comparative statics with respect to φA. The parameters follow Figure 5.

equilibrium, or the equilibria with markets for data. The price for data satisfies q = φx

3 − 2λ.

Interestingly, the data trust from Proposition 9 induces the same investment Ix = 1 and user

welfare u1 as the user union from Proposition 8 in the case of symmetric platforms.47 Finally,

Figure 7 plots equilibrium quantities under the data trust against φA. The findings qualitatively

resemble the ones obtained under the user union in Figure 5. When φA is close to φB (=1), the

data trust stimulates and subsidizes platform data collection by stipulating a low price for data q

which, notably, can even become negative. In contrast, when φA is large, the data trust stipulates

a high price for data, thereby curbing data collection in favor of competition. Thus, the price for

data q increases in platforms’ differences in data collection ability φx.

Our suggested implementations of user union suffice for illustrating its power. Improving the

design or deriving the optimal design constitutes interesting future work. For instance, one straight-

forward improvement would be to stipulate platform-contingent rewards fx (so that not necessarily

fA = fB) and cx = c − fx or, in the data trust implementation, to allow for price discrimination

(i.e., the trust can charge different prices qx to the two platforms). Moreover, we could also al-

low the user union to choose θx on users’ behalf or that user union engages in collective (Nash)

bargaining with the two platforms, e.g., to determine the price of data. Having more than one

instrument, user union could then address both inefficient under-collection or over-collection of

data by the individual platforms simultaneously (e.g., user union could curb data collection by A,

47Generally, there is no equivalence between the two implementations.
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whilst stimulating it by B).

4.5 User union in practice

Over the past few years, legal entities in the form of data trusts start to emerge (Houser and Bagby,

2022). Willis Tower Watson (WTW) data trust is such a pilot. We thus have used data trust and

user union interchangeably. However, user union encompasses but is not restricted to data trusts.

User union emphasizes users, whereas data trusts could in principle be owned by large platforms.

What we introduce can be viewed as a user-owned data trust.

Before the introduction of data trusts, practitioners have explored the concepts of data pool

or cooperative, where users contribute and share data. Examples include Driver’s Seat and MI-

DATA.coop. However, data pools are typically governed by a small subset of users and it is unclear

if its goal is to maximize user welfare and distribute revenues from data in an equitable way to

users. Corporate and contractual mechanisms as embodied in Nallian, a transportation data plat-

form, focus on interoperability and not privacy protection and data compensation.

One could imagine having the governments or regulators potentially create user unions, but the

right incentives and expertise have to be in place. The concept of DataDAO provides an alternative

based on distributed ledgers, which can incorporate privacy protection and secure multi-party

computation (Sockin and Xiong, 2022; Cao, Cong, and Yang, 2018). Streamr.network is one of the

attempts at blockchain-based data union and monetization.

Finally, one additional benefit of a structure like the data trust is outside our model but is

relevant in practice. To the extent that individual users often incur attention costs to work with

platforms concerning data contribution and sharing arrangements (Holdren and Lander, 2014; Jain,

Gyanchandani, and Khare, 2016), user union can reduce the duplication of effort of individual users.

5 Extended Discussions

5.1 Entry and Operating Cost

The previous analysis has assumed that platforms always participate (e.g., because parameters are

such that platform payoff is positive). We could formally consider platform entry or platforms’

choice to be active in the market. For this sake, one could introduce that at the beginning of

period t, any platform x incurs fixed cost ρxt . Then, platform x decides whether or not to cover

the fixed cost: If it does, it can operate and sell products in period t; otherwise, x exits the market

forever. Under these circumstances, platform x only operates in period t if Ẽxt [πxt ] ≥ ρxt , where the
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expectation Ẽt
x
[·] is over the potential strategic uncertainty on whether the competing platform

−x operates in t and πxt is the period-t payoff conditional on operating in t.

If one platform, say B, is not active in the market at t, then the other platform A sells products

as a monopolist from period t onward. Suppose that platform A covers the entire market, in that

NA
t = 1. Then, the price pAt is such that consumer z = 1 break even, that is:

pAt = KA + γA − κ̂+ φADAI{t=2} + θAIA(qA − cA)I{t=1}. (13)

As such, the per-period in t = 2 welfare is κ̂
2 . It is immediate that users are better off and per-period

user welfare in t is higher under our baseline when both platforms A and B operate in period t.

Consider now the scenario that platform B does not enter, so A covers the entire market as

monopolist in both periods t = 1, 2 and user welfare is u1 = κ̂. Without loss of generality, we

consider that qA = cA, so that platform A compensates users for their privacy cost from sharing

data. Given NA
1 = θA = 1, platform A then chooses IA to maximize (φA − cA)IA − λ

2 (IA)2, so

IA = IMon = min

{
1,

[
φA − cA

λ

]+
}
.

It is straightforward to see that when the market is served by one monopolist, then investment in

data technology IA is larger than in the symmetric platform case, i.e., when two platforms split

the market equally (see Proposition 2). However, users do not benefit from the surplus that data

collection generates and their welfare is strictly lower than when both platforms operate in t = 1, 2,

since the lack of price competition allows the monopolist to extract this surplus.

Observe that with costly entry cost (for simplicity, only incurred at time t = 1, i.e., ρx1 > ρx2 = 0),

platform B enters only if its expected profits are sufficiently high, which is when platform A is not

too strong. If A is sufficiently strong and has a high market share in period 1 or 2 under duopoly,

the payoff of platform B under duopoly (i.e., conditional on entry) is relatively low. Then, with

non-trivial entry costs and anticipating the continuation game, platform B might not find it optimal

to enter at inception, which then leads to the monopoly outcome to the detriment of users. Put

differently, high market power by A stifles entry and competition, thereby harming users as in the

baseline (even though the exact channel is different). As such, the trade-offs in a model with entry

cost are expected to be similar as in the baseline. Finally, we notice that a user union might be

particularly useful in a monopoly market, because it could bargain with the monopolist platform

and extract larger fraction of total surplus.
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5.2 User Welfare vs. Total Surplus Maximization

Our analysis so far has focused on maximizing user welfare instead of total surplus, broadly in line

with the objectives of data-related antitrust and regulatory proposals which often aim for better

consumer protection and reducing excessive market power. An illustrating example of why total

surplus maximization generally does not benefit users is given in the previous section studying the

monopolistic platform case. Then, user welfare becomes κ and the platform can extract all surplus

(from data collection) but κ. While the resulting investment and data collection policy is efficient

in a sense that it maximizes total surplus, users are generally strictly worse off in the monopoly

case than with platform competition featuring lower total surplus. More generally, high market

power by one platform may be optimal whilst harming users. While we focus on user welfare, we

note that, within our model, one could easily evaluate the effects of antitrust and regulation on

different objective functions (e.g., a weighted average of platform payoff and user welfare); we leave

this for future research.

5.3 Platform Commitment

Thus far, we have ruled out the possibility for the platforms to commit in period t = 1 their actions

in period t = 2. The lack of commitment is common in practice: Facebook changed data policies

over time (Beacon 2007, ToS update 2008, etc.) and settled with the FTC for violating privacy

promises in 2011; Amazon engaged in “copycat” practices on two-sided platforms that harmed

sellers (Kirpalani and Philippon, 2020). We now evaluate the effects of platform commitments.

Commitment to pricing. Suppose platform x decides on (px1 , q
x, Ix, px2) all in period 1 (rather

than (px1 , q
x, Ix) in period 1 and px2 in period 2) to maximize ex-ante payoff from (5) — that is,

πx1 := Nx
1 p

x
1−qxNx

1 I
xθx+Nx

2 p
x
2−

λ(Ix)2

2 —whilst taking the choice (p−x1 , q−x, I−x, p−x2 ) of the other

platform as given. Because Nx
1 does not depend on px2 , one can rewrite x’s objective as:

max
(px1 ,q

x,Ix,px2 )
πx1 = max

(px1 ,q
x,Ix)

(
Nx

1 p
x
1 − qxNx

1 I
xθx − λ(Ix)2

2
+ max

px2
[Nx

2 p
x
2 ]

)
,

which implies that the choice of px2 maximizes πx2 = Nx
2 p

x
2 just as without commitment to future

price px2 . That is, whether platform x can commit to px2 at time t = 1 is irrelevant and does not

affect equilibrium and equilibrium quantities, such as Nx
t , pxt , or Ix. This outcome is also intuitive:

Since users do not incur switching costs, committing to a lower price px2 does not help gaining more

users (and data) in period t = 1.
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Commitment to product quantities. Suppose in t = 1, the platform can commit to a min-

imum future quantity of service, Nx
2 .48 The timing of the entire game is as follows: At the very

start, the platforms choose to commit (to future quantity, ‘C’), or not (‘NC’). If ‘C’ is chosen, the

platform decides (qx, px1 , I
x, Nx

2 ) in period t = 1 and decides nothing in the second period. If ‘NC’

is chosen, the platform decides (qx, px1 , I
x) in the first period and px2 in the second period.

The potential benefit of quantity commitment is that under such a commitment, the future

pricing power is limited which may be welfare-improving. However, we show in Appendix F.3 that

both platforms committing to quantity does not constitute an equilibrium, and we end up with

only one of the platforms committing. So instead of effectively limiting the pricing power, price

competition is reduced in t = 2 and both platforms benefit at the expense of user welfare.

Commitment to data sharing. Suppose in period t = 1, the platforms can commit to a data

sharing plan, ηx. Patforms may consider such commitments to either coordinate between themselves

to improve the quality of services in the future or to discourage the rival platform’s investment

decision, which benefits the focal platform in the long run. However, we show in Appendix F.3

that neither motive is sufficient to generate commitments in equilibrium. The intuition is that both

platforms want to free-ride on the other platform’s data sharing commitment.

Overall, we conclude that platform commitment as well as regulation or antitrust proposals

advocating such commitment fail to address inefficiencies in data-driven competition.49 One main

driver behind the results is that users are not “sticky” (i.e., they can switch platforms frictionlessly)

and cannot coordinate to make the platform commitment matter; similar results would arise if users

were short-sighted or myopic. In practice, when interoperability is lacking and switching across

platforms are costly, the type of platform commitments we explore could be useful, but user union

works with or without user stickiness.

48The commitment is about the minimum value of the quantity, but not the definite value of quantity. Otherwise,
after the commitment is made in the first period, the other platform has an incentive to aggressively raise price.

49Commitments can come in other forms too, especially given recent technological innovations. For example,
the distributed ledger technology offers convenient tools for commitment due to the immutability and consensus of
blockchains and the algorithmic execution of smart contracts. It has been demonstrated that blockchains, smart con-
tracts, and crypto-tokens can, in principle, facilitate commitment to competition (Goldstein, Gupta, and Sverchkov,
2019), monetary policies of token supply (Cong et al., 2022), production quantity and service pricing (Lyandres,
2019), delegation of control (Sockin and Xiong, 2022), and privacy-preserving computation and payment (Cao et al.,
2018; Garratt and Lee, 2021). As mentioned earlier, Streamr.network and other DataDAO platforms are also actively
exploring in practice commitments brought forth by blockchains. How blockchain-enabled commitment substitute or
complement user unions as a solution to antitrust, privacy protection, and data sharing issues constitutes interesting
future research.
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6 Conclusion

Firms’ production function in the era of digital platforms and big data entails their customers’

participation and data contribution, generating data feedback and network effects. We model

platform competition with endogenous data collection and sharing, to provide a framework for

understanding the key inefficiencies and evaluating data-related antitrust and regulatory policies.

We show that data feedback—similar to and interacting with network effects—may concentrate

market power while improving service quality. Because users are atomistic, they do not internalize

the impact of their data contribution and sharing on (i) future service or product quality which

affects all users, (ii) concentration of market power, and (iii) platforms’ incentives to innovate and

invest in data infrastructure. Neither do they respond to common commitments by the platforms

as they can switch platforms easily. We show that data sharing proposals (e.g., open banking and

data vendor) and user privacy protections (e.g., GDPR and CCPA) fail to address the resulting

inefficiencies regarding data collection and sharing. Finally, we introduce and model user union

as a potential solution for improving consumer protection and welfare: A representative governing

body can coordinate users’ contribution to the platforms and maximize user surplus.

To focus on the economic channels of how users contribute to firm or platform production, we

have left out issues related to informational asymmetry, which could be important in, e.g., lending

and banking. One may want to encourage upstream firms to share data with downstream firms

(e.g., Fang and Kim, 2022). Firms may directly influence the cost of privacy through advertising

(Liu et al., 2020). The type of data and structure of information would matter too (e.g., Ichihashi,

2021b), not to mention other potential policy objectives outside our model, such as financial in-

clusion. In addition, we recognize user union is not a perfect solution, neither is it one-size-fits-all.

Successful implementations in the long run may require automated, algorithmic, and contracts that

are being developed by computer scientists and proposed in practice (Scholz, 2017; Garside, Wilkin-

son, Blycha, and Staples, 2021; Casey and Niblett, 2021). There can also be a plurality of data

trusts tailored to different types of data or data subjects’ preferences. As such, our theory aims to

provide an economic foundation and initial benchmark to build upon, not a foregone conclusion.
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Online Appendix

A General Solution

A.1 Derivation of (6)

The marginal user satisfies uAt (ẑt) = uBt (ẑt). Using (3), the marginal user therefore satisfies

Y A
t − pAt − κA(ẑt) + IAθA(qA − cA)I{t=1} = Y B

t − pBt − κB(ẑt) + IBθB(qB − cB)I{t=1}.

Next, we use Y x
t from (2), and κx(z) as well as NA

t = ẑt and NB
t = 1− ẑt from (1), to obtain

KA + φADA I{t=2} + γAẑt − pAt + IAθA(qA − cA)I{t=1} − κ̂ẑt
=KB + φBDB I{t=2} + γB(1− ẑt)− pBt + IBθB(qB − cB)I{t=1} − κ̂(1− ẑt).

Now, we can solve above equation for

ẑt =
1

2
+

∆K − (pAt − pBt ) +
[
φADA − φBDB

]
I{t=2} +

[
IAθA(qA − cA)− IBθB(qB − cB)

]
I{t=1}

2κ

with

κ := κ̂− γA + γB

2
and ∆K := KA −KB +

γA − γB

2
,

which was to show.

A.2 Solution in Period 2 — Proof of Lemma 1

Take the marginal user ẑ2 from period t = 2 in (6), that is,

ẑ2 =
1

2
+

∆K + φADA − φBDB − (pA2 − pB2 )

2κ
.

Thus, NA
2 = ẑ2 and NB

2 = 1 − ẑ2. Platform x chooses price px2 to maximize Nx
2 p

x
2 . Hence, the

objective of platform A becomes

πA2 = pA2

(
1

2
+

∆K + φADA − φBDB − (pA2 − pB2 )

2κ

)
.

The first-order condition with respect to price pA2 reads

∂πA2
∂pA2

=
1

2
+

∆K + φADA − φBDB − (pA2 − pB2 )

2κ
− pA2

2κ
= 0,

which we solve for

pA2 =
∆K + κ+ φADA − φBDB + pB2

2
. (A.1)

Next, the objective of platform B becomes

πB2 = pB2

(
1

2
+
φBDB − φADA −∆K − (pB2 − pA2 )

2κ

)
.

The first-order condition with respect to price pB2 reads

∂πB2
∂pB2

=
1

2
+
φBDB − φADA −∆K − (pB2 − pA2 )

2κ
− pB2

2κ
= 0,
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which we solve for

pB2 =
κ−∆K + φBDB − φADA + pA2

2
. (A.2)

It is immediate to see that the second order conditions are satisfied, i.e.,
∂2πx2
∂(px2 )2 < 0.

Inserting (A.2) into (A.1), we solve

pA2 = κ+
∆K + φADA − φBDB

3
=

3κ+ ∆K + φADA − φBDB

3
. (A.3)

We now plug (A.3) into (A.2) to calculate

pB2 = κ+
−∆K + φBDB − φADA

3
=

3κ−∆K + φBDB − φADA

3
. (A.4)

Thus, pA2 − pB2 = 2
3(∆K +DAφA −DBφB) and therefore

ẑ2 =
1

2
+

∆K + φADA − φBDB

6κ
=

3κ+ ∆K + φADA − φBDB

6κ
.

Thus, we obtain pA2 = 2κẑ2 = 2κNA
1 and pB2 = 2κ(1− ẑ2) = 2κNB

2 .

Next, calculate the profit of platform A, i.e.,

πA2 = pA2 ẑ2 =
(3κ+ φADA − φBDB + ∆K)2

18κ
,

and the profit of platform B, i.e.,

πB2 = pB2 (1− ẑ2) =
(3κ+ φBDB − φADA −∆K)2

18κ
.

Or, we can write more compactly

πx2 =
(∆K − 2∆KI{x=B} + 3κ+ φxDx − φ−xD−x)2

18κ
, (A.5)

for x,−x ∈ {A,B} (with x = A implying −x = B and vice versa).

A.3 Solution in Period 1 — Proof of Proposition 1

The first order conditions (8) and (9) follow from the directly differentiating πx1 from (5) with
respect to px1 and Ix respectively. The second order condition with respect to price reads

∂2πx1
∂(px1)2

= 2

(
∂Nx

1

px1

)
+

∂

∂px1

∑
x′=A,B

(
∂πx2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
< 0.

The second order condition with respect to investment can be written as

∂2πx1
∂(Ix1 )2

= K − λ,

where K is a finite term with generally unknown sign. It follows that
∂2πx1
∂(Ix1 )2 = K−λ < 0 as long as

λ is sufficiently large. Thus, the second order condtions are met and the first order conditions are
sufficient as long as λ is sufficiently large.

We next prove that inducing θx = 1 is optimal for platforms, and strictly so when Ix > 0. The

A2



case θ = 1 is trivial; hence, consider θ < 1. When Ix = 0, then the exact value of θx is not relevant,
so one can induce without loss of generality θx = 1. Suppose now to the contrary that in optimum,
θx < 1 and Ix > 0 hold. If θx = 0, positive investment, Ix > 0, is clearly inefficient; thus, it suffices
to consider θx ∈ (0, 1). Then, every user shares χx := θxIx > 0 units of data with platform x. For
users to be willing to share θx ∈ (0, 1) data with platform x, it must be that users are indifferent
between sharing and not sharing data with platform x, which implies — by means of (4) — that
qx = cx. Notice that the stipulation of qx = cx can also induce θx = 1; intuitively, platform x could
raise qx marginally to break the indifference and to induce θx = 1.

As users are indifferent between sharing and not sharing data (i.e., qx = cx), it follows that Ix

and χx do not directly affect ẑ1 and adoption Nx
1 (see (6)). Moreover, the platform pays every user

qxχx dollars for their total data contribution, which depends on Ix and θx only via the product
χx = Ixθx. The platform x can now set θx = 1 and reduce investment Ix to Îx < Ix, whilst keeping
χx = θxIx = Îx and χxqx as well as D̂x = Nx

1 χ
x and πx2 (which depends on Ix and θx only via χx

and D̂x) unchanged. This reduces the cost of investment and increases platform payoff by discrete

amount λ((Ix)2−(Îx)2)
2 > 0, contradicting the optimality of θx < 1. As such, θx = 1 is optimal.

Next, we show that (conditional on θx = 1) the choice of qx is payoff relevant, in that Nx
t , πxt ,

Ix as well as user welfare do not depend on qx
′

for x, x′ ∈ {A,B}. For this sake, we fix the choice

of qx
′
, and conjecture (and later verify) that

∂px1
∂qx = Ix as well as

∂px1
∂q−x = 0. Also, conjecture (and

later verify) that investment Ix does not depend on qx
′
, i.e., dIx

dqx′
= 0, for x, x′ ∈ {A,B}. Under

these conjectures, the expression (6) with θx = 1 implies that

NA
1 = ẑt =

1

2
+

∆K − (pA1 − pB1 ) +
[
IA(qA − cA)− IB(qB − cB)

]
2κ

is independent of qx
′

in a sense that
dNA

1

dqA
=

∂NA
1

∂pA1

∂pA1
∂qA

+
∂NA

1

∂qA
= 0 and

dNA
1

dqB
=

∂NA
1

∂pB1

∂pB1
∂qB

+
∂NA

1

∂qB
= 0.

Analogously,
dNB

1

dqx′
= 0 for x′ ∈ {A,B}. As a result and due to dIx

dqx′
= 0, D̂A = NA

1 I
A and

D̂B = NB
1 I

B do not depend on qx
′

for x′ ∈ {A,B}, i.e., dD̂x

dqx′
= 0. Therefore, Dx, which is a

function of NA
1 I

A and NB
1 I

B, does not depend on qx
′
, i.e., dDx

dqx′
= 0. This, in turn, implies that

period-2 payoff πx2 = Nx
2 p

x
2 does not depend on qx

′
, in that

dπx2
dqx′

= 0 as well as
dpx2
dqx′

=
dNx

2

dqx′
= 0.

Then, we can differentiate the payoff in period t = 1 to obtain

d

dqx
πx1 =

d

dqx

(
Nx

1 p
x
1 − qxNx

1 I
x +Nx

2 p
x
2 −

λ(Ix)2

2

)
= Nx

1 I
x −Nx

1 I
x = 0

d

dq−x
πx1 =

d

dq−x

(
Nx

1 p
x
1 − qxNx

1 I
x +Nx

2 p
x
2 −

λ(Ix)2

2

)
= 0,

where it was used (in the first line) that Nx
2 p

x
2 −

λ(Ix)2

2 does not depend on qx, that Nx
1 does not

depend on qx, and that
∂px1
∂qx = Ix. Thus, platform x’s payoff does not depend on qx

′
. As a result,

we obtain
d

dqx′
∂πx1
∂Ix

=
∂

∂Ix
d

dqx′
πx1 = 0.

Since optimal investment Ix solves the first-order condition in (F.40), that is,
∂πx1
∂Ix = 0, it readily

follows that Ix does not depend on qx
′
, which verifies our conjecture that optimal investment Ix

does not depend on qx
′
.
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Lastly, we solve the first-order condition (regarding period-1 price) (8) for the price

px1 = Ixqx −
(
∂Nx

1

∂px1

)−1
 ∑
x′=A,B

(
∂πx2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
+Nx

1

 .
Our previous arguments imply that(

∂Nx
1

∂px1

)−1
 ∑
x′=A,B

(
∂πx2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
+Nx

1


does not depend on qx

′
. As a consequence, it readily follows that

dpx1
dqx =

∂px1
∂qx = Ix and

dpx1
dq−x =

∂px1
∂q−x = 0, which verifies our initial conjecture.

Taken together, we have shown that
∂px1
∂qx = Ix,

∂px1
∂q−x = 0 as well as dIx

dqx′
= 0 (i.e., investment

does not depend on qx
′
) for x, x′ ∈ {A,B}. That is, period-1 prices can be written in the form

px1 = p̄x1 + Ixqx,

where p̄x1 does not depend on qx
′
, i.e., ∂p̄1

x

∂qx′
= 0. It follows (from (6)) that Nx

1 does not depend on

qx
′
. Because Ix does not depend on qx or q−x, we have that D̂x does not depend on qx or q−x.

Thus, the levels of qx
′

do not affect any period-2 equilibrium quantities, such as Nx
2 , πx2 , px2 , or

u2. Finally, it remains to show that qx does not affect period-1 user welfare u1. However, this is

immediate from the facts that
∂px1
∂qx = Ix,

∂px1
∂q−x = 0, and the fact that no other equilibrium quantities

depend on qx.

Another corollary is that it is without loss of generality to set qx = cx which, in turn, incentivizes
θx = 1 regardless of the value of θ. It follows that the value of θ does not affect investment Ix,
platform payoff πx, market shares Nx

t , or user welfare.

B Proof and Derivations for Results of Section 2.2

We present proofs and derivations for the results presented in Section 2.2. The proofs for results
which assume symmetric platforms are deferred to Appendix D where we present the model solution
and solve for the (symmetric) equilibrium in the symmetric platform case in closed form.

B.1 Proof of Proposition 2

Follows from the more general result in Proposition 4 upon setting η = 0. The proof of Proposition
4 is presented in Appendix D.

B.2 Proof of Proposition 3

Recall that the solution and equilibrium in period t = 2 is characterized in Lemma 1. Notice that
because there is neither data sharing nor a market for data, we have Dx = D̂x = Nx

1 I
x, where we

used that in optimum θx = 1 (see Proposition 1 which applies in this context). Also, according to
Proposition 1, we consider without loss of generality that qx = cx for the following arguments.

As a result, realize that the expression for ẑt from (6) implies for t = 1:

ẑ1 =
1

2
+

∆K − (pA1 − pB1 )

2κ
. (B.6)
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Noting that NA
1 = ẑ1 and NB

1 = 1− ẑ1, we calculate

∂Nx
1

∂px1
= − 1

2κ
and

∂Nx
1

∂p−x1

=
1

2κ
.

Next, we differentiate the platforms’ period-2 payoff (under equilibrium pricing), characterized in

(A.5) or Proposition 1, with respect to Dx′ for x, x′ = A,B to obtain

∂πA2
∂DA

=
φA
(
3κ+DAφA −DBφB + ∆K

)
9κ

and
∂πB2
∂DB

=
φB
(
3κ−DAφA +DBφB −∆K

)
9κ

,

(B.7)
as well as

∂πA2
∂DB

= −
φB
(
3κ+DAφA −DBφB + ∆K

)
9κ

and
∂πB2
∂DA

= −
φA
(
3κ−DAφA +DBφB −∆K

)
9κ

.

(B.8)
Next, note that because of Dx = IxNx

1 , it follows that

∂πx2
∂px1

= − ∂π
x
2

∂Dx

Ix

2κ
+

∂πx2
∂D−x

I−x

2κ
. (B.9)

As a result, the first-order conditions (8) for period-1 prices px1 become

∂πA1
∂pA1

=

(
1

2
+

∆K − (pA1 − pB1 )

2κ

)
−
(
pA1 − IAcA

2κ

)
− 1

2κ

(
∂πA2
∂DA

IA − ∂πA2
∂DB

IB
)

= 0 (B.10)

∂πB1
∂pB1

=

(
1

2
− ∆K − (pA1 − pB1 )

2κ

)
−
(
pB1 − IBcB

2κ

)
− 1

2κ

(
∂πB2
∂DB

IB − ∂πB2
∂DA

IB
)

= 0.

Next, we can insert (B.7) and (B.8) as well as Dx = Nx
1 I

x into (B.10) (with Nx
1 from (B.6)), and

subsequently solve the two first-order conditions in (B.10) — which are two linear equations — for

prices px1 . These price expressions then imply the expression for market share ẑ1 = 1
2 +

∆K−pA1 −pB1
2κ

in t = 1. Using the expression for period-2 market share (under equilibrium pricing) from Lemma

1 and DAφA = IAφAẑ1 as well as DBφB = IBφB(1− ẑ1), we obtain for φ̂x := φxIx:

ẑ2 =
1

2
+

∆K + 2φ̂Aẑ1 − φ̂B

2κ
.

Inserting ẑ1 = 1
2 +

∆K−pA1 −pB1
2κ under period-1 equilibrium prices px1 , one obtains, after some algebra

omitted here, the following expression for ẑ2:

ẑ2 =
1

2
+

3∆K(6κ+ φ̂A + φ̂B) + 9κ(φ̂A − φ̂B)− 3c(IA − IB)(φ̂A + φ̂B)

4
(

27κ2 − (φ̂A + φ̂B)2
) , (B.11)

where φ̂x := Ixφx. Note that ẑ2 (partially) increases with φ̂A − φ̂B; it also (partially) increases

with φ̂A + φ̂B, when c is sufficiently low.

Next, we show that when c and ∆K are sufficiently small, and φA > φB, then it holds that IA >
IB, pA1 < pB1 (when qx ≤ cx), and pA2 > pB2 , also implying φ̂A > φ̂B. Consider c = cx = ∆K = 0
and qx = cx = 0; the result then follows by continuity once we have establisehd it for c = ∆K = 0.
We conjecture and verify that NA

1 > NB
1 and DAφA > DBφB ⇐⇒ NA

1 I
AφA > NB

1 I
BφB. Let
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us first prove that pA1 < pB1 . For this sake, we first show that

∑
x′=A,B

(
∂πA2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
<

∑
x′=A,B

(
∂πB2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
. (B.12)

Because Dx = Nx
1 I

x and
∂Nx

1
∂px1

= − 1
2κ as well as

∂Nx
1

∂p−x1

= 1
2κ , we calculate

∑
x′=A,B

(
∂πx2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
= − 1

2κ

(
∂πx2
∂Dx

Ix − ∂πx2
∂D−x

I−x
)
. (B.13)

To prove inequality (B.12), we therefore need to show that

∂πA2
∂DA

IA − ∂πA2
∂DB

IB >
∂πB2
∂DB

IB − ∂πB2
∂DA

IA.

With φ̂x = φxIx, we obtain

∂πA2
∂DA

IA − ∂πA2
∂DB

IB −
[
∂πB2
∂DB

IB − ∂πB2
∂DA

IA
]

=
φ̂A
(
3κ+DAφA −DBφB

)
9κ

+
φ̂B
(
3κ+DAφA −DBφB

)
9κ

−

[
φ̂B
(
3κ−DAφA +DBφB

)
9κ

+
φ̂A
(
3κ−DAφA +DBφB

)
9κ

]

=
2(φ̂A + φ̂B)(DAφA −DBφB)

9κ
.

As such, given the conjecture DAφA > DBφB, the inequality (B.12) holds. As prices px1 solve
the first-order condition (8), inequality (B.12) implies pA1 < pB1 . It then follows immediately that

NA
1 > NB

1 (as ẑ1 = 1
2 +

∆K−pA1 −pB1
2κ ).

Next, we show that IA > IB. Notice that, due to qx = cx, we have
∂Nx

1
∂Ix = 0 and

Nx
1

∂I−x = 0.
It becomes apparent from the first-order condition for investment (9) (with qx = cx = 0) that
IA > IB when∑

x′=A,B

(
∂πA2
∂Dx′

[
∂Dx′

∂Ix
+
∂Dx′

∂Nx′
1

∂Nx′
1

∂Ix

])
>

∑
x′=A,B

(
∂πB2
∂Dx′

[
∂Dx′

∂Ix
+
∂Dx′

∂Nx′
1

∂Nx′
1

∂Ix

])
. (B.14)

Because Dx = Nx
1 I

x, and Nx
1 does not (directly) depend on investment (i.e.,

∂Nx′
1

∂Ix = 0), we have
∂Dx

∂Ix = Nx
1 as well as

∂Dx2
∂I−x = 0. As such, inequality (B.14) can be rewritten as

∂πA2
∂DA

NA
1 >

∂πB2
∂DB

NB
1 .

Using (B.7) and (B.8), we can calculate

∂πA2
∂DA

NA
1 −

∂πB2
∂DB

NB
1

=
φA
(
3κ+DAφA −DBφB

)
9κ

NA
1 −

φB
(
3κ−DAφA +DBφB

)
9κ

NB
1 > 0
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where the last inequality used that NA
1 > NB

1 and DAφA > DBφB. As a result, inequality
(B.14) holds, so that IA > IB. Because, in addition, pA1 < pB1 , it follows that NA

1 > NB
1 and

DA = NA
1 I

B > NB
1 I

B = DB. Thus, we have verified the conjecture that NA
1 > NB

1 and DAφA >
DBφB ⇐⇒ NA

1 I
AφA > NB

1 I
BφB. According to Lemma 1, the fact that φADA > φBDB

implies NA
2 > NB

2 (i.e., ẑ2 > 1/2) as well as pA2 > pB2 , which was to show.

B.3 Proof of Lemma 2

Note that pA2 = 2κẑ2 as well as pB2 = 2κ(1− ẑ2). Thus, we can write user welfare in t = 2 as

u2 = ẑ2(Y A
2 − 2κẑ2) + (1− ẑ2)(Y B

2 − 2κ(1− ẑ2))− κ̄2.

Next, note that

ẑ2Y
A

2 + (1− ẑ2)Y B
2 = KB + φBDB + ẑ2(KA −KB + φADA − φBDB + γAẑ2) + γB(1− ẑ2)2

= KB + φBDB + ẑ2

(
∆K −

γA − γB

2
+ φADA − φBDB + γAẑ2

)
+ γB(1− ẑ2)2

= KB + φBDB + ẑ2

(
6κẑ2 − 3κ− γA − γB

2
+ γAẑ2

)
+ γB(1− ẑ2)2,

where we used

κ := κ̂− γA + γB

2
and ∆K := KA −KB +

γA − γB

2
.

Thus,

u2 = KB + φBDB + ẑ2

(
6κẑ2 − 3κ− γA − γB

2
+ γAẑ2

)
+ γB(1− ẑ2)2

− 2κẑ2
2 − 2κ(1− ẑ2)2 − κ̂(ẑ2)2 + κ̂(1− ẑ2)2

2
=: ũ2 − 2κẑ2

2 − 2κ(1− ẑ2)2.

Thus,

∂u2

∂ẑ2
= 12κẑ2 − 3κ− γA − γB

2
+ 2γAẑ2 − 2γB(1− ẑ2)− κ̂ẑ2 + κ̂(1− ẑ2)− 4κẑ2 + 4κ(1− ẑ2)

= 4κẑ2 + κ− γA − γB

2
+ 2(γA + γB)ẑ2 − 2γB − κ̂(2ẑ2 − 1)

= 4κẑ2 + 2κ+ 2(γA + γB)ẑ2 − γB − 2κ̂ẑ2

= 4κẑ2 + 2κ+ 2(γA + γB)ẑ2 − γB − 2

(
κ+

γA + γB

2

)
ẑ2

= 2κẑ2 + 2κ+ (γA + γB)ẑ2 − γB.

As such,
∂u2

∂ẑ2
< 0 ⇐⇒ γB >

2κ(1 + ẑ2) + γAẑ2

1− ẑ2
.

That is, when ẑ2 ∈ (0, 1) and γB is sufficiently large relative to γA (i.e., when γB−γA is sufficiently

large), then ∂u2
∂ẑ2

< 0 and user welfare in t = 2, i.e., u2, decreases with platform A’s market share

NA
2 = ẑ2, which concludes the argument.
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C Proofs and Derivations for Results of Section 3

We present proofs and derivations for the results presented in Section 3. The proofs for results
which assume symmetric platforms are deferred to Appendix D where we present the model solution
and solve for the symmetric equilibrium in the symmetric platform case.

C.1 Proof of Proposition 4

The proof of Proposition 4 is presented in Appendix D where we present the solution for the
symmetric platform case.

C.2 Proof of Proposition 5

We already use that θx = 1 and set without loss of generality qx = cx (see Proposition 1 which
applies in this context). As η = 1, we have D = Dx

2 = NA
1 I

A +NB
1 I

B, so ∂D
∂Ix ≥ 0. Using Lemma

1, we obtain for period-2 platform payoffs (under equilibrium pricing):

πA2 =

(
3κ+ ∆K +D(φA − φB)

)2
18κ

and πB2 =

(
3κ−∆K −D(φA − φB)

)2
18κ

. (C.15)

One can calculate (with φA ≥ φB)

∂πA2
∂IA

= (φA − φB)

(
3κ+ ∆K +D(φA − φB)

9κ

)
∂D

∂IA
≥ 0

∂πB2
∂IB

= −(φA − φB)

(
3κ−∆K −D(φA − φB)

9κ

)
∂D

∂IB
≤ 0,

where it was used that — by assumption/parameter condition (7) —- 3κ > ∆K + φA − φB and

D ≤ 1. When φA > φB and NA
1 > 0 (NB

1 > 0), then
∂πA2
∂IA

> 0 >
∂πB2
∂IB

. As such, the first-
order condition with respect to investment (9) readily implies that there exists no interior optimal

IB ∈ (0, 1). In fact,
∂πB1
∂IB
≤ 0, and IB = 0 is optimal for any c > 0 and λ > 0 (as well as in the limit

c→ 0 and λ→ 0).

To derive the expression for platform A’s period-2 market share NA
2 = ẑ2, first notice that

∂Nx
1

∂px1
= −1

2κ and
∂N−x1
∂px1

= 1
2κ . Then, calculate ∂Dx

∂px1
= − Ix−I−x

2κ = I−x−Ix
2κ and ∂D−x

∂px1
= I−x−Ix

2κ , and,

due to Dx = D, we have ∂D
∂px1

= I−x−Ix
2κ . Thus,

∂πx2
∂px1

=
∂πx2
∂Dx

(
I−x − Ix

2κ

)
=

∂πx2
∂D−x

(
I−x − Ix

2κ

)
=
∂πx2
∂D

(
I−x − Ix

2κ

)
,

where we used D = Dx = NA
1 I

A +NB
1 I

B = NA
1 I

A (due to IB = 0) and (C.15).

Then, the first order conditions with respect to price in period t = 1, i.e.,
∂πx1
∂px1

= 0 for x = A,B,

become

∂πA1
∂pA1

=

(
1

2
+

∆K − (pA1 − pB1 )

2κ

)
−
(
pA1 − IAcA

2κ

)
−
(
IA

2κ

)
∂πA2
∂D

= 0

∂πB1
∂pB1

=

(
1

2
− ∆K − (pA1 − pB1 )

2κ

)
−
(
pB1
2κ

)
+

(
IA

2κ

)
∂πB2
∂D

= 0, (C.16)

where we used that IB = 0. Using and differentiating the expression for period-2 payoff in (C.15),
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we can calculate:

∂πA1
∂pA1

=

(
1

2
+

∆K − (pA1 − pB1 )

2κ

)
−
(
pA1 − IAcA

2κ

)
−
(
IA(φA − φB)

2κ

)(
3κ+ ∆K +D(φA − φB)

9κ

)
∂πB1
∂pB1

=

(
1

2
− ∆K − (pA1 − pB1 )

2κ

)
−
(
pB1
2κ

)
−
(
IA(φA − φB)

2κ

)(
3κ−∆K −D(φA − φB)

9κ

)
.

Also, recall that cA = cB = (1 + η)c = 2c. After some algebra omitted, one obtains equilibrium
prices pA1 and pB1 by solving (C.16) — which is a system of two linear equations — for pA1 and pB1 .

Next, notice that D = Dx = NA
1 I

A and ẑ1 = 1
2 +

∆K+pA1 −pB1
2κ . It follows from Lemma 1 that

(under equilibrium pricing) ẑ2 = 1
2 +

∆K+NA
1 I

A(φA−φB)
6κ . Using period-1 equilibrium prices px1 , one

can then calculate (after some algebra omitted here) the period-2 market share of A:

ẑ2 =
1

2
+

3∆K(6κ+ IAφA − IAφB) + 9κIA(φA − φB)− 6c(IA)2(φA − φB)

4 (27κ2 − (IAφA − IAφB)2)
, (C.17)

which simplifies to ẑ2 = 1/2 when φA = φB and ∆K = 0.

Next, consider that φA > φB, and that λ > 0 and c > 0 are sufficiently small. Then, it is
clear that, under the baseline without data sharing, we have that IA = IB = 1. We can use the
expression for period-2 presented in the proof of Proposition 3 — that is, (B.11) — to calculate
the period-2 market share of platform A (which we denote by ẑ′2) by inserting Ix = 1:

ẑ′2 :=
1

2
+

3∆K(6κ+ φA + φB) + 9κ(φA − φB)

4 (27κ2 − (φA + φB)2)
.

Under data-sharing (η = 1), we have IA = 1 > 0 = IB, when c and λ are sufficiently small. We
insert IA = 1 > IB = 0 into (C.17) to get:

ẑ2 =
1

2
+

3∆K(6κ+ φA − φB) + 9κ(φA − φB)− 6c(φA − φB)

4 (27κ2 − (φA − φB)2)

Note that (7) implies 27κ2 > (φA + φB)2. It is then evident that ẑ2 < ẑ′2 when φA > φB. As such,
by continuity, when λ and c are sufficiently small, then data sharing (η = 1) reduces platform A’s
period-2 market share relative to the baseline with η = 0, which was to show.

C.3 Proof of Proposition 6

The proof of Proposition 6 is presented in Appendix D.2 where we present the solution for the
symmetric platform case.

C.4 Proof of Proposition 7

Recall that the timing within period-2 is as follows: First, platforms decide how much data to
buy from users and, second, they set prices px2 , leading to data-dependent continuation payoff πx2
characterized in Lemma 1. It is clear that platforms pay (per unit) price c for buying data from
individual users, because c is the minimal price at which users are willing to sell data to platforms;
offering a higher price would only hurt platform payoffs.

To begin with, take the total stock of data D as given and consider platform x’s decision how
much data to buy (at per unit price c) at the beginning of t = 2 before prices px2 . Given Dx′

for x′ = A,B, platforms’ period-2 (continuation) payoff equals πx2 from Lemma 1. Platform x
maximizes

max
Dx∈[0,D]

(
πx2 − cDx

)
,
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taking the choice of the other platform D−x as given. Because the period-2 platform payoff under

equilibrium pricing from Lemma 1, is strictly convex in Dx, i.e.,
∂2πx2
∂(Dx)2 > 0, it follows that (in

equilibrium/optimum) Dx ∈ {0, D}, i.e., platforms either buy no data or the full amount of data
and there is no interior optimum.

Now, let us analyze jointly platforms’ (equilibrium) choice of investment Ix and their data
acquisition in t = 2, Dx. If DA = DB = 0 in period 2 in equilibrium, then clearly IA = IB = 0.
Next, if DB = 0 in equilibrium, then IB = 0 is clearly optimal.

Now, consider DB = D as well as DA = D (otherwise, we could relabel platforms; i.e., relabel A
to B and then we are back to the previous case of IB = 0). Notice D = NA

1 I
A +NB

1 I
B, so ∂D

∂Ix ≥ 0

. Using the period-2 platform payoff under equilibrium pricing from Lemma 1 for DA = DB = D,
we obtain

πA2 =

(
3κ+ ∆K +D(φA − φB)

)2
18κ

and πB2 =

(
3κ−∆K −D(φA − φB)

)2
18κ

. (C.18)

One can calculate (with φA ≥ φB)

∂πA2
∂IA

= (φA − φB)

(
3κ+ ∆κ+D(φA − φB)

9κ

)
∂D

∂IA
≥ 0 (C.19)

∂πB2
∂IB

= −(φA − φB)

(
3κ−∆κ−D(φA − φB)

9κ

)
∂D

∂IB
≤ 0,

where it was used that — by assumption (7) —- 3κ > ∆K + φA − φB and D ≤ 1. Then, the fact
that optimal investment — if interior — must solve the first-order condition

∂πx1
∂Ix

= −λIx +
∂πx2
∂Ix

= 0

with πx1 from (10) and ẑ1 = 1
2 +

∆K−(pA1 −pB1 )
2κ readily implies that there exists no interior optimal

IB ∈ (0, 1).50 In fact,
∂πB1
∂IB
≤ 0, and IB = 0 is optimal for any c > 0 and λ > 0 (as well as in

the limit c → 0 and λ → 0). In other words, only one platform — say platform A — undertakes
investment, in that IA ≥ 0 = IB.

Take φA > φB. Consider that c and λ are sufficiently low (e.g., the limit case c→ 0 and λ→ 0),

so that Dx = D is optimal and IA = 1 as well as IB = 0, due to
∂πx1
∂Ix = −λIx +

∂πx2
∂Ix and (C.19).

Then, D = DA = DB = NA
1 I

A + NB
1 I

B = NA
1 I

A (as IB = 0), and the model solution becomes
similar to data sharing with η = 1 from Proposition 5, with different privacy cost cx = c (instead of
cx = 2c). The reason is that under data sharing with η = 1, platform A incurs effectively privacy
cost 2c, as it must also compensate users for their data being used on B in addition to being used
on A. With the market for data, platform A compensates users only for their data being used on
A, while B compensates them only for their data being used on B.

Consider that φA > φB, and that λ > 0 and c > 0 are sufficiently small. In the baseline, we
have IA = IB = 1. We can use the expression for period-2 presented in the proof of Proposition 3
— that is, (B.11) — to calculate then the period-2 market share of platform A when IA = IB = 1
(which we denote by ẑ′2) by inserting Ix = 1:

ẑ′2 =
1

2
+

3∆K(6κ+ φA + φB) + 9κ(φA − φB)

4 (27κ2 − (φA + φB)2)
.

With the market for data, we have IA = 1 > 0 = IB as well as Dx = D = NA
1 I

A. Next, notice
that platform x anticipates, when choosing Ix and px1 , that it buys any unit data that is generated

50Recall, Nx
1 = ẑ1 if x = A and Nx

1 = 1− ẑ1 if x = B.
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at per unit price c at time t = 2. That is, with Dx = D = NA
1 , first-period payoff from (10) can be

written as

πA1 = NA
1 p

A
1 +

(
3κ+ ∆K +NA

1 (φA − φB)
)2

18κ
− cNA

1

πB1 = NB
1 p

B
1 +

(
3κ−∆K −NA

1 (φA − φB)
)2

18κ
− cNA

1 ,

with NA
1 = 1

2 +
∆K−(pA1 −pB1 )

2κ and NB
1 = 1

2 −
∆K−(pA1 −pB1 )

2κ , where we used (C.18) for expressions for
πx2 .

Now, notice that ∂D
∂px1

= I−x−Ix
2κ , as

∂Nx
1

∂px1
= − 1

2κ and
∂Nx

1

∂p−x1

= 1
2κ the first order conditions with

respect to price in period t = 1 become (with D = NA
1 and IA = 1 > IB = 0)

∂πA1
∂pA1

=

(
1

2
+

∆K − (pA1 − pB1 )

2κ

)
−
(
pA1 − c

2κ

)
− 1

2κ

(
∂πA2
∂D

)
= 0 (C.20)

∂πB1
∂pB1

=

(
1

2
− ∆K − (pA1 − pB1 )

2κ

)
−
(
pB1 + c

2κ

)
+

1

2κ

(
∂πB2
∂D

)
= 0,

which — using the expressions for πx2 with Dx = D — simplifies to

∂πA1
∂pA1

=

(
1

2
+

∆K − (pA1 − pB1 )

2κ

)
−
(
pA1 − c

2κ

)
− φA − φB

2κ

(
3κ+ ∆K +D(φA − φB)

9κ

)
= 0

∂πB1
∂pB1

=

(
1

2
− ∆K − (pA1 − pB1 )

2κ

)
−
(
pB1 + c

2κ

)
− φA − φB

2κ

(
3κ−∆K −D(φA − φB)

9κ

)
= 0.

To obtain equilibrium prices pA1 and pB1 , one then solves (C.20) — which is a system of two linear
equations — for pA1 and pB1 . Solving for period-1 equilibrium prices (after some algebra omitted

here), using IA = 1, ẑ1 = 1
2 +

∆K+pB1 −pA1
2κ , and Dx = D = NA

1 I
A = IAẑ1 as well as the expression

for ẑ2 from Lemma 1, one can calculate (after some algebra omitted here) the market share of A
in t = 2 (in the limit when c→ 0):51

ẑ2 =
1

2
+

3∆K(6κ+ φA + φB) + 9κ(φA − φB)

4 (27κ2 − (φA − φB)2)
.

It is evident that ẑ2 < ẑ′2, i.e., the market for data (in which users sell their data) reduces market
concentration relative to the baseline.

C.5 Proofs of Lemma 3 and Details for Section 3.4

We now prove the results of Lemma 3, and provide details for the solution of the model variant in
which there is a market for data and the platforms own data.

C.5.1 Proof of Lemma 3

We solve for optimal data sharing at the onset of period t = 2 to maximize total continuation
surplus, i.e., πA2 + πB2 , whereby πx2 is characterized in (A.5). As a preparation, we differentiate

51The general expression would be ẑ2 = 1
2

+ 3∆K(6κ+φA+φB)+9κ(φA−φB)

4 (27κ2−(φA−φB)2)
+ o(c), where the remainder term o(c)

tends to zero as c→ 0.
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(A.5) with respect to Dx′ for x, x′ = A,B to obtain

∂πA2
∂DA

=
φA
(
3κ+DAφA −DBφB + ∆K

)
9κ

and
∂πB2
∂DB

=
φB
(
3κ−DAφA +DBφB −∆K

)
9κ

,

as well as

∂πA2
∂DB

= −
φB
(
3κ+DAφA −DBφB + ∆K

)
9κ

and
∂πB2
∂DA

= −
φA
(
3κ−DAφA +DBφB −∆K

)
9κ

.

Above expressions are identical to (B.7) and (B.8).

Next, notice that Dx ≥ D̂x, whereby D̂x is platform x’s stock of data at the beginning of period
t = 2 before data sharing. Using (B.7) and (B.8), we obtain(

∂(πA2 + πB2 )

∂DA

)
= φA

((
3κ+DAφA −DBφB + ∆K

)
−
(
3κ−DAφA +DBφB −∆K

)
9κ

)

=
2φA(DAφA −DBφB + ∆K)

9κ
.

Consider D̂AφA+ ∆K ≥ D̂BφB. Thus, for any DA ≥ D̂A and DB = D̂B, we have
(
∂(πA2 +πB2 )

∂DA

)
≥ 0,

where the inequality is strict if DA > D̂A.

Symmetrically, we can combine (B.7) and (B.8) to calculate(
∂(πA2 + πB2 )

∂DB

)
=

2φB(DBφB −DAφA −∆K)

9κ
.

Thus, for DA ≥ D̂A and DB = D̂B, we have
(
∂(πA2 +πB2 )

∂DB

)
≤ 0, where the inequality is strict if

DA > D̂A.

It follows that, given D̂AφA + ∆K ≥ D̂BφB and for φA ≥ φB, total surplus is maximized upon
implementing DA = D̂A + D̂B and DB = D̂B, which was to show.

C.5.2 Solution of Model Variant with Market for Data and Details for Section 3.4

At the beginning of time period t = 2, before choosing prices px2 , platforms A and B trade data with

each other, with endogenous price pD2 . We assume throughout that (in equilibrium) D̂AφA+ ∆K ≥
D̂BφB as well as φA ≥ φB. Without loss of generality, it suffices to consider that platforms A and
B choose the optimal allocation of data through Nash Bargaining at the beginning of period t = 2,
with equal bargaining weights. The price for data pD2 is then chosen to implement the split of
resulting surplus. According to Lemma 3, total surplus is maximized when one platform x (labeled
A) shares data with the other platform −x (labeled B), but not the other way around.

We now derive the Nash bargaining solution. Now, B is the platform that sells data, and A is the
platform that buys data. Then, data trade at the beginning of period t = 2 implies DA = D̂A+D̂B

while DB = D̂B, whereby D̂x = Nx
1 I

xθx and θx = 1 in optimum. As a result, using the expressions
from Lemma 1 for period-2 platform payoffs πx2 under equilibrium pricing, platforms derive the
following payoff (just after Nash bargaining and trade and under period-2 equilibrium prices):

πA2 =
(3κ+ ∆K + φAD̂A)2

18κ
and πB2 =

(3κ−∆K − φAD̂A)2

18κ
.

On the other hand, absent data trade, we would have Dx = D̂x and platform (equilibrium) payoffs
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in period t = 2 would be

π̂A2 =
(3κ+ ∆K + φAD̂A − φBD̂B)2

18κ
and π̂B2 =

(3κ−∆K + φBD̂B − φAD̂A)2

18κ
.

As such, the total surplus created for the platforms from data trade equals

S := πA2 + πB2 − (π̂A2 + π̂B2 ).

We denote by π̃x2 platform x’s payoff at the beginning of period t = 2 just before Nash bargaining

takes place. At this moment, platform x owns a stock of data D̂x = Nx
1 I

x. Just after the data

trade, we have DA = D̂A + D̂B and DB = D̂B and platform’s continuation payoff becomes πx2 .

It is well-known that, as per Nash bargaining protocol with equal bargaining weights 1/2,
platform x’s payoff (just before data trade and Nash bargaining) then reads

π̃x2 = π̂x2 +
1

2
S =

π̂x2 − π̂
−x
2 + πA2 + πB2

2
. (C.21)

That is, platforms’ payoff in t = 2 before data trade π̃x2 is the sum of the “reservation value”
π̂x2 , which would obtain absent data trade, and half of the surplus generated from data trade S
(because the bargaining weights of platforms are 1/2 each). In the context of Nash bargaining and
the implementation of the optimal data allocation and payoffs, platform B receives a lump-sum
transfer from A equal to π̃B2 − πB2 as π̃B2 is the payoff just before data trade/Nash bargaining and
πB2 the payoff just after data trade/Nash bargaining. This transfer would imply a (per unit) price
for pD = (π̃B2 − πB2 )/DB; this price for data does not play a role in what follows.

Formally, anticipating the continuation equilibrium in period t = 2 with Nash bargaining,
platforms x = A,B now maximize at time t = 1:

max
px1 ,I

x,qx

(
Nx

1 p
x
1 −

λ(Ix)2

2
− qxθxNx

1 I
x + π̃x2

)
, (C.22)

taking the choice of the other competing platform as given and subject to NA
1 = ẑ1 and NB

1 = 1− ẑ1

with ẑ1 characterized in (6). As in the baseline, setting θx = 1 is optimal, and the choice of qx

is not payoff-relevant (so one can set qx = cx). Also note that cA = c < 2c = cB, because users
anticipate that their data is used by both platforms when they contribute it to platform B.

Next, we present first order conditions with respect to period-1 prices and investment. Differ-
entiating the objective in (C.22) with respect to p1, we obtain (for qx = cx)

∂πx1
∂px1

= Nx
1 +

∂Nx
1

∂px1
(px1 − Ixcx) +

∑
x′=A,B

(
∂π̃x2
∂Dx′

∂Dx′

∂Nx′
1

∂Nx′
1

∂px1

)
= 0.

The first order condition with respect to investment becomes (due to
∂Nx

1
∂Ix = 0 when qx = cx):

∂πx1
∂Ix

=
∑

x′=A,B

(
∂π̃x2
∂Dx′

[
∂Dx′

∂Ix
+
∂Dx′

∂Nx′
1

∂Nx′
1

∂Ix

])
− λIx −Nx

1 c
x = 0,

which holds when investment Ix satisfies Ix ∈ (0, 1). Provided its existence, we focus on a subgame

perfect equilibrium in pure strategies in which D̂AφA + ∆K ≥ D̂BφB.

By Lemma 1, platform A’s market share in period t = 2 (under equilibrium pricing) becomes

ẑ2 =
1

2
+

∆K +DφA −DBφB

6κ
.
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When IA > 0, then ẑ2 > 1/2 under all parameters and, in particular, even when ∆K = 0 and
φA = φB. As a result, when φA − φB and ∆K are sufficiently small and Ix > 0, then market
concentration ẑ2 > 1/2 is necessarily higher than under the baseline (where market concentration
is 1/2 under platform symmetry).

D Solution for Symmetric platforms — Proofs of Propositions 2,
4, 6, 8, and 9

We now solve the model in the symmetric platform case with data sharing ηx = η, i.e., platform x
must share fraction η of its data with its competitor −x and vice versa. We solve for a symmetric
equilibrium with pxt = p−xt , Ix = I−x, Nx

1 = N−x1 = 1/2, θx = θ−x, and qx = q−x. In this Section,
we prove all Lemmata and Propositions which assume symmetric platforms, that is, Propositions
2, 4, 6, 8, and 9.

D.1 Proofs of Propositions 2 and 4

The arguments below therefore prove Proposition 4. The statements from Proposition 2 follow upon
setting η = 0, in that Proposition 2 is a special case of Proposition 4. When platform x must share
fraction η ∈ [0, 1] of its data with the competitor platform −x, then we have cx = c(1 + η) where c
is a constant. We solve for a symmetric equilibrium with pxt = p−xt , Ix = I−x, Nx

1 = N−x1 = 1/2,

θx = θ−x, and qx = q−x.

D.1.1 Period t = 2

In the symmetric platform case, we have ∆K = 0, φA = φB and DA = DB, so that — by Lemma
1 — px2 = κ and Nx

2 = 1
2 . As such, πx2 = κ

2 . And, average user utility is

u2 = NA
2 (Y A

2 − pA2 ) +NB
2 (Y B

2 − pB2 )− κ̄2 = Kx + φxDx +
γx

2
− κ− κ̂

4
.

As can be seen, in equilibrium, πx2 = κ/2 does not depend on Dx and φx, whereas u2 increases with
Dx and φx.

In addition, we can use the expressions for πx2 , i.e., the period-2 platform payoff under equilib-
rium pricing from Lemma 1, (or alternatively (B.7) and (B.8) for ∆K = 0 and DA = DB as well
as φA = φB) to derive

∂πx2
∂Dx

= − ∂πx2
∂D−x

=
φx

3
. (D.23)

D.1.2 Period t = 1

It follows that θA = θB = 1 (see Proposition 1). We note that DA = NA
1 I

A + ηNB
1 I

B and
DB = ηNA

1 I
A +NB

1 I
B for η ∈ [0, 1] as well as cx = (1 + η)c. Also observe that

πx1 = Nx
1

[
px1 − qxIx

]
+Nx

2 p
x
2 −

λ(Ix)2

2
.

The two platforms x = A,B solve
max
px1 ,I

x,qx
πx1 ,

taking the choice of the other platform (p−x1 , I−x, q−x) as given.
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Equilibrium prices in t = 1

We now calculate equilibrium prices in period t = 1, i.e., px1 for x = A,B, taking investments Ix as
given. Recall NA

1 = ẑ1 and NB
1 = 1− ẑ1 with ẑ1 characterized in (6). That is,

NA
1 =

1

2
+
−(pA1 − pB1 ) +

[
IA(qA − cA)− IB(qB − cB)

]
2κ

(D.24)

NB
1 =

1

2
+

(pA1 − pB1 )−
[
IA(qA − cA)− IB(qB − cB)

]
2κ

.

Next, we calculate
∂Nx

1

∂px1
= − 1

2κ
and

∂N−x1

∂px1
=

1

2κ

as well as
∂D−x

∂px1
=
I−x − ηIx

2κ
and

∂Dx

∂px1
=
ηI−x − Ix

2κ
.

Thus, the first-order condition with respect to price px1 reads:

∂πx1
∂px1

= Nx
1 −

px1
2κ

+
Ixqx

2κ
+
∂πx2
∂Dx

(
ηI−x − Ix

2κ

)
+

∂πx2
∂D−x

(
I−x − ηIx

2κ

)
= 0. (D.25)

Using Nx
1 = 1

2 , Ix = I−x, and
∂πx2
∂Dx = φx

3 = − ∂πx2
∂D−x (see (D.23)), we can solve

px1 = κ+ Ix
(
qx − 2(1− η)φx

3

)
. (D.26)

The equilibrium price expression from Proposition 2 follows upon setting η = 0.

Equilibrium investments

We now calculate equilibrium investments Ix = I−x, given the optimal period-1 pricing from
(D.26). To start with, recall (D.24) and calculate the partial derivative of Nx

1 with respect to
investments/investments Ix, I−x (holding px1 and p−x1 fixed):

∂Nx
1

∂Ix
=
qx − cx

2κ
and

∂N−x1

∂Ix
= −q

x − cx

2κ
. (D.27)

Thus,

∂Dx

∂Ix
= Nx

1 +
∂Nx

1

∂Ix
Ix + η

(
∂N−x1

∂Ix

)
I−x

∂D−x

∂Ix
= η

(
Nx

1 +
∂Nx

1

∂Ix
Ix
)

+

(
∂N−x1

∂Ix

)
I−x.

Hence, the partial derivative of period-1 payoff πx1 with respect to investment Ix becomes

∂πx1
∂Ix

=

(
∂Nx

1

∂Ix

)
(px1 − Ixqx) +

∂πx2
∂Dx

(
Nx

1 +
∂Nx

1

∂Ix
Ix + η

(
∂N−x1

∂Ix

)
I−x

)
+

∂πx2
∂D−x

(
η

(
Nx

1 +
∂Nx

1

∂Ix
Ix
)

+

(
∂N−x1

∂Ix

)
I−x

)
−Nx

1 q
x − λIx

If interior, i.e., Ix ∈ (0, 1), optimal investment/effort solves the first-order condition
∂πx1
∂Ix = 0.
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Recall the optimal price px1 from (D.26) so that

px1 − Ixqx = κ− 2(1− η)φxIx

3
.

Next, note that (in a symmetric equilibrium), Nx
1 = N−x1 = 1/2, qx = q−x, Ix = I−x as well as

∂πx2
∂Dx = φx

3 = − ∂πx2
∂D−x (see (D.23)), and

∂Nx
1

∂Ix = −∂N−x1
∂Ix (see (D.27). Using these relations, we obtain

after simplifications:

∂πx1
∂Ix

=
∂Nx

1

∂Ix

(
κ− 2(1− η)φxIx

3

)
− qx

2

+
φx

3

(
1

2
+
∂Nx

1

∂Ix
Ix(1− η)

)
− φx

3

(
η

2
− ∂Nx

1

∂Ix
Ix(1− η)

)
− λIx

=
∂Nx

1

∂Ix

(
κ− 2(1− η)φxIx

3

)
− qx

2
+
φx

3

(
(1− η)

2
+

(
∂Nx

1

∂Ix

)
(2Ix(1− η))

)
− λIx

= κ

(
∂Nx

1

∂Ix

)
− qx

2
+
φx(1− η)

6
− λIx.

Inserting
∂Nx

1
∂Ix = (qx−cx)

2κ into above expression for
∂πx1
∂Ix , we obtain

∂πx1
∂Ix

=
1

2

(
φx(1− η)

3
− cx − 2λIx

)
.

As a result, equilibrium investment/effort satisfies — if it is interior and solves
∂πx1
∂Ix = 0 —

Ix =
φx(1− η)− 3cx

6λ
.

Overall, we therefore obtain

Ix = min

{
1,

[
φx(1− η)− 3cx

6λ

]+
}
. (D.28)

The equilibrium investment expression from Proposition 2 follows upon setting η = 0. The equi-
librium investment expression from Proposition 4 follows upon inserting cx = c(1 + η).

D.1.3 Payoffs

We now calculate the payoff of platform x, using the derived expressions for prices and investment.
Thus,

πx1 = Nx
1

[
px1 − qxIx

]
+Nx

2 p
x
2 −

λ(Ix)2

2
= κ− Ixφx(1− η)

3
− λ(Ix)2

2
,

where we used that Nx
1 = 1

2 and the price expression px1 = κ + Ix
(
qx − 2(1−η)Ixφx

3

)
as well as

πx2 = κ/2.

Next, we calculate user welfare. We know from earlier results that users’ total payoff in period
t = 2 reads

u2 = Kx + φxDx +
γx

2
− κ− κ̂

4

= Kx +
φx(1 + η)Ix

2
+
γx

2
− κ− κ̂

4
,
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where we used Dx = (1 + η)D̂x = (1 + η)Nx
1 I

x = 0.5(1 + η)Ix. Next, total welfare reads

u1 = Kx +
γx

2
− κ̂

4
− px1 + u2 + Ix(qx − cx)

= Kx − κ+
γx

2
− κ̂

4
+

2Ix(1− η)φx

3
− Ixqx + Ix(qx − cx) + u2 (D.29)

= 2

(
Kx − κ+

γx

2
− κ̂

4

)
︸ ︷︷ ︸

≡const

+Ix
(
φx(7− η)

6
− cx

)
,

whereby investment Ix was previously derived and is characterized in (D.28) and c=c(1 + η). The
first term is simply a model constant, which we denote by “const.” As a result, we have that

Ix
(
φx(7−η)

6 − cx
)
≥ 0, with the inequality being strict if Ix > 0. Since Ix decreases with η, it also

follows that total user welfare decreases with η, i.e., ∂u1
∂η ≤ 0, and does so strictly when investment

Ix > 0 is positive. We therefore conclude that required data sharing (η > 0) reduces user welfare
relative to the baseline with η = 0, and does so strictly when φx > 3c.

Finally, also note that any platform’s available data in period t = 2 (after data sharing) reads

Dx = (1+η)Ix

2 , so that
∂Dx

∂η
=
Ix

2
+

1 + η

2

∂Ix

∂η

When Ix ∈ (0, 1), then

2

(
∂Dx

∂η

)
=
φx(1− η)− 3c(1 + η)

6λ
− (1 + η)(φx + 3)

6λ
< 0.

As such, when investment is interior (i.e., Ix ∈ (0, 1)), then data sharing decreases the amount of
data that platforms use in period t = 2.

D.2 Market for Data when Users own Data — Proof of Proposition 6

We start by solving the model at the beginning of state t = 2, given a total stock of data D =
NA

1 I
A+NB

1 I
B. We solve for a symmetric equilibrium: Symmetry in equilibrium implies Nx

1 = 1/2,
DA = DB, and IA = IB = Ix, so D = Ix. At the beginning of period t = 2 (before prices are
chosen), the two platforms simultaneously choose Dx to maximize

max
Dx∈[0,D]

πx2 − cDx, (D.30)

taking the choice of the other platform, i.e. D−x, as given. Here, the payoff πx2 is characterized in

Proposition 1. Recall (B.7) and (B.8), and observe that
∂2πx2
∂(Dx)2 > 0. Thus, there exists no interior

maximum to the optimization (D.30), and we therefore conjecture Dx = D−x = D.

Next, we characterize optimal choice of Dx, given D = D̂A+D̂B. For this purpose, we use (B.7)
and Dx = D−x — which holds in symmetric equilibrium — to take the derivative with respect to
Dx in (D.30), yielding

∂

∂Dx
(πx2 − cDx) =

φx

3
− c

under Dx = D−x. We now consider two distinct cases.

First, suppose that c > φx

3 . Then, for any level of D ≥ 0, platforms optimally choose Dx = 0.

Anticipating Dx = 0 for any levels of D = D̂A + D̂B, it is clear that platforms optimally do not
exert any investment Ix to collect data, so Ix = D = 0. The platform payoff in period t = 2 then
reads πx2 = κ

2 .
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Second, suppose that φx ≥ 3c. In this case, Dx
2 = D and both platforms acquire all available

data D. The platform payoff in period t = 2 then reads πx2 = κ
2 − cD. Moreover, using Dx

2 = D =
Ix/2 + I−x/2 as well as the expression for πx2 from Lemma 1, we have

πx2 =

[
3κ+ φx(Ix + I−x)/2− φ−x(Ix + I−x)/2

]2
18κ

so that
∂πx2
∂Ix = 0 (since φx = φ−x). It is immediate from (5) that

∂πx2
∂Ix = 0 implies

∂πx1
∂Ix ≤ 0 with the

inequality being strict for Ix > 0. As such, optimal data collection investment satisfies IA = IB = 0,
so D = Dx = 0. In either case, we have established Ix = D = Dx = 0 in symmetric equilibrium.

Given that Ix = 0 in a symmetric equilibrium, the platform x solves in each period t = 1, 2:

max
pxt

Nx
t p

x
t ,

taking the choice of the other platform, i.e., p−xt , as given. We have that

∂Nx
t

∂pxt
= − 1

2κ
and

∂N−xt
∂pxt

=
1

2κ
.

Thus, price px1 solves the first-order condition Nx
t +

∂Nx
t

∂pxt
pxt = 0, which we can solve — using

Nx
t = 1/2 — for pxt = κ with t = 1, 2.

Platform x’s total payoff at t = 1 reads πx1 = κ, while πx2 = κ/2. Next, we calculate user welfare.
We know that users total payoff in period t = 2 reads

u2 = Kx − κ− κ̂

4
+ φxD2 = Kx − κ− κ̂

4
.

As such, total welfare reads

u1 = 2

(
Kx − κ+

γx

2
− κ̂

4

)
,

and it is clear that u1 is lower than under the baseline, which is characterized in (D.29) for η = 0,
that is,

2

(
Kx − κ+

γx

2
− κ̂

4

)
+ Ix

(
7φx

6
− cx

)
≥ u1.

The inequality above is strict if and only if it holds in the baseline that Ix > 0 ⇐⇒ φx > 3c.

E Proofs and Derivations for Section 4

E.1 Proof of Proposition 8

According to the objective (11), the user union chooses at the beginning of time t = 1 (before
investments and t = 1 prices are chosen) f to maximize u1 − fIx, whereby cx = c − f and η = 0.
Next, recall the expression for user welfare from (D.29), that is,

u1 = const+ Ix
(
φx(7− η)

6
− cx

)
,

where we define for convenience

const := 2

(
Kx − κ+

γx

2
− κ̂

4

)
.
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We consider η = 0 (no data sharing), and we rewrite the objective (11) as

û1 := u1 − fIx = const+ Ix
(

7φx

6
− c+ f

)
− fIx = const+ Ix

(
7φx

6
− c
)
, (E.31)

where Ix is from Proposition 2, that is,

Ix = min

{
1,

[
φx − 3(c− f)

6λ

]+
}
. (E.32)

If 6c ≥ 7φx, then (E.31) immediately implies that the user union optimally implements Ix = 0,
which is achieved by setting f = 0.

On the other hand, if 6c < 7φx, the user union optimally implements Ix > 0 and, in fact,

the objective û1 = u1 − fIx strictly increases with Ix, i.e., ∂(u1−fIx)
∂Ix > 0. As such, the relation

(E.31) reveals that the user union optimally chooses f to maximize investment subject to Ix ≤ 1
(exogenous upper bound of investment); thus, Ix = 1. Solving Ix = 1 (using (E.32)) for f yields

f = f∗ =
6λ+ 3c− φx

3
.

which concludes the proof. The user welfare then reads

û1 = 2

(
Kx − κ+

γx

2
− κ̂

4

)
+

7φx

6
− c,

which is strictly larger than under the baseline (with η = 0) or data sharing (with η > 0) yielding
user welfare:

2

(
Kx − κ+

γx

2
− κ̂

4

)
+ Ix

(
φx(7− η)

6
− c(1 + η)

)
.

Likewise, since we have shown in Proposition 6, that user welfare under the baseline is higher than
when users own their data and sell their data in a market for data, it readily follows that welfare
under user union is higher than under that scenario too.

E.2 Proof of Proposition 9

To begin with, note that Dx = Nx
1 I

x as well as θx = 1, where by symmetry Nx
1 = 1/2 and Ix = I−x

so Dx = D−x.

E.2.1 Prices

It holds that Nx
1 = N−x1 = ẑ1, with

Nx
1 =

1

2
− (px1 − p

−x
1 )

2κ
.

As such, we can calculate
∂Nx

1

∂px1
= − 1

2κ
and

∂N−x1

∂px1
=

1

2κ

and
∂D−x

∂px1
=
I−x

2κ
and

∂Dx

∂px1
=
−Ix

2κ
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Thus, the first-order condition with respect to price px1 reads:

∂πx1
∂px1

= Nx
1 −

px1
2κ

+
Ixqx

2κ
− ∂πx2
∂Dx

(
Ix

2κ

)
+

∂πx2
∂D−x

(
I−x

2κ

)
= 0. (E.33)

Using Nx
1 = 1

2 , Ix = I−x, and
∂πx2
∂Dx = φx

3 = − ∂πx2
∂D−x , we can solve

px1 = κ+ Ix
(
q − 2φx

3

)
.

E.2.2 Investment

To start with, note that because of

Nx
1 =

1

2
− (px1 − p

−x
1 )

2κ
,

we have
∂Nx

1

∂Ix′
= 0 for all x, x′ ∈ {A,B}. Thus,

∂Dx

∂Ix
= Nx

1 =
1

2
and

∂D−x

∂Ix
= 0.

Hence, the derivative with respect to investment Ix becomes

∂πx1
∂Ix

=
∂πx2
∂Dx

(
∂Dx

∂Ix

)
−Nx

1 q − λIx

If interior, i.e., Ix ∈ (0, 1), optimal investment solves the first-order condition
∂πx1
∂Ix = 0. Using

Nx
1 = 1/2 and

∂πx2
∂Dx = φx

3 , we obtain Ix = φx−3q
6λ , so optimal investment satisfies

Ix = max

{
1,

[
φx − 3q

6λ

]+
}
.

E.2.3 User Welfare

Using the expression for u1 from (D.29) with η = 0 and cx = c, total user welfare becomes

û1 = u1 − qIx = 2

(
Kx − κ+

γx

2
− κ̂

4

)
+ Ix

(
7φx

6
− c
)
,

and depends on qx only via investment Ix. When 6c ≥ 7φx, then it is optimal to stipulate Ix = 0
which is achieved by setting q = 0.

When, on the other hand, 6c < 7φx, û1 strictly increases with Ix. As such, optimal investment
maximizing user welfare û1 is either at the boundary 1 (exogenous upper boundary for investment)
or such that the constraint πx1 ≥ 0 binds (platform participation constraint) and platforms just
break even. Using arguments analogous to the ones used in the proof of Proposition 8, this leads
to optimal investment Ix = 1. The price for data is the same for the two platforms and satisfies

q =
φx

3
− 2λIx =

φx

3
− 2λ.

Total user welfare then reads

û1 = u1 − qIx = 2

(
Kx − κ+

γx

2
− κ̂

4

)
+

7φx

6
− c,
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which is strictly larger than under the baseline (with η = 0) or data sharing (with η > 0) yielding

user welfare: 2
(
Kx − κ+ γx

2 −
κ̂
4

)
+ Ix

(
φx(7−η)

6 − c(1 + η)
)

. Likewise, since we have shown in

Proposition 6, that user welfare under the baseline is higher than when users own their data and
sell their data in a market for data, it readily follows that welfare under user union is higher than
under that scenario too.

E.3 Details for Section 4.3

Take the reward level of the user union f as given, and note cx = c − f . As argued in the main
text, given the reward f , the equilibrium from t = 1 onward is then characterized in Proposition
1 and Lemma 1. To induce θx = 1, platform x sets qx ≥ cx. Assume that given f and cx, the
continuation equilibrium exists and is unique (up to qx), i.e., ẑt, I

x, px2 and p̄x1 = px1 − Ixqx are
unique and do not depend on the exact level of qx (as long as θx = 1 is induced).

We now analyze under what conditions user union participation is privately optimal (i.e., in-
centive compatible) for any individual user z. To do so, suppose that individual user z deviates
by not joining the user union at the beginning of time t = 1 while all other users [0, 1] − {z} join
the union; without loss of generality, consider that z ≤ ẑ1. Thus, user z saves the membership
fee m(z), but does not receive the reward for contributing data. Also, user z is quoted the same
service prices pxt as other users (i.e., there is no service price discrimination), but faces potentially
different data prices q̂x than other users.

More formally, sser z’s utility from the deviation is

uDev(z) = max
x∈{A,B},θ̂x∈[0,1],ρ∈{0,1}

ρ
(
Y x

1 − px1 + θ̂xIx(q̂x − c)− κx(z)
)

+ max
x∈{A,B}

(
Y x

2 − px2 − κx(z)
)
,

where ρ denotes z’s decision to consume at any platform x and θ̂x ∈ [0, 1] is z’s choice of contributing
data at the platform x she joins. For simplicity, we already imposed that z participates in t = 2,
as — per assumption — the entire market is covered (NA

t +NB
t = 1) and the deviation of z (and

union membership) does not affect period-2 payoff maxx∈{A,B}
(
Y x

2 − px2 − κx(z)
)
.

In contrast, user z’s payoff from joining the union is

uUnion(z) = −m(z)+ max
x∈{A,B},θ̂x∈[0,1]

(
Y x

1 −px1 + θ̂xIx(qx−c+f)−κx(z)
)

+ max
x∈{A,B}

(
Y x

2 −px2−κx(z)
)
,

We already impose the assumption that in equilibrium the entire market is covered; thus, if z does
not deviate, it must be that she adopts at least one platform. Notice that, being part of the union,
z optimally shares data with the platform x she joins, so it is optimal to set θ̂x = 1 in above
maximization.

Without loss of generality, suppose that z ≤ ẑ1, so m(z) = IAf and

A = arg max
x∈{A,B}

(
Y x

1 − px1 + Ix(qx − c+ f)− κx(z)
)

Then, the gain from deviating equals

∆z := uDev(z)− uUnion(z) (E.34)

= −
[
Y A

1 − pA1 + IA(qA − c)− κA(z)
]

+ max
x∈{A,B},ρ∈{0,1},θ̂x∈{0,1}

ρ
(
Y x

1 − px1 − κx(z) + θ̂xIx(q̂x − c)
)

Next, notice that by Proposition 1, we have
∂px1
∂qx = Ix. That is, period-1 prices can be written in

the form
px1 = p̄x1 + Ixqx,

where p̄x1 is unique (by assumption that the continuation equilibrium from Proposition 1 is unique)
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and does not depend on Ix
′

or qx
′
, i.e., ∂p̄1

x

∂Ix′
= ∂p̄1

x

∂qx′
= 0. Thus, inserting px1 = p̄x1 + Ixqx, we obtain

∆z = −
[
Y A

1 − p̄A1 − IAc−κA(z)
]

+ max
x∈{A,B},ρ∈{0,1},θ̂x∈[0,1]

ρ
(
Y x

1 − px1 −κx(z) + θ̂xIx(q̂x− c)
)
. (E.35)

We now need to show ∆z ≤ 0.

If user z is not member of the union, platform x can offer z a potentially different data price q̂x

(e.g., q̂x < qx) than the data price qx that it offers to union members. That is, we assume that the
platform x can make the price for data that it pays user z contingent on union membership. We
assume that the timing underlying the choice of q̂x is as follows. First, after observing qx, Ix, px1 ,
the user z joins a platform x; then, x observes whether z is user union member; if yes, z is quoted
data price qx and, if not, x can alter the data price that it quotes to z to any level q̂x (i.e., x
quotes a new price q̂x to the deviant). When user z joins platform x and x observes that z is

not member, it is optimal for x to minimize payments q̂x whilst inducing z to set θ̂x = 1. As
such, it is optimal for x to choose q̂x ≤ c, i.e., not to pay the deviant z more than her required
cost of sharing data c. Thus, if x induces z to share data, then q̂x = c. Overall, it follows that
maxθ̂x∈[0,1] θ̂

xIx(q̂x − c) = 0 = Ix[q̂x − c]+ = 0 (recall that [·]+ = max{·, 0}). In other words, it is

optimal for the platform not to leave rents to the deviant by stipulating q̂x = c.

We now show under what circumstances ∆z ≤ 0 and user union is incentive compatible. We do
so separately when IA, IB > 0 in equilibrium (see Part I) and when IA · IB = 0 in equilibrium (see
Part II)

Part I

We now establish under what circumstances ∆z ≤ 0 when IA, IB > 0. First, when ρ = 0 (i.e., the
deviant stays out of the market in t = 1), then ∆z = −

[
Y A

1 − p̄A1 − IAc − κA(z)
]
, which must be

negative by the assumption that, conditional on union membership, user z derives positive payoff
and participates.52

When ρ = 1 and

A ∈ arg max
x∈{A,B}

max
ρ∈{0,1},θ̂x∈[0,1]

ρ
(
Y x

1 − px1 − κx(z) + θ̂xIx(q̂x − c)
)

then (according to (E.35))

∆z = −IA(qA − c) + IA[q̂A − c]+ = −IA(qA − c),

which is negative for qA ≥ c.
When on the other hand

B ∈ arg max
x∈{A,B}

max
ρ∈{0,1},θ̂x∈[0,1]

ρ
(
Y x

1 − px1 − κx(z) + θ̂xIx(q̂x − c)
)

and ρ = 1, then (according to (E.35))

∆z = −
[
Y A

1 − p̄A1 − IAc− κA(z)
]

+ (Y B
1 − p̄B1 − qBIB − κB(z)

)
,

which is negative for

qB ≥
(Y B

1 − Y A
1 )− (p̄B1 − p̄A1 )−

(
κB(z)− κA(z)

)
+ IAc

IB
.

52This must be the case because we assume that the entire market is covered in equilibrium.
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Thus, we have ∆z ≤ 0 for z ≤ ẑ1 if

qA ≥ c and qB ≥
(Y B

1 − Y A
1 )− (p̄B1 − p̄A1 )−

(
κB(z)− κA(z)

)
+ IAc

IB
.

Analogously, we have ∆z ≤ 0 for z > ẑ1 if

qB ≥ c and qA ≥
(Y A

1 − Y B
1 )− (p̄A1 − p̄B1 )−

(
κA(z)− κB(z)

)
+ IBc

IA
.

At the same time, to incentivize θx = 1, we must have qx ≥ c− f .

Altogether, ∆z ≤ 0 and qx ≥ c− f hold for all z ∈ [0, 1] if

qA ≥ c+ max
z∈[0,1]

[
max

{
−f,

(Y A
1 − Y B

1 )− (p̄A1 − p̄B1 )−
(
κA(z)− κB(z)

)
+ IBc

IA

}]
(E.36)

qB ≥ c+ max
z∈[0,1]

[
max

{
−f,

(Y B
1 − Y A

1 )− (p̄B1 − p̄A1 )−
(
κB(z)− κA(z)

)
+ IAc

IB

}]
.

As such, if (E.36) holds in equilibrium, then union membership is incentive compatible. Note that
(E.36) can be seen as incentive compatibility condition for user union membership.

Recall that the exact values of qx are not payoff-relevant in a sense made precise in Proposition
1, i.e., the value of qx does not affect ẑt, p

x
2 , p̄x1 , Ix, or u1. Notice that the right-hand-side of both

inequalities in (E.36) does not depend on qA or qB and, in particular, involves equilibrium quantities
only depending on model parameters. As such, we can always find (“large enough”) equilibrium
levels of qA and qB that satisfy (E.36). That is, provided IA, IB > 0, there exists an equilibrium
(unique up to qx) in which all users are members of the union and user union participation is
incentive compatible in equilibrium (i.e., (E.36) holds). Because, given a level of f and cx = c− f ,
the continuation equilibrium (outlined in Proposition 1 and Lemma 1) exists with unique ẑt, p̄

x
1 ,

px2 , and Ix, the user union equilibrium is unique too up to the level of qx.

E.3.1 Part II

We now establish under what circumstances ∆z ≤ 0 when IA · IB = 0, i.e., when IA = 0 or IB = 0
or both.

First, when ρ = 0 (i.e., the deviant stays out of the market in t = 1), then ∆z = −
[
Y A

1 − p̄A1 −
IAc− κA(z)

]
, which must be negative by the assumption that, conditional on union membership,

user z derives positive payoff and participates.53

Next, when IA = 0, then pA1 = p̄A1 as well as

A = arg max
x∈{A,B}

(
Y x

1 − px1 + Ix(qx − c+ f)− κx(z)
)
,

which — owing to IB(qB − c+ f) ≥ 0 — implies (for any z ≤ ẑ1)

A = arg max
x∈{A,B}

max
θ̂x∈[0,1]

(
Y x

1 − px1 − κx(z) + θ̂xIx(q̂x − c)︸ ︷︷ ︸
=0

)
.

Inserting this relation into (E.35), we obtain ∆z ≤ 0.

Next, consider IB = 0. Then,

A = arg max
x∈{A,B}

(
Y x

1 − px1 + Ix(qx − c+ f)− κx(z)
)
,

53This must be the case because we assume that the entire market is covered in equilibrium.
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implies
A = arg max

x∈{A,B}
max
θ̂x∈[0,1]

(
Y x

1 − px1 − κx(z) + θ̂xIx(q̂x − c)︸ ︷︷ ︸
=0

)
for any z ≤ ẑ1 if qA − c + f = 0. When IB = 0 and qA = c− f , then ∆z = IAf ≤ 0 if f ≤ 0 (see
(E.34)).

Analogously, when IA = 0 < IB, then ∆z ≤ 0 for any z > ẑ1 holds if f ≤ 0 and qB = c − f .
As such, when IA = 0 or IB = 0, user union is incentive compatible if qx = c− f as well as f ≤ 0.
Under these circumstances, the continuation equilibrium (outlined in Proposition 1 and Lemma 1)
exists with unique ẑt, p̄

x
1 , px2 , and Ix.

F Extended Discussions

F.1 Market for Data When Platforms own Data — Model Variant with “Sym-
metric” Equilibrium

Assume ex-ante symmetry, i.e., ∆K = 0 as well as φA = φB. We now introduce a model variant
with a market for data, in which platforms own and trade user-generated data. Notably, we
make additional assumptions such that the model variant features a symmetric equilibrium in the
subgame in period t = 1.

F.1.1 Stage 2

At the beginning of time period t = 2, platform A and B trade data with each other, with
endogenous price pD2 . Without loss of generality, it suffices to consider that platform A and B
choose the optimal allocation of data through Nash Bargaining at the beginning of period t = 2,
with equal bargaining weights 1/2. The price for data pD2 is then chosen to implement the split of
resulting surplus. According to Lemma 3, total surplus is maximized when one platform x shares
data with platform −x, but not the other way around.

We now derive the Nash bargaining solution. For this sake, call B the platform that shares
data with the other one. That is, B shares data with platform A, but not the other way around,
with D̂AφA ≥ D̂BφB. Thus, DA = D̂A + D̂B, whereas DB = D̂B. Using the period-2 platform
payoff under equilibrium pricing from Lemma 1 with DA = D̂A + D̂B and DB = D̂B, we obtain
the following platform payoffs just after Nash bargaining but before choosing price pA2 and pB2 :

πA2 =
(3κ+ φAD̂A)2

18κ
and πB2 =

(3κ− φAD̂A)2

18κ
.

Then, just after the data trade, total surplus of both platforms (excluding user surplus) reads

S := πA2 + πB2 =
(3κ+ φAD̂A)2 + (3κ− φAD̂A)2

18κ

If there were no data sharing, then Dx = D̂x and platforms’ period-2 payoff under equilibrium
pricing would be according to Lemma 1:

π̂x2 =
(3κ+ φxD̂x − φ−xD̂−x)2

18κ
.

Under these circumstances, total surplus would be

π̂x2 + π̂−x2 =
(3κ+ φxD̂x − φ−xD̂−x)2 + (3κ+ φ−xD̂−x − φxD̂x)2

18κ
.

Thus, surplus generated through the efficient (ex-post) allocation of data is S − (π̂A2 + π̂B2 ). As per
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Nash bargaining protocol (among the two parties x = A and x = B) with equal bargaining weights
1/2, the payoff of platform x becomes

π̃x2 :=
1

2
(S − π̂A2 − π̂B2 ) + π̂x2 ,

which is the payoff at the beginning of period t = 2 before data trade happens.

As such, the payoff of platform A at inception of period t = 2 reads

π̃A2 :=

(
(3κ+ φAD̂A)2 + (3κ− φAD̂A)2 + (3κ+ φAD̂A − φBD̂B)2 − (3κ+ φBD̂B − φAD̂A)2

36κ

)

=
(φAD̂A)2 + 6κ(φAD̂A − φBD̂B)

18κ
.

Likewise, the payoff of platform B at inception of period t = 2 becomes

π̃B2 :=

(
(3κ+ φAD̂A)2 + (3κ− φAD̂A)2 + (3κ+ φBD̂B − φAD̂A)2 − (3κ+ φAD̂A − φBD̂B)2

36κ

)

=
(φAD̂A)2 + 6κ(φBD̂B − φAD̂A)

18κ
.

There does not exist a fully symmetric equilibrium. We therefore look for an equilibrium in which
both platforms enter period t = 2 symmetrically, i.e., Nx

1 = 1/2 and D̂x = Ix/2, and, with equal
probability of 1/2, A and B are the data “buyers” and “sellers” respectively in the trade of data.
Formally, at the beginning of period t = 2, nature determines which platform is buyer and seller
of data, where each platform is selected by nature with equal probability. After that draw, we
possibly relabel platforms such that A is data buyer and B is data seller. This assumption greatly
simplifies the analysis. Notice that in the general case, platform A as the “stronger” platform will
act as buyer of data with probability one, while B is seller with probability one. However, in the
case of this section, not the strength but nature determines who buys/sells data; in the equilibrium
we consider, both platforms enter stage 2 symmetrically, so the choice of nature is consistent with
the result of Lemma 3 and its implications for the optimal data trade.

From the perspective of platform x, at the very beginning of period t = 1, there is a draw (by
nature) resulting into x = A (i.e., −x = B) and x = B (i.e., −x = A) with equal probability 1/2.
Then, above expressions imply that platform x’s expected payoff just before this draw becomes

π̄x2 =
1

2

(
(φxD̂x)2 + 6κ(φxD̂x − φ−xD̂x)

18κ
+

(φ−xD̂−x)2 + 6κ(φxD̂x − φ−xD̂−x)

18κ

)

=
(φxD̂x)2

36κ
+
φxD̂x − φ−xD̂x

3
+

(φ−xD̂−x)2

36κ
. (F.37)

We focus on a subgame perfect equilibrium in which both platforms choose in period t = 1 the
triple (qx, px1 , I

x) simultaneously to maximize π̄x2 . In period t = 2, each platform is selected with
probability 1/2 to buy data from the other one, data trade occurs, and after that platforms simul-
taneously set prices px2 . In equilibrium in the subgame in period t = 1, the allocation is indeed
symmetric and, as it will turn out, platforms x will exert symmetric level of investment and set
symmetric prices in stage t = 1. The equilibrium in subgame in t = 2 — as previously discussed
— is no more symmetric.

F.2 Stage t = 1

We now study platforms’ optimal choice of prices and investments, given the continuation payoff
in period t = 2, which is characterized in (F.37) and is denoted π̄x2 . For this sake, platform x
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maximizes

πx1 := Nx
1 p

x
1 − qxNx

1 I
x + π̄x2 −

λ(Ix)2

2
, (F.38)

where π̄x2 is from (F.37).

F.2.1 Prices

We set θx = 1. We start by analyzing optimal pricing in t = 1. First, note that D̂x = IxNx
1 = Ix/2.

One calculates using π̄x2 from (F.37):

∂π̄x2
∂D̂x

=
(φx)2

36κ
+
φx

3
and

∂π̄x2
∂D̂−x

= −
(

(φ−x)2

36κ
+
φ−x

3

)
. (F.39)

Next, we calculate (using (D.24)):

∂Nx
1

∂px1
= − 1

2κ
and

∂N−x1

∂px1
=

1

2κ
.

Thus, the first-order condition of πx1 from (F.38) with respect to price px1 reads:

∂πx1
∂px1

= Nx
1 −

px1
2κ

+
Ixqx

2κ
+
∂πx2
∂D̂x

∂D̂x

∂Nx
1

∂Nx
1

∂px1
+

∂πx2
∂D̂−x

∂D̂−x

∂N−x1

∂N−x1

∂px1
= 0. (F.40)

From the above relations, we know that — with Ix = I−x, φx = φ−x,
∂πx2
∂D̂x

= − ∂πx2
∂D̂−x

and
∂Nx

1
∂px1

=

−∂N−x1
∂px1

as well as ∂D̂x

∂Nx
1

= Ix.

Thus, using Nx
1 = 1

2 , Ix = I−x, the first-order condition (F.40) becomes

∂πx1
∂px1

=
1

2
− px1

2κ
+
Ixqx

2κ
− Ix

κ

(
(φx)2

36κ
+
φx

3

)
= 0.

We can solve above equation for period-1 price

px1 = κ+ Ixqx − 2Ix
(

(φx)2

36κ
+
φx

3

)
. (F.41)

F.2.2 Investment

Next, we turn to solving for investment Ix. For this sake, we calculate

∂Nx
1

∂Ix
=

(qx − 1.5c)

2κ
and

∂N−x1

∂Ix
= −(qx − 1.5c)

2κ
,

noting that cx = 1.5c. Observe that when z shares data with platform x, then, with probability
1/2, platform x does not sell data at t = 2 and the user’s privacy cost is c and otherwise, with
probability 1/2, x sells all the data to −x and the realized privacy cost is 2c. Thus, on average,
the user’s privacy cost for sharing one unit of data is cx = 1.5c.

We recall that D̂x = IxNx
1 , so that

∂D̂x

∂Ix
= Nx

1 +
∂Nx

1

∂Ix
Ix and

∂D̂−x

∂Ix
=

(
∂N−x1

∂Ix

)
I−x.
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Hence, the derivative of payoff in period t = 1 with respect to investment Ix becomes

∂πx1
∂Ix

=

(
∂Nx

1

∂Ix

)
(px1 − Ixqx) +

∂π̄x2
∂D̂x

(
Nx

1 +
∂Nx

1

∂Ix
Ix
)

+
∂π̄x2
∂D−x

((
∂N−x1

∂Ix

)
I−x

)
−Nx

1 q
x − λIx

If interior, i.e., Ix ∈ (0, 1), optimal investment solves the first-order condition
∂πx1
∂Ix = 0.

Recall the price px1 from (F.41) so that

px1 − Ixqx = κ− 2Ix
(

(φx)2

36κ
+
φx

3

)
= κ− 2Ix

(
∂π̄x2
∂D̂x

)
,

where the last equality uses (F.39). Next, note that Nx
1 = N−x1 = 1/2, Ix = I−x as well as

∂πx2
∂Dx = φx

3 = − ∂πx2
∂D−x , and

∂Nx
1

∂Ix = −∂N−x1
∂Ix . Using these relations, we obtain after simplifications:

∂πx1
∂Ix

=
∂Nx

1

∂Ix

(
κ− 2Ix

(
(φx)2

36κ
+
φx

3

))
− qx

2

+

(
(φx)2

36κ
+
φx

3

)(
1

2
+
∂Nx

1

∂Ix
Ix
)

+

(
(φx)2

36κ
+
φx

3

)(
∂Nx

1

∂Ix
Ix
)
− λIx

= κ

(
∂Nx

1

∂Ix

)
− qx

2
+

1

2

(
(φx)2

36κ
+
φx

3

)
− λIx

Inserting
∂Nx

1

∂Ix
=

(qx − 1.5c)

2κ

into above expression for πx1 , we obtain:

∂πx1
∂Ix

=
1

2

((
(φx)2

36κ
+
φx

3

)
− 1.5− 2λIx

)
.

As a result, equilibrium investment/effort satisfies — if it is interior and solves the first-order

condition
∂πx1
∂Ix = 0 —

Ix =
φx
(

1 + φx

12κ

)
− 4.5c

6λ
.

That is, optimal investment reads

Ix = min

1,

φx
(

1 + φx

12κ

)
− 4.5c

6λ

+
 .

Propositions 2 and 4 readily imply that, with a market for data, the investment Ix above is larger
than under the baseline and under data sharing (for η > 0) when c is sufficiently small or φx is large.
Under these circumstances, the service price px1 from (F.41) is strictly lower than in the baseline
(see Proposition 2) or with data sharing (see Proposition 4), holding qx fixed in the comparison.

F.3 Commitment Solutions

Commitment to data sharing. Suppose the platform can commit to a future data sharing
policy, ηx ∈ [0, 1] in period t = 1. Formally, in t = 2, platforms maximize (as before) maxpx2 π

x
2
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whereby Dx = Nx
1 θ

xIx + η−xN−x1 θ−xI−x. In t = 1, platforms choose simultaneously ηx, px1 , I
x, qx

to maximize πx1 , i.e., they solve maxηx,px1 ,Ix,qx π
x
1 . We now show that, when cx = c(1 + ηx) ≥ 0,

then ηx = 0 holds in equilibrium. For this sake, we consider without loss of generality qx = cx so
that θx = 1, and calculate

∂πx1
∂ηx

= −Nx
1 I

x +
∂πx2
∂D−x2

Nx
1 I

x,

which is (strictly) negative (when Ix > 0), because the expression for period-2 payoff πx2 (under

equilibrium pricing) in Lemma 1 readily imply
∂πx2
∂D−x2

< 0. Thus, platforms optimally choose ηx = 0.

Commitment to product/service quantities. Suppose that the platforms can commit to a
minimum future quantity at the beginning. Then compared to the baseline, (i) both the platforms
generates higher payoff; (ii) the platform that makes commitment take a larger market share; (iii)
the platform that does not commit determines a higher price. We prove these next:

Proposition 10. In equilibrium, one and only one platform commits to quantity, i.e., the solution
involves {C,NC} or {NC,C}. Without loss of generality, suppose platform A chooses ‘C’ and B
chooses ‘NC’, then

NA
2 = ẑ2 =

5

8
+

∆K + φADA − φBDB

8κ
,

pA2 =
5κ

4
+

∆K + φADA − φBDB

4
, pB2 =

3κ

2
− ∆K + φADA − φBDB

2
,

πA2 =
(5κ+ ∆K + φADA − φBDB)2

32κ
, πB2 =

(3κ−∆K − φADA + φBDB)2

16κ
.

(F.42)

Proof. We first prove that when platform −x chooses ‘NC’, i.e. not to make a commitment, then
the best response for platform x is to commit.

Without loss of generality, suppose platform B chooses ‘NC’. If platform A also chooses ‘NC’,

then the case is the same as the baseline, i.e. pA2 = κ + ∆K
3 + DAφA−DBφB

3 , NA
2 = ẑ2 = 1

2 +
∆K+DAφA−DBφB

6κ . Then consider the case that platform A chooses ‘C’. Given andy possible pB2 ,
platform A need to decide NA

2 in period t = 1 to maximize πA2 . To fullfill the commitment in period
t = 2, platform A’s product pricing, pA2 , is restricted to satisfy

ẑ2 =
1

2
+

∆K − pA2 + pB2 +DAφA −DBφB

2κ
,

⇒ pA2 = ∆K + pB2 +DAφA −DBφB + κ(1− 2NA
2 ).

(F.43)

Then platform A’s optimization problem is

max
NA

2

πA2 = pA2 N
A
2 = [∆K + pB2 +DAφA −DBφB + κ(1− 2NA

2 )]NA
2 .

Thus we obtain that the optimal response is

NA
2
∗

= NA
2
∗
(pB2 ) =

1

4
+

∆K + pB2 +DAφA −DBφB

4κ
. (F.44)

Consider platform B. In period t = 2, given platform A’s commitment NA
2
∗
, then NB

2 = 1−NA
2
∗

is also given. Platform B foresees that platform A will make quality commitments based on pB2 .54

54Note that the commitment only limits the minimum level of service on platform A. Thus platform B does not
have unlimited access to higher prices.
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Therefore, platform B faces the following problem:

max
pB2

πB2 = pB2 (1−NA
2
∗
(pB2 )) = pB2

(
3

4
− ∆K + pB2 +DAφA −DBφB

4κ

)
.

We then obtain that the optimal pricing for platform B is

pB2 =
3κ

2
− ∆K

2
− φADA − φBDB

2
. (F.45)

Plug (F.45) into (F.43) and (F.44), we have

NA
2 = ẑ2 =

5

8
+

∆K + φADA − φBDB

8κ
,

pA2 =
5κ

4
+

∆K + φADA − φBDB

4
,

πA2 =
(5κ+ ∆K + φADA − φBDB)2

32κ
>

(3κ+ ∆K + φADA − φBDB)2

18κ
= πA2 baseline,

πB2 =
(3κ−∆K − φADA + φBDB)2

16κ
>

(3κ−∆K − φADA + φBDB)2

18κ
= πB2 baseline.

(F.46)

Therefore, the best response for platform A is to make a quantity commitment, i.e. the best response
to ‘NC’ is ‘C’. Interestingly, both platforms increase payoff, implying that the best response to ‘C’
is ‘NC’. Moreover, under the sufficient condition that 3κ > max{∆K +φA−φB,−∆K −φA +φB},
NA

2 is larger than the baseline equilibrium NA
2 , and pB2 is larger than the baseline equilibrium.

F.4 Institutional Background on Privacy Protection Policy and Open Data Ini-
tiatives

Privacy protection policies such as GDPR strengthen individual ownership rights over personal
data by granting rights to access, correct, and delete personal data held by firms. While GDPR is
a sweeping initiative implemented by the European Union, the U.S. system is piecemeal and multi-
layered, with regional initiatives such as CCPA. Generally speaking, firms must minimize personal
data processing and can only process personal data under limited and specific circumstances. One
such circumstance is an individual’s explicit opt-in consent.55

While policies such as GDPR have focused on data ownership rights, open data initiatives,
e.g., in the form of data sharing initiatives, have emphasized data access. Private data ownership
rights should not be confused with access. Privately owned data can allow open access while non-
proprietary assets can be de facto closed for access (Merges, 2008). The question of whether or not
data should be openly accessible (purely open access to data) is a debated issue in academia (e.g.,

55Federal laws on privacy protection tend to be industry and region specific in the United States, with the Depart-
ment of Health Human Resources (DHHS) enforcing the Health Insurance Portability and Accountability Act of 1996
(HIPPA) in healthcare, the Federal Communication Commission (FCC) regulating telecommunication services, the
federal reserve systems monitoring the financial sector through Gramm-Leach-Bliley Act (GLBA), the Security and
Exchange Commission (SEC) focusing on public firms and financial exchanges, and the Department of Homeland
Security (DHS) dealing with terrorism and cybercrimes related to national security. The Federal Trade Commission
(FTC) can address privacy violations and inadequate data security as deceptive and unfair practice, following the
1914 FTC Act whereas the U.S. Constitution, in particular the First and Fourth Amendments, together with the
Electronic Communications Privacy Act of 1986 (ECPA), the Stored Communications Act (1986), the Pen Register
Act (1986), and the 2001 USA Patriot Act – stipulate when and how the government can collect and process elec-
tronic information of individuals. But in practice, it is still case by case. The debate on whether the United States
should follow European-style regulation is still ongoing. See “Ad world flocks to Congress urging federal data privacy
legislation”, The Drum, 26 February 2019, and ”Should Congress override state privacy rules? Not so fast,” The
Washington Post, February 26, 2019.
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Dewald, Thursby, and Anderson, 1986) and policy (Commission et al., 2017). Advocates of open
access to data argue that it facilitates subsequent research, including replication of existing works,
and increases the diffusion of knowledge thereby enhancing the efficiency of the research system
(Piwowar, Day, and Fridsma, 2007; Glenn and Ellis Lee, 2012; Piwowar and Vision, 2013). Empiri-
cal studies also document benefits of open data (Jetzek, Avital, and Bjorn-Andersen, 2012; Martens
et al., 2020).56 Open data initiatives take various forms. Centralized data commons suffer from pri-
vacy issues (Milles, 2019). Real world example includes UPI in India. The Indian authorities have
the concept of a data fiduciary, which would be a body that would basically manage the data of
individuals and help give them effective control over consent management. South Korean MyData
and Brazil’s open banking systems use similar setups. The New York Times conducted full-scale in-
vestigation in 2018 concerning Facebook (now Meta) forming ongoing partnerships with other firms,
including Netflix, Apple, and Microsoft, and granting these companies access to different aspects
of consumer data. See full news coverage at https://www.nytimes.com/2018/12/18/technology/
facebook-privacy.html. Blockchains and secure-MPC through ZKP etc., constitute an interesting
route to explore. Overall, the challenge for data sharing is not only about the technology that
enables privacy protection, but also about economic incentives.57

Recently, there have been many attempts to promote open data access, including Open Banking
and Open Finance initiatives (He et al., 2022; Goldstein et al., 2022). For example, the International
Data Spaces Association constitutes a private investment for secure data sharing (Richter and
Slowinski, 2019). The EU proposed the Digital Market Act (DMA) in 2020, explicitly emphasizing
data sharing for a fair competition.58 China and South Korea have built open platforms for data
sharing to aggregate scattered, isolated, and varied data to help integrate technology and business
data to lower information barriers.59

Data companies such as Acxiom and Datalogix gather and sell personal information. Policy
discussions often suggest that requiring large digital platforms to share data with smaller ones
breaks their dominance and leads to more competition among platforms, which is beneficial for
users. Such rationale, for instance, underlies the open banking regulation where banks have to
share data with FinTech companies (e.g., lenders).

56Martens et al. (2020) empirically examine the effectiveness of mandatory data sharing. They find that user
welfare is not maximized due to increases in product price, which corroborates our model prediction.

57Federated learning and privacy-preserving data sharing infrastrutures build on blockchains may enable decentral-
ized sharing of data (e.g., Sockin and Xiong, 2022). Ocean Protocol, a nonprofit platform developed by a Singapore-
based foundation, is a salient example of data marketplaces in which companies consumers, and other parties share
or trade data.

58See the Digital Markets Act by the European Commission.
59See here.
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