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Abstract

We investigate how excess commitment to R&D activities impacts innovation outcomes and con-
sumer welfare. Using project-level data on clinical trials by pharmaceutical firms, we document that
trials which faced unanticipated delays in the previous trial stage, relative to initial firm expectations
or induced by plausibly-exogenous trial site congestion, are significantly less likely to be subsequently
suspended. These effects are amplified when the firm’s CEO has a greater wealth exposure to stock
price changes and is personally responsible for the project initiation. Consumers may, in some
ways, benefit from firms’ excess commitment in new drug development. Marginally-launched drugs
because of commitment distortions are not significantly associated with more adverse events, but are
significantly more likely to target diseases with no or only few existing medications in the marketplace
(orphan drugs).
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1 Introduction

Research and development (R&D) is a primary driving force behind innovation and central to economic

growth. One defining feature of innovation and R&D is the frequent need for a long-term commitment

to a given course of action in order to achieve breakthroughs. While this suggests a positive influence

of commitment on innovation, seminal prior work, in particular Staw (1976)’s evidence from the lab,

points to a potentially large role of excess commitment to previously chosen R&D activities. Such excess

commitment may arise from misaligned incentives as well as behavioral biases of decision-makers.

Despite the critical role of commitment in R&D, we still lack a comprehensive understanding of

how decision-makers determine their level of commitment to ongoing projects. It is even less clear

how firms’ commitment levels to their R&D endeavors impact aggregate welfare. For example, does

elevated commitment lead to inferior or even unsafe innovation, or does it drive the creation of otherwise

nonexisting innovation that benefits consumers?

There are at least two reasons for why studying the level of commitment and path-dependent decision-

making with respect to innovation, as well as resulting welfare consequences, is challenging. First, it

requires granular data on R&D activities at the project level, including observable information on R&D

milestone achievements and final R&D outcomes. Second, it requires not only reliable measures capturing

the level of commitment to a certain R&D activity over time, but also a setting in which there is plausibly

exogenous variation in the intensity of initial R&D commitments made.

In this paper, we overcome these twin challenges related to data and identification in the important

setting of new drug development by pharmaceutical firms. Drug projects in clinical trials offer a near-ideal,

project-level setting of R&D investment with detailed observable and quantifiable outcomes. Additionally,

in this setting, we can isolate plausibly-exogenous variation in R&D commitment to drug projects.

Specifically, we study whether unanticipated delays in trial completion (of the previous trial stage)

distort firms’ decision to suspend versus advance the project through the next trial phase. We document

substantial excess commitment by firms in response to trial delays, and quantify the impact on ultimate

R&D outcomes, in particular patient outcomes of approved drugs. One broad-level takeaway from our

results is that firms’ excess commitment can have positive externalities on consumers.

To test for and study the effects of firms’ (excess) commitment to R&D activities, we assemble a new
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dataset of clinical trials initiated by U.S.-based companies, with detailed information on trial timelines

(start date, end date, and, importantly, anticipated end date as filed by the drug sponsor on ClinicalTri-

als.gov), trial sites (both domestic and international sites), trial participants (patient eligibility, number

of participants, trial sponsors), drug details (drug indications, ICD category, etc.), post-trial-completion

outcomes (project continuation versus suspension), and ultimate drug outcomes (drug launches, sales,

regulatory designations, and adverse events). The data come from a variety of sources, including, among

others, Cortellis Clinical Trial Intelligence, web-scraped and hand-matched data from ClinicalTrials.gov,

and the FDA Adverse Event Reporting System database. Our final sample is comprised of more than

10,000 clinical trial projects initiated between 1985 and 2019 and completed between 1991 and 2020,

with trial sites spanning 91 countries including the U.S.

We organize our analysis and findings into four main parts. In the first part of the paper, we document

a strong link between firms’ initial and follow-on commitment to R&D activities. We leverage the

information on drug firms’ self-reported anticipated trial end dates—data which, to our knowledge, have

not been explored in prior work—and study how unexpected delays in trial completion affect subsequent

decision-making. The average trial completion in our data is delayed by nearly one year, with the

25th (75th) percentile trial being not delayed (delayed by 1.6 years). Unanticipated trial delays have

substantial predictive power for firms’ post-trial-completion decision to suspend versus continue the

drug development in the next-stage trial. Consistent with path dependence in R&D decision-making,

already-completed trials that faced an unexpected delay are significantly less likely to be subsequently

suspended, with a one standard deviation increase in delay reducing the suspension probability by 4

percentage points, or 14% relative to the baseline suspension probability of 31%.

In the second part of the paper, we find that this path dependence in R&D decision-making is

most consistent with firms exhibiting excess commitment to R&D projects, as supported by two sets of

additional analyses. Both analyses assess firms’ excess commitment behavior by examining the effect of

exogenously-induced variation in initial trial commitments on subsequent decision-making.

First, we implement an instrument variables (IV) approach that exploits the fact that trial sites have

limited capacity to accommodate clinical trials. When more trials take place simultaneously in a given

location, bottlenecks are more likely to occur. Leveraging this, we instrument for unanticipated trial
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completion delay with a measure capturing trial site congestion. This measure is the normalized change

in the average patient enrollment speed of a zip code where the trial takes place between trial start and end

date. The identifying assumption is that changes in trial site congestion affect firms’ decisions to advance

new drug candidates through the next clinical trial phase only through the effect of trial completion delay.

We argue this exclusion restriction plausibly holds since other potential factors, such as trial site quality

proxied by hospital care quality provided in a region, are empirically uncorrelated with the congestion

measure. Trial site congestion and delay are significantly positively related, confirming the existence

of a strong first stage. In the second stage, delay in trial completion when instrumented with trial site

congestion continues to significantly affect the decision to continue versus suspend the trial, consistent

with excess commitment. The IV-based economic magnitude of the effect is similar to the OLS estimates.

Second, we validate the findings based on the delay and time-based commitment measures with an

additional cost-based commitment measure, exploiting fluctuations in exchange rates in foreign-based

(i.e., outside the U.S.) trials between trial start and end date. Exchange rate movements induce plausibly-

exogenous variation in firms’ monetary commitments to a given trial, as the contracts and actual payments

are typically conducted in local currency.1 Again, we find a significant influence of commitments made

by a firm to a trial, now arising from exchange rate movements, on subsequent commitment to advance

the trial through the next phase. In the exchange rate context, we estimate an excess commitment effect,

in response to a plausibly-exogenous increase in trial costs by one standard deviation, amounting to a 6%

reduction in trial suspension probability.

In the third part of the paper, we investigate underlying channels for the positive link between trial

delays and subsequent trial suspension decisions. The results further reinforce the interpretation that the

observed R&D path dependence reflects excess commitment. Our findings are not driven by early-stage

firms with no or few alternative drugs as in Guedj and Scharfstein (2004). They are also not driven

by firms being unable to pivot due to financial constraints as gauged by a series of common financial

constraint measures. Differential sorting by firms into trials with different lengths or delays based on

initial expectations is equally unlikely to be an underlying mechanism, since we can control for trial

1See, for example, https://www.appliedclinicaltrialsonline.com/view/mastering-currency-fluctuation, highlighting that
a “study’s financial obligations may include absorbing fluctuations in exchange rates to meet the established contractual
requirements” and that payments occur “typically [in] the currencies of the countries where the trials are held.”
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length expectations. Moreover, the path dependence in decision-making in our setting is unlikely to reflect

a real options channel, since delayed drugs are not associated with favorable outcomes for firms such as

drug sales upon drug approval and launch.

Instead, the effect of unexpected trial delays on subsequent trial commitment is amplified in the

presence of management-related frictions. For one, delay is substantially more predictive of continuation

among chief executive officers (CEOs) with greater wealth exposure to stock price changes (delta),

consistent with these CEOs being particularly concerned that investors will interpret the suspension of a

delayed drug project as a negative signal (about the firm or the CEO). Additionally, R&D path dependence

is significantly greater when the CEO in charge remains the same between trial start and end, consistent

with personal responsibility for initiating the project playing an important mediating role.

In the final part of the paper, we evaluate the welfare implications of our findings, particularly

for consumers, shedding light on various welfare-relevant outcomes. These include the occurrence of

adverse events in patients, as well as the impact of the excess commitment in new drug development

on the availability of drugs in the marketplace. With respect to adverse effects, we find that marginally-

approved drugs due to delay-induced firm behavior is associated with economically modest but statistically

insignificant increases in harmful events. At the same time, with respect to drug availability, we find that

delay-induced increased commitment to trials increases the probability that firms ultimately bring the

drug to market among drugs with no or few existing treatment options, as gauged by a drug’s designation

as an orphan drug.2 Taken together, these findings suggest a nuanced relation between firms’ excess

commitment and welfare implications for consumers.

Overall, we document significant path dependence and excess commitment in firms’ R&D decision-

making. From a welfare perspective, this excess commitment in new drug development plausibly benefits

consumers in important ways, for instance, through greater availability of orphan drugs. Our findings

complement a large literature and active debate about the extent to which there is adequate innovation

activity in the aggregate economy. For instance, seminal prior work has uncovered many reasons for why

there might be aggregate under-investment in innovation, including low spillover effects, low competition,

patent protection, infringement lawsuits, and risk aversion (Hall and Lerner, 2010). Our contribution to

2See, e.g., https://www.fda.gov/news-events/fda-voices/rare-disease-day-2021-fda-shows-sustained-support-rare-disease-
product-development-during-public.
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this debate is unique, in that we examine the level of commitment to existing, in-process R&D endeavors,

rather than assessing the adequacy of R&D adoption at the extensive margin.

Our paper makes three main contributions to the literature. First, we contribute to the literature on the

economics of innovation. Moser (2016) and Bryan and Williams (2021) provide comprehensive surveys of

recent research on the market failures in the markets for innovation and intellectual property. In the context

of pharmaceutical innovations, Acemoglu and Linn (2004) investigate the effect of potential market size

on drug innovations. Budish et al. (2015) show that short-termism and the fixed patent term distort private

research investments. Azoulay et al. (2019) study the impact of scientific grant funding at the NIH on

pharmaceutical innovations. Krieger et al. (2022a) study how risk aversion leads pharmaceutical firms

to underinvest in radical innovation. Thakor and Lo (2022) investigate how product market competition

affects R&D investment and financing. Li et al. (2023) show that common ownership among venture

capital firms could be beneficial to innovation efficiency.3 Departing from the previous work, this paper

studies how firms’ (excess) commitments to the R&D process, an organizational response within firms,

distort their innovation efforts. In particular, we discuss the potential welfare consequences of these

distortions, and challenge the conventional wisdom that R&D distortions are typically and unequivocally

bad for consumers.

Second, we contribute to the literature in economics and finance on distortions in firm investment.

Guenzel (2023) documents distortions in firm investment due to sunk cost effects (which can be thought

of as one manifestation of path dependence) in the context of mergers and acquisitions, with exogenously

more expensive acquired businesses being less likely to be abandoned through divestiture. Related to

aggregate efficiency and welfare, Barrero (2022) and Ma et al. (2020) study the macro and equilibrium

effects of managerial overconfidence and diagnostic expectations, but do not consider, e.g., consumer-

relevant effects on product quality or variety as a result of distorted firm investment. Compared to this prior

work, we focus on an entirely different investment context, R&D, extend the scope of distortive factors by

studying the effect of project delays, and quantify various welfare-relevant consumer outcomes. Despite

3With respect to biomedical innovation, Lo and Thakor (2022) and Lo and Thakor (2023) review the recent literature on
how external financing frictions affect drug development, including Lerner et al. (2003) on equity financing cycles, Robinson
and Stuart (2007) on financial contracting in strategic alliances, Lerner and Malmendier (2010) on contractibility in research
agreements, Cunningham et al. (2021) on the M&A market, Aghamolla and Thakor (2022) and Liu (2021) on the IPO decisions
of biotech, and Krieger et al. (2022b) on profit erosion of existing products.
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its importance, studying welfare implications of firm investment distortions is still mostly absent in the

literature on nonstandard firm decision-making (see Malmendier (2018) and Guenzel and Malmendier

(2020) for recent literature surveys).

Third, we contribute to a literature in economics and related fields on the effects of commitment

and escalation of commitment. As alluded to above, in an influential laboratory study on commitment

and path dependence, Staw (1976) finds that subjects are more committed to a chosen (hypothetical)

R&D project if they were personally responsible for the initial action and, consistent with an escalation

mechanism, in response to negative signals about the investment. Subsequent work has provided empirical

evidence consistent with escalating commitment in various contexts including “problem loan” write-offs

(Staw et al., 1997) and NBA draft picks (Staw and Hoang, 1995; Camerer and Weber, 1999). A common

problem in empirical studies is the lack of plausibly-exogenous variation in initial commitment decisions,

which opens the door for alternative explanations related to information, beliefs, or selection to explain

subsequent commitment. We advance this literature by deliberately focusing on how unanticipated factors,

delays and cost variation, affect initial and distort subsequent commitment.4

The remainder of the paper is structured as follows. Section 2 provides details on institutional

background and data. Section 3 introduces the empirical approach. Sections 4 and 5 discuss the results

and welfare implications. Section 6 concludes.

2 Data and Institutional Background

2.1 Institutional Background

The pharmaceutical industry is highly R&D intensive. In 2019, the whole industry spent $83 billion

dollars on R&D, and its R&D intensity, defined by R&D spending as a share of net revenues, reached

25 percent, which is higher than the software and semiconductor industries (Austin and Hayford, 2021).

Among a variety of activities, a large portion of the R&D spending in the pharmaceutical industry is

4We note two papers that use price variation induced by auctions to study commitment in consumer, rather than firm, settings
(Augenblick, 2016 in consumers’ penny auction behavior; Ho et al., 2018 in consumers’ car usage behavior). Guenzel (2023)
exploits post-acquisition-agreement aggregate stock market fluctuations to obtain quasi-random variation in sunk acquisition
costs. We further note the existence of a literature on R&D focusing on how commitments by some firms can lead to “path
dependence” in a different sense, namely creating barriers to operate for other firms (e.g., Manez et al., 2009). In contrast to such
studies, we focus on within-firm commitment effects.
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devoted to conducting clinical trials.

Clinical trials are regulated by the FDA and typically involve three stages: Phase I, II, and III trials.

Phase I tests the safety of a drug candidate on a small group of humans and determines how and where it

distributes within the body. Phase II involves a larger number of patients, aiming to determine the dosage

and effectiveness of the drug. Phase III primarily focuses on the safety and efficacy for a wide variety of

population by testing the drug candidate on a much larger group of patients. After completing all three

phases, a drug developer (sponsor) can submit the new drug application to the FDA to seek the market

launch permission. For each stage of trials, a sponsor needs to design a strict protocol—a scientific plan

of action. The protocol explains how many patients will be recruited, the inclusion/exclusion criteria for

eligible patients, what tests will be performed, how results will be measured and collected, and why the

trial may be discontinued. Clinical trials are often conducted in different settings and locations. These

locations are across cities, states, and countries.

Clinical trials are costly. Recent studies reveal that it costs over $1 billion to bring a new drug to the

market (DiMasi et al., 2003; DiMasi et al., 2016; Wouters et al., 2020). A variety of factors significantly

affect the final cost of a clinical trial, including but not limited to clinical procedure costs, administrative

staff costs, site monitoring costs, site retention costs, and central laboratory costs (Wong et al., 2014).

Noticeably, these cost factors heavily hinge on the length of time to complete a trial. For example, longer

timelines mean higher labor costs as investigators and staff must be compensated for longer hours. Longer

timelines also imply more devoted hours to take care of trial participants, which leads to higher costs to

drug developers. As documented by Wong et al. (2019), the median duration of Phase I, II, and III are 1.6

years, 2.9 years, and 3.8 years,5 In our sample, whose construction we describe next, the median trial

(comprised of Phase I and II trials) similarly takes 2.4 years to complete (Table 1; see Section 2.3 for

further summary statistics).

2.2 Data and Sample Construction

Clinical Trials Data. We construct a sample of clinical trials initiated by U.S.-based companies. The

trials data come from Cortellis Clinical Trial Intelligence, in which we can observe detailed information

5However, the time to complete a trial varies widely across indications. For example, the median duration of Phase III
oncology trials is about six years.
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on each trial, including its title and phase, start and completion dates, number of sites and site country,

trial protocol, eligibility criteria, interventions, adverse outcome if there is any, and if the endpoint is

achieved; information on drug candidate, drug indications, drug dosage, and associated technology; and

information on drug developer ID and name, its role in the trial, funder type, and if the trial is commercial.

Our analysis focuses on the trial by drug indication level (hereafter referred to as a project). To obtain the

outcome of trials and corresponding drug projects, we merge the trials data with drug development data

from the Cortellis Competitive Intelligence. We classify a project as suspended at a certain trial phase if it

is explicitly coded as suspended, discontinued, withdrawn, or coded as “no development” for over three

years, or coded as staying in Phase I, II, or III for over five, eight, or ten years, respectively, in the drug

development data (Li et al., 2023).

Data Filters. We apply several filters to construct our final analysis sample. First, we focus on

projects with already-completed Phase I or II trials and non-missing records on their outcomes after these

trials, e.g., suspension or continuation. Second, we drop any projects whose Phase I or II trials were

completed after 2020, because these projects would have insufficient time to reach any outcomes. Third,

we drop any projects in Phase I or II trials where their endpoints were not achieved, so that the suspension

in the next phase of trials is not due to the unfavorable readouts in the previous trials. Next, we require a

project to have a realized trial start and completion dates and hence drop those with estimated completion

dates. These filters yield a sample of 11,228 projects, among which trials were initiated between 1985

and 2019 (completed years between 1991 and 2020) and trial sites were spanning across 91 countries

including the U.S.

Match With ClinicalTrials.gov. We supplement our trial data with a variety of other data sources.

To get detailed address information for each trial site (street, city, state, country, and zip code), we

manually match our sample with trial data scraped from ClinicalTrials.gov maintained by U.S. National

Library of Medicine. For each trial, ClinicalTrials.gov contains the initial submission as well as the

updated trial reports submitted by the drug developer afterwards. We match our sample with all report

versions, which also allows us to construct one of the key variables in our analysis, the length of trial

delay, as the difference of the anticipated trial completion date in the drug developer’s initial submission

to ClinicalTrials.gov and the realized trial completion date. Details of the sample matching procedure are
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provided in Section II.A in the Online Appendix.

Adverse Events Data. To shed light on welfare implications, we manually link the approved drugs

in our trials sample to the FDA Adverse Event Reporting System database (2012-2022) and its predecessor,

the Legacy Adverse Event Reporting System (2004-2012). The adverse event database records adverse

drug reactions in the U.S. reported to the FDA. We focus on events in which a drug is listed as the “primary

suspect” (Cohen et al., 2021). Online Appendix Section II.B describes the corresponding matching

procedure.

Other Data. Lastly, we obtain financial accounting and management information for a subset of the

drug developers that are public pharmaceutical companies traded on U.S. exchanges from Compustat,

BoardEx, and Execucomp. We get the expected drug revenues once launching in the market from the

Cortellis Competitive Intelligence. We collect the quality information of U.S. hospitals from various

CMS-managed quality programs, including 30-day mortality rates, 30-day readmission rates, and patient

safety indicators. Clinical hold records are collected from the ClinicalTrials.gov. Exchange rates data are

from Bloomberg.

2.3 Summary Statistics

Table 1 presents summary statistics for our main sample comprised of completed clinical trials. Just

under 60% of trials in our sample are Phase II trials, the remainder are Phase I trials. About one in three

trials are suspended, i.e., not advanced through Phase II or III, respectively. The average trial in our data

is conducted at 14 different sites, though there is significant variation with respect to number of trial sites,

and the average trial has 100 participants. The average firm in our sample has 136 drug projects (drug by

ICD indications) under development, i.e., our sample firms are not single-product firms as analyzed in

Guedj and Scharfstein (2004). We discuss variables related to trial duration and exchange rates below in

Sections 3.1 to 3.3, when we introduce the empirical design. We also note that the number of observations

in the regression results will sometimes differ from the summary statistics numbers in Table 1, depending

on the availability of the duration and exchange rate variables.

Figure 1 shows the geographic distribution of clinical trial sites in our sample. Clinical trials have

gone global in the recent decades, with trial sites being widely spread across countries. Though a large
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share of clinical trials are clustered in the U.S, accounting for 63% of the total trial sites (59,617 out

of 94,261 clinical trial sites), other countries important including Canada, Germany, France and Japan

contribute another 12% of the total trial sites. This pattern is robust to tabulating the number of trials,

rather than trial sites, across countries (Figure OA.1 of the Online Appendix). In terms of number of trials,

the U.S. accounts for 45% of observations (6,847 out of 15,222 clinical trials). Canada, Germany, France,

and Japan contribute 16%.

3 Empirical Approach

Our empirical approach centers on examining pharmaceutical firms’ decision to continue versus

suspend drug projects. Specifically, we test whether plausibly-exogenous delays in clinical trial completion

induce firms to be more likely to “stay committed” to a project and advance the clinical trial through the

next clinical trial phase. Figure 2 visualizes the key elements of the project timeline and empirical design.

As a validation exercise, we also analyze the effect of trial cost increases of foreign-based trials due

to exchange rate fluctuations on subsequent trial commitment. That is, in a nutshell, we ask whether

(exogenously) higher levels of prior commitment of a firm to a clinical trial creates path dependence in

decision-making and increased commitment going forward.

3.1 Delay in Trial Completion and Project Continuation Versus Suspension

We first examine how firms factor unexpected delays in clinical trial completion into their R&D

decision-making regarding contiuation of the trial through the next trial phase, by estimating:

Suspensioni = βDelayInTrialCompletioni + γControlsi +FEs+ηi. (1)

Suspensioni is an indicator variable for whether project i was suspended in the follow-on trial phase

(Phase II or III clinical trial) after completing Phase I (II) clinical trials. The sample includes all projects

i that already completed Phases I or II with detailed clinical trials records. The independent variable,

DelayInTrialCompletioni, is the difference between actual trial completion date and the anticipated

completion date as indicated by the firm at the start of the trial. In our sample, the average trial completion
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is nearly one year later relative to the initially anticipated end date (Table 1).

In the regressions, we will employ various levels of fixed effects (FEs) to control for unobserved

heterogeneity, including FEs for the year-by-quarter of trial start date, for the drug company, for the drug’s

ICD category, and completed trial phase (Phase I or II). We will also include a vector of control variables,

the number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of

drug projects in the company’s pipeline (taking logs), and number of competing projects in the same ICD

(taking logs). We use two-way clustered standard errors clustered at the ICD category and quarter levels.

3.2 Trial Site Congestion as an Instrument for Delay in Trial Completion

As mentioned above, our Delay in Trial Completion measure captures the unanticipated component of

the length of a given clinical trial, as the difference between realized end date and anticipated end date

filed by the firm with ClinicalTrials.gov at trial start. To further isolate the effects of plausibly-exogenous

variation in trial length on firm continuation-versus-suspension decision-making, and assess the degree

of excess commitment in R&D decision-making, we introduce an instrumental variables (IV) strategy

that uses trial site congestion as an instrument for trial completion delay. This instrument is based on

the notion that trial sites have limited capacity to accommodate clinical trials. If a trial site hosts too

many trials, it is challenging to recruit patients on time and monitor multiple trials simultaneously, which

increases the likelihood of a slowdown of trials.

To construct our instrument, we download the universe of trial records across all phases (all Phase I,

II, and III trials) from ClinicalTrials.gov and standardize the zip codes of the 20 most frequent countries

where these trials are conducted. The trials in the top 20 countries cover about 90% of total trials at the

ClinicialTrials.gov. We define each unique zip code in a country as one trial location, dropping any trials

with missing addresses, number of participants, and start and completion dates. In a first step. we then

construct a congestion measure at the zip code level as follows. For a trial i conducted in Ni sites with a

start year τ1 and a completion year τ2, we compute the average patient enrollments per year per site Ei as

trial i’s total number of enrolled patients divided by the number of sites Ni and the number of years to

complete the trial, (τ2 − τ1). The the congestion measure of year t for location z, denoted by Gzt , is the

sum of Ei for all trials that have a site located in z and year t lying between the trial start year τ1 and the
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trial completion year τ2:

Gzt = ∑
{i∈I:Ni∩z=z, t∈[τ1,τ2]}

Ei

where I is the full set of all clinical trials. The key intuition is that a larger Gzt implies that location z

hosts more trial participants in year t. In the second step, we calculate the change in congestion measure

at location z between start year τ1 and completion year τ2 for trial i. We scale this change by the mean

level of the congestion measure of location z across years, Gz, so we interpret it as the relative change in

congestion at location z. Our instrument for delay is then

zi =Congestioni = max
z∈Ni

{Gzτ2 −Gzτ1

Gz
}.

The instrument takes the maximum across trial i’s sites because a clinical trial is not completed unless the

last trial site is closed. For the average trial in the sample, the increase in trial congestion between trial

start and end, normalized by the mean congestion, is slightly more than five percent (Table 1).

The key identifying assumption is that our IV affects the outcome variable Suspensioni only through

its effect on DelayInTrialCompletioni. The IV test boils down to examining whether firms are more likely

to advance the trial through the next phase if the trial site of the already-completed previous-stage trial

became more crowded. Why does the exclusion condition plausible hold? We argue that the change in trial

site crowdedness of a zip code (aggregate conditions) is unlikely to be correlated with unobserved shocks

to firms’ decisions to advance a specific clinical trial (firm-level condition). A possible concern is that a

trial site with more participants may imply better service quality, such as improved site monitoring, data

collection, and implementation of clinical protocols, that it could potentially offer during trials. Clinical

trials conducted in these crowded sites, though with a delayed schedule, would then tend to have trial

results with higher quality, and firms would be more likely to advance the trials through the next phase.

We find no evidence that the trial site congestion measure Gzt is (positively or negatively) correlated with

trial site quality, proxied by the average clinical score/evaluation across hospitals in a zip code. Figure 3

shows the correlation coefficients of 26 hospital quality measures devised by the CMS between 2005 to

2017.
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3.3 Exchange Rate Variation in Foreign Trials

As a validation exercise, we also analyze a second measure of plausibly-exogenous prior commitments

to a clinical trial that is independent of the time-based delay and congestion measures. Specifically, we

leverage the institutional feature that a large portion of clinical trials are conducted outside of the U.S. For

a trial involving multiple sites internationally, the contracts and actual payments are conducted in other

currencies rather than the U.S. dollar. When foreign currencies become more expensive relative to the

U.S. dollar, this yields unexpected costs to drug developers due to the exchange rate volatility.

To measure the extent to which foreign currency becomes more expensive (or cheaper) across the

whole duration of a clinical trial, we take a moving-window average of changes in exchange rates.

Specifically, we define ∆FXc
[τ] as the percentage change in the exchange rate (unit of dollars in exchange

for one unit of foreign currency in country c) τ years after the clinical trial was initiated. Then we

construct an average exchange rate change for clinical trial i as

∆FXi = ∑
c

nic

Ni

T

∑
τ=1

∆FXc
[τ] (2)

where nic is the number of trial sites in country c, Ni is the total number of trial sites for i, and ∆FXc
[T ] is

the percentage change in exchange rate across the whole duration of the clinical trial. Essentially, ∆FXi

measures the number-of-site-weighted rolling window exchange rate changes for trial i, with a higher

∆FXi indicating higher exchange-rate-driven costs to the drug developer. If a trial is conducted exclusively

in the U.S, then ∆FXi = 0. 35% of trials in our sample involve foreign trial sites (Table 1). Among foreign

trials, the interquartile range in exchange variation is slightly above six percentage points.

Similar to Equation (1), we will then estimate:

Suspensioni = β∆FXi + γControlsi +FEs+ηi (3)

to study how firms’ trial continuation decisions are affected by prior exchange-rate-induced commitments

to clinical trials.

13



4 Results

4.1 Delay in Trial Completion and Project Continuation Versus Suspension

Table 2 presents the results for how firms’ decision to continue versus suspend a clinical trial after a

given completed phase depends on the experienced delay in trial completion. Column (1), comparing

trials initiated in the same quarter, finds a strong negative effect of delay on the likelihood of suspension,

both economically and statistically speaking. A one standard deviation increase in delay reduces the

suspension probability by 4.4 percentage points, or 14% relative to the baseline suspension probability of

31% (Table 1).

The effect of trial completion delay on trial continuation remains unchanged in Column (2) when

we add firm fixed effects, as well as in Column (3) when we further add fixed effects for the drug’s ICD

category and for the trial phase (Phase I versus II trials). Finally, the effect remains unchanged in Column

(4) when we add control variables for the number of sites in a clinical trial (taking logs), count of enrolled

participants (in hundreds), number of drug projects in the company’s pipeline (taking logs), and number

of competing projects in the same ICD (taking logs).6

Figure 4 visualizes the negative relationship between trial completion delay and subsequent trial

suspension, residualizing both variables with respect to the control variables and fixed effects in the final

column of Table 2. The figure reveals an almost monotonic effect of delay on subsequent trial suspension.

Overall, the results in Table 2 and Figure 4 provide first evidence that commitment by firms to a given

clinical trial, in the form of time it takes to complete the trial beyond what firms anticipated at trial start,

induces path dependence and increases subsequent commitment by firms when it comes to the decision to

suspend versus continue the trial.

4.2 Trial Site Congestion as an Instrument for Delay in Trial Completion

Table 3 presents the IV results, studying the effect of trial completion delay due to trial site congestion

on the decision to subsequently continue versus suspend the trial. Columns (1) and (2) show the first-stage

results, i.e. the relation between delay and trial site congestion as detailed in Section 3.2, with and without

6The coefficients on controls (unreported) are intuitive. More projects in the pipeline and more competing projects are
positively (but insignificantly) associated with suspension. More trial sites increases the likelihood of suspension, whereas more
trial participants reduces it.
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the controls included in the last column of Table 2. The columns reveal a strong association between

congestion and delay. Economically, a one standard deviation increase in the congestion instrument is

associated with an increase in trial completion delay of close to four months. Statistically, the Kleibergen

and Paap (2006) F−statistic is clearly above the common threshold for weak instruments of 10 (Stock

et al., 2002).

Columns (3) and (4) shows the second-stage results. Delay in trial completion, instrumented with

trial site congestion, continues to significantly affect the decision to continue versus suspend the trial.

The economic magnitude of the effect is in the same ballpark as the OLS estimates in Table 3, and the

coefficients on instrumented delay remain significant at 5% or 1% where we continue to use two-way

clustered standard errors, now corrected for using a two-stage estimation approach. The IV results

strengthen the interpretation that unanticipated, plausibly-exogenous delays in trial completion induce

distortions, and excessive commitment, in firms’ subsequent behavior with respect to clinical trial

continuation versus suspension.

4.3 Exchange Rate Variation in Foreign Trials

As a validation exercise for the delay-based measure and the interpretation that the previous results

reflect excess commitment to R&D projects, Table 4 shows the results for how firms’ decision to continue

versus suspend a clinical trial after a given completed phase depends on plausibly-exogenous exchange

rate fluctuations experienced in foreign-based trials between trial start and completion. Columns (1) and

(2) are estimated on the subsample of foreign-based trials, with Column (2) adding controls as in Column

(5) of Table 2. Columns (3) and (4) are estimated on the full sample including U.S.-based trials, and

interact the exchange rate fluctation variable, as well as controls and the drug indication and year-quarter

fixed effects with an indicator for foreign-based trials.7 All columns include a control for a trial’s total

duration, given that total trial duration determines the period over which exchange rate fluctuations can

affect financial obligations.

Across columns, the coefficient on exchange rate changes is negative, implying exchange-rate-driven

cost increases make trial continuation more likely, and statistically significant. In terms of magnitudes, a

7We note that since ∆FX = 0 for domestic trials, it is in fact the case that ∆FX = ∆FX× Foreign Trial, i.e., we adopt the
interaction term notation solely for visual purposes.
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one standard deviation increase in trial costs through exchange rates is estimated to reduce the likelihood

of subsequent trial suspension by 1.75 percentage points, or 6% relative to the baseline. These estimated

magnitudes are slightly lower compared to the effects of unexpected delays on suspension decisions, but

still economically meaningful.

To further probe the robustness of the exchange rate results, in the Internet Appendix we conduct a

placebo test by randomly assigning trial countries to trials in the sample and re-running the full-sample

regressions in Table 4. Figure OA.2 of the Online Appendix plots the distribution of the estimated

coefficients for ∆FXi by repeating the estimation 1,000 times. In contrast to the results in Table 4, the

placebo test coefficients are not significantly different from zero, and not as large in economic magnitudes.

Overall, the results exploiting exchange rate variation provide additional evidence in favor of the idea

that plausibly-exogenous increases in prior commitment to a chosen action induce distortions and excess

commitment in firms’ R&D decision-making.

4.4 Robustness: FDA Clinical Holds

Despite the corroborating trial-cost-based evidence in the preceding section, one potential concern

regarding the main, delay-based results is that the delay in trials might be caused by FDA-imposed clinical

holds. An FDA clinical hold is an order issued by FDA to the sponsor of the drug development to delay

a proposed clinical investigation. Common reasons for clinical holds include the presence of impurity

profile indicative of a potential health hazard, missing supporting information on the anticipated dose or

exposure, or insufficient information on the clinical protocol (Lapteva and Pariser, 2016). After the hold,

drug developers would work with the FDA to improve the clinical protocol and address all deficiencies

until the hold is lifted. A trial that experienced a hold may have a prolonged trial duration, but the FDA

may potentially help improve the trial quality throughout the hold period. This could also explain a

relation between trial completion delays and continuation decision, but would be due to external, and

potentially project-improving factors. We note that this concern applies mostly to the results in Table 2,

rather than the IV-based results in Table 3). To allay this concern futher, Online Appendix Table OA.2

shows that there is no statistically significant relationship between the presence of clinical holds and trial

duration, trial delays, or trial site congestion measures (our instrument for delays). We conclude that it is
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unlikely that clinical holds are a driver of any of our results.

4.5 Underlying Channels

The empirical findings above show that pharmaceutical firms’ R&D decisions exhibit excess com-

mitment with respect to R&D projects, with unanticipated, and plausibly-exogenous delays in trial

completions strongly affecting trial continuation decisions. In this section, we examine various potential

underlying channels that might lead to path dependence and (excess) commitment in response to drug

delays. In Table 5 we examine agency conflicts inside the firm, initial firm expectations about trial length,

financial constraints, and heterogeneities by trial phase. In Table 6 we discuss real options as a potential

underlying mechanism. In addition to these firm- and project characteristics-related channels, in Table 7

we examine mechanisms pertaining to the ultimate decision-maker responsible for the R&D investment,

the drug developing firm’s CEO.

4.5.1 Firm- and Project Characteristics-Related Channels

Agency Conflicts—Lack of Other Viable Drug Candidates? In influential prior work, Guedj and

Scharfstein (2004) find that early-stage bio-pharmaceutical firms are reluctant to abandon their only viable

drug candidate, distorting trial continuation decisions. To check whether such early-stage-firm agency

problems can explain our findings, we restrict the sample to trials of firms with more than ten drug projects

in the company’s pipeline at trial completion, i.e., to firms with other investment opportunities.

Doing so, we conclude that a mechanism related to an aversion to “start over or liquidate” does

not explain our results. For one, the many-projects-in-the-pipeline restriction only drops relatively few

observations from the sample (less than 25%). That is, the findings in the previous sections predominantly

come from large firms with many projects to begin with, leaving little room for an early-stage-firm channel

as in Guedj and Scharfstein (2004). Additionally, and consistent with the previous point, Column (1) of

Table 5 shows that unexpected delays continue to have distortive effects on trial continuation decisions

that are of very similar magnitudes among firms with more than ten drug projects in the pipeline. Thus,

the effects we find are not driven by early-stage firms with no or few alternative drugs as in Guedj and

Scharfstein (2004).
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Expectations of Trial Duration. Another possible channel is a selection-based mechanism based

on initial expectations and differential willingness to undertake lengthy trials. In the data, we observe a

positive correlation between a trial’s anticipated duration (anticipated end date minus start date) and the

trial’s delay (end date minus anticipated end date). Thus, it could in principle be the case that our delay

results reflect initially optimistic drug developers selecting into trials with a longer anticipated duration

and a longer delay period on average.

However, the empirical correlation between anticipated duration and delay, while positive, is relatively

small (ρ = 0.07). Furthermore, when we directly control for anticipated duration in Column (2) of Table

5, we obtain very similar results.8 In light of this evidence, differential sorting by firms into trials with

different lengths or delays based on initial expectations is unlikely to be an underlying mechanism of our

findings.

Financial Constraints. Next, we test whether the path dependence and commitment in drug-related

decision-making is driven by financial constraints of the drug-developing firms. Intuitively, if firms are

financially constrained, they may be more likely to stick to a chosen course of action. To investigate

this, we augment our specifications with a series of financial constraints measures.9 Specifically, the

Constrained variable in the third column of Table 5 is an indicator variable that equal one if the firm’s

Whited and Wu (2006) (WW) index at trial end is in the top quartile of the index’s sample distribution.

Column (3) shows that the distortive effect of delay on trial suspension remains unchanged with the added

constraints measure. Thus, the path dependence in decision-making is not merely the result of constrained

firms not being able to pivot (also in combination with the fact that most firms in our sample have many

other viable drug candidate projects).10

Phase I Versus II Trials. The final two columns in Table 5 separate the effect by whether a trial

is a Phase I or Phase II trial. As discussed in Section 2.1, the primary endpoint of Phase I trials is

safety, whereas that of Phase II trials is drug efficacy, and Phase II trials tend to be longer and involve

more participants. The effect of trial delay on subsequent continuation versus suspension is robust and

8In unreported tests, we include second- or third-order polynomials for anticipated duration and find nearly identical results
compared to those reported in Table 5.

9We note that adding the financial constraints measures restricts the sample to include public firms only.
10We show robustness to other measures of financial constraints, in particular the Hadlock and Pierce (2010) (HP) and Kaplan

and Zingales (1997) (KZ) indices, as well as to constraint measures defined as of the time of trial start in Appendix Table OA.1.
Irrespective of the measure we use, we continue to find a strong effect of trial delay on subsequent suspension probabilities.
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large for both Phase I and II trials. Thus, our findings cannot be not explained by any trial-specific

channels or confouds, and instead unveil a robust and wide-ranging phenomenon in the realm of new drug

development.

Real Options. The R&D process involves a sequence of actions and hence involves option values

at each decision-making node, in particular when past experience might reveal information about likely

future values (Pindyck, 1991; Dixit et al., 1994). McAfee et al. (2010) propose a stylized real option

model in which more past investments might reveal better prospects about the option value of further

investment, which in turn might help explain why unexpected delay in a trial is positively correlated with

the likelihood of the firm to advance it through the next phase trial. If trial delays indeed reveal valuable

information about further investment, we would expect the delay to be positively correlated with proxies

for the prospect of a drug project: either higher expected sales after launching in the market (higher

revenues conditional on getting the FDA approval) or fewer adverse reactions among trial participants

such that the drug has a higher chance to survive all stipulated phases of clinical trials (i.e., a higher

probability of obtaining the FDA approval).

To test for a potential real options channel, we examine if delays in trial completion predict higher

expected drug sales conditional on drug launch or fewer adverse reactions among subsequent trial

participants. We adopt a specification following Equation (1). Panel A of Table 6 examines the outcome

variables pertaining to expected drug sales. We use four different measures, including the expected

first-year sales, the sum of first three-year sales, the sum of first five-year sales, and the average annual

sales after the drug is approved by the FDA. All sales are million U.S. dollars in 2017 adjusted by GDP

deflators and logged. Contrary to the real option hypothesis, we find that delays in trial completion do not

predict the expected drug sales, neither statistically nor economically. Panel B examines the outcome

variables pertaining to adverse reactions in clinical trials. Columns (1) and (2) use the total and maximum

percentage of raw adverse reaction counts (an enrolled participant might have multiple reports) relative to

the total number of enrolled patients across various adverse symptoms. Instead of a negative correlation,

we find a significantly positive relation between delays in trial completion and the number of adverse

reaction reports. We note that the two measures include many light adverse reactions, such as headache,

nausea, and fatigue, which are of less importance for drug evaluation by the FDA. In columns (3) and
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(4), we only include life-threatening adverse reactions, such as acute myelogenous leukemia, basal cell

carcinoma, and brain hemorrhage. Again, the results are inconsistent with the real option hypothesis as

the coefficients on delay in trial completion are statistically and economically insignificant. These results

suggest that a real option channel is unlikely to explain the path-dependence in pharmaceutical R&D in

our setting.

4.5.2 CEO-Related Channels

If firms distort drug project decisions by taking past actions into account, it is natural to relate this

behavior to the responsible decision-makers inside the firm. We examine how the effect of drug delays on

suspension decisions varies with CEOs’ pay sensitivity to firm value changes as well as their personal

responsibility for the project as gauged by whether they led the firm at trial start.

CEO Pay Sensitivity to Firm Value Changes. We first study how CEO pay-performance sensitivity

(delta) mediates the relationship between trial delays and continuation versus suspension decisions.11

Conditional on having started a drug project, CEOs with high delta may be particularly reluctant to

suspend a delayed drug project, if they (correctly or falsely) believe that this would be interpreted as a

negative signal (e.g., about the CEO’s ability) by shareholders and depress the stock price. Consistent

with this conjecture, Column (1) of Table 7 finds that the effect of trial delay on project continuation is

substantially more pronounced among CEOs with greater exposure to stock price changes.

CEO Changes. Second, we study how firms’ project continuation decisions after trial delays

vary with CEOs’ personal responsibility for having initiated the project. In the context of mergers and

acquisitions, Guenzel (2023) shows that managers engage in sunk-cost thinking with respect to acquired

targets, distorting their subsequent decisions to abandon acquired businesses through divestiture. Guenzel

(2023) finds that the sunk-cost distortions are driven by the CEO who made the initial acquisition. To test

for a similar CEO effect in our setting, we create a Same CEO indicator that equals one if the firm’s CEO

is the same at trial start and completion, and then interact the CEO variable with our delay measure. We

emphasize the test of interest is not whether an incumbent is more or less likely to suspend a trial, but

11We obtain the CEO delta data from Lalitha Naveen’s website at https://sites.temple.edu/lnaveen/data/ (Coles et al. 2006;
Core and Guay 2002). We use the natural logarithm of delta in the analysis in Table 7 as in Coles et al. (2006), and standardize
the variable to have a mean of zero and standard deviation of one for expositional purposes.
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how the effect of delay varies depending on the CEO regime.

In Column (2) of Table 7, we find that the commitment effects we uncover are more pronounced

when the CEO at trial end is the same CEO that was at the helm at trial start, consistent with a personal

responsibility channel. The effect of unexpected trial delay on subsequent commitment to the trial is about

three times as large when there is no CEO change between trial start and end. In Column (3), we further

find that these effects are not more pronounced for younger CEOs who have longer careers ahead of them.

This suggests that the managerial responsibility channel likely arises not only from externally-oriented

career/reputation concerns (which are arguably stronger for younger CEOs; Fama 1980; Holmström 1982;

Gibbons and Murphy 1992), but also from internally-oriented, psychological motives such as avoidance

of cognitive dissonance (Festinger 1962) or realization of losses (Kahneman and Tversky 1979).

Overall, the results in Table 7 strongly support the existence of economically and statistically signifi-

cant management-induced frictions in new drug development within firms.

5 Welfare Implications

5.1 Outcome Variables Related to Patient Welfare

To explore the implications of elevated commitment in pharmaceutical R&D for welfare, and specif-

ically consumer welfare, we consider several outcome variables. First, at the extensive margin, an

approved new drug can save lives if there is no alternative drug that exists in the market to target the

disease. To measure this effect, we examine drug approval outcomes of so-called orphan drugs targeting

infrequent diseases with typically few available treatment options. Second, at the intensive margin, drugs

might yield adverse reactions among users once approved, which is indirectly related to the safety of the

drug and is relevant for consumer welfare. To gauge the impact along this dimension, we use the count of

adverse events occurring after drug launch in the marketplace.

5.2 Econometric Framework

Unlike the OLS and 2SLS approaches adopted in Section 3, one complication in our welfare analysis

is endogenous sample selection. Specifically, while we can study the effect of investment distortions
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on orphan drug launch probability as before, adverse events only occur conditional on the drug being

approved and launched in the market. To account for this, we apply a parametric framework for the

tests related to adverse events. This framework addresses sample selection with endogenous explanatory

variables, and modifies the classic Heckman selection model (e.g., Heckman, 1979; Wooldridge, 2010).

Alternatively, it would be possible to adopt non-parametric identification strategies to estimate bounds for

average treatment effects (e.g., Lee, 2009; Huber, 2014; Bartalotti et al., 2021). We pursue the parametric

approach since it is easy to implement, flexible with respect to continuous treatments, and is able to

circumvent the complication of estimates for observed-only-when-treated sub-populations. We lay out

our framework as follows.

Let i denote a drug project and Xi denote all observed drug and developer characteristics except

our proxy for unexpected commitment, ci. When commitment influences drug developers’ decisions

to continue project i, we would expect that the drug approval outcome, Y app
i , depends on ci. Y app

i is an

indicator equal to one if project i is approved by FDA after completing all required clinical trials and

proving that the drug is safe and effective. We define

Ỹ app
i = β1ci +β

′
2Xi +ui (4)

as the latent variable that maps into potential outcomes Y app
i such that Y app

i = 1
{

Ỹ app
i > 0

}
. ui is a

random variable representing characteristics unobserved by the econometrician or the idiosyncratic shock

affecting drug safety or expected profitability.

We define other outcomes variables, in particular adverse events, as Ỹ out
i . Assume Ỹ out

i is a linear

function of observables Xi and ci so that

Ỹ out
i = α1ci +α

′
2Xi + vi (5)

where vi is the residual term. The sample selection is reflected in the fact that we can observe Ỹ out
i only if

drug project i is approved by the FDA. Therefore, we define the observable outcome Y out
i = Ỹ out

i × Ỹ app
i .

In our setting, the endogenous sample selection is embodied in the possible correlation between ci

and ui while the endogenous explanatory variable (or endogenous treatment) is captured by the fact that ci
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might be correlated with vi. Following a similar strategy as in Section 3.2, we use an exogenous variable

to instrument for ci. Specifically, assume ci is generated according to the model

ci = γ1zi + γ
′
2Xi +ξi (6)

where zi is the instrumental variable.

To close the model, we impose the following parametric assumption on the error terms so that


ui

ξi

vi

∼ Normal




0

0

0

 ,


1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 (7)

where (ui,ξi,vi) is jointly normally distributed and independent of all observables zi and Xi. Without loss

of generality, we normalize var(ui) = 1 as Y app
i is a binary variable. Our setting and assumptions are

similar to the sample selection model with endogenous explanatory variables in Chapter 19 of Wooldridge

(2010). The key difference is that we allow the endogenous variable to enter the sample selection Equation

(4). To discipline the model, we hence impose extra structure on the residuals through Equation (7). Note

that Equation (7) is a stronger version of the restriction imposed on the residuals. Our estimation can

also be obtained under a weaker set of assumptions where (ui,ξi) is jointly normally distributed and

E[vi | β1ξi +ui] = α3(β1ξi +ui).

We detail our estimation procedure as follows:

Step one: Obtain (β̂1, β̂ ′
2, γ̂1, γ̂ ′2, ˆσ12, σ̂2

2 ) from an IV-probit model of Y app
i on ci and Xi where ci follows

Equation (6). Compute the estimated inverse Mills ratios, λ̂i = λ (
β̂1·γ̂1zi+(β̂1·γ̂ ′2+β̂ ′

2)Xi√
β̂ 2

1 σ̂2
2+2β̂1 ˆσ12+1

) where λ (·) = φ(·)
Φ(·)

with φ(·) as the probability density function of the standard normal distribution and Φ(·) as the cumulative

density function of the standard normal distribution.

Step two: Use the selected sample with Y out being observed and estimate the equation

Y out
i = α1ci +α

′
2Xi +α3λ̂i + errori

by 2SLS, using instruments (zi,Xi, λ̂i).
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Our estimation procedure is similar to that proposed in Wooldridge (2010). We provide a detailed

derivation in the Online Appendix (OA Section II.C). Standard errors and test statistics are corrected for

the generated regressor problem by bootstrapping.

5.3 Effects on New Drug Launches With Few Existing Medications (Orphan Drugs)

We first assess welfare implications as they pertain to the development and launch of orphan drugs—

drugs for infrequent diseases for which there are commonly no other or only few other treatment

alternatives. As alluded to above, for this part we can in fact continue to use the IV strategy from Section

3.2, and do not have to rely on the more advanced framework from Section 5.2. Specifically, conditioning

on clinical trials involving orphan drugs, we examine how the likelihood of eventual orphan drug approval

by the FDA (i.e., launch of the drug in the market) varies with congestion-induced delay in the completion

of Phase I or Phase II clinical trials.

We present the corresponding results in Table 8. Similar to Table 3, Column (1) presents the first-stage

results. Despite the reduction in sample size (due to the restriction to orphan drug clinical trials), the first

stage remains strongly significant. Column (2) then presents the second-stage results, with the indicator

variable for FDA orphan drug approval as the dependent variable of interest. We find a significant

positive effect of instrumented delay on the probability that orphan drugs are ultimately launched in the

marketplace. For example, a six-month congestion-induced delay in trial completion is associated with a

1.5 percentage point increase in the probability of orphan drug market launch. This is an economically

large effect, given the relatively low baseline probability of eventual FDA approval of orphan-drug-related

clinical trials of just above 10% in the sample.

5.4 Effects on Adverse Events Related to Approved Drugs

We next assess welfare implications as they pertain to adverse effects in patients of approved drugs.

For this part, we make use of the econometric sample-selection framework detailed in Section 5.2. Table

9 shows the results, with standard errors bootstrapped using 100 iterations. Column (1) shows the first

stage results, i.e., the first part of the second step outlined in Section 5.2. Similar to Table 8, we continue

to observe a strong relation between trial site congestion and delay despite the reduction in sample size.
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(In Table 9, the sample size reduction is due to the fact that we focus on outcomes of approved drugs.)

Columns (2) and (3) show the second-stage results, examining adverse events either over a one-year

or three-year horizon since drug launch. Importantly, we continue to include ICD code fixed effects (as

well as other fixed effects) in this analysis, so all results come from within-drug-category comparisons.

Within one and three years since drug launch, the median number of reported adverse events in our sample

is 37 and 345, respectively. The point estimates in Columns (2) and (3) point to modest increases in

adverse events after congestion-induced delay but are notably insignificant. In both columns, a one-month

instrumented increase in delay is estimated to increase the prevalence of adverse events by about 1%.

Taken together, the results in Sections 5.3 and 5.4 clarify the intricacies and complexities of how

distortions in firm decision-making with respect to innovation can affect (consumer) welfare. While the

distortions we uncover increase the breadth of treatments for infrequent diseases for which there are often

no other existing medications, they might also lead to the launch of drugs with more adverse effects. More

broadly, the results in this paper highlight that for other parties, distortions in firm investment behavior do

not need to exclusively entail welfare costs; instead, investment distortions can, and in fact may frequently,

induce positive externalities on third parties, e.g., in the form of increased product variety.

6 Conclusion

In this paper, we study the extent to which existing commitments made to R&D endeavors induce path

dependence in subsequent R&D decision-making, and examine resulting welfare implications. We study

these questions using project-level R&D data from the pharmaceutical industry, namely clinical trials

data with granular information on many important dimensions including project timelines and project

outcomes. Clinical trials that firms complete but that experienced unanticipated increases in commitment,

due do being unexpectedly delayed or unexpectedly costlier as a result of exchange rate fluctuations, are

significantly more likely to be advanced by firms through the next trial phase. The economic magnitudes

we uncover suggest substantial path-dependence in firm decision-making. The implications for consumers

as a result of distorted R&D undertakings by firms are nuanced. On the one hand, delay-induced elevated

commitment to clinical trials increases the likelihood of drug launches for diseases with few existing

treatment options (orphan drugs). On the other hand, marginally-approved drugs (not restricted to orphan
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drugs) may be associated with modestly higher adverse event counts.

Our findings suggest a variety of potential directions for future research. One promising area for

future work would be to investigate heterogeneities along several dimensions. For example, it would be

interesting to explore how the magnitude of R&D distortions varies with organizational structure (e.g.,

top-down versus decentralized decision-making) and by target disease and drug type (e.g., depressants

versus stimulants), and whether there are heterogeneous effects on consumer welfare outcomes (e.g., by

severity of adverse effects, or by various demographic characteristics). Alternatively, it would also be

interesting to bring the analysis of “firm distortions and consumer welfare effects” to other contexts. The

notion that distorted firm decision-making can come with both positive and negative consequences for

consumers applies broadly, whenever firms and consumers interact in goods or financial markets.
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Figures

Figure 1: Geographic Distribution of Trial Sites
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This figure exhibits the trial-site geographic distribution of clinical trials included in the analysis sample. For each
country, we calculate the natural logarithm of the number of trial sites.
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Figure 2: Project Timeline

This figure visualizes the project and decision timeline with respect to the key aspects of the empirical design, the
relationship between the trial continuation decision and unanticipated delays in the completion of the previous trial
phase.
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Figure 3: Correlation between Trial Site Congestion and Hospital Care Quality
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Correlation Coefficients

This figure exhibits the correlation coefficients between the trial site congestion measure and the average hospital
care quality measures in a zip code. The correlation coefficients are estimated by the regression

Qzt = βGzt + γz + τt

where Qzt is the average quality measure of hospital care at zip code z in year t. Gzt is the congestion measure at zip
code z in year t. γz and τt are zip code and year fixed effects. β represents the correlation coefficients. The y-axis
denotes the names of various quality measures. All standard errors are two-way clustered at the zip code and year
levels. Capped spikes represent 95% confidence intervals.
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Figure 4: Delays in Trial Completion and Project Continuation Versus Suspension

This figure shows a binscatter plot visualizing the relationship between unanticipated clinical trial delays and firms’
subsequent decision to suspend versus advance the trial through the next trial phase. Both the delay and suspension
indicator variables are residualized with respect to the control variables and fixed effects in the final column of Table
2.
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Tables

Table 1: Summary Statistics

This table reports summary statistics. The unit of observation is a drug project. The sample contains all projects that
completed Phase I or II trials with detailed clinical trials records.

N Mean SD P25 Median P75

Clinical Trial Phase (I or II) 11,228 1.59 0.49 1.00 2.00 2.00
Suspension 11,228 0.31 0.46 0.00 0.00 1.00
Number of Clinical Trial Sites 11,179 13.65 40.62 1.00 3.00 13.00
Trial Participants (in hundreds) 11,195 1.00 1.62 0.25 0.49 1.06
Number of Drug Projects 10,998 136.14 179.07 11.00 41.00 230.00
Number of Competing Drug Projects (in logs) 11,182 5.16 1.34 4.39 5.33 6.01
Trial Duration (in months) 11,228 35.65 29.45 12.00 29.00 51.00
Anticipated Trial Duration 9,948 22.83 17.79 9.00 20.00 32.00
Delay in Trial Completion 9,948 11.78 19.19 0.00 3.00 19.00
Trial Site Congestion 9,948 5.28 10.04 0.00 0.93 4.19
Foreign Trial 11,228 0.35 0.48 0.00 0.00 1.00
∆FX | Foreign Trial 3,918 -1.40 6.35 -4.60 -0.92 1.58
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Table 2: Delays in Trial Completion and Project Continuation Versus Suspension

This table reports the OLS estimation results of Equation (1). The unit of observation is a drug project. The sample
contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent variable,
Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended
after completing Phase I or II clinical trials. The independent variable, Delay inTrialCompletioni, is the gap in
months between the realized trial completion date and the expected trial completion date for project i to complete
Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the number
of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in
the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4)

Delay in Trial Completion −0.229∗∗∗ −0.210∗∗∗ −0.206∗∗∗ −0.200∗∗∗

(−5.77) (−6.92) (−5.70) (−5.41)

Controls N N N Y
Year × Quarter FE Y Y Y Y
Firm FE N Y Y Y
ICD FE N N Y Y
Trial Phase FE N N Y Y
Observations 9,912 9,433 9,397 9,161
Adj. R-squared 0.1558 0.2711 0.3085 0.3098
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Table 3: Delays in Trial Completion and Project Continuation Versus Suspension: Trial Site Congestion
as an Instrument for Delay

This table reports the IV estimation results of Equation (1), using trial site congestion as an instrument for delay in
clinical trial completion. The unit of observation is a drug project. The sample contains all projects that completed
Phase I or II trials with detailed clinical trials records. The second-stage dependent variable, Suspensioni, is an
indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended after completing
Phase I or II clinical trials. The instrument, TrialSiteCongestioni, is the normalized change in the number of
participants in the universe of trials on ClinicalTrials.gov between trial start and end date, taking the maximum
across all trial sites of a given trial in the sample. The second-stage independent variable, Delay inTrialCompletioni,
is the gap in months between the realized trial completion date and the expected trial completion date for project i
to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the
number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects
in the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels.We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

DV: Delay DV: Suspension
First Stage Second Stage

(1) (2) (3) (4)

Trial Site Congestion 0.360∗∗∗ 0.358∗∗∗

(4.26) (4.37)

Delay in Trial Completion −0.337∗∗ −0.530∗∗∗

(−2.33) (−2.97)

Controls N Y N Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
F-stat 18.13 19.13 – –
Observations 9,397 9,161 9,397 9,161
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Table 4: Exchange Rate Variation and Project Continuation Versus Suspension

This table reports the OLS estimation results of Equation (3). The unit of observation is a drug project. The sample
contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent variable,
Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended
after completing Phase I or II clinical trials. The independent variable, ∆FXi, is the average exchange rate change
for clinical trial i defined in Equation (2). Trial Durationi, is the length of time (in months) for which it takes
project i to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables
include the number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of
drug projects in the company’s pipeline (taking logs), and number of competing projects in the same ICD category
(taking logs). Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4)

∆FX −0.311∗∗ −0.270∗

(−2.04) (−1.76)

∆FX ×Foreign Trial −0.251∗ −0.249∗

(−1.74) (−1.74)

Trial Duration −0.200∗∗∗ −0.208∗∗∗ −0.203∗∗∗ −0.189∗∗∗

(−4.20) (−5.40) (−6.79) (−5.45)

Controls N Y N Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 3,587 3,524 10,521 10,284
Adj. R-squared 0.2995 0.2990 0.3198 0.3198
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Table 5: Firm- and Project Characteristics-Related Channels

This table investigates underlying firm- and project characeristics-related channels. The unit of observation is
a drug project. The sample contains all projects that completed Phase I or II trials with detailed clinical trials
records. The dependent variable, Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition)
for whether project i was suspended after completing Phase I or II clinical trials. The independent variable,
Delay inTrialCompletioni, is the gap in months between the realized trial completion date and the expected trial
completion date for project i to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom
rows. Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). See Section 4.5 for further details. Standard errors are two-way clustered at the ICD
category and quarter levels. We report t−statistics in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension
Has Other Inv.
Opportunities

Versus
Expectations

Versus
Fin. Constr.

Phase I
Only

Phase II
Only

(1) (2) (3) (4) (5)

Delay in Trial Completion −0.208∗∗∗ −0.224∗∗∗ −0.196∗∗∗ −0.152∗∗ −0.199∗∗∗

(−5.15) (−5.87) (−4.08) (−2.63) (−5.08)

Anticipated Trial Duration −0.112∗∗

(−2.57)

Constrained (WW) 0.238
(0.06)

Controls Y Y Y Y Y
Year × Quarter FE Y Y Y Y Y
Firm FE Y Y Y Y Y
ICD FE Y Y Y Y Y
Trial Phase FE Y Y Y Y Y
Observations 7,052 9,161 4,746 3,356 5,414
Adj. R-squared 0.2725 0.3106 0.2701 0.3653 0.3292
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Table 6: Real Options Channel

This table investigates real options as an underlying channel. Panel A examines the relationship between the log of
expected drug sales (Million U.S. dollars adjusted to 2017 by GDP delfators) after obtaining the FDA approval
and Delay inTrialCompletioni, the gap in months between the realized trial completion date and the expected trial
completion date for project i to complete Phase I or II clinical trials. Columns (1) to (4) use four different sales
measures (all take logs), including the expected first-year sales after launch, the sum of first three-year sales, the
sum of first five-year sales, and the average annual sales. Panel B examines the relationship between the percentage
of adverse reactions among trial participants for project i that already completed Phase I or II clinical trials and
Delay inTrialCompletioni. Columns (1) to (4) use four different dependent variables, including the total percentage
of adverse reaction reported in the completed trial (a participant might experience multiple adverse events such
as headache, nausea, fatigue) relative to the total number of enrolled participants, the maximum percentage of
adverse reaction among various adverse symptoms, the total percentage of severe adverse reaction (life-threatening
reaction, for example, acute myelogenous leukemia, basal cell carcinoma, brain hemorrhage, etc.), and the maximum
percentage of severe adverse reaction among various adverse symptoms. We adopt the specification following
Equation (3.1). Fixed effects are indicated in the bottom rows. Control variables include the number of sites in a
clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in the company’s
pipeline (taking logs), and number of competing projects in the same ICD category (taking logs). Standard errors
are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Expected Drug Sales

First-year Sales Three-year Sales Five-year Sales Average Annual Sales
(1) (2) (3) (4)

Delay in Trial Completion −0.000 −0.000 −0.000 0.000
(−0.12) (−0.58) (−0.11) (0.41)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 3,949 3,847 3,609 3,949
Adj. R-squared 0.4370 0.5591 0.5577 0.5722

Panel B: Adverse Reaction in Trials
Total Reaction Max Reaction Total Severe Reaction Max Severe Reaction

(1) (2) (3) (4)

Delay in Trial Completion 0.726∗∗∗ 0.132∗∗∗ 0.001 0.003
(5.46) (6.12) (0.40) (0.86)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 9,159 9,159 9,159 9,159
Adj. R-squared 0.2178 0.1891 −0.0551 −0.0560
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Table 7: CEO-Related Channels

This table investigates underlying CEO-related channels. The unit of observation is a drug project. The sample
contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent variable,
Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended
after completing Phase I or II clinical trials. The independent variable, Delay inTrialCompletioni, is the gap in
months between the realized trial completion date and the expected trial completion date for project i to complete
Phase I or II clinical trials. CEODelta is the natural logarithm of delta as in Coles et al. (2006), standardized to have
a mean of zero and standard deviation of one for expositional purposes. Fixed effects are indicated in the bottom
rows. Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). See Section 4.5 for further details. Standard errors are two-way clustered at the ICD
category and quarter levels. We report t−statistics in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

Full CEO Sample Same-CEO Subsample

(1) (2) (3)

Delay in Trial Completion −0.163∗∗∗ −0.111∗ −0.411∗∗∗

(−2.97) (−1.82) (−3.13)

CEO Delta 0.373
(0.27)

Delay × CEO Delta −0.081∗∗

(−2.36)

Same CEO 6.940∗∗∗

(2.64)

Delay × Same CEO −0.224∗

(−1.93)

Young CEO −10.070∗∗

(−2.50)

Delay × Young CEO 0.273
(1.33)

Controls Y Y Y
Year × Quarter FE Y Y Y
Firm FE Y Y Y
ICD FE Y Y Y
Trial Phase FE Y Y Y
Observations 2,913 3,400 2,075
Adj. R-squared 0.2587 0.2691 0.3085

41



Table 8: Effects on New Drug Launches With No or Few Existing Medications (Orphan Drugs)

This table investigates the effects of delay-induced R&D investment distortions on the probability of new drug
launches with no or few existing medications (orphan drugs), using trial site congestion as an instrument for delay in
clinical trial completion. The unit of observation is a drug project. The sample contains all orphan-drug-designated
projects that completed Phase I or II trials with detailed clinical trials records. The second-stage dependent variable,
FDAApprovali, is an indicator variable (multiplied by 100 for ease of exposition) for whether a drug is eventually
approved by the FDA. The instrument, TrialSiteCongestioni, is the normalized change in the number of participants
in the universe of trials on ClinicalTrials.gov between trial start and end date, taking the maximum across all trial
sites of a given trial in the sample. The second-stage independent variable, Delay inTrialCompletioni, is the gap in
months between the realized trial completion date and the expected trial completion date for project i to complete
Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the number
of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in
the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

DV: Delay DV: FDA Approval
First Stage Second Stage

(1) (2)

Trial Site Congestion 0.551∗∗∗

(5.17)

Delay in Trial Completion 0.249∗∗∗

(2.65)

Controls Y Y
Year × Quarter FE Y Y
Firm FE Y Y
ICD FE Y Y
Trial Phase FE Y Y
F-stat 26.75 –
Observations 1,859 1,859
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Table 9: Effects on Adverse Events Related to Approved Drugs

This table investigates the effects of delay-induced R&D investment distortions on adverse events related to approved
drugs, using trial site congestion as an instrument for delay in clinical trial completion. The unit of observation is a
drug project. The sample contains all approved projects that completed Phase I or II trials with detailed clinical
trials records. The second-stage dependent variables are the count of adverse events reported by the FDA (taking
logs) within the first and the first three years since drug launch, respectively. The instrument, TrialSiteCongestioni,

is the normalized change in the number of participants in the universe of trials on ClinicalTrials.gov between
trial start and end date, taking the maximum across all trial sites of a given trial in the sample. The second-stage
independent variable, Delay inTrialCompletioni, is the gap in months between the realized trial completion date
and the expected trial completion date for project i to complete Phase I or II clinical trials. Please see Section
5.2 for further details on the econometric specification and estimation. Fixed effects are indicated in the bottom
rows. Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). We report t−statistics, based on standard errors accounting for the generated regressors
problem by bootstrapping, in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

DV: Delay DV: log(Adverse Events in 1 Year) DV: log(Adverse Events in 3 Years)
First Stage Second Stage Second Stage

(1) (2) (3)

Trial Site Congestion 0.903∗∗∗

(5.25)

Delay in Trial Completion 0.014 0.014
(0.57) (0.58)

Inverse Mills Ratio −1.572 1.101 1.467
(−0.12) (0.54) (0.66)

Controls Y Y Y
Year × Quarter FE Y Y Y
Firm FE Y Y Y
ICD FE Y Y Y
Trial Phase FE Y Y Y
Observations 438 438 438
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I. Supplementary Results

I.A Figures

Figure OA.1: Geographic Distribution of Clinical Trials
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This figure exhibits the geographic distribution of clinical trials in our analysis sample. For each country, we
calculate the natural logarithm of the number of trials.
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Figure OA.2: Placebo Test for Variation in Exchange Rates
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(a) Distribution of Estimated Coefficient of ∆FX without Controls
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(b) Distribution of Estimated Coefficient of ∆FX with Controls

This figure exhibits the distribution of the estimated coefficient for ∆FX in Equation (2). In each estimation, we
randomly assign countries to the clinical trials in the sample. The distribution of the estimated coefficients is derived
by repeating the estimation 1,000 times. Panel A exhibits the estimation without controls. Panel B exhibits the
estimation with controls.
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I.B Tables

Table OA.1: Delays in Trial Completion and Project Continuation Versus Suspension: Further Evidence
on Financial Constraints

This table further explores the role of financial constraints for explaining the relationship between trial suspension
and delay in completion of the preceding trial phase, adding to the evidence in the final column in Panel A of Table
5. The unit of observation is a drug project. The sample contains all projects that completed Phase I or II trials with
detailed clinical trials records. The dependent variable, Suspensioni, is an indicator variable for whether project i
was suspended after completing Phase I or II clinical trials. The independent variable, Delay inTrialCompletioni,
is the gap in months between the realized trial completion date and the expected trial completion date for project i
to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the
number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects
in the company’s pipeline (taking logs), and number of competing projects in the same ICD (taking logs). See
Section 4.5 for further details. We report t−statistics in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4) (5) (6)

Delay in Trial Completion −0.196∗∗∗ −0.179∗∗∗ −0.197∗∗∗ −0.197∗∗∗ −0.195∗∗∗ −0.193∗∗∗

(−4.08) (−3.91) (−4.10) (−4.84) (−4.69) (−4.65)

Constrained (WW) 0.238
(0.06)

Constrained (HP) 13.722∗∗∗

(3.20)

Constrained (KZ) −0.766
(−0.27)

Constrained–Trial Start (WW) −0.905
(−0.25)

Constrained–Trial Start (HP) 4.572
(1.00)

Constrained–Trial Start (KZ) 3.429
(1.18)

Controls Y Y Y Y Y Y
Year × Quarter FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
ICD FE Y Y Y Y Y Y
Trial Phase FE Y Y Y Y Y Y
Observations 4,746 4,855 4,759 4,987 5,174 4,996
Adj. R-squared 0.2701 0.2736 0.2714 0.2603 0.2646 0.2616

47



Table OA.2: FDA Clinical Holds and Trial Duration

This table examines if the trial delays are mechanically caused by FDA’s clinical holds. We adopt a speci-
fication similar to Column (4) of Table 2 except that we use Trial Duration, Delay inTrialCompletion, and
Trial SiteCon jestion as the dependent variables. The independent variable is an indicator variable for whether
project i experienced any clinical hold in Phase I or II clinical trials that already completed. Fixed effects are
indicated in the bottom rows. Control variables include the number of sites in a clinical trial (taking logs), count of
enrolled participants (in hundreds), number of drug projects in the company’s pipeline (taking logs), and number of
competing projects in the same ICD (taking logs). We report t−statistics in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

DV: Trial Duration Delay in Completion Instrument for Delay

(1) (2) (3)

Had Clinical Hold −6.032 1.122 5.465
(−1.65) (0.32) (1.30)

Controls Y Y Y
Year × Quarter FE Y Y Y
Firm FE Y Y Y
ICD FE Y Y Y
Trial Phase FE Y Y Y
Observations 9,257 9,161 9,257
Adj. R-squared 0.5745 0.3187 0.4517
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II. Data and Estimation Appendix

II.A Details on Information from clinicaltrials.gov

In a first step, we use the official and short titles of observations in our main dataset to find the

corresponding National Clinical Trial (NCT) identifier. For this, we use a combination of searching the

clinicaltrials.gov database for the official and short titles, and fuzzy-string matching between the titles

in our dataset and those on clinicaltrials.gov (using the jellyfish package in Python). After matching,

we add additional information from clinicaltrials.gov (number of participants, trial start and end dates),

in order to compare the added information to that from our main dataset. This allows us to determine

whether we matched the correct trial. Before determining the correctness of the match (described further

below), we also scrape the anticipated completion date as well as primary anticipated completion date

from clinicaltrials.gov’s “History of Changes” records associated with each trial (i.e., each NCT identifier).

We use the information from the earliest available historical record, and use the anticipated completion

date (rather than the primary anticipated completion date) when available.12

In a second step, we further assess the correctness of the matched trial from clinicaltrials.gov. When-

ever it is not clear whether a match is correct (e.g., we conclude the match is correct when the information

on number of participants as well as trial start and end dates in both datasets coincides, and the Levenshtein

distance between titles is at most 10, or the jellyfish similarity score is above 0.99) or incorrect (e.g., we

conclude the match is incorrect when the anticipated completion date from clinicaltrials.gov preceeds

the start date of the trial in our main dataset), we manually assess the match (e.g., we assess whether the

sponsors and collaborators match, taking into account acquisitions, joint ventures, and name changes).

Table OA.3 below contains several examples of correctly or incorrectly matched trials between our main

dataset and clinicaltrials.gov. The first (third) example contains a clear correct (incorrect) match. The

second example contains a slightly more subtle incorrect match. Finally, for incorrect matches that were

based on searching the clinicaltrials.gov database for the official and short titles, we also implement the

fuzzy-string matching, and repeat the subsequent steps for the new matches (adding information from

clinicaltrials.gov, scraping NCT identifier, assessing correctness of each match).

12For one observation in the dataset, we use the primary anticipated end date, as the anticipated completion date is implausibly
high in the first record (year 2087) and corrected in subsequent records.
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II.B Matching with FDA Drug Adverse Events Database

For the clinical trials in our main analysis sample, we locate a subsample of trials in which their

experimental drugs eventually obtained the FDA approval and are launched in the market. We manually

collect drugs’ brand names by Googling drugs’ experimental names under trials (typically contain the

names of drugs’ active ingredients or chemical compounds). To ensure that we find the correct brand

names, we also match the drug developers and disease indications by searching relevant information from

the Internet (e.g., prominent websites including Drug Bank and Adis Insight).

We then use both brand names and experimental names under trials of drugs to match with drug

names appearing in the FDA Drug Adverse Events Database. We include drugs’ experimental names (e.g.,

active ingredients) in the matching since sometimes they also show up in the adverse adverse report. But

due to the presence of biosimilars and generic drugs, for which the adverse events database also reports

the corresponding active ingredients contained in drugs, we conduct extra steps to guarantee the matching

quality. Specifically, we identify if a drug (with experimental names reported in the adverse events

database) is uniquely developed and marketed by the company. If so, we compare the manufacturers’

names in the adverse events database to the drug sponsor names in the trial data.

After obtaining the matched adverse events sample, we restrict our analysis to the incidents with

drugs listed as the primary suspect. We drop incidents with any missing information on incident dates and

incident primary ID. In the end, we are able to match 3,890,964 adverse events to the drug projects that

obtained the FDA approval in our clinical trials data.
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II.C Estimation Procedure

Our derivation of the estimation equation follows Wooldridge (2010). Let us rewrite Equation (5) so

that

Ỹ out
i = α1ci +α

′
2Xi +g(zi,Xi,Y

app
i )+ ei

where g(zi,Xi,Y
app
i ) = E[vi | zi,Xi,Y

app
i ] and ei = vi −E[vi | zi,Xi,Y

app
i ]. Since E[ei | zi,Xi,Y

app
i ] = 0 by

construction, we could estimate the above equation y 2SLS on the selected sample using (zi,Xi,g(zi,Xi,Y
app
i =

1)) if we know g(zi,Xi,Y
app
i ). In the following step, we focus on the derivation of g(·).

By definition,

g(zi,Xi,Y
app
i = 1) = E[vi | zi,Xi;Y

app
i = 1]

= E[vi | zi,Xi;β1ci +β
′
2Xi +ui > 0]

= E[vi | zi,Xi;β1(γ1zi + γ
′
2Xi +ξi)+β

′
2Xi +ui > 0]

= E[vi | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ
′
2 +β

′
2)Xi]. (8)

Given the assumption in Equation (7), we have

 vi

β1ξi +ui

∼ Normal


 0

0

 ,

 σ2
3 β1σ23 +σ13

β1σ23 +σ13 β 2
1 σ2

2 +2β1σ12 +1


 .

Therefore, the conditional expectation of vi is

E[vi | β1ξi +ui] =
β1σ23 +σ13

β 2
1 σ2

2 +2β1σ12 +1
(β1ξi +ui) = α3(β1ξi +ui)

where α3 =
β1σ23+σ13

β 2
1 σ2

2+2β1σ12+1 .
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Applying iterated expectations on Equation (8),

g(zi,Xi,Y
app
i = 1) = E[E[vi|zi,Xi;β1ξi +ui] | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ

′
2 +β

′
2)Xi]

= α3E[β1ξi +ui | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ
′
2 +β

′
2)Xi]

= α3λ (
β1γ1zi +(β1γ ′2 +β ′

2)Xi√
β 2

1 σ2
2 +2β1σ12 +1

)

where λ (·) = φ(·)
Φ(·) with φ(·) as the probability density function of the standard normal distribution and

Φ(·) as the cumulative density function of the standard normal distribution.
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