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Abstract

The recent linear factor models (e.g., Fama and French (2015) and Hou, Xue, and

Zhang (2015)) use total asset growth as the measure of investment, largely due to its

stronger return predictive power than its components such as the long-term and current

asset growths. We offer an explanation of the latter finding by extending the standard

q theory of investment into a two-capital setup in which firms use both long-term

and current asset as production inputs. We uncover a novel asset imbalance channel

which creates negative comovement between current and long-term asset growths that

are unrelated to discount rate. This comovement is muted in the total asset growth,

giving rise to its stronger return prediction. Once controlling for this comovement, the

return predictive power of current and long-term asset growths substantially improves.

Furthermore, we document strong evidences for the model’s prediction that the asset

growth effects are more prominent among firms with low asset imbalance. Our results

support the q theory based explanation for the asset growth effect.
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1 Introduction

The q theory of investment is the cornerstone of the investment-based asset pricing. One

prediction of the theory is that lower cost of capital stimulates more investment, so current

investment negatively predicts future stock returns.1 Of all measures of investment, total

asset growth in Cooper, Gulen, and Schill (2008) has probably received most attentions

partly because of its stronger return predictive power than its components such as the long-

term and current asset growths. Indeed, the investment factors in the recent multi-factor

models in Fama and French (2015) and Hou, Xue, and Zhang (2015) are both based on the

total asset growth. In justifying its use, Hou, Xue, and Zhang (2015) argue that the asset

growth is the most comprehensive measure of investment-to-assets. However, it is unclear

why a composite growth should predict returns better than its components.

In a nutshell, the stronger return predictive power of a variable than its components is

consistent with the existence of a negatively correlated noise term that is unrelated to the

expected return. As a simple example, consider a signal (think of it as a firm characteristic)

Z which can be decomposed into signal X and signal Y, that is, Z = X +Y. Suppose both X

and Y have an expected return component (R) and noise component (e) but with different

signs on e, i.e., X = R + e and Y = R − e. Clearly, the existence of the noise lowers the

informativeness about R of both X and Y, but e cancels out in Z, giving rise to the stronger

return prediction of Z. In the context of the asset growth effect, the total asset growth is Z,

whereas the current and long-term asset growths can be thought of as X and Y.

We show that a simple extension of the investment-based model in Kogan and Pa-

panikolaou (2012) sheds light on the identity of this noise term. Unlike the conventional

investment-based models that focus only on physical capital (or long-term asset), we assume

a Cobb-Douglas production function that uses both long-term and current assets as produc-

tion inputs. Firms choose investments in both types of assets to maximize firm value, subject

to convex capital adjustment costs. The optimization conditions suggest that both current

asset investment and long-term asset investment contain information about expected returns

and expected profitability, with a lower expected returns and higher expected profitability

associated with higher investments. More importantly, this extended model implies a third

motivation for investment – asset imbalance. When the ratio of current asset to long-term

asset (i.e., asset ratio) is higher than the steady state, a firm would reduce its current asset

and expand its long-term asset. On the other hand, when the asset ratio is too low, the

firm would liquidate its long-term asset for more current asset. The asset imbalance channel

1This prediction has been tested and confirmed empirically in the literature. Studies including Titman,
Wei, and Xie (2004), Xing (2008) document that past investment rate or investment growth is indeed
negatively associated with future returns.
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has nothing to do with discount rate, but it generates a negative comovement in the current

and long-term asset growths. This comovement therefore acts as the noise term discussed in

the simple model that weakens the return predictive power of current and long-term asset

growths.

We provide empirical evidences on this asset imbalance channel. First, controlling the

ratio of current asset to long-term asset (or asset ratio) significantly improves the return

predictive power of current and long-term asset growths. When we double sort stocks se-

quentially on their asset ratio and current (or long-term) asset growth, the conditional current

(or long-term) asset growth premiums increases substantially from their unconditional pre-

miums and are quantitatively similar to the total asset growth premium. Second, since cash

flow news are more important than discount rate news at the firm level (Vuolteenaho (2002)),

the cross-sectional variations of current and long-term asset growths are mostly driven by

asset ratio and expected profitability. Therefore, controlling for current asset growth, the

return predictive power of long-term asset growth should improve, and vice versa. Indeed,

when we condition on current asset growth, the t-statistic of the long-term asset growth

premium, which is closely related to its Sharpe ratio, increases in magnitude from −2.68

to −3.38. When we condition on long-term asset growth, the t-statistic of the current as-

set growth premium increases from −2.00 to −2.72. Third, we propose a measure of asset

imbalance using the relative rankings of current and long-term asset growths in the cross

section. All else being equal, when a firm invests similarly in current and long-term assets,

its investment motive from asset imbalance is low, and current and long-term asset growths

should be more informative about discount rate. Indeed, we find the premiums associated

current, long-term, and total asset growths are substantially stronger among firms with low

asset imbalance. In fact, the asset growth effect disappears among firms with highest asset

imbalance. Finally, the imbalance channel is found to be pervasive in balance sheets. It also

exists among components of current assets and between debt and equity.

We would like to point out that although our finding supports the q theory of investment,

it does not differentiate the sources of the asset growth effect. Specifically, this premium

can be consistent with both risk-based and behavioral explanations. On the risk side, firms

with high asset growth have lower expected returns because they are less risky, and changes

in investment and risk premiums can be simultaneously driven by exogenous shocks such as

productivity shocks or project arrivals. In contrast, a plausible behavioral explanation posits

that investors overreact to firms’ investment behaviors so that stocks with high asset growths

are overvalued and systematically have lower subsequent stock returns. Studies including Li

and Zhang (2010), Lam and Wei (2011), Lipson, Mortal, and Schill (2011), and Watanabe,

Xu, Yao, and Yu (2013) find evidences for both types of explanations.
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The paper belongs to the large literature on the investment-based asset pricing. Starting

from Cochrane (1991), this literature has grown substantially from the perspective of both

theory and empirics. On the theory side, Berk, Green, and Naik (1999), Gomes, Kogan, and

Zhang (2003), Zhang (2005), Carlson, Fisher, and Giammarino (2004), among many others,

have studied models with capital adjustment frictions to offer insights on the asset pricing

phenomena including the value premium and size premium. More recently, Papanikolaou

(2011), Kogan and Papanikolaou (2013), Kogan and Papanikolaou (2014) document that

the investment-specific technology shock that affects the efficiency of new capital goods

relative to old capital goods can capture a broader cross-sectional asset returns, including

the value, q, investment, market beta, and idiosyncratic volatility premiums. Li (2017)

offers an investment-based model for a joint explanation for momentum profits and the value

premium. On the empirical side, Liu, Whited, and Zhang (2009), Liu and Zhang (2014), and

Goncalves, Xue, and Zhang (2019) show that the optimization condition for firm’s investment

can capture many cross-sectional asset phenomena such as premiums associated with price

and earnings momentum, valuation ratios, and investment.

Despite the major focus on the physical capital in earlier studies, recent papers pay more

attention to other types of assets. Prominent examples include: organizational capital (Eis-

feldt and Papanikolaou (2013)), real estate (Tuzel (2010)), intangible capital (Lin (2012),

Ai, Croce, and Li (2013), Belo, Lin, and Vitorino (2014), Kung and Schmid (2015)), inven-

tories (Belo and Lin (2012), Jones and Tuzel (2013)), and a large line of research on labor

or human capital (e.g., Belo, Lin, and Bazdresch (2014), Belo, Li, Lin, and Zhao (2017)).

Cooper, Gulen, and Ion (2017) critique the wide usage of asset growth to measure invest-

ment. They argue that the q theory is more suitable for physical capital, i.e., long-term

asset growth, whereas empirically investment factors based on long-term and current asset

growths have much weaker performances than the investment factor based on total asset

growth. We highlight a novel asset imbalance channel that creates an investment incentive

among different types of assets and lowers the information about discount rate in current

and long-term asset growths. Our results therefore provide a defense for the use the asset

growth in the investment factors.

The paper proceeds as follows. In Section 2, we introduce the two-capital investment-

based model to elucidate the intuition of the asset imbalance channel. We use the model

to develop the hypotheses for empirical analyses in subsequent sections. In Section 3, we

describe data sources and variable constructions, and replicate the finding that total asset

growth subsumes current and long-term asset growths in stock return predictions. We pro-

vide empirical evidences for the asset imbalance channel and its impact on the relative return

predictive powers of total asset growth and its components in Section 4. Section 5 concludes.
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2 A q-theory model with two production inputs

Consider a dynamic investment-based asset pricing model based on Kogan and Papanikolaou

(2012). We extend their model by having both long-term asset (K) and current asset (W ) as

production inputs. Long-term asset includes property, plant, and equipment and is generally

considered as the physical capital. Current asset, which is usually ignored in the investment-

based asset pricing literature, includes cash, account receivables, and inventory. The sum of

long-term asset (K) and current asset (W ) is total asset (A).

The firm’s production function is Cobb-Douglas with both long-term and current assets as

inputs. The operating profit, Dt, is equal to XtK
α
t W

1−α
t . At time t, firms choose investment

in long-term asset (It) and investment in current asset (Jt) to maximize the firm value.

Investment incurs capital adjustment costs. Following the q theory literature (e.g., Hayashi

(1982)), we assume the capital adjustment costs are homogenous of degree one with respect

to capital and investment. Specifically, increasing the long-term asset by It units costs

ϕ(It/Kt)Kt, and increasing the current asset by Jt units costs ψ(Jt/Wt)Wt, where ϕ(·) and
ψ(·) are convex functions that captures decreasing returns to scale in capital installation.

Given the stochastic discount factor Mt+1, firm’s problem can be written recursively as

V (Xt, Kt,Wt) = max
It,Jt

Dt−ϕ(It/Kt)Kt − ψ(Jt/Wt)Wt + Et[Mt+1V (Xt+1, Kt+1,Wt+1)]}

s.t. Kt+1 = (1− δK)Kt + It

Wt+1 = (1− δW )Wt + Jt,

(1)

where V (Xt, Kt,Wt) is the firm’s cum-dividend value at time t, and δK and δW are the

depreciation rates of long-term and current assets, respectively. The capital accumulation

equations capture the law of motion for these two types of assets.

Taking the first-order condition with respect to It, we have

ϕ′
(
I∗t
Kt

)
= Et

[
Mt+1

∂V (Xt+1, Kt+1,Wt+1)

∂Kt+1

]
. (2)

The left-hand-side of the equation is the marginal cost of one additional unit of investment in

long-term assets (i.e., marginal qK), and the right-hand-side of the equation is its marginal

benefit, i.e., the discounted marginal continuation value of long-term asset. The optimal

condition states that firms invests until the marginal benefit and marginal cost are equal.

A similar condition can be found in current asset investment Jt:

ψ′
(
J∗
t

Wt

)
= Et

[
Mt+1

∂V (Xt+1, Kt+1,Wt+1)

∂Wt+1

]
(3)
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Since both the production function and adjustment cost functions are homogenous of

degree one, firm value Vt is also homogenous of degree one with respect to Kt and Wt:

V (Xt+1, Kt+1,Wt+1) =
∂V (Xt+1, Kt+1,Wt+1)

∂Kt+1

Kt+1 +
∂V (Xt+1, Kt+1,Wt+1)

∂Wt+1

Wt+1 (4)

Combining Eq. 2, Eq.3, and Eq. 4, we have

ϕ′
(
I∗t
Kt

)
Kt+1 + ψ′

(
J∗
t

Wt

)
Wt+1 = Et[Mt+1Vt+1] = Pt, (5)

where Pt is the ex-dividend value of the firm at time t. Eq 5 can be used to decompose firm

value. If we define PK
t = ϕ′

(
I∗t
Kt

)
Kt+1 and P

W
t = ψ′

(
J∗
t

Wt

)
Wt+1, Pt = PK

t +PW
t , so PK

t and

PW
t measure the value of long-term and current assets, respectively.

Now we apply the Campbell and Shiller (1988) decomposition to the log of the price-

income ratio:

ln
Pt

Dt

≈ const. + Et

[
∞∑
j=1

ρj−1(∆ lnDt+j − lnRt+j)

]
, (6)

where Rt denotes the gross stock return, the constant ρ depends on the average price-income

ratio. Together with Eq. 5, we establish a relation between the firm’s investments in long-

term and short-term assets and its expected profitability and stock returns:

ln

[
ϕ′
(
I∗t
Kt

)
Kt+1 + ψ′

(
J∗
t

Wt

)
Wt+1

]
≈ const.+Et

[
lnDt+1 +

∞∑
j=1

(ρj∆ lnDt+j+1 − ρj−1 lnRt+j)

]
.

(7)

When we assume the convex adjustment cost specification in Jermann (1998),

ϕ

(
I

K

)
=

aK
λK + 1

(
I

K

)λK+1

ψ

(
J

W

)
=

aW
λW + 1

(
J

W

)λW+1

,

(8)

where λK and λW are inversely related to the elasticity of investment rate with respect to

the marginal value of capital, Eq. 7 can be written as:

ln

[
aK

(
Kt+1

At+1

)
exp(λk · ik∗t ) + aW

(
Wt+1

At+1

)
exp(λw · jw∗

t )

]
≈ const. + Et

[
ln
Dt+1

At+1

+
∞∑
j=1

(ρj∆ lnDt+j+1 − ρj−1 lnRt+j)

]
,

(9)
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where we have defined ik∗t = log(I∗t /Kt) and jw
∗
t = log(J∗

t /Wt).

Taking the first-order Taylor expansion of the left hand side of Eq. 9 around ik∗ = 0 and

jw∗ = 0, we have(
aK

Kt+1

At+1

aW
Wt+1

At+1
+ aK

Kt+1

At+1

)
λK · ik∗t +

(
aW

Wt+1

At+1

aW
Wt+1

At+1
+ aK

Kt+1

At+1

)
λW · jw∗

t

≈ const. + Et

[
ln
Dt+1

At+1

+
∞∑
j=1

(ρj∆ lnDt+j+1 − ρj−1 lnRt+j)

]
,

(10)

which suggests that the weighted average of investment rates (scaled by adjustment cost

coefficient λ) depends on the expected profitability and expected return. In the special

case with only physical (long-term) capital, Eq. 10 reduces to Eq. (17) in Kogan and

Papanikolaou (2012). Intuitively, ceteris paribus, a firm’s investment is positively related to

its expected profitability and negatively related to the expected returns.

In the general case with both long-term and current assets, the expected profitability and

expected returns (discount rate) affect investment rates in both long-term and current assets,

giving rise to positive comovement in long-term and current asset growths, as we discuss in

the next section. More importantly, Eq. 10 shows that relative strength of investment rates

in these two types of assets also depends on the ratio of current asset to long-term asset,

each multiplied by its adjustment cost coefficient a. All else being equal, when a firm has

low current asset relative to long-term asset, possibly from large physical capital expansion

in the past, its long-term asset investment ik∗ would be low (or even negative), but its

current asset investment jw∗ would be high. On the other hand, when the current asset is

high relative to long-term asset, the subsequent long-term asset investment is likely to be

high and current asset investment tends to fall. These investments have nothing to do with

discount rate, but are solely due to the asset imbalance between the current and long-term

assets from their steady state. This motivation creates negatively correlated investments

in these two assets (i.e., the noise terms) that weaken the return predictive power of both

current and long-term asset growths. Since investment in the total asset (total asset growth)

is the weighted average of the investments in current and long-term assets, part of the noise

terms cancels out, so the total asset growth contains better information about discount rate

than its two components.

Our discussions above have three immediate predictions on the investment-expected re-

turn relation, which are the three hypotheses in our empirical analysis. The first hypothesis

is directly related to Eq. 10. If the ratio of current asset to long-term asset affects asset
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growths but is unrelated to discount rate, the current and long-term asset growth premi-

ums conditional on the asset ratio should be stronger than the unconditional current and

long-term asset growth premiums.

Hypothesis 1: Conditional on asset ratio, the return predictive power of both current

and long-term asset growth improves.

The second hypothesis is closely related to the first hypothesis and is based on the finding

of Vuolteenaho (2002) that cash flow news are more important than discount rate news for

firm-level stock returns. In q theories of investment with homogeneous of degree one pro-

duction function and adjustment cost function (e.g., Hayashi (1982), Restoy and Rockinger

(1994)), the investment return, which is related to firm’s profitability and investment rates,

is equal to stock return state by state. If we extend this relative importance of cash flow

news and discount rate news to explaining the firm-level investment, the majority of invest-

ment variations (both current and long-term asset growths) are driven by the interaction of

expected profitability and asset imbalance. Therefore, double sorts on current and long-term

asset growths can potentially improve the current and long-term asset growth premiums.

Hypothesis 2: Conditional on current asset growth, the long-term asset growth pre-

mium improves. Conditional on long-term asset growth, the current asset growth premium

improves.

The last hypothesis is on the strength of the asset growth effects. If the asset imbalance

channel is responsible for the relative return predictive power of total, current, and long-

term asset growths, these asset growth effects should be stronger among firms with low asset

imbalance than firms with high asset imbalance.

Hypothesis 3: The total, current, and long-term asset growth premiums are stronger

among firms with low asset imbalance.

3 Asset growth effect

In this section, we replicate the asset growth effect and compare the return predictive power

of total asset growth with its two components, the current and long-term asset growths.

In Section 3.1, we describe the data sources and variable constructions. In Section 3.2,

we confirm the total asset growth effect in our extended sample period from 1968 to 2019.

Section 3.3 examines the return predictive power of current and long-term asset growths.
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We also do horse races between total asset growth and its two components, and confirm

the finding that current and long-term asset growths are subsumed by total asset growth in

return predictions.

3.1 Data

The data used in our analyses are standard in the asset pricing literature and come from

several sources. The stock data are from the monthly database at the Center for Research

in Security Prices (CRSP), the accounting data are from the Compustat Annually database,

and the Fama and French factors are from the Fama/French data library. The benchmark

sample includes all NYSE/AMEX/NASDAQ common stocks (with a share code SHRCD of

10 or 11, excluding financial stocks) from July 1968 to December 2019.

Our main variables of interest are the annual total asset growth rate (TAG), current

asset growth (CAG), and long-term asset growth (LAG). Following Cooper, Gulen, and

Schill (2008), we define TAG as the year-on-year percentage change in total asset growth

(Compustat data item AT): TAGt = (ATt−1−ATt−2)/ATt−2. We define CAG and LAG in a

similar way, where the current asset is measured by the Compustat data item ACT and the

long-term asset is measured by the difference between total asset and current asset. Other

firm characteristics are defined following the existing literature. Book-to-market ratio (BM)

is the book value of equity divided by market value at the end of last fiscal year. Firm size is

measured by the market equity in million dollars at the end of previous June. Momentum is

the prior 2-12 month cumulative returns. Long-term stock returns, r(13-60), is the prior 13-

60 month cumulative returns. Following Novy-Marx (2013), the gross profitability (GP/A)

is defined as gross profits (Compustat item REVT minus COGS) divided by total asset.

3.2 Asset growth premium

We first confirm the asset growth effect in our sample. At the end of June of each year t,

we sort stocks into quintiles based on the total asset growth (TAG) of the fiscal year ending

at t-1, with the quintile 5 (1) including firms with the highest (lowest) total asset growth.

The portfolios are held from July of year t to June of year t+1 and rebalanced every year.

Panel A of Table 1 reports the characteristics of these TAG portfolios, and several interesting

observations emerge. First, there is a large cross-sectional difference in total asset growth,

with TAG varying from −9% in the low TAG quintile to 34% in the high TAG quintile.

Second, since total asset growth is the weighted average of current and long-term asset

growths, the TAG sort also creates a monotonic pattern in LAG and CAG. The difference

in LAG (CAG) between high and low TAG quintiles are 0.42 and 0.45, respectively. Third,
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stocks with high TAG are more like growth firms (low book-to-market ratio, or BM) and

long-term winners (high prior 13-60 month stock returns), and stocks with low TAG tend to

be value firms (high BM) and long-term losers. This is consistent with the finding in Fama

and French (2015) and Hou, Xue, and Zhang (2015) that the value premium and long-term

contrarian effect become insignificant after controlling for their investment factors. On the

other hand, the relations between TAG and firm size, momentum, and gross profitability are

weaker and non-monotonic. Compared to stocks with high total asset growths, low TAG

stocks tend to be smaller measured from their market values.

[Insert Table 1 here]

In Panel B of Table 1, we report the mean, standard deviation, Sharpe ratio of the

monthly value-weighted excess returns of TAG quintiles, as well as the results from the

asset pricing tests, including the capital asset pricing model (CAPM), and the Fama and

French three-factor model tests. The average excess return of the low TAG stocks is 0.78%

per month, higher than the average excess return of 0.40% for the high TAG stocks. Their

difference of −0.38% per month is about three standard deviations from zero with a monthly

Sharpe ratio of −0.11 (or equivalently, an annual Sharpe ratio of −0.39). CAPM does not

explain the TAG premium. In fact, the market exposure is higher for high TAG stocks than

low TAG stocks, generating a CAPM alpha of even larger at −0.52% per month for the long-

short portfolio. Including the size premium factor small-minus-big (SMB) and value premium

factor high-minus-low (HML) weakens abnormal return of the TAG premium. Given the

strong cross-sectional relation between TAG and BM reported in Panel A, the HML beta of

the long-short portfolio is particularly strong at −0.72 with a t-statistic of −16.56. However,

the three-factor alpha of TAG premium remains significant at −0.22% per month.

3.3 Long-term and current asset growth premiums

In this subsection, we examine the return predictive power of long-term and current asset

growths and compare their performances with that of the total asset growth.

Panel A of Table 2 and Table 3 report the characteristics of long-term asset growth and

current asset growth quintile portfolios, respectively. The total asset growth monotonically

increases with both long-term and current asset growths, which is again expected as LAG

and CAG are two components of total asset growth. Current (long-term) asset growth also

increases with long-term (current) asset growth, with a difference of 14% (12%) between

high and low LAG (CAG) stocks. This positive comovement reflects common responses of

current and long-term assets to both cash flow news and discount rate news. As illustrated
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in Eq. 10, a positive shock to the expected profitability or a negative shock to the discount

rate induces more investment in both long-term and current assets. In the meanwhile, the

correlation is far from being perfect. For instance, the 14% CAG spread in the LAG sort is

less than a quarter of the 59% CAG spread from the CAG sort. Ignoring measurement errors,

this low positive correlation can be driven by the negative comovement between current and

long-term asset growths from the asset imbalance motive discussed in Section 2. Table 2

and Table 3 also show that other characteristics of LAG and CAG portfolios share similar

features as those in TAG portfolios, with high LAG and CAG stocks having lower BM ratios

and better long-term past stock performance than low LAG and CAG stocks.

[Insert Table 2 Here]

[Insert Table 3 Here]

In Panel B of Table 2 and Table 3, we report the properties of excess returns of the LAG

and CAG portfolios and the asset pricing tests results. The LAG premium is −0.35% per

month with a Sharpe ratio of −0.11, and the CAG premium is −0.25% per month with a

Sharpe ratio of −0.08. Controlling for the market factor tends to increase the performance of

LAG and CAG premiums. The CAPM alpha is −0.44% for the LAG premium and −0.38%

for the CAG premium. However, due to the large negative correlations with the HML factor,

neither of the Fama and French three-factor model alphas for the LAG and CAG premiums

are statistically significant at the 5% level. The abnormal return of the three-factor model

becomes only −0.20% for the LAG premium and −0.14% for the CAG premium, representing

reductions of more than 50% from the corresponding CAPM alphas.

To formally run the horse races between TAG and CAG (and LAG) in return predic-

tions, we use double sorted portfolios. In Panel A.1 of Table 4., we create 5-by-5 portfolios

sequentially sorted on TAG and then on LAG and report the LAG premium within each

TAG quintile, as well as their average across TAG quintiles. The latter can be interpreted

as the LAG premium conditional on TAG. Panel A.1 shows that controlling for TAG, the

LAG premium is only statistically significant in the high TAG quintile, and is positive in the

two lowest TAG quintiles. The conditional LAG premium is −0.10% per month (t-statistic

= −1.07) and much smaller than the unconditional LAG premium of −0.35% per month in

Table 2. When we switch the order of sorts in Panel A.2, the TAG premium is also only

significant in high LAG quintile, possibly because of the strong LAG premium and correla-

tion between TAG and LAG. However, the conditional TAG premium is −0.22% per month

and more than two standard deviations from zero. Therefore, although both LAG and TAG

strongly predict returns in the univariate sorts, the predictive power of LAG is dominated
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by TAG in this horse race. Similar results can be found in the double sorts on TAG and

CAG. Controlling for TAG, the average CAG premium is statistically insignificant at only

−0.06% per month. In contrast, the conditional TAG premium controlling for CAG remains

strong at −0.29% per month with a t-statistic of −2.76.

[Insert Table 4 Here]

As a robustness check, we run Fama and MacBeth (1973) regressions of monthly stock

returns on TAG, LAG, and CAG, along with other firm characteristics including book-to-

market ratio, momentum, and gross profitability. In the first stage, we run cross-sectional

return predictive regressions at each month, and in the second stage, we calculate the time-

series average of the coefficients from the first-stage estimation as our coefficient estimates.

The results are reported in Table 5. Specifications 1-6 are for the univariate regressions

separately on each of these predictive variables. All three asset growths negatively and

strongly predict future stock returns. The estimated coefficients are −0.48, −0.29, and −0.21

for TAG, CAG, and LAG, respectively, and all three coefficients have a t-statistic above 4 in

absolute value. Book-to-market ratio, momentum, and gross profitability are positive return

predictors, consistent with the findings from the literature. Specification 7 is a direct horse

race between TAG, LAG, and CAG. When these three asset growths are included in the

same specification, all coefficients have been weakened compared with those from univariate

regressions. While the coefficient on TAG remains significant at −0.48 (t-statistic = −4.37),

CAG and LAG have lost their return predictive power. The result is similar when we control

for book-to-market, momentum, and gross profitability in Specification 8.

[Insert Table 5 Here]

To summarize, we confirm the finding in Cooper, Gulen, and Schill (2008) that while

total, long-term, and current asset growth all negatively predict future stock returns, the

total asset growth has the strongest predictive power. When we run horse races among these

asset growths, the performances of long-term and current asset growths are subsumed by

the total asset growth.

4 The asset imbalance channel

In the previous section, our empirical analyses show that the total asset growth performs

better than long-term and current asset growths in stock return predictions. The investment-

based model in Section 2 offers an explanation: when both current and long-term assets are
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considered as production inputs, firm’s optimal investment policy would include another

motive for firm’s investment in these two assets – asset imbalance. When a firm’s asset

ratio, defined as the ratio of current asset to long-term asset, is higher than the steady state,

its future long-term asset growth is high and current asset growth is low. On the other hand,

when asset ratio is low, the firm has incentive to reduce its long-term asset in exchange for

more current asset. The resulting changes in asset growths are unrelated to the discount

rate, and importantly, the long-term and current asset growths from this motive move in the

opposite direction. Therefore, asset imbalance lowers the informativeness of both long-term

and current asset growths about future returns. In this section, we substantiate this asset

imbalance channel with empirical evidences.

4.1 Asset ratio

One central idea of the asset imbalance channel is that asset ratio can forecast future current

and long-term asset growths. If this channel exists, the current-to-long-term asset ratio (AR)

should forecast long-term asset growth positively and current asset growth negatively.

Prior studies have examined the determinants of holdings and investments in current as-

sets. Opler, Pinkowitz, Stulz, and Williamson (1999), for instance, argue that corporate cash

holdings tradeoff the costs of lower rate of returns and benefits related to transaction costs

and precautionary savings. They document that firms with strong growth opportunities,

riskier cash flows, and less access to the capital markets hold relatively high ratios of cash

to total non-cash assets. They also find firms that do well tend to accumulate more cash

than predicted by the static tradeoff model where managers maximize shareholder wealth.

Similarly, Carpenter, Fazzari, and Petersen (1994) document that inventory investment is

highly procylical at both aggregate level and firm level with respect to firm-level cash flows.

Since inventory investment is more reversible and subject to less adjustment cost than fixed

investment, firms can reduce inventory quickly, relaxing the short-run financing constraints

on the fixed investment activities.

Panel A of Table 6 examines the relation between asset ratio and standard firm-level

characteristics, including the book-to-market ratio (BM), prior 2-12 month returns (MOM),

market value (Size), and gross profitability (GP/A) of AR quintiles in our sample. Firms with

more current asset relative to long-term asset tend to be small growth firms with high gross

profitability, whereas the relation between AR and momentum is weak. Panel B presents the

prior 4-year change in total, long-term, current assets and debts, change in market equity,

and cumulative stock returns of these AR quintiles. On the asset side of the balance sheet,

the current (long-term) asset grows faster (slower) for high AR firms than low AR firms,
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but this pattern is mechanical because the quintiles are based on the current-to-long-term

asset ratio. Interestingly, the total asset also tends to grow faster for high AR firms, which is

consistent with the higher profitability of these firms. On the right-hand-side of the balance

sheet, although the pattern in the prior stock returns across AR quintiles is weak, high AR

firms tend to have a larger increase in market value, indicating more equity issuance of these

firms. In contrast, while high AR stocks slightly reduce their outstanding debts during prior

years, low AR stocks have substantially increased their debts.

[Insert Table 6 Here]

Table 7 tests how asset ratio predicts future asset growths. We regress CAG or LAG at

the fiscal year ending at t on the logarithm of AR at the fiscal year ending at t-1, with the

control for CAG and LAG at t-1. In Specifications 2 and 4, we also control for CAG and LAG

at t-2. Table 7 shows that the coefficients on asset ratio are indeed negative in predicting

future current asset growth and positive in predicting future long-term asset growth, all

of which are statistically significant from zero at the 1% level. Based on the results in

Specifications 2 and 4, a one standard deviation increase in log asset ratio is associated with

a −3.06% reduction in subsequent current asset growth and 14.7% increase in subsequent

long-term asset growth.2 The lower predictability of CAG than LAG is consistent with the

notion that the adjustment cost is substantially higher for long-term asset than current asset

(Carpenter, Fazzari, and Petersen (1994)). Interestingly, controlling for the asset ratio, the

autoregressive coefficients of CAG and LAG are relatively weak. For instance, in Specification

2, the coefficient on CAG(t-1) is actually negative, and coefficient on CAG(t-2) is positive

with a t-statistic of slightly greater than 2. Similarly, neither of the coefficients on LAG(t-

1) and LAG(t-2) are statistically significant in Specification 4 in forecasting future LAG.

However, we notice strong cross-predictions between current and long-term asset growths.

In Specification 2, the forecasting power of LAG(t-1) and LAG(t-2) for future CAG is much

greater than that of prior CAGs, and in Specification 4, the coefficients of CAG(t-1) and

CAG(t-2) in predicting LAG at year t are more than 10 standard deviations from zero. One

plausible explanation for this cross prediction is that when a firm accumulates a lot of cash

(an important component of current asset) due to either superb past operations or external

financing, it tends to use the money to purchase long-term capital. In turn, when a company

depleted its current asset for long-term capital, it has the incentive to rebuild the current

asset for precautionary savings.3

[Insert Table 7 Here]
2These estimates are based on the average standard deviation of logAR of 1.32 in our sample.
3See, for example, Opler, Pinkowitz, Stulz, and Williamson (1999) and Bates, Kahle, and Stulz (2009).
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4.2 Double sorts on asset ratio and asset growths

Hypothesis 1 states that the return predictive power of current and long-term asset growths

should be enhanced after controlling for asset ratio, since the asset imbalance channel is

unrelated to the discount rate. To test this hypothesis, we form 5-by-5 portfolios sequentially

double sorted on asset ratio and CAG (and LAG). Table 8 reports the LAG premiums (Panel

A) and CAG premiums (Panel B) within each AR quintile, as well as their averages across

AR quintiles. As a comparison, we also report the unconditional LAG and CAG premiums

from one-way sorts. Panel A shows that the LAG premium ranges from −0.32% per month

in the AR quintile 3 to −0.39% per month in the AR quintile 1. The LAG premiums are

statistically significant in three out of the five AR quintiles, and the average LAG premium

across quintiles is −0.36% per month. This conditional LAG premium is comparable to the

unconditional premium of −0.35% per month, but the t-statistic of the LAG premium, which

is directly related to its Sharpe ratio, increases from −2.68 to −3.12. Therefore, conditional

on asset ratio, we observe a substantial improvement in the long-term asset growth premium.

[Insert Table 8 Here]

Panel B of Table 8 reports the results for the double sorts on asset ratio and current asset

growth. The CAG premium is negative and statistically significant in the AR quintiles 2, 3,

and 5, and is marginally significant in the quintile 4. The conditional CAG premium aver-

aging across AR quintiles is −0.38% per month, higher in magnitude than the unconditional

CAG premium of −0.25% per month. The corresponding t-statistic increases by 60%.

Interestingly, the total asset growth premium also improves controlling for asset ratio.

In Panel C of Table 8, we form double-sorted portfolios based on asset ratio and total asset

growth. Conditional on AR, the TAG premium increases to −0.42% per month (t-statistic

= −3.17) from the −0.38% (t-statistic = −2.56) unconditional TAG premium. This finding

suggests that although the total asset growth, the weighted average of current and long-term

asset growths, is less influenced by the asset imbalance channel, it is not completely isolated

from it. In Section 4.5, we further exploit this pattern and examine the asset growth effects

among firms with small and large asset imbalance.

Our results in this subsection confirm Hypothesis 1 that the return predictive power of

current and long-term asset growths improves conditioning on asset ratio, and hence provides

support for the asset imbalance channel in our investment-based model.
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4.3 Double sorts on CAG and LAG

Although current and long-term asset growths predict future stock returns, the information

content of these asset growths about discount rate remains low, especially at the firm level.

For instance, Vuolteenaho (2002) shows that unlike the dominant role of discount rate news

for the stock market return, cash flow news are much more important for firm-level stock

returns. Extending this argument to investment, we expect both CAG and LAG are more

informative about the firm-level expected profitability and asset ratio than discount rate.

This implies that when we control for CAG (LAG) when examining the LAG (CAG) pre-

mium, we are more likely to have controlled for expected profitability and asset ratio, so

double sorts on LAG and CAG should improve both LAG and CAG premiums.

Table 9 reports the results on the double sorts on LAG and CAG. In Panel A, the

average LAG premiums from low to high CAG quintiles are −0.54%, −0.12%, −0.21%,

−0.23%, and −0.74% per month, respectively, and the average conditional LAG premium is

−0.37% per month. Although the economic magnitude of this conditional premium is only

slightly larger than −0.35% for the unconditional LAG premium, the t-statistic and hence

the corresponding Sharpe ratio increases by 30%. Similarly in Panel B, the CAG premium

conditional on LAG is −0.26% per month, and the t-statistic is 36% higher than that for

the unconditional CAG premium. Therefore, we provide empirical evidences for Hypothesis

2 that controlling for CAG and LAG would enhance the performance of the LAG and LAG

premiums, respectively.

[Insert Table 9 Here]

4.4 A measure of asset imbalance

The two-capital investment-based model has another prediction on the asset growth effects.

Among all stocks, asset growths (long-term, current, and total) in firms with low asset

imbalance should contain better information about discount rate than in firms with high

asset imbalance. As such, we expect the asset growth premiums to be stronger for low

asset imbalance stocks (Hypothesis 3). In this section, we propose a direct measure of asset

imbalance (AIB) and study its effect on the asset growth premiums.

Our measure of asset imbalance is simple to construct and economically intuitive. It is

based on the relative rankings of current asset growth and long-term asset growth. Pre-

sumably, if the current and long-term asset growths move in the same direction, the asset

imbalance is likely to be low. In contrast, if a stock has a large increase in long-term asset

but a big reduction in the current asset, it is likely that its asset imbalance is high. Following

this argument, we assign two indices from 1 to 10 to each stock, one based on the one-way
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sorts on current asset growth and the other one based on one-way sorts on long-term asset

growth. AIB is then defined as the absolute value of the difference between these two indices.

For instance, at some point in time, if a firm has a large CAG and the first index of 10, and

in the meanwhile, the firm has a small LAG with the second index of 2, then AIB of the

firm is |10− 2| = 8, indicating that its current and long-term assets are rather imbalanced.

With this AIB measure, we form 5-by-5 portfolios sequentially double-sorted on AIB and

asset growths (TAG, LAG, and CAG) compare the patterns of average stocks returns across

these AIB quintiles. The results are reported in Table 10.

[Insert Table 10 Here]

Panel A of Table 10 reports the long-term asset growth premium within each AIB quintile.

In line with Hypothesis 3, there is a strong decreasing trend in the LAG premium from low

to high AIB quintiles. The LAG premium is −1.02% per month (t-statistic = −3.96) among

firms with lowest asset imbalance, and it shrinks to only −0.06% per month among firms

with highest asset imbalance. The last row of Panel A reports the LAG spread, the difference

in LAG between high and low LAG quintiles, for each AIB quintile. Unlike the pattern for

the LAG premium, the LAG spread displays a U shape across AIB quintiles. It is highest

for the lowest AIB quintile (2.20) and lowest for the AIB quintile 3 (0.44), whereas the

LAG spread is the second highest for firms with the highest asset imbalance (AIB5). These

findings suggest that the difference in the LAG premium across AIB quintiles is unlikely to

be driven by the difference in the LAG spread.

We find very similar results for the CAG premium (Panel B) and TAG premium (Panel

C). The CAG premium is highest at −1.05% per month among lowest AIB stocks and

becomes positive but small at 0.14% per month among stocks with highest AIB. Similarly,

the TAG premium is −1.09% per month in the lowest AIB quintile (AIB1), as compared to

only −0.05% in the highest AIB quintile (AIB5). Again, the CAG spread and TAG spread

are unlikely to explain the difference in these premiums across AIB quintiles because neither

asset growth spreads is monotonic with asset imbalance.

To further alleviate the concern that the stronger asset growth premiums based on total,

current, and long-term asset growths within the lowest asset imbalance quintile may be

simply due to the larger asset growth spreads in those firms, we repeat the Fama and

MacBeth regressions in the first three specifications of Table 5 separately for stocks within the

lowest 20% AIB percentiles, middle 20%-80% AIB percentiles, and top 20% AIB percentiles,

as reported in Panels A, B, and C of Table 11, respectively. The point estimate for the

coefficient of TAG is −0.48 for stocks in the bottom 20% AIB percentiles (Panel A), slightly

smaller than −0.58 for stocks within 20%-80% AIB percentiles (Panel B), but significantly
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larger than those in the top 20% AIB percentiles (Panel C). More importantly, the t−statistic

of these point estimates is strongest for low AIB stocks and weakest for high AIB stocks,

indicating that TAG contains the best information about about expected returns when the

asset imbalance is the smallest (low AIB). The results are even stronger for CAG and LAG.

In Specifications 2 and 3, both the point estimate and t-statistic decreases monotonically

from Panel A to Panel C.

[Insert Table 11 Here]

As a measure of noisiness of the information contained in asset growths about discount

rate, our asset imbalance measure (AIB) can be used to understand why total asset growth

has a stronger return predictive power than current and long-term asset growths. In the

investment-based model in Section 2, our interpretation is that since 1) the asset imbalance

channel induces a negative comovement between current and long-term asset growths, and

2) the total asset growth is a weighted average of current and long-term asset growths, part

of the asset growth movements due to asset imbalance can be cancelled out in the total

asset growth. If this mechanism is true, we expect our asset imbalance measure (AIB) to be

lower in the extreme (highest and lowest) TAG portfolios than the extreme CAG and LAG

portfolios from which the asset growth premiums are mainly derived.

Table 12 reports the average AIB for the quintile portfolios sorted by long-term asset

growth (Panel A), current asset growth (Panel B), and total asset growth (Panel C). The

pattern in asset imbalance displays a U shape across both LAG and CAG quintiles. The

average AIB reduces from 3.14 in the low LAG quintile to 2.10 in the 3rd LAG quintile, and

then increases to 2.86 in the high LAG quintile. Similarly, the two CAG quintiles with highest

AIB are CAG1 and CAG5, with an average AIB of 3.40 and 2.68, respectively, whereas the

quintile with lowest AIB is CAG3. In contrast, the average AIB across total asset growth

quintiles is hump-shaped (Panel C). The average AIB is 2.30 in the lowest TAG quintile and

2.17 for the highest TAG quintile, both of which are lower than those for the extreme LAG

and CAG quintiles. These findings suggest that total asset growth is less “contaminated”

by the asset imbalance channel than current and long-term asset growths, giving rise to its

strongest return predictive power among the three asset growths.

[Insert Table 12 Here]

To conclude this subsection, we find asset growth premiums are substantially stronger

among stocks with low asset imbalance, providing empirical evidences for Hypothesis 3.

Based on our investment-based explanation, these stocks have weakest movement in current

and long-term assets growths that is due to asset imbalance, and therefore, their asset

growths are more informative about discount rate than stocks with high asset imbalance.
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4.5 Asset imbalance effect in other parts of balance sheets

In the investment-based model in Section 2, we separate production inputs into two broad

categories: current asset and long-term asset. In practice, various components of current

assets may have different properties. While firms keep cash to alleviate concerns of possible

future financial constraints for a precautionary saving purpose (e.g., Opler, Pinkowitz, Stulz,

and Williamson (1999)), by extending sales credits to customers, account receivables can

substantially improve a firm’s revenues. On the other hand, inventories of raw materials

and finished goods have been explicitly used in the literature as a production factor (e.g.,

Ramey (1989), Belo and Lin (2012)). In this subsection, we decompose current asset growth

into cash growth (CASHG) and noncash asset growth (NOCASHG), with the latter being

further decomposed into inventories growth (INVTG), receivables growth (RECTG), and

other current asset growth (ACOG). We examine how these component growth rates predict

stock returns relative to the current asset growth.

We run Fama and MacBeth (1973) return predictive regressions using the subsample of

firms with non-missing current asset components, and the results are presented in Table 13.

Specifications 1-4 compare the performances of current asset growth, cash growth, and non-

cash growth. Since this sample is different from our benchmark sample, the return predictive

power of current asset growth is slightly different from that in Table 5, with an estimated

CAG coefficient of −0.44 (t-statistic = −6.77). Comparing the growth rates of cash and

non-cash assets, non-cash asset growth is a much stronger return predictor, consistent with

the finding in Cooper, Gulen, and Schill (2008). The coefficient on NOCASHG is −0.45 (t-

statistic =−6.27), whereas the coefficient on CASHG is only−0.02, although the latter is also

statistically significant from zero. In Specification 4 where CAG, CASHG, and NOCASHG

are all included, the coefficient on CAG is the strongest among the three, and the coefficient

on CASHG turns positive. Specifications 5-8 report the results for the three components

of non-cash asset. Although all three components strongly predict future stock returns in

univariate regressions, they lose predictive powers in their horse race with NOCASHG in

Specification 8. In contrast, NOCASHG remains the strongest return predictor, with an t-

statistic of −3.76 on the estimated coefficient. In Specification 9, we include all six variables,

and again, we find the current asset growth, the growth rate of all current assets, has the

strongest return predictive power.

[Insert Table 13 Here]

The result in Table 13 is interesting because it indicates that the asset imbalance channel

exists beyond current and long-term assets. This makes sense because there are indeed many

ways in which current assets can change from one form to another. For instance, when a
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firm sells its products from inventory, it may increases its account receivables while lowering

inventories. Months later when the firm collects its account receivable from the customers,

it raises cash holdings and lowers account receivables. These conversions among components

of current assets are unlikely to be strongly related to the discount rate, but they would

reduce the return predictive power of the growth rates of these current asset components.

Lastly, we study if the imbalance effect extends to the right hand side of the balance

sheets. While there are substantive empirical evidences that both equity and debt issuance

predict stock returns,4 there are reasons to expect an imbalance effect between debt and

equity. According to the trade-off theory of capital structure (e.g., Kraus and Litzenberger

(1973), the optimal leverage reflects a trade-off between the tax benefits of debt and the

deadweight costs of bankruptcy, so that leverage exhibits target adjustment so that devia-

tion from the target are gradually eliminated (Myers (1984)). Indeed, Lemmon, Roberts,

and Zender (2008) empirically document that leverage ratio is highly persistent and mean-

reverting. Another, maybe more related motivation is fromWhited and Zhao (2019). Whited

and Zhao (2019) model the real benefit of a firm’s finance to be a constant elasticity of sub-

stitution (CES) function of its debt and equity and consider this benefit would ultimately

be reflected in its value added. If we replace the long-term and current assets with debt and

equity in the production function in Section 2, we would see the imbalance effect also exists

between equity and debt.

We confirm this conjecture in Table 14. As in Table 5, we run Fama and MacBeth (1973)

regressions of monthly stock returns on total asset growth (TAG), book equity growth (BEG),

and debt growth (DEBTG), and other firm characteristics including book-to-market ratio,

momentum, and gross profitability. Specifications 1-6 are for the univariate regressions and

Specifications 7-8 are for the horse races between TAG, DEBTG, and BEG. Confirming

the findings in the literature, both debt and equity growths negatively predict future stock

returns, with the t-statistics of the estimated coefficient being greater than 3 in absolute

value for both variables. However, when we include TAG, BEG, and DEBTG in the same

regression in Specification 7, the coefficients on BEG and DEBTG turn positive, whereas

the coefficient on TAG becomes even stronger. The results are almost the same when we

control for other firm characteristics in Specification 8.

[Insert Table 14 Here]

Taken together, the results in this subsection suggest that although we mainly focus on

4For instance, Richardson and Sloan (2003) show that debt and equity issuances are part of a larger net
external financing effect. Pontiff and Woodgate (2008) find that seasoned equity offerings, repurchases, and
merger effects are part of a broader growth in shares effect. Daniel and Titman (2006) document a negative
relation between composite share issuance and future returns.
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the imbalance effect between long-term and current assets, this channel appears to be quite

broad and exists in components of current asset, components of non-cash asset, as well as

debt and equity on the right hand side of the balance sheets.

5 Conclusion

In this paper, we provide a simple explanation for the weaker return predictive power of

long-term and current asset growths than total asset growth. We extend the conventional

one-capital framework with only physical capital (long-term asset) into a two-capital setup

in which both long-term and current assets are used as production inputs. The optimiza-

tion conditions imply a novel asset imbalance channel that induces a negative comovement

between current and long-term asset growths and is unrelated to the discount rate effect.

This asset imbalance channel weakens the return predictive power of long-term and current

asset growths, but the total asset growth, which is the weighted average of long-term and

current asset growths, is relatively less affected by construction and hence contains better

information about discount rate. Our empirical analyses find compelling evidences for this

asset imbalance effect. Overall, our findings support the q theory based explanation for the

asset growth effect and provide a defense for the use of asset growth in the investment factors

in the recent linear factor models.
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much more cash than they used to?, The journal of finance 64, 1985–2021.

Belo, Frederico, Jun Li, Xiaoji Lin, and Xiaofei Zhao, 2017, Labor-force heterogeneity and

asset prices: The importance of skilled labor, The Review of Financial Studies 30, 3669–

3709.

Belo, Frederico, and Xiaoji Lin, 2012, The inventory growth spread, Review of Financial

Studies 25, 278–313.

, and Santiago Bazdresch, 2014, Labor hiring, investment, and stock return pre-

dictability in the cross section, Journal of Political Economy 122, 129–177.

Belo, Frederico, Xiaoji Lin, and Maria Ana Vitorino, 2014, Brand capital and firm value,

Review of Economic Dynamics 17, 150–169.

Berk, Jonathan B., Richard C. Green, and Vasant Naik, 1999, Optimal investment, growth

options, and security returns, Journal of Finance 54, 1553–1607.

Campbell, John Y, and Robert J Shiller, 1988, Stock prices, earnings, and expected divi-

dends, The Journal of Finance 43, 661–676.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2004, Corporate investment and asset

price dynamics: Implications for the cross-section of returns, Journal of Finance 59, 2577–

2603.

Carpenter, Robert E, Steven M Fazzari, and Bruce C Petersen, 1994, Inventory investment,

internal-finance fluctuations, and the business cycle, Brookings Papers on Economic Ac-

tivity 1994, 75–138.

Cochrane, John H., 1991, Production-based asset pricing and the link between stock returns

and economic fluctuations, Journal of Finance 46, 209–237.

Cooper, Micheal, Huseyin Gulen, and Mihai Ion, 2017, The use of asset growth in empirical

asset pricing models, Working Paper.

22



Cooper, Michael J, Huseyin Gulen, and Michael J Schill, 2008, Asset growth and the cross-

section of stock returns, Journal of Finance 63, 1609–1651.

Daniel, Kent, and Sheridan Titman, 2006, Market reactions to tangible and intangible in-

formation, The Journal of Finance 61, 1605–1643.

Eisfeldt, Andrea L, and Dimitris Papanikolaou, 2013, Organization capital and the cross-

section of expected returns, Journal of Finance 68, 1365–1406.

Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, Journal

of Financial Economics 116, 1 – 22.

Gomes, Joao, Leonid Kogan, and Lu Zhang, 2003, Equilibrium cross section of returns,

Journal of Political Economy 111, 693–732.

Goncalves, Andrei, Chen Xue, and Lu Zhang, 2019, Aggregation, capital heterogeneity, and

the investment capm, Review of Financial Studies, Forthcoming.

Hayashi, Fumio, 1982, Tobin’s marginal q and average q: A neoclassical interpretation,

Econometrica pp. 213–224.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach,

Review of Financial Studies 28, 650–705.

Jermann, Urban J., 1998, Asset pricing in production economies, Journal of Monetary Eco-

nomics 41, 257–275.

Jones, Christopher S., and Selale Tuzel, 2013, Inventory investment and the cost of capital,

Journal of Financial Economics 107, 557–579.

Kogan, Leonid, and Dimitris Papanikolaou, 2012, Economic Activity of Firms and Asset

Prices, Annual Review of Financial Economics 4, 361–384.

, 2013, Firm characteristics and stock returns: The role of investment-specific shocks,

Review of Financial Studies.

, 2014, Growth opportunities, technology shocks, and asset prices, Journal of Finance

69, 675–718.

Kraus, Alan, and Robert H Litzenberger, 1973, A state-preference model of optimal financial

leverage, The journal of finance 28, 911–922.

23



Kung, Howard, and Lukas Schmid, 2015, Innovation, growth, and asset prices, The Journal

of Finance 70, 1001–1037.

Lam, F.Y. Eric C., and K.C. John Wei, 2011, Limits-to-arbitrage, investment frictions, and

the asset growth anomaly, Journal of Financial Economics 102, 127–149.

Lemmon, Michael L, Michael R Roberts, and Jaime F Zender, 2008, Back to the beginning:

persistence and the cross-section of corporate capital structure, The journal of finance 63,

1575–1608.

Li, Dongmei, and Lu Zhang, 2010, Does q-theory with investment frictions explain anomalies

in the cross section of returns?, Journal of Financial Economics 98, 297–314.

Li, Jun, 2017, Explaining momentum and value simultaneously, Management Science 64,

4239–4260.

Lin, Xiaoji, 2012, Endogenous technological progress and the cross-section of stock returns,

Journal of Financial Economics 103, 411 – 427.

Lipson, Marc L, Sandra Mortal, and Michael J Schill, 2011, On the scope and drivers of the

asset growth effect, Journal of Financial and Quantitative Analysis pp. 1651–1682.

Liu, Laura Xiaolei, Toni M. Whited, and Lu Zhang, 2009, Investment-based expected stock

returns, Journal of Political Economy 117, 1105–1139.

Liu, Laura Xiaolei, and Lu Zhang, 2014, A neoclassical interpretation of momentum, Journal

of Monetary Economics 67, 109 – 128.

Myers, Stewart C, 1984, Capital structure puzzle, Discussion paper National Bureau of

Economic Research.

Novy-Marx, Robert, 2013, The other side of value: The gross profitability premium, Journal

of Financial Economics 108, 1–28.
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Table 1: The asset growth premium

This table reports the average firm characteristics in Panel A and the value-weighted average
excess returns (Rete), standard deviation (Std), Sharpe ratio (SR) as well as the results of
asset pricing tests for total asset growth (TAG) portfolios in Panel B. At the end of June of
each year t, stocks are allocated into quintiles based on total asset growth, which is defined as
the percentage change in total assets (Compustat data item AT) from the fiscal year ending
in calendar year t-2 to fiscal year ending in calendar year t-1. LAG and CAG represent
the percentage change in long-term assets (Compustat item AT minus ACT) and current
assets (Compustat item ACT) from the fiscal year ending in calendar year t-2 to fiscal year
ending in calendar year t-1, respectively. BM is the book value of equity divided by market
value at the end of last fiscal year. Size is market equity in million dollars. MOM is the
prior 2-12 month cumulative returns, r(13-60) is the prior 13-60 month cumulative returns.
Gross profitability (GP/A) is defined as gross profits (Compustat item REVT minus COGS)
divided by total assets. The abnormal returns are monthly and reported in percentages.
t-statistics in parentheses are calculated based on the heteroskedasticity-consistent stand
errors of Newey and West. The sample includes NYSE/AMEX/NASDAQ common stocks
(excluding financial stocks) from July 1968 to December 2019.

Panel A: Characteristics of TAG portfolios
Lo 2 3 4 Hi Hi-Lo

TAG -0.09 0.01 0.07 0.14 0.34 0.44
LAG -0.08 0.01 0.06 0.13 0.35 0.42
CAG -0.11 0.01 0.08 0.15 0.34 0.45
BM 0.94 0.87 0.75 0.63 0.51 -0.44
Size 121.31 411.99 591.61 628.67 452.59 331.29
MOM 0.08 0.10 0.10 0.09 0.05 -0.03
r(13-60) -0.04 0.38 0.60 0.81 1.07 1.11
GP/A 0.30 0.32 0.34 0.37 0.34 0.04
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Panel B: TAG portfolio returns and asset pricing tests
Lo 2 3 4 Hi Hi-Lo

Rete 0.78 0.63 0.57 0.54 0.40 -0.38
(3.77) (3.94) (3.30) (2.58) (1.56) (-2.56)

Std 4.87 4.07 4.23 5.02 6.09 3.37
SR 0.16 0.16 0.13 0.11 0.07 -0.11

CAPM
α 0.26 0.18 0.09 -0.02 -0.26 -0.52

(3.05) (3.32) (1.91) (-0.28) (-2.59) (-3.59)
MKT 1.00 0.86 0.91 1.06 1.26 0.26

(39.27) (53.15) (60.75) (51.1) (45.57) (6.13)
R2(%) 84.93 90.19 93.15 89.56 86.77 12.29

Fama-French three-factor Model
α 0.16 0.13 0.06 0.10 -0.07 -0.22

(2.09) (2.58) (1.54) (1.72) (-0.97) (-2.18)
MKT 1.00 0.89 0.95 1.01 1.14 0.14

(49.42) (58.01) (83.6) (66.6) (48.08) (4.58)
SMB 0.18 -0.06 -0.13 -0.01 0.19 0.00

(5.17) (-2.52) (-8.31) (-0.60) (5.25) (0.08)
HML 0.25 0.13 0.07 -0.30 -0.47 -0.72

(6.97) (4.68) (2.28) (-11.51) (-15.4) (-16.56)
R2(%) 87.74 91.29 94.20 92.30 92.63 47.51
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Table 2: Long-term asset growth premium

This table presents the characteristics and average returns of long-term asset growth (LAG)
portfolios. At the end of June of each year, firms are allocated into quintiles based on LAG.
Panel A reports the average firm characteristics, and Panel B reports the value-weighted
average excess returns (Rete), standard deviation (Std), Sharpe ratio (SR), and asset pricing
test results of the LAG portfolios. The abnormal returns are monthly and reported in per-
centages. t-statistics in parentheses are calculated based on the heteroskedasticity-consistent
stand errors of Newey and West. The sample includes NYSE/AMEX/NASDAQ common
stocks (excluding financial stocks) from July 1968 to December 2019.

Panel A: Characteristics of LAG portfolios
Lo 2 3 4 Hi Hi-Lo

TAG -0.06 0.02 0.06 0.12 0.29 0.34
LAG -0.12 0.00 0.06 0.15 0.45 0.57
CAG 0.01 0.05 0.07 0.09 0.15 0.14
BM 0.88 0.84 0.75 0.65 0.55 -0.33
Size 113.40 384.88 707.55 680.47 390.83 277.43
MOM 0.09 0.10 0.10 0.08 0.05 -0.04
r(13-60) 0.04 0.40 0.61 0.75 0.89 0.85
GP/A 0.34 0.33 0.32 0.35 0.35 0.01

Panel B: LAG portfolio returns and asset pricing tests
Lo 2 3 4 Hi Hi-Lo

Rete 0.79 0.67 0.59 0.49 0.44 -0.35
(3.64) (4.03) (3.59) (2.34) (1.72) (-2.68)

Std 5.15 4.17 4.10 4.95 5.99 3.14
SR 0.15 0.16 0.14 0.10 0.07 -0.11

CAPM
α 0.23 0.21 0.13 -0.07 -0.21 -0.44

(2.81) (3.64) (2.91) (-0.99) (-2.15) (-3.36)
MKT 1.06 0.88 0.88 1.05 1.23 0.17

(36.08) (51.30) (61.45) (61.97) (40.98) (3.70)
R2(%) 85.82 89.36 92.47 90.88 86.02 6.03

Fama-French three-factor Model
α 0.18 0.16 0.12 0.03 -0.02 -0.20

(2.28) (2.89) (2.99) (0.41) (-0.25) (-1.90)
MKT 1.04 0.91 0.90 1.00 1.12 0.08

(38.95) (60.52) (70.00) (63.37) (45.58) (2.23)
SMB 0.20 -0.06 -0.12 0.03 0.16 -0.04

(5.33) (-2.00) (-5.63) (1.11) (5.27) (-0.93)
HML 0.12 0.12 0.02 -0.23 -0.48 -0.60

(2.28) (3.77) (0.78) (-7.63) (-13.05) (-8.57)
R2(%) 87.31 90.29 93.18 92.60 92.04 33.82
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Table 3: Current asset growth premium

This table presents the characteristics and average returns of current asset growth (CAG)
portfolios. At the end of June of each year, firms are allocated into quintiles based on CAG.
Panel A reports the average firm characteristics, and Panel B reports the value-weighted
average excess returns (Rete), standard deviation (Std), Sharpe ratio (SR), and asset pricing
test results of the CAG portfolios. The abnormal returns are monthly and reported in per-
centages. t-statistics in parentheses are calculated based on the heteroskedasticity-consistent
stand errors of Newey and West. The sample includes NYSE/AMEX/NASDAQ common
stocks (excluding financial stocks) from July 1968 to December 2019.

Panel A: Characteristics of CAG portfolios
Lo 2 3 4 Hi Hi-Lo

TAG -0.07 0.01 0.06 0.13 0.28 0.35
LAG 0.02 0.03 0.05 0.07 0.14 0.12
CAG -0.16 -0.01 0.07 0.17 0.42 0.59
BM 0.87 0.84 0.74 0.64 0.55 -0.32
Size 175.32 375.48 481.47 562.87 429.14 253.82
MOM 0.07 0.09 0.09 0.09 0.07 0.00
r(13-60) 0.11 0.38 0.56 0.76 0.92 0.82
GP/A 0.27 0.35 0.37 0.38 0.31 0.04

Panel B: CAG portfolio returns and asset pricing tests
Lo 2 3 4 Hi Hi-Lo

Rete 0.68 0.61 0.57 0.58 0.43 -0.25
(3.71) (3.51) (3.27) (3.01) (1.88) (-2.00)

Std 4.54 4.29 4.30 4.79 5.72 3.05
SR 0.15 0.14 0.13 0.12 0.08 -0.08

CAPM
α 0.18 0.12 0.08 0.05 -0.19 -0.38

(2.44) (2.64) (1.47) (0.73) (-2.09) (-2.99)
MKT 0.94 0.92 0.92 1.01 1.19 0.25

(45.36) (78.24) (48.14) (55.03) (46.96) (7.03)
R2(%) 86.07 92.21 91.93 90.47 86.94 13.47

Fama-French three-factor Model
α 0.10 0.10 0.08 0.15 -0.04 -0.14

(1.50) (2.06) (1.65) (2.75) (-0.55) (-1.43)
MKT 0.94 0.93 0.94 0.97 1.09 0.15

(50.11) (74.36) (59.11) (62.72) (45.68) (4.85)
SMB 0.14 -0.04 -0.13 -0.01 0.15 0.01

(5.37) (-1.49) (-6.73) (-0.21) (3.92) (0.25)
HML 0.20 0.07 0.00 -0.26 -0.37 -0.57

(5.79) (3.19) (0.11) (-10.16) (-12.22) (-12.15)
R2(%) 88.04 92.46 92.64 92.68 91.17 40.78
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Table 4: Double sorts on TAG and LAG (and CAG)

This table reports the results of the portfolios double sorted on TAG and LAG (and CAG).
At the end of June each year we construct 5-by-5 portfolios sequentially sorted first on TAG
and then LAG in Panel A.1, first on LAG and then TAG in Panel A.2, first on TAG and
then CAG in Panel B.1, and first on CAG and then TAG in Panel B.2. Panel A.1 reports
the LAG premium (the value-weighted excess return difference between high and low LAG
quintile portfolios) within each TAG quintile and their average across TAG quintiles. Panel
A.2 reports the TAG premium (the value-weighted excess returns between high and low
TAG quintile portfolios) within each LAG quintile and their average across LAG quintiles.
The results are similarly reported for double sorts on TAG and CAG in Panel B. Returns
are monthly and reported in percentages. t-statistics in parentheses are calculated based
on the heteroskedasticity-consistent stand errors of Newey and West. The sample includes
NYSE/AMEX/NASDAQ common stocks (excluding financial stocks) from July 1968 to De-
cember 2019.

Panel A: Double sorts on LAG and TAG

Panel A.1: LAG premium conditional on TAG
TAG1 TAG2 TAG3 TAG4 TAG5 Ave

LAG Prm. 0.15 0.07 -0.14 -0.09 -0.48 -0.10
(0.74) (0.51) (-0.97) (-0.53) (-2.94) (-1.07)

Panel A.2: TAG premium conditional on LAG
LAG1 LAG2 LAG3 LAG4 LAG5 Ave

TAG Prm. 0.11 -0.24 -0.19 -0.02 -0.78 -0.22
(0.52) (-1.71) (-1.24) (-0.11) (-3.87) (-2.14)

Panel B: Double sorts on CAG and TAG

Panel B.1: CAG premium conditional on TAG
TAG1 TAG2 TAG3 TAG4 TAG5 Ave

CAG Prm. -0.14 0.03 0.12 -0.01 -0.27 -0.06
(-0.77) (0.26) (1.10) (-0.10) (-1.35) (-0.71)

Panel B.2: TAG premium conditional on CAG
CAG1 CAG2 CAG3 CAG4 CAG5 Ave

TAG Prm. -0.34 -0.25 -0.11 -0.14 -0.60 -0.29
(-1.66) (-1.61) (-0.76) (-0.74) (-2.42) (-2.76)
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Table 5: Fama-Macbeth Regression: Full sample

This table presents Fama-MacBeth regressions of monthly returns on total asset growth
(TAG), current asset growth (CAG), and long-term asset growth (LAG), and other firm
characteristics, including book-to-market equity ratio (BM), momentum (MOM), and gross
profitability (GP/A), over the period from July 1968 to December 2019. TAG, LAG and
CAG are defined as the percentage change in total assets, long-term assets and current assets
respectively from the fiscal year ending in calendar year t-2 to fiscal year ending in calendar
year t-1. BM is the book value of equity divided by market value at the end of last fiscal
year. MOM is the prior 2-12 month cumulative return. Gross profitability is defined as
revenue minus cost of goods sold and then divided by total assets. We winsorize the data
at the 1% and 99% levels to minimize the effect of outliers. t-statistics in parentheses are
calculated based on the heteroskedasticity-consistent stand errors of Newey and West. The
sample includes NYSE/AMEX/NASDAQ common stocks (excluding financial stocks) from
July 1968 to December 2019.

Specification 1 2 3 4 5 6 7 8
Intercept 1.50 1.48 1.47 1.30 1.24 1.17 1.51 0.94

(6.13) (5.96) (5.94) (5.11) (5.19) (4.73) (5.82) (4.22)
TAG -0.48 -0.48 -0.44

(-5.39) (-4.37) (-4.54)
CAG -0.29 0.00 0.01

(-4.98) (-0.05) (0.10)
LAG -0.21 -0.01 0.01

(-4.80) (-0.29) (0.28)
BM 0.10 0.10

(3.99) (4.86)
MOM 0.44 0.39

(2.30) (2.06)
GP/A 0.63 0.68

(3.88) (4.54)
Adj. R2(%) 0.39 0.3 0.25 0.32 1.29 0.36 0.5 2.26
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Table 6: Characteristics of AR portfolios

This table presents the characteristics of asset ratio (AR) portfolios. Asset ratio is defined
as the ratio of current asset to long-term asset. At the end of each June, firms are sorted
into AR quintiles. Panel A reports the standard firm-level characteristics of AR portfo-
lios, including firm size (Size), book-to-market ratio (BM), momentum (MOM),, and gross
profitability (GP/A). Panel B reports the prior 4-year cumulative percentage change in to-
tal asset, long-term asset, current asset, market equity value, total debt, long-term debt,
and short-term debt, as well as the prior 4-year cumulative stock return. The sample in-
cludes NYSE/AMEX/NASDAQ common stocks (excluding financial stocks) from July 1968
to December 2019.

Panel A: Firm-level characteristics
Lo 2 3 4 Hi Hi-Lo

Size 651.07 557.47 361.91 208.28 101.36 -549.71
BM 0.85 0.69 0.66 0.63 0.58 -0.27
MOM 0.09 0.08 0.08 0.07 0.04 -0.05
GP/A 0.16 0.31 0.40 0.43 0.40 0.24

Panel B: Prior 4-year changes in balance sheet items
Lo 2 3 4 Hi Hi-Lo

∆ log(Total asset) 0.44 0.47 0.45 0.48 0.55 0.11
∆ log(Long-term asset) 0.48 0.56 0.54 0.53 0.37 -0.11
∆ log(Current asset) 0.38 0.41 0.42 0.50 0.63 0.25
∆ log(Market equity) 0.37 0.38 0.37 0.42 0.48 0.11
Cumulative returns 0.53 0.54 0.53 0.51 0.47 -0.06
∆ log(Total debt) 0.43 0.49 0.39 0.22 -0.06 -0.49
∆ log(Long-term debt) 0.43 0.45 0.33 0.12 -0.23 -0.66
∆ log(Current debt) 0.37 0.34 0.28 0.14 -0.24 -0.61
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Table 7: Asset ratio and future long-term and current asset growth

This table reports the relation between asset ratio and future long-term asset growth (LAG)
and current asset growth (CAG). Asset ratio (AR) is defined as the ratio of current asset
(Compustat data item ACT) to long-term asset (Compustat data item AT minus ACT). We
run panel regressions of CAG and LAG at fiscal year ending at t on the logarithm of AR at
fiscal year ending at t-1, controlling for CAG and LAG at fiscal years ending at t-1 and t-2.
We winsorize the data at the 1% and 99% levels to minimize the effect of outliers. t-statistics
in parentheses are based on the standard errors clustered at both firm and year levels. The
sample is annual from 1968 to 2019.

Specification 1 2 3 4
Dep var CAG(t) CAG(t) LAG(t) LAG(t)
logAR(t-1) -0.02 -0.03 0.14 0.12

(-3.06) (-8.80) (14.70) (15.97)
CAG(t-1) 0.03 0.00 0.24 0.21

(3.07) (-0.53) (11.88) (16.67)
LAG(t-1) 0.08 0.04 0.04 0.00

(7.17) (6.43) (2.70) (-0.16)
CAG(t-2) 0.02 0.08

(2.13) (10.45)
LAG(t-2) 0.02 0.00

(3.31) (-0.23)
Cons. 0.18 0.15 0.19 0.16

(16.93) (17.59) (17.88) (18.39)
R2(%) 1.93 1.30 10.92 8.41
Obs. 137042 129494 137042 129494
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Table 8: Double sorts on asset ratio and asset growth

This table examines the effect of asset ratio (AR) on the return predictive power of long-
term asset growth (LAG), current asset growth (CAG), and total asset growth (TAG). AR
is defined as the ratio of current asset to long-term asset. At the end of June each year t, we
construct 5-by-5 portfolios sequentially sorted first on AR at fiscal year ending in t-2, and
then by LAG at fiscal year ending in t-1 in Panel A, by CAG at fiscal year ending in t-1
in Panel B, or by TAG at fiscal year ending in t-1 in Panel C. We report the asset growth
premium within each AR quintile and their average across AR quintiles. As a comparison,
we also report the unconditional asset growth premium from one-way sorts in each panel.
Returns are monthly and reported in percentages. t-statistics in parentheses are calculated
based on the heteroscedasticity-consistent standard errors of Newey and West. The sample
period is from July 1968 to December 2019.

Panel A: LAG premium conditional on AR
AR1 AR2 AR3 AR4 AR5 Ave Unc. LAG Prm.

LAG Prm. -0.39 -0.36 -0.32 -0.35 -0.38 -0.36 -0.35
(-2.65) (-1.97) (-1.70) (-1.98) (-1.72) (-3.12) (-2.68)

Panel B: CAG premium conditional on AR
AR1 AR2 AR3 AR4 AR5 Ave Unc. CAG Prm.

CAG Prm. -0.22 -0.42 -0.34 -0.40 -0.52 -0.38 -0.25
(-1.68) (-2.42) (-1.99) (-1.94) (-2.17) (-3.25) (-2.00)

Panel C: TAG premium conditional on AR
AR1 AR2 AR3 AR4 AR5 Ave Unc. TAG Prm.

TAG Prm. -0.40 -0.49 -0.36 -0.31 -0.53 -0.42 -0.38
(-2.71) (-2.62) (-1.77) (-1.51) (-2.20) (-3.17) (-2.56)
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Table 9: Double sorts on CAG and LAG

This table reports the results of the portfolios double sorted on LAG and CAG. At the
end of June each year we construct 5-by-5 portfolios sequentially sorted first on CAG and
then LAG in Panel A, first on LAG and then CAG in Panel B. Panel A reports the LAG
premium (the value-weighted excess return difference between high and low LAG quintile
portfolios) within each CAG quintile and their average across CAG quintiles. Panel B re-
ports the CAG premium (the value-weighted excess returns between high and low CAG
quintile portfolios) within each LAG quintile and their average across LAG quintiles. Re-
turns are monthly and reported in percentages. t-statistics in parentheses are calculated
based on the heteroskedasticity-consistent stand errors of Newey and West. The sample in-
cludes NYSE/AMEX/NASDAQ common stocks (excluding financial stocks) from July 1968
to December 2019.

Panel A: LAG premium conditional on CAG
CAG1 CAG2 CAG3 CAG4 CAG5 Ave Unc. LAG Prm.

LAG Prm. -0.54 -0.12 -0.21 -0.23 -0.74 -0.37 -0.35
(-3.15) (-0.62) (-1.34) (-1.36) (-3.41) (-3.38) (-2.68)

Panel B: CAG premium conditional on LAG
LAG1 LAG2 LAG3 LAG4 LAG5 Ave Unc. CAG Prm.

CAG Prm. -0.42 -0.09 -0.14 -0.12 -0.55 -0.26 -0.25
(-2.49) (-0.68) (-0.97) (-0.76) (-2.78) (-2.72) (-2.00)
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Table 10: Double sorts on asset imbalance and asset growth

This table examines the effect of asset imbalance (AIB) on the return predictive power of
long-term asset growth (LAG), current asset growth (CAG), and total asset growth (TAG).
Asset imbalance (AIB) is measured by the absolute value of the difference in the decile
indexes sorted by CAG and LAG. At the end of June each year, we construct 5-by-5 portfolios
sequentially sorted first on AIB, and then by LAG in Panel A, by CAG in Panel B, or by TAG
in Panel C. We report the asset growth premium within each AIB quintile. We also report
the asset growth spread (the difference in the asset growth between high and low asset growth
quintiles). Returns are monthly and reported in percentages. t-statistics in parentheses are
calculated based on the heteroscedasticity-consistent standard errors of Newey and West.
The sample period is from July 1968 to December 2019.

Panel A: LAG premium conditional on AIB
AIB1 AIB2 AIB3 AIB4 AIB5

LAG Prm. -1.02 -0.52 -0.20 -0.38 -0.06
(-3.96) (-2.86) (-0.97) (-2.21) (-0.33)

LAG spread 2.20 0.69 0.44 0.45 1.18

Panel B: CAG premium conditional on AIB
AIB1 AIB2 AIB3 AIB4 AIB5

CAG Prm. -1.05 -0.47 -0.25 -0.19 0.14
(-4.24) (-2.60) (-1.38) (-1.28) (0.92)

CAG spread 2.00 0.70 0.48 0.52 1.03

Panel C: TAG premium conditional on AIB
AIB1 AIB2 AIB3 AIB4 AIB5

TAG Prm. -1.09 -0.62 -0.34 -0.32 -0.05
(-4.27) (-3.56) (-1.77) (-1.85) (-0.29)

TAG spread 2.07 0.78 0.47 0.37 0.53
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Table 12: Asset imbalance in CAG, LAG, and TAG quintiles

This table reports the average asset imbalance of the quintile portfolios sorted on long-term
asset growth (Panel A), current asset growth (Panel B), and total asset growth (Panel C).
Asset imbalance (AIB) is measured by the absolute value of the difference in the decile
indexes sorted by CAG and LAG. The sample period is from July 1968 to December 2019.

Panel A: LAG quintiles
LAG1 LAG2 LAG3 LAG4 LAG5

AIB 3.14 2.34 2.10 2.51 2.86

Panel B: CAG quintiles
CAG1 CAG2 CAG3 CAG4 CAG5

AIB 3.40 2.30 2.08 2.50 2.68

Panel C: TAG quintiles
TAG1 TAG2 TAG3 TAG4 TAG5

AIB 2.30 2.69 2.88 2.89 2.17
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Table 13: Asset imbalance effect on current assets and its components

This table presents Fama-MacBeth regressions of monthly returns on the growth rate of
current asset (CAG) and its components over the period from July 1968 to December 2019.
These components include cash growth (CASHG) and non-cash current asset growth (NO-
CASHG). The non-cash current asset growth is further separated into inventory growth (IN-
VTG), account receivables growth (RECTG), and other current assets growth (ACOG). We
winsorize the data at the 1% and 99% levels to minimize the effect of outliers. t-statistics in
parentheses are calculated based on the heteroskedasticity-consistent stand errors of Newey
and West. The sample includes NYSE/AMEX/NASDAQ common stocks (excluding finan-
cial stocks) from July 1968 to December 2019.

Specification 1 2 3 4 5 6 7 8 9
Intercept 1.49 1.42 1.48 1.49 1.46 1.46 1.43 1.49 1.50

(5.83) (5.52) (5.83) (5.90) (5.72) (5.73) (5.56) (5.91) (5.97)
CAG -0.44 -0.34 -0.33

(-6.77) (-5.54) (-5.35)
CASHG -0.02 0.01 0.01

(-2.91) (1.69) (1.57)
NOCASHG -0.45 -0.20 -0.34 -0.12

(-6.27) (-3.06) (-3.76) (-1.30)
INVTG -0.30 -0.09 -0.08

(-5.50) (-1.72) (-1.63)
RECTG -0.28 -0.05 -0.04

(-5.97) (-1.04) (-0.81)
ACOG -0.05 0.00 0.01

(-3.12) (0.02) (0.71)
Adj. R2(%) 0.31 0.08 0.28 0.41 0.24 0.2 0.09 0.43 0.55
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Table 14: Asset imbalance effect on right-hand-side of balance sheet

This table presents Fama-MacBeth regressions of monthly returns on total asset growth
(TAG), equity growth (BEG), and debt growth (DEBTG), and other firm characteristics
over the period from July 1968 to December 2019. TAG, BEG and DEBTG are defined as
the percentage change in total assets, book equity and total debt respectively from the fiscal
year ending in calendar year t-2 to fiscal year ending in calendar year t-1. BM is the book
value of equity divided by market value at the end of last fiscal year. MOM is the prior 2-12
month cumulative return. We winsorize the data at the 1% and 99% levels to minimize the
effect of outliers. t-statistics in parentheses are calculated based on the heteroskedasticity-
consistent stand errors of Newey and West. The sample includes NYSE/AMEX/NASDAQ
common stocks (excluding financial stocks) from July 1968 to December 2019.

Specification 1 2 3 4 5 6 7 8
Intercept 1.51 1.46 1.43 1.31 1.23 1.26 1.51 1.03

(6.13) (5.87) (5.67) (5.12) (5.16) (4.99) (6.14) (4.54)
TAG -0.58 -0.62 -0.55

(-6.36) (-7.09) (-6.96)
BEG -0.17 0.04 0.03

(-3.56) (0.91) (0.79)
DEBTG -0.02 0.01 0.01

(-3.09) (0.98) (1.21)
BM 0.10 0.09

(4.01) (4.43)
MOM 0.42 0.37

(2.07) (1.84)
GP/A 0.43 0.45

(2.77) (3.16)
Adj. R2(%) 0.35 0.28 0.06 0.32 1.33 0.37 0.46 2.29
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