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Abstract

We recover a stochastic discount factor (SDF) for asset returns from a firm’s investment Eu-
ler equation. Given a parametric statistical specification of the SDF and profitability process, we
solve for the firms’ optimal investment decision with approximate analytical solutions and provide
a dissection of the determinants of real investment. We estimate a specification of the model to
discipline the free parameters of the SDF by matching moments of both aggregate real quantities
and asset prices. We use the estimated parameters to recover the latent SDF from data on aggregate
investment rates, risk-free rates, and profitability growth rates. Innovations in the recovered SDF
are driven dominantly by innovations in investment rates and marginally by innovations in risk-free
rates and profitability growth rates. The recovered SDF exhibits strong counter-cyclicality with large
jumps in recessions and prices standard Fama-French portfolios out of sample reasonably well. Our
model allows us to explicitly characterize the risk-free rate, the equity premium, the term structure
of interest rates, and the term structure of equity risk premia. The framework we propose here is
general and can be extended to accommodate several additional aggregate shocks and frictions that
have been proposed in the literature.
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1 Introduction

The stochastic discount factor (SDF) is the foundation of modern asset pricing theory1. The fundamental

theorem of asset pricing, credited to Ross (1978) and Harrison and Kreps (1979), states that there

exists a positive stochastic discount factor that prices all assets in absence of arbitrage opportunities.

Investigating the behavior of the stochastic discount factor and identifying its empirical measure is

the key to understanding asset prices. Barring a few exceptions (discussed below), stochastic discount

factors are recovered from consumption-based models. In the consumption-based approach, pioneered

by Rubinstein (1976), Lucas (1978), and Breeden (1979), a stochastic discount factor is recovered from

equilibrium marginal rates of substitution (MRS) inferred from consumers’ first-order condition of utility

maximization.

This paper proposes a novel investment-based approach to recover the stochastic discount factor

from the supply side of the economy. We consider a stylized partial-equilibrium neoclassical model of

investment with a value-maximizing representative producer. Taking as given exogenous processes of

the profitability growth and the stochastic discount factor, the producer optimally invests to maximize

the market value of the firm. The optimal investment rate (investment-to-capital ratio) can be solved

explicitly in a first-order approximation and expressed as a linear function of state variables that drive

both the profitability growth and the stochastic discount factor. We estimate a specification of the model

to match moments of investment rates, risk-free rates, equity premium, and profitability growth rates,

and minimize mean squared pricing errors of in-sample test portfolios. The estimated model allows us

to recover realizations of underlying state variables from data on investment rates, risk-free rates, and

profitability growth rates, and recover shocks to state variables due to parametric statistical assumptions

of exogenous processes. Finally, we recover the stochastic discount factor as a function of investment

rates, risk-free rates, and profitability growth rates. We investigate properties of the recovered stochastic

discount factor and examine its pricing performance on out-of-sample portfolios.

Our baseline specification of the model closely matches most moments of investment, profitability

growth, and asset prices. Specifically, the estimated model generates a log investment rates with a mean

of -3.29 and a standard deviation of 8.39%, identical to those in the data. The autocorrelation coefficient

of the investment rate is 0.88 in the model and close to 0.97 in the data. The log risk-free rate implied

by the model has a mean of 0.50% and a standard deviation of 0.57%, identical to 0.50% and 0.57% in

the data. The autocorrelation coefficient of the model-implied risk-free rate is 0.69%, very close to 0.68%

in the data. The model-implied excess return has a mean of 1.28% and a standard deviation of 8.62%,

almost identical to 1.29% and 8.61% in the data. The investment rate has a positive correlation of 0.35

with the real risk-free rate, close to 0.34 in the data, and has a negative correlation of -0.0006 with the

1. See, for example, Cochrane (2005) and Campbell (2018) for a textbook treatment of the stochastic discount factor in
asset pricing.
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excess return, falling short of -0.18 in the data.

Central to our paper is the investment-implied SDF. In the simplest specification of the model,

innovations in the recovered SDF (22) are driven by innovations in investment rates and innovations in

profitability. Our model goes beyond the simple return predictability of investment and profitability and

delivers the prediction that the expected return of an asset is determined by the covariance between asset

returns and two factors, innovations in investment rates and innovations in profitability. In the more

realistic model specification taken to estimation, innovations in risk-free rates are also included in the

recovered SDF (50). While data on risk-free rates and profitability growth are used, in our estimation,

variations in the recovered SDF are driven dominantly by innovations in investment rates and only

marginally by innovations in risk-free rates and profitability.

Using the estimated parameters, we recover the SDF from data on investment rates, risk-free rates,

and profitability growth rates. The time series is plotted in Figure 3. The recovered SDF peaked during

all major recessions, most significantly during the recent COVID-19 pandemic in 2020, followed by the

Great Recession in 2008. A variance decomposition of unexpected innovations in the log SDF reveals

that shocks to expected profitability growth account for 106.7% of total variations and innovations in

investment rates account for 98.9% of total variations. This result highlights the role of shocks to

expected profitability growth or innovations in investment rates in driving the SDF.

The recovered SDF prices 10 size-sorted portfolios in the sample with a mean absolute pricing error

of only 0.06%. The recovered SDF also prices out-of-sample portfolios reasonably well. The recov-

ered SDF prices 6 size-book-to-market-sorted portfolios, and 6-size-profitability-sorted portfolios, 6-size-

investment-sorted portfolios, with mean absolute pricing errors are 0.36%, 0.41%, 0.39%, respectively.

Similarly, a covariance decomposition shows that the covariance between portfolio returns and shocks to

expected profitability growth or innovations in investment rates matters the most among all components.

Therefore, we should expect that a SDF with innovations in investment rates as the single factor prices

the cross section with a very close performance to that of the complete recovered SDF.

The intuition behind our approach recovering the stochastic discount factor from investment is

straightforward. Despite being not state-contingent, investment is forward-looking. More specifically,

investment decisions are made based on the joint conditional distribution of the stochastic discount factor

and the profitability growth. Therefore, investment data contain information about both the stochastic

discount factor and the profitability growth. The information of the stochastic discount factor can be

disentangled from that of the profitability growth once the structure between these two objects is speci-

fied. Agnostic about its form in the absence of household preference, we make parametric assumptions

that both the stochastic discount factor and the profitability growth are driven by the same state vari-

ables, which are the expected profitability growth and the profitability growth uncertainty, and that the

stochastic discount factor is subject to shocks to profitability growth, shocks to expected profitability
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growth, and shocks to profitability growth uncertainty with free parameters.2

Through a first-order approximation of the investment return, the investment Euler equation yields

the optimal investment rate as a linear function of state variables, given the stochastic discount factor

with the assumed functional form and the exogenously specified profitability growth. The coefficients

of the optimal investment rate are elasticities of investment to the expected profitability growth and to

the profitability growth uncertainty, as functions of primitive parameters of the SDF and state variables.

The elasticity of investment to the expected profitability growth summarizes the net effect of a change

in the expected profitability growth on investment through both a cash flow channel and a risk-free rate

channel. The elasticity of investment to the profitability growth uncertainty summarizes the net effect

of a change in conditional volatility of the profitability growth on investment through both a cash flow

channel and a discount rate channel (both the risk-free rate and the risk premium).

A valid stochastic discount factor should jointly explain both real quantities and asset prices. To

discipline free parameters of the stochastic discount factor (and state variables), we estimate the model

to match moments of investment rates, profitability growth rates, risk-free rates, and equity premia. The

estimation in turn yields estimated elasticities of investment rates and risk-free rates to state variables,

with which we are able to recover the latent expected profitability growth and the profitability growth

uncertainty from investment rates and risk-free rates. Finally, we recover the stochastic discount factor

by assembling recovered state variables and shocks to state variable with estimated parameters of the

stochastic discount factor.

We focus on a simple specification of the model in this paper to illustrate our new approach. Never-

theless, this framework is flexible and can incorporate additional aggregate shocks and frictions that have

been proposed in the literature. For example, one may incorporate labor market frictions to jointly ac-

count for investment, employment, and asset prices and recover a SDF from investment and employment

data. One may also include investment-specific shocks or similarly adjustment cost shocks to introduce

an additional source of risk. It is also possible to extend the model to a multi-sector setting in which the

SDF can be recovered from multiple sectoral investment rates.

Related Literature

Our paper contributes to the relatively small branch of the production-based asset pricing literature

that attempts to recover a stochastic discount factor from production/investment decisions. Our paper

is closest to Cochrane (1993) and Belo (2010).3 They propose an approach to infer the stochastic dis-

count factor from a producers’ marginal rates of transformation (MRT) across states of nature, without

any information about the consumer side of the economy and without having to parameterize stochastic

processes that drive a firm’s decision. Because the MRT across states of nature is not well defined for

2. In the simpler case, we assume that the stochastic discount factor is driven only by the expected profitability growth
and subject to shocks to profitability growth and shocks to expected profitability growth. Adding time-varying uncertainty
is crucial to generate the time-varying equity premium and other features of both investment and asset prices.

3. Cochrane (2020) provides a detailed exposition of this pure production-based approach.
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standard representations of the technology (see Figure 1 in Belo (2010)), they propose a flexible pro-

duction technology that allows a producer to transform productivity across states. While this approach

is theoretically appealing and parallel to the consumption-based approach, the empirical identification

of the latent productivity process that drives the SDF can be challenging. We recover a SDF for asset

returns using a conventional representation of the production technology and directly observable data on

investment and asset prices. We achieve this result by making, relative to the previous work, additional

parametric and statistical assumptions about underlying stochastic processes that drive firm’s decisions

in the economy (the profitability growth and the SDF).

Another closely related paper is Cochrane (1996). It proposes a multi-factor representation of the

SDF with two sectoral investment returns as factors4. While the proposed SDF prices 10 size-sorted

portfolios remarkably well, it only motivates but does not theoretically establish the SDF. Subsequently,

Li, Vassalou, and Xing (2006) experiments further with this approach and proposes using three sectoral

investment growth rates as factors. The proposed SDF prices the 25 Fama-French size-sorted and book-

to-market-sorted portfolios with a performance comparable to that of Fama-French 3-factor model. As

Campbell (2018) points out, “A satisfying economic explanation should at a minimum derive the risk

prices of multiple factors from deeper equilibrium considerations, such as the preferences of investors and

the production possibilities of the economy”. Our paper provides a complete theory for recovering the

SDF from observable investment based on the firm’s optimal investment decision, deriving and imposing

theoretical prices of risk on factors in the SDF. A multi-sector version of our model can rationalize the

specification of SDFs with multiple sectoral investment rates as factors.

In the same spirit, Cochrane (1988) and Jermann (2010) seeks to use investment returns to recover

state prices in a discrete Markov setting. However, this approach requires that the production technology

have as many types of capital inputs as the number of states of nature (in the baseline setting they focus

on a two-state representation of nature). Our model does not require such “complete technology” and

hence can be used with continuous random variables and infinite state space.

Following Cochrane (1991), Liu, Whited, and Zhang (2009) builds upon the equality between invest-

ment and stock returns and provides a characteristic-based explanation of the cross-sectional variation in

average stock returns by modeling investment returns directly. As a result of focusing on the investment

return itself and overlooking its connection with the SDF, their approach is unable to link expected

returns to exposure to aggregate risks. In contrast, our approach goes beyond the simple return pre-

dictability of investment and profitability and delivers the prediction that the expected return of an asset

is determined by the covariance between asset returns and two factors, innovations in investment rates

and innovations in profitability (in the baseline case), which are linked to aggregate risks in the model.

In addition, as pointed out by Campbell (2018), different parameter values are required to fit different

4. Investment returns are constructed as a function of investment rates and marginal product of capital.
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test assets in their approach and in the vast majority of investment-based asset pricing models. Our

approach obtains parameters structurally from matching moments of aggregate quantities and prices and

then apply the SDF with a fixed set of parameters to price the cross section.

Departing from the characteristic-based approach, Hou, Xue, and Zhang (2015) proposes a multi-

factor reduced-form SDF including an investment factor and a profitability factor in addition to a market

factor and a size factor. The investment factor and the profitability factor are motivated by the return

predictability of investment and profitability and constructed by building factor-mimicking portfolios

sorted on investment and profitability in the same way as Fama and French (1993).5 Despite its empirical

success, the economic mechanism driving the results are still poorly understood (as in the Fama-French

3-factor model), in the sense that return predictability of firm characteristics does not directly imply

return comovement among firms with similar characteristics. Our approach theoretically recovers a SDF

with innovations in investment rates and in profitability as factors.

The rest of the paper is organized as follows. Section 2 sets up and explicitly solves two specifications

of the model of increasing complexity: Case I considers an simple homoscedastic environment, and Case

II considers an economy with time-varying conditional volatility. The solution method is illustrated

and the intuition of our model is discussed. Section 3 estimates the model (Case II) by matching both

quantities and asset prices to obtain model parameters. Section 4 recovers state variables and the SDF.

Subsequently, the model-implied equity premium, term structure of interest rates, and term structure of

dividend strips are also presented. Section 5 concludes.

2 Model

This section presents a standard neoclassical model of investment with a representative producer. Sector

2.1 sets up the model and derives the optimal condition of investment, i.e., the investment Euler equation,

which is a joint restriction on the SDF and the investment return. Section 2.2 (Case I) illustrates the

solution method and discusses the intuition in a simple homoscedastic exogenous environment. Section

2.5 (Case II) extends the specification to feature time-varying conditional volatility in order to capture

missing salient features of investment and asset prices in Case I. We derive in both cases the recovered

SDF as a function of investment rates (coupled with or without risk-free rates) and profitability growth

rates in section 2.3 and 2.6. We provide in both cases analytical solutions of the risk-free rate, the equity

premium, the term structure of interest rates, and the term structure of equity premia in section 2.4 and

2.7. All detailed derivations are provided in the Appendix.

5. Zhang (2017) provides a comprehensive review of the q-factor model and the literature of investment-based asset
pricing.
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2.1 Investment Euler Equation

Consider a representative producer producing a single good to be consumed or invested. The production

function exhibits constant return-to-scale in capital and labor.

Yt = AtK
α
t N

1−α
t (1)

where At is the exogenous total factor of productivity (TFP), Kt is the stock of physical capital, Nt

is the number of total labor hours. Assuming the labor is costlessly adjustable, we obtain the profit

function by profit maximization, Πt = maxNt AtK
α
t N

1−α
t −WtNt.

Π(Et,Kt) =

[
[α(1− α)

1−α
α ]A

1
α
t W

α−1
α

t

]
Kt ≡ EtKt (2)

where the profitability is given by Et = [α(1 − α)
1−α
α ]A

1
α
t W

α−1
α

t and the profit function is constant

returns-to-scale in capital only. For convenience of exposition, we will use profitability for the rest of the

paper.

The capital stock is subject to depreciation and accumulated by investment.

Kt+1 = (1− δ)Kt + It (3)

where δ ∈ (0, 1) denotes the depreciation rate and It denotes investment.

Investment is costly in the sense that it costs more than the purchase cost of investment goods to

install new capital. One can interpret additional costs of investment as output lost during installation

of new capital. Following Merz and Yashiv (2007), we assume that the total investment cost is convex

and proportional to output.6

Φ(It,Kt, Et) =
κ

η + 1

(
It
Kt

)η+1

Π(Et,Kt) (4)

where κ > 0 is the scalar of the total investment cost, and η ≥ 0 controls the curvature of the total

investment cost. For example, installing It units of capital costs in total κ It
Kt

Π(Et,Kt) units of goods

when η = 0, and costs κ
2

I2
t

Kt
Π(Et,Kt) units of goods when η = 1. The convexity implies that installing

new capital is increasingly costly in the investment rate. Higher curvature η implies lower elasticity of

investment to marginal value of capital and more elastic supply of capital (Jermann, 1998).

6. In some papers, the total investment cost is specified as the sum of purchase cost of investment goods and investment
adjustment costs It + Φ(It,Kt). We fold the purchase cost of investment goods It into the total cost of investment for
algebraic convenience without loss of generality, as in Merz and Yashiv (2007) and Kogan and Papanikolaou (2012).

7



The producer pays out its residual profits after investment as dividends to its equity holders.

Dt = Π(Et,Kt)− Φ(It,Kt, Et) (5)

To simplify the analysis, the production is assumed to be fully equity-financed. A negative dividend

payout refers to equity issuance to equity holders.

Taking as given exogenous processes of the SDF and the profitability, the producer optimally chooses

investment to maximize its cum-dividend value. The producer’s problem can be written conveniently

in a recursive manner. Denote a vector of state variables Xt = (Et,Kt), the Bellman equation of the

producer is given by

V (Xt) = max
{It}

{
Dt + Et[Mt+1V (Xt+1)]

}
subject to the flow of fund constraint (5) and the capital’s law of motion (3).

The first-order condition of the producer’s value maximization, often called the investment Euler

equation, is given by

1 = Et[Mt+1R
I
t+1] (6)

RI
t+1 =

Et+1[1 + κ η
η+1IK

η+1
t+1 + (1− δ)κIKη

t+1]

Et[κIKη
t ]

(7)

where IKt ≡ It/Kt denotes the investment-capital ratio, or the investment rate, and RI
t+1 denotes the

marginal investment return.

First derived by Cochrane (1991), the investment Euler equation states that, in equilibrium, the

producer adjusts the investment until the marginal cost of investment, Et[κIKη
t ], equals the expected

discounted marginal benefit of investment, Et

[
Mt+1Et+1[1+κ η

η+1IK
η+1
t+1 +(1−δ)κIKη

t+1]
]
. Alternatively

put, the marginal investment return, given by the marginal benefit of investment divided by the marginal

cost of investment, has a price of one in equilibrium.

More importantly, in absence of arbitrage and under constant returns-to-scale, the investment return

equals ex post the stock return at all times and across all states of nature.7

Et+1[1 + κ η
η+1IK

η+1
t+1 + (1− δ)κIKη

t+1]

Et[κIKη
t ]

≡ RI
t+1 = RS

t+1 ≡ Pt+1 +Dt+1

Pt
≡ V (Xt+1)

V (Xt)−Dt
(8)

where RS
t+1 denotes the stock return and Pt denotes the ex-dividend value.

The investment Euler equation is a restriction on the joint process of the SDF, profitability and

investment and can be interpreted in two ways. From the perspective of intertemporal optimization,

7. Restoy and Rockinger (1994) provides general conditions for the equality of investment returns and stock returns.
Critical conditions are absence of arbitrage and linearly homogenous production technology and adjustment cost function.
The equality is robust to considering external funding constraints and taxation. Liu, Whited, and Zhang (2009) incorporates
debt and taxes and derives that the investment return equals the weighted average cost of capital (WACC).

8



the investment Euler equation yields the optimal investment given an exogenous SDF and profitability,

analogous to the consumption Euler equation solving the household’s optimal consumption and port-

folio choice problem given an exogenous SDF and asset returns. Investment is essentially driven by

expectations of cash flows and discount rates and therefore contains information about both. From the

perspective of asset pricing, the investment Euler equation relates asset returns to production variables,

investment and profitability. All else equal, high investment predicts low returns, while high expected

profitability predicts high returns. These predictability patterns are consistent with the intuition of the

classic net present value (NPV) rule in capital budgeting. Lower discount rates imply higher NPV and

investment. Higher expected profitability relative to current investment implies higher discount rates.

Our approach of recovering the SDF takes advantage of both interpretations of the investment Euler

equation. We first solve explicitly the optimal investment rate given an exogenous SDF and profitability,

driven by common underlying state variables. We then estimate model parameters by matching moments

of quantities and prices, both of which are interrelated via the investment Euler equation. We finally use

estimated parameters and observed investment data to recover underlying state variables and therefore

recover the SDF. Using the recovered SDF, we can obtain the conditional equity premium and evaluate

prices of both claims to risky dividends and claims to risk-less payoffs across different maturities.

The producer’s problem cannot be explicitly solved under general conditions due to its dynamic and

stochastic nature. Since our ultimate goal is to recover the SDF as a function of observed production

variables, our approach requires tractability. Therefore, we log-linearize the investment return to obtain

analytical solutions.

The log investment return is linearized with respect to the investment rate around its long-term

unconditional mean.8

rIt+1 ≡ logRI
t+1 = (a1 + b1ikt+1)− (a2 + b2ikt+1) +∆εt+1

= (a1 − a2) + (b1ikt+1 − b2ikt) +∆εt+1 (9)

where a1, b1 are linearization constants, a2 = log κ, b2 = η.

This log-linearized investment return is the production counterpart of the return on wealth log-

linearized with respect to the price-consumption ratio in Campbell and Shiller (1988), rt+1 = κ0 +

κ1pct+1−pct+∆ct+1. In our model, the investment rate takes the central role as the price-to-consumption

ratio or the wealth-to-consumption ratio does in the consumption framework. From the perspective of

asset pricing, this expression says that the investment return from time t to t + 1 is determined by the

investment rate at time t and time t+1 and the profitability growth from time t to t+1. Alternatively,

8. In principle, the investment rate can be negative and therefore its logarithm is not well defined. The aggregate
investment, however, is never negative in the data. As shown in Engsted, Pedersen, and Tanggaard (2012), the upper
bound on mean errors of a first-order approximation is minimized by setting the point of linearization to the unconditional
mean of variables linearized.
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from the perspective of the theory of investment, b2ikt = −rIt+1 + b1ikt+1 + ∆εt+1, this expression

yields that the optimal investment is driven by expectations of the return, the investment rate, and the

profitability growth in the next period. Echoing the point made in Gomes (2001), cash flows contributes

to predicting investment even in the absence of financial constraints. In fact, the expectation of cash

flow growth is an crucial component of investment decisions, and its empirical importance is left to be

examined in later sections.

2.2 Case I: investment under constant uncertainty

In Case I, we illustrate the solution method and discuss the intuition of our model in a simple ho-

moscedastic exogenous system. The solution method proceed as follows.

We assume that in this economy there exists a latent state variable that captures time-varying business

conditions and drives both the profitability growth and the SDF. This latent state variable is specified

to be an AR(1) process with constant conditional volatility.

st+1 = µs + ρsst + σses,t+1 (10)

where µs ≡ (1− ρs)s̄ is a constant, s̄ denotes the unconditional mean, and es,t+1
i.i.d∼ N(0, 1) is the state

variable shock.

The log profitability growth is driven by the state variable and subject to a transitory profitability

growth shock.9

∆εt+1 = µε + st + σεeε,t+1 (11)

where eε,t+1
i.i.d∼ N(0, 1) is the profitability growth shock and uncorrelated with es,t+1. The state variable

can be interpreted as the time-varying expected profitability growth, and the state variable shock is the

shock to the expected profitability growth. Shocks to this state variable can have non-trivial long-run

effects on the profitability growth, upon assuming high persistence of the state variable as in Max Croce

(2014).

The log SDF is also driven by the state variable st and subject to the profitability growth shock and

the expected profitability growth shock with the price of risk λm
ε and λm

s , respectively.

mt+1 = −µm − ρms st − λm
ε σεeε,t+1 − λm

s σses,t+1 (12)

We conjecture a linear functional form for the policy function of log investment. That is, the producer

9. Notations: uppercase letters denote the level of variables while lowercase letters denote their logarithm counterparts.
For example, the level of profitability is denoted by Et, and its log counterpart is εt.
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observes the current realization of the state variable st and invests log-linearly.10

ikt = α+ βst (13)

where α is a constant and β is the elasticity of the investment rate to expected profitability.

Substituting the conjectured investment rate into the investment return, we have

rIt+1 = [(a1 − a2) + (b1 − b2)α+ µε + b1βµs] + [(b1ρs − b2)β + 1]st + σεeε,t+1 + (b1β)σses,t+1 (14)

The investment return is risky in that it bears 1 unit of profitability growth risk and b1β units of expected

profitability growth risk.

Finally, using the property that the Investment Euler equation holds at all times,

0 = Et[mt+1] + Et[r
I
t+1] +

1

2
Vt[mt+1] +

1

2
Vt[r

I
t+1] + COVt(mt+1, r

I
t+1) (15)

we solve analytically the coefficients of the policy function of investment (14) by method of undetermined

coefficients.

β =
ρms − 1

b1ρs − b2
(16)

α =
µm − 1

2 (λ
m
ε − 1)2σ2

ε − 1
2 (λ

m
s − b1β)

2σ2
s − (a1 − a2)− µε − b1βµs

b1 − b2
(17)

The solution shows the elasticity of investment to the expected profitability growth.11 For a one-

percent increase in the expected profitability growth, the investment rate increases by β percent. Exoge-

nous changes in the expected profitability growth incentivize the producer to invest or divest through

both the cash flow channel and the discount rate channel. A one-percent increase in the expected

profitability growth implies, according to (10), a one-percent increase in the expected investment return

before changing any investment, leaving value-enhancing investment opportunities for the producer. This

one-percent increase in the expected profitability growth is also correlated with a −ρms percent change

in the inverse of the risk-free rate as in (13), which is the present value of one unit of goods in the next

period, while the risk premium remains unchanged due to the constant conditional covariance between

the investment return and the SDF. Suppose the producer invests by x percent, the expected investment

return, which is the expected marginal benefit of investment less the marginal cost of investment, now

increases in total by [(b1ρs−b2)x+1] percent according to (15). In equilibrium, the producer invests until

the expected discounted net marginal value of investment diminishes to zero, (b1ρs − b2)x+1− ρms = 0,

10. For example, the producer can observe the current realization of the state variable st by observing the current
one-period risk-free rate, which is the inverse of the conditional expectation of the SDF.
11. Given logEt[∆Et+1] = µε + 1

2
σ2
ε + st, rewrite (14) as log IKt = (α− βµε − 1

2
βσ2

ε) + β logEt[∆Et+1].
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yielding the optimal investment coefficient β = x =
ρm
s −1

b1ρs−b2
.

2.3 Case I: recovery of SDF

The assumed SDF (13) is composed of one state variable and two exogenous shocks. The expected

profitability growth, shocks to the expected profitability growth, and shocks to profitability growth can

be recovered from data of the investment rate and the profitability growth.

st = (ikt − α)/β (18)

σses,t+1 = st+1 − ρsst − µs (19)

σεeε,t+1 = ∆εt+1 − st − µε (20)

As a result, the SDF is recovered as

mt+1 = −µ′
m − ρmikikt − λm

ε ∆εt+1 − λm
ik∆ikt+1 (21)

where coefficients are given by

µ′
m = µm − [ρms − λm

ε + λm
s (1− ρs)]α/β − λm

ε µε − λm
s µs (22)

ρmik = [ρms − λm
ε − λm

s (1− ρs)]/β (23)

λm
ik = λm

s /β (24)

The recovered SDF is driven by the investment rate and subject to the profitability growth and the

investment rate growth as shocks, with prices of risks λm
ε , λm

ik, respectively. Our model goes beyond

the return predictability of investment and profitability and delivers the prediction that the expected

return of an asset is determined by the covariance between asset returns and investment rate growth

and profitability growth. Although our goal is to generate a structural investment-implied SDF, this

expression conveniently suggests an empirical two-factor representation of the SDF for excess returns

with investment rate growth and profitability growth as factors.

2.4 Case I: asset prices

We are able to characterize a wide range of asset pricing variables in this economy with the solution of the

optimal investment. The risk-free rate is the inverse of the conditional mean of SDF, Rf
t = Et[Mt+1]

−1,

so the log risk-free rate in this case is given by

rft = −Et[mt+1]−
1

2
Vt[mt+1] = µm − 1

2
(λm

ε )2σ2
ε −

1

2
(λm

s )2σ2
s + ρmε st (25)
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where ρms is the elasticity of the risk-free rate to expected profitability growth.

Rearranging the investment Euler equation (16) and using the expression of the risk-free rate (26),

we have the conditional log equity premium equal the covariance between the log SDF and the log

investment return.12

Et[r
I
t+1]− rft +

1

2
Vt[r

I
t+1] = −COVt(mt+1, r

I
t+1) = λm

ε σ2
ε + λm

s (b1β)σ
2
s (26)

Holding the investment return is compensated by λm
ε σ2

ε for bearing 1 unit of profitability growth risk

and λm
s (b1β)σ

2
s for bearing b1β unit of expected profitability growth risk.

We can characterize prices and yields of risk-less bonds in our model in the same way as in Vasicek

(1977) except that our specification designates the expected profitability growth as the latent factor.

Denote Bn
t as the time-t price of a risk-less bond that pays the one unit of goods in n periods. The

price of a n-period bond is given by Bn
t = Et[Mt+1...Mt+n]. The yield-to-maturity of a n-period bond is

Y n
t = (1/Bn

t )
1/n, or ynt = −bnt /n. Using the recursive relation of bond prices Bn

t = Et[Mt+1B
n−1
t+1 ], we

can compute prices of n-period bonds recursively as functions of the state variable. In our model, the

log price of a n-period bond is affine in the expected log profitability growth.

bnt = An +Bnst (27)

where Bn is the elasticity of the price of a n-period bond to the expected profitability growth and

coefficients are recursively computed.

An+1 = An +Bnµs − µm +
1

2
(λm

ε )2σ2
ε +

1

2
(λm

s −Bn)
2σ2

s (28)

Bn+1 = Bnρs − ρms =
ρms

1− ρs
(ρn+1

s − 1) (29)

where A1 = −µm + 1
2 (λ

m
ε )2σ2

ε +
1
2 (λ

m
s )2σ2

s , B1 = −ρms .

The one-period holding return on a n-period bond is defined by Rbn
t+1 = Bn−1

t+1 /B
n
t , and the log

expected excess return is given by

Et[r
bn
t+1]− rft +

1

2
Vt[r

bn
t+1] = −COVt[mt+1, b

n−1
t+1 ] = λm

s Bn−1σ
2
s (30)

Holding the n-period bond for one period bears Bn−1 unit of expected profitability growth risk. When the

price of expected profitability growth risk is positive, λm
s > 0, a positive shock to expected profitability

growth drives down simultaneously the SDF and the bond price as Bn < 0 given ρms > 0. In this case,

bonds are hedges because bond prices are high during bad states when the SDF is low. The opposite

12. The expected geometric excess return is given by Et[Re
t+1] ≡ Et[RI

t+1]/R
f
t = exp(Et[rIt+1] +

1
2
Vt[rIt+1]− rft )

13



interpretation that holding bonds is risky holds when λm
ε < 0 and ρms < 0.

We can also characterize prices of dividend claims and the term structure of equity premia. De-

note Dn
t as the time-t price of a claim to the dividend paid in n periods Dt+n. The price of a

n-period dividend claim is given by Dn
t = Et[Mt+1...Mt+nDt+n] and follows the recursive relation

Dn
t = Et[Mt+1D

n−1
t+1 ]. For example, when n = 0, the 0-period dividend claim is a claim to the cur-

rent dividend, D0
t = Dt. When n = 1, the price of a 1-period dividend claim is the expected discounted

value of the next-period dividend, D1
t = Et[Mt+1Dt+1]. It can be explicitly solved in our model as

follows,
D1

t

Pt
= Et

[
Mt+1

Dt+1

Pt+1

Pt+1

Pt

]
. We can then compute prices of n-period dividend claims recursively

using the relation,
Dn

t

Pt
= Et

[
Mt+1

Dn−1
t+1

Pt+1

Pt+1

Pt

]
.

The log price of a n-period dividend claim scaled by the ex-dividend value is given by

dnt − pt = A′
n +B′

nst (31)

where B′
n is the elasticity of the price of a n-period dividend claim scaled by the ex-dividend value to

the expected profitability growth and coefficient are recursively computed.

A′
n+1 = A′

n + a4 + b4α+ µε + [B′
n + (b4 + η)β]µs − µm

+
1

2
(λm

ε − 1)2σ2
ε +

1

2
[λm

s − (B′
n + (b4 + η)β)]2σ2

s (32)

B′
n+1 = [B′

n + (b4 + η)β]ρs − ηβ + 1− ρms (33)

where A′
1 = a6 + b6α + µε + (b6 + η)βρs − µm + 1

2 (λ
m
ε − 1)2σ2

ε + 1
2 [λ

m
s − (b6 + η)β]2σ2

s and B′
1 =

[(b6 + η)ρs − η]β + 1− ρms .

The one-period holding return on a n-period dividend claim is defined by Rdn
t+1 = Dn−1

t+1 /D
n
t , and the

log expected excess return is given by

Et[r
dn
t+1]− rft +

1

2
Vt[r

dn
t+1] = −COVt(mt+1, d

n−1
t+1 − pt+1) = λm

ε σ2
ε + λm

s [B′
n−1 + (b4 + η)β]σ2

s (34)

Holding a n-period dividend claim for one period bears 1 unit of profitability growth risk and [B′
n−1 +

(b4 + η)β] unit of expected profitability growth risk with price of risk λm
ε and λm

s .

The Case I fails to capture several salient features of investment and asset returns well documented

in the literature. First, many papers document that investment is sensitive to volatility. Bloom (2009)

shows that positive shocks to equity volatility predicts lower investment. The optimal investment in

Case I, however, is only responding to the current state of the economy and not affected by uncertainty

over future states. A related and undesirable consequence is that investment does not predict excess

returns, at odds with data. Second, asset pricing models predict that the real risk-free rate is lower when

14



the uncertainty of growth is higher due to precautionary motives. Hartzmark (2016) also empirically

documents a negative relationship between the interest rate and macroeconomic uncertainty. Similar to

the investment rate, the risk-free rate in Case I is neither affected by uncertainty. Third, a large strand

of empirical asset pricing literature finds that the discount rate is varying substantially over time for

both equity and treasuries. Cochrane (2011) surveys this literature and places the time-varying discount

rate at the heart of modern asset pricing theory. Fourth, while there is controversy over the sign of the

average slope of the term structure of equity premia, Binsbergen et al. (2013) and Bansal et al. (2021)

both find empirically that the slope is time-varying and pro-cyclical.

2.5 Case II: investment under time-varying uncertainty

In order to capture important features overlooked in Case I, we introduce in Case II a time-varying

uncertainty. For parsimony, the profitability growth and the expected profitability growth share the

same stochastic conditional volatility process, which is also AR(1).

∆εt+1 = µε + st + σteε,t+1 (35)

st+1 = µs + ρsst + φsσtes,t+1 (36)

σ2
t+1 = µσ + ρσσ

2
t + σσeσ,t+1 (37)

where µs ≡ (1 − ρs)s̄ is a constant, s̄ denotes the unconditional mean, µσ ≡ (1 − ρσ)σ̄
2, σ̄2 is the

unconditional mean of the conditional variance, and eε,t+1, es,t+1, eσ,t+1
i.i.d∼ N(0, 1) and are orthogonal

to each other.

Accordingly, the SDF is assumed to be driven by two exogenous state variables, the expected prof-

itability growth and the uncertainty of profitability growth, and subject to three sources of shocks, shocks

to profitability growth, shocks to expected profitability growth and shocks to uncertainty, with prices of

risks λm
ε , λm

s and λm
σ , respectively.

mt+1 = −µm − ρms st − ρmσ σ2
t − λm

ε σteε,t+1 − λm
s σtes,t+1 − λm

σ σσeσ,t+1 (38)

The optimal investment is conjectured to be linear in both the expected profitability growth and the

profitability growth uncertainty. That is, the producer observes the expected profitability growth st and

the conditional variance of profitability growth σ2
t and invests log-linearly.

ikt = α+ βst + ϕσ2
t (39)

where α is a constant, β is the elasticity of the investment rate to profitability, and ϕ is the elasticity

of the investment rate to uncertainty (conditional volatility) of future profitability. Substituting the
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conjectured investment rate into the investment return, we have

rIt+1 = [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ] + [(b1ρs − b2)β + 1]st + [(b1ρσ − b2)ϕ]σ
2
t

+ σteε,t+1 + (b1βϕs)σtes,t+1 + (b1ϕ)σσeσ,t+1 (40)

Again using (16) we solve for coefficients of the optimal investment rate.

β =
ρms − 1

b1ρs − b2
(41)

ϕ =
ρmσ − 1

2 (λ
m
ε − 1)2 − 1

2 (λ
m
s − b1βφs)

2

b1ρσ − b2
(42)

α =
µm − 1

2 (λ
m
σ − b1ϕ)

2σ2
σ − (a1 − a2)− µε − b1βµs − b1ϕµσ

b1 − b2
(43)

The interpretation of β remains the same as in Case I. We here focus on the interpretation of ϕ. For a

one-percent increase in the exponential uncertainty exp(σ2
t ), the investment rate increases by ϕ percent.

Alternatively, holding the expected log profitability growth constant, for a one-percent increase in the

expected profitability growth, the investment rate increases by 2ϕ percent.13 Exogenous changes in the

uncertainty of the profitability growth incentivize the producer to invest or divest through both the

cash flow channel and the discount rate channel. A one-percent increase in the exponential uncertainty

exp(σ2
t ) is associated with a −ρmσ + 1

2 (λ
m
ε )2 + 1

2 (λ
m
s )2 percent change in the inverse of the risk-free rate

and a [λm
ε +λm

s (b1βφs)] percent change in the risk premium before changing any investment. Suppose the

producer invests by y percent to counterbalance effects of the change in the uncertainty. This y-percent

change in investment results in [(b1ρσ − b2)y + 1
2 + 1

2 (b1βφs)
2] percent. In equilibrium, the expected

discounted net marginal value of investment equals zero, (b1ρσ − b2)y − ρmσ + 1
2 + 1

2 (b1βφs)
2 − λm

ε −

λm
s (b1βφs) +

1
2 (λ

m
ε )2 + 1

2 (λ
m
s )2 = 0, yielding the solution of ϕ = y =

ρm
σ − 1

2 (λ
m
ε −1)2− 1

2 (λ
m
s −b1βφs)

2

b1ρσ−b2
.

2.6 Recovery of SDF

The SDF is composed of two state variables and three exogenous shocks. The expected profitability

growth and the uncertainty of the profitability growth and their shocks can be recovered from data of

the risk-free rate and the investment rate.rft

ikt

 =

a
α

+

b c

β ϕ


st

σ2
t


where, for convenience, a ≡ µm − 1

2 (λ
m
σ )2σ2

σ, b ≡ ρms , c ≡ ρmσ − 1
2 (λ

m
ε )2 − 1

2 (λ
m
s )2.

13. We can rewrite the log investment rate as ikt = (α − βµε) + (β − 2ϕ)Et[log∆Et+1] + 2ϕ logEt[∆Et+1], where
Et[log∆Et+1] = µε + st and logEt[∆Et+1] = µε + st +

1
2
σ2
t .
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The solution is given by

st

σ2
t

 =

b c

β ϕ


−1  rft − a

ikt − α

 =
1

bϕ− βc

 ϕ −c

−β b


 rft − a

ikt − α


In short-hand notations, state variables are recovered as

st = ηs,0 + ηs,1r
f
t + ηs,2ikt (44)

σ2
t = ησ,0 + ησ,1r

f
t + ησ,2ikt (45)

Their shocks can be recovered as

φsσtes,t+1 = (1− ρs)(ηs,0 − s̄) + ηs,1(r
f
t+1 − ρsr

f
t ) + ηs,2(ikt+1 − ρsikt) (46)

σσeσ,t+1 = (1− ρσ)(ησ,0 − σ̄2) + ησ,1(r
f
t+1 − ρσr

f
t ) + ησ,2(ikt+1 − ρσikt) (47)

The remaining shock to the profitability growth can be recovered from profitability growth.

σteε,t+1 = ∆εt+1 − st − µε (48)

The SDF therefore can be recovered as

mt+1 = −µ′
m − ρmrf r

f
t − ρmikikt − λm

rf
∆rft+1 − λm

ik∆ikt+1 − λm
ε ∆εt+1 (49)

where coefficients are given by

µ′
m = µm − λm

ε µε + (ρms − λm
ε )ηs,0 + ρmσ ησ,0

+ λm
s

1

φs
(1− ρs)(ηs,0 − s̄) + λm

σ (1− ρσ)(ησ,0 − σ̄2) (50)

ρmrf = (ρms − λm
ε )ηs,1 + ρmσ ησ,1 + λm

s

1

φs
ηs,1(1− ρs) + λm

σ ησ,1(1− ρσ) (51)

ρmik = (ρms − λm
ε )ηs,2 + ρmσ ησ,2 + λm

s

1

φs
ηs,2(1− ρs) + λm

σ ησ,2(1− ρσ) (52)

λm
rf

= λm
s

1

φs
ηs,1 + λm

σ ησ,1 (53)

λm
ik = λm

s

1

φs
ηs,2 + λm

σ ησ,2 (54)

The recovered SDF is driven by the risk-free rate and the investment rate and subject to three sources

of shocks, i.e., the risk-free rate growth, the investment rate growth, and the profitability growth, with

prices of risks λm
rf
, λm

ik, λ
m
ε , respectively. This expression suggests an empirical three-factor representation
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of the SDF for excess returns with investment rate growth, profitability growth, and real rate growth as

factors.

2.7 Case II: asset prices

We can compute asset pricing variables again in Case II. The risk-free rate is given by

rft = [µm − 1

2
(λm

σ )2σ2
σ] + ρms st + [ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2]σ2
t (55)

The risk premium is given by

Et[r
I
t+1]− rft +

1

2
Vt[r

I
t+1] = λm

ε σ2
t + λm

s (b1βφs)σ
2
t + λm

σ (b1ϕ)σ
2
σ (56)

Prices of n-period bonds are given by

bnt = An +Bnst + Cnσ
2
t (57)

where coefficients are given by

An+1 = An +Bnµs + Cnµσ − µm +
1

2
(λm

σ − Cn)
2σ2

σ (58)

Bn+1 = Bnρs − ρms =
ρms

1− ρs
(ρn+1

s − 1) (59)

Cn+1 = Cnρσ − ρmσ +
1

2
(λm

ε )2 +
1

2
(λm

s −Bnφs)
2 (60)

where A1 = [−µm + 1
2 (λ

m
σ )2σ2

σ], B1 = −ρms , C1 = −ρmσ + 1
2 (λ

m
ε )2 + 1

2 (λ
m
s )2.

Risk premia on n-period bonds are given by

Et[r
bn
t+1]− rft +

1

2
Vt[r

bn
t+1] = λm

s Bn−1φsσ
2
t + λm

σ Cn−1σ
2
σ (61)

Prices of n-period dividend claims are given by

dnt − pt = A′
n +B′

nst + C ′
nσ

2
t (62)
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where coefficient are given by

A′
n+1 = A′

n + a4 + b4α+ µε + [B′
n + (b4 + η)β]µs + [C ′

n + (b4 + η)ϕ]µσ

− µm +
1

2
[λm

σ − (C ′
n + (b4 + η)ϕ)]2σ2

σ (63)

B′
n+1 = [B′

n + (b4 + η)β]ρs − ηβ + 1− ρms (64)

C ′
n+1 = [C ′

n + (b4 + η)ϕ]ρσ − ρmσ +
1

2
(λm

ε − 1)2 +
1

2
(λm

s − (Bn + (b4 + η)β)φs)
2 (65)

where A′
1 = a6 + b6α+µε + (b6 + η)βµs + (b6 + η)ϕµσ −µm + 1

2 [λ
m
σ − (b6 + η)ϕ]2σ2

σ, B
′
1 = (b6 + η)βρs −

ηβ + 1− ρms , C ′
1 = (b6 + η)ϕρσ − ρmσ + 1

2 (λ
m
ε − 1)2 + 1

2 [λ
m
s − (b6 + η)βφs]

2.

Risk premia on n-period dividend claims are given by

Et[r
dn
t+1]− rft +

1

2
Vt[r

dn
t+1] = λm

ε σ2
t + λm

s [B′
n−1 + (b4 + η)β]φsσ

2
t + λm

σ [C ′
n−1 + (b4 + η)ϕ]σ2

σ (66)

3 Estimation

3.1 Data

We estimate parameters in Case II of the model using quarterly data. The estimation requires data of

investment rates, investment returns, risk-free rates, profitability growth rates, and portfolio returns.

We retrieve investment data from Bureau of Economic Research (BEA) and measure the real ag-

gregate physical capital investment (It) as private fixed nonresidential investment (PFNI) (NIPA Table

1.1.5, line 9), deflated by the corresponding price index (NIPA Table 1.1.4, line 9), available from 1947:Q1

to 2021:Q4. Following Cochrane (1991), investment rates (IKt) are constructed using the perpetual

inventory method, as quarterly data of the private fixed nonresidential capital stock are unavailable.

Specifically, we compute investment rates recursively, using the following equation implied by the law of

motion of physical capital (3).

IKt =
It

It−1

IKt−1

(1− δ) + IKt−1
(67)

We set the first investment rate (1947:Q1) to the “steady-state” value IK∗ ≡ E(∆I)− (1− δ), which is

defined by the fixed point of (68) with the investment growth set to its mean value and is an accurate

approximation to the mean investment rate. We then use (68) to recursively construct the full time series

of investment rates. We set the quarterly depreciation rate to δ = 2.6%, equivalent to a 10% annual

depreciation rate.

We assume that the CRSP value-weighted return (VWRET) retrieved from CRSP Stock Market

Indexes files and multiplied by the target equity-to-asset ratio proxies the investment return (RI
t ) on the

claim to private fixed nonresidential capital stock. Following Barro (2006), we set the target equity-to-
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asset ratio to 2/3.14

We retrieve Treasury returns from CRSP US Treasury and Inflation Indexes Files. We take returns

of 3-month Treasury bills (T90RET) as nominal one-period risk-free rates. We retrieve the seasonally

adjusted consumer price index (CPI) from Bureau of Labor Statistics (BLS). Quarterly inflation are

calculated as the log growth of the CPI in the final month in the current quarter over the final month in

the previous quarter. Ex-ante real risk-free rates are fitted values from regressing ex-post real risk-free

rates on nominal risk-free rates and lagged inflation in past four quarters.

The log profitability growth is given by the weighted average of log TFP growth and log wage growth,

∆εt+1 ≡ 1
α∆at+1 +

α−1
α ∆wt+1, according to (2). We retrieve utilization-adjusted quarterly TFP growth

(∆at+1) and capital share (α) from John Fernald’s website.We retrieve seasonally adjusted average hourly

earnings of production and nonsupervisory employees on private nonfarm payrolls, starting from 1964

and available at monthly frequency, from BLS (Employment Situation Table B-8).15 Quarterly real wage

growth (∆wt+1) is calculated as the inflation-adjusted log growth of hourly earnings in the final month

in the current quarter over the final month in the previous quarter. We use time-varying capital share

to calculate the log profitability growth, although using the sample average capital share α = 1/3 barely

affects any results.

We retrieve portfolio returns from Kenneth French’s website for both in-sample estimation and out-

of-sample testing.

To align with the sample period of wage growth, our final sample starts from 1964:Q2 to 2021:Q4.

In matching investment rates with stock returns, we follow the ”beginning-of-period” convention in

Campbell (2003). Specifically, the asset return in quarter t is contemporaneous to the investment growth

as well as the TFP growth from quarter t to quarter t+ 1.

3.2 Estimation strategy

We choose the parameter vector Θ that minimizes weighted mean squared errors between the model-

implied moments X(Θ) and actual moments of data X.

Θ̂ = argmin
Θ

(
X −X(Θ)

)′
W

(
X −X(Θ)

)
We have 16 primitive parameters in total, listed in Table 1. We set quarterly depreciation rate to

δ = 2.6% as above. We calibrate the rest of 15 parameters. While we have 16 parameters, we have even

more moments in order to over-identify the system. Target unconditional moments are listed in Table 2

14. This is equivalent to a debt-tot-equity ratio D/E = 1/2 and implies a mean quarterly asset excess return of 0.86%
for a mean quarterly equity excess return of 1.29% .
15. BLS provides monthly data of average hourly earnings of all employees on private nonfarm payrolls (Employment

Situation Table B-3) starting only from 2006. Neverthelss, monthly data of average hourly earnings of production and
nonsupervisory employees on private nonfarm payrolls have growth rates almost identical to and highly correlated (0.94)
with those of the former time series over 2006 to 2021. A Welch two-sample t-test of sample means yield p-value of 0.6,
suggesting that the difference between two sample means is statistically indistingushiable.
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and derived in the Appendix, including (1) the mean, variance, and autocorrelation of the risk-free rate

and the investment rate, (2) the mean and variance of market excess returns, (3) correlations between the

investment rate and the risk-free rate and the excess return, (4) the mean and variance of profitability

growth, and (5) mean squared pricing errors of 10 size-sorted portfolios. For the last set of moments, we

do not have analytical predictions for portfolio returns sorted on firm characteristics or other variables

since we do not model the cross section of firms explicitly. We proceed as follows. For each set of

parameter values during minimization, we recover the SDF using data as in (50) and calculate the mean

squared pricing errors of in-sample test portfolios. We set its empirical counterpart to zero, corresponding

to a perfect fit. We use 10 size-sorted portfolios as in-sample test assets because Cochrane (1996) has

shown that these portfolios can well be priced by a SDF with residential and nonresidential sectoral

investment returns as factors. Our choices of out-of-sample test assets are 6 size-book-to-market-sorted

portfolios, 6-size-investment-sorted portfolios, and 6-size-profitability-sorted portfolios.

3.3 Estimation results

Estimated parameters are presented in Table 1. The expected profitability growth, has a quarterly

autocorrelation coefficient of 0.88, equivalent to an annual autocorrelation coefficient of 0.60. Max Croce

(2014) estimates the persistence of the long-run component in the profitability growth to be between 0.66

and 0.99 using annual data, and sets it to be 0.80 in his calibration. Our estimate of the persistence of the

long-run component is close to the lower bound of those empirical estimates. This long-run component

is also small given that the conditional correlation between the expected profitability growth and the

profitability growth is φs = 0.29.

Our conditional variance is neither highly persistent. The autocorrelation coefficient of the conditional

variance is estimated to be 0.63. Its mean and standard deviation are 0.0033 and 0.0001, implying a rather

smooth process. This smoothness is required implicitly to have non-negative values in the recovered time

series of conditional variance.

Prices of risk for profitability growth shock and expected profitability growth shock are both positive,

and they are 1.53 and 15.85, respectively. Positive prices of risk imply that a positive profitability growth

shock or a positive expected profitability growth shock drives down the SDF corresponding to good states

of the economy. The uncertainty shock, on contrary, carries a negative price of risk of -2321, implying

that a positive uncertainty shock drives up the SDF corresponding to bad states of the economy.

The total investment cost is estimated to have curvature of η = 0.52 and scalar κ = 2.02, implying

that on average the investment cost is about 0.9% of profits.

The optimal investment rate is characterized by elasticities of investment to expected profitabil-

ity growth and conditional variance of profitability growth. The elasticity of investment to expected

profitability growth β is estimated to be 2.3 and the elasticity of investment to profitability growth un-
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certainty ϕ is -132. If the expected log profitability growth increases by one standard deviation, the log

investment rate increases by 0.08, equivalent to a 8.3% increase in the level of the investment rate. If the

profitability growth uncertainty increases by one standard deviation, the log investment rate decreases

by -0.0095, equivalent to a 0.95% decrease in the level of the investment rate.

The model fit is presented in Panel A of Table 2. The calibrated model generates a risk-free rate with

a mean of 0.5% and a standard deviation of 0.57%, identical to those in the data. The autocorrelation

of the risk-free rate is 0.69 in the model against 0.68 in the data. The investment rate implied by the

model has a mean of -3.29 and a standard deviation of 8.39%, identical to -3.29 and 8.39% in the data.

The autocorrelation coefficient of the investment rate is 0.88 in the model and 0.97 that in the data. The

model-implied asset excess return has a mean 0f 1.28% almost identical to 1.29% in the data, and has a

standard deviation of 8.62% against 8.61% in the data. The investment rate has a positive correlation

of 0.35 with the real risk-free rate, almost identical to 0.34 in the data, and has a slightly negative

correlation of -0.0006 with the excess return, in contrast to -0.18 in the data. The Panel B of Table 2

presents the model-implied average returns of 10 size-sorted portfolios. Our predicted average returns

closely match the decreasing pattern of realized average returns from small to big portfolios in the data

with a mean absolute pricing errors of only 0.059%.

4 Recovery of state variables and SDF

The ultimate goal of our paper is to recover the SDF. To that end, we first recover underlying state

variables from investment rates and real rates. Using (45) and (46), we obtain realizations of the expected

profitability growth st and the conditional variance of profitability growth σ2
t . Figure 1 shows the real

risk-free rate and the real investment rate in the top panel and recovered state variables in the bottom

panel. The recovered st exhibits an long-term downward trend, implying the expected profitability

growth of the economy has been declining. The recovered σ2
t exhibits an downward trend since 1980s

with the notable exception of a spike among the great recession. This result echoes findings of the

reduction in volatility of aggregate variables documented in Fernandez-Villaverde and Rubio-Ramirez

(2006) and Justiniano and Primiceri (2008).

Correspondingly, the model-implied equity premium in Figure 2 is also trending down. This result is

consistent with the notion of declining equity premium in the late 20th century proposed by Blanchard

(1993), Jagannathan, McGrattan, and Scherbina (2001), and Fama and French (2002). Lettau, Ludvig-

son, and Wachter (2008) attributes the decline in equity premium to the reduction in macroeconomic

volatility, especially consumption growth volatility. Their estimated volatility also exhibits a significant

downward trend since 1980s’. In our model, the decline in equity premium to the reduction in the

conditional volatility of productivity growth.
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Figure 3 plots the recovered SDF. The SDF peaks during all major recessions, most significantly

during the recent COVID-19 pandemic in 2020, followed by the Great Recession in 2008. Figure 4 shows

time series of unexpected innovations in SDF and three components in terms of both primitive shocks

and observable shocks. We also provide a variance decomposition of unexpected innovations in SDF

in Table 3. In terms of primitive shocks, shocks to expected profitability growth account for 106.7%

of total variations, highlighting the role of the long-run component in driving the SDF. In terms of

observable shocks, innovations in investment rates account for 98.9% of total variations. Other variances

and covariances are trivial in both cases. This result suggests that a SDF with shocks to expected

profitability growth or innovations in investment rates as the single factor should be able to proxy for

the complete recovered SDF.

The recovered SDF prices 10 size-sorted portfolios in the sample with a mean absolute pricing error

of only 0.06% as shown in Panel B of Table 2 and Figure 5. The recovered SDF also prices out-of-

sample portfolios reasonably well. Table 4 and Figure 6 show the realized and predicted average returns

of 6 size-book-to-market-sorted portfolios, 6-size-investment-sorted portfolios, 6-size-profitability-sorted

portfolios, and all 18 of them. Mean absolute pricing errors are 0.36%, 0.41%, 0.39%, and 0.39%,

respectively. As illustrated above, we should also expect that a SDF with shocks to expected profitability

growth or innovations in investment rates as the single factor should be able to price the cross section

with a very close performance to that of the complete recovered SDF. Figure 7 and 8 show that this is

indeed the case. The covariance between unexpected innovations in the log SDF and log portfolio returns

are decomposed into covariances between each component and log portfolios returns. As expected, shocks

to expected profitability growth or innovations in investment rates accomplish almost all the work in

pricing the cross section of portfolio returns. Other components are trivial in contrast.

The recovered SDF has implications for term structures of both interest rates and equity premia,

although we do not attempt to match both term structures in this paper, nor do we include their

moments in our estimation. Figure 9 plots the model-implied yield curve and time variations in yields.

The recovered SDF implies an slightly downward sloping yield curve. Figure 10 plots the model-implied

term structure of bond risk premia and time variations in term premia. Similarly term premia of risk-

free bonds are downward sloping across maturities. Figure 11 plots the model-implied term structure of

equity risk premia and time variations in risk premia. The term structure of equity premia is steeply

upward sloping.

5 Conclusion

This paper proposes a new systematic approach to recovering the stochastic discount factor from firms’

investment decisions. Our approach builds on the simple intuition that investment is forward looking.
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More specifically, investment decisions are made on the joint conditional distribution of the profitability

growth and the SDF. We approach the investment Euler equation from the perspective of intertemporal

optimization to solve for the optimal investment and from the perspective of asset pricing to link asset

prices to investment and profitability dynamics. We finally recover the the SDF using estimated param-

eters and data on investment rates, risk-free rates, and profitability growth rates. Innovations in the

recovered SDF are driven dominantly by innovations in investment rates and marginally by innovations

in risk-free rates and profitability growth rates. Our model goes beyond the return predictability of in-

vestment and profitability and delivers the prediction that the expected return of an asset is determined

by the covariance between asset returns and two factors, innovations in investment rates and innovations

in profitability. The recovered SDF exhibits strong counter-cyclicality with large jumps in recessions.

While our model is estimated to match moments of aggregate quantities and prices, the recovered SDF is

capable of pricing the cross section of asset returns out of sample reasonably well. Our model explicitly

derives and have implications for the term structure of interest rates and the term structure of equity

premia. Our approach is general and flexible to accommodate several additional aggregate shocks and

frictions that have been proposed in the literature.
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Table 1: Model parameters

Parameter description Symbol Value

Stochastic discount factor

Constant µm -0.205
Loading on expected profitability growth ρms 0.0774
Loading on conditional variance ρmσ 180.869
Price of profitability growth risk λm

ε 1.53
Price of expected profitability growth risk λm

s 15.845
Price of uncertainty risk λm

σ -2321.150

Profitability growth

Constant µε -0.580

Expected profitability growth

Mean s̄ 0.601
Persistence of expected profitability growth ρs 0.882
Conditional correlation with profitability growth φs 0.291

Uncertainty

Mean of conditional variance of profitability σ̄2 0.0033
Persistence of conditional variance ρσ 0.627
Volatility of conditional variance σσ 0.0001

Technology

Investment adjustment cost scalar κ 2.021
Investment adjustment cost curvature η 0.518
Depreciation rate δ 0.026

Investment coefficients (composite parameters)

Constant α -4.268
Elasticity of investment to expected profitability growth β 2.346
Elasticity of investment to profitability growth uncertainty ϕ -132.099

This table presents estimated values of parameters used in Case II of the model,
using the method of weighted non-linear least squares. There are 6 parameters
for the SDF, 1 for the profitability growth, 3 for expected profitability growth,
3 for profitability growth uncertainty, and 2 for investment cost. The first 15
parameters in the table are estimated, and the depreciation rate is calibrated.
The last three investment coefficients are composite parameters.
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Table 2: Model fit

Panel A Panel B

Moments Data Model Portfolios Realized Predicted

E(rf ) 0.0050 0.0050 Small 2.61 2.59
σ(rf ) 0.0057 0.0057 ME2 2.46 2.47

Cor(rft , r
f
t−1) 0.6788 0.6859 ME3 2.57 2.52

E(ik) -3.2899 -3.2905 ME4 2.38 2.42
σ(ik) 0.0839 0.0839 ME5 2.46 2.37
Cor(ikt, ikt−1) 0.9689 0.8769 ME6 2.21 2.21
E(re) 0.0129 0.0128 ME7 2.25 2.33
σ(re) 0.0861 0.0862 ME8 2.17 2.06
E(∆εt) 0.0207 0.0207 ME9 1.93 2.03
σ(∆εt) 0.0648 0.0672 Big 1.54 1.62

Cor(ikt, r
f
t ) 0.3435 0.3479 MAE 0.0587

Cor(ikt, r
e
t+1) -0.1783 -0.0006

This table presents actual and model-implied moments of risk-free
rates, investment rates, equity premium, profitability growth in Panel
A and realized and predicted average excess returns of 10 size-sorted
portfolios in Panel B. Expressions of unconditional moments listed in
the table are provided in the Appendix. Predicted average excess re-
turns are calculated as the negative unconditional covariance between
the recovered SDF and portfolios returns divided by the unconditional
mean of the recovered SDF.
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Table 3: Variance decomposition of unexpected innovations in the log SDF

Decomposition into primitive shocks

V(−λm
ε eε,t+1)

V(m+1−Et(mt+1))
V(−λm

s es,t+1)
V(m+1−Et(mt+1))

V(−λm
σ eσ,t+1)

V(m+1−Et(mt+1))
COV (−λm

ε eε,t+1,−λm
s es,t+1)

V(m+1−Et(mt+1))
COV (−λm

ε eε,t+1,−λm
σ eσ,t+1)

V(m+1−Et(mt+1))
COV (−λm

s es,t+1,−λm
σ eσ,t+1)

V(m+1−Et(mt+1))

4.2% 106.7% 10.5% -8.2/% 0.6% -13.7%

Decomposition into observable shocks

V(−λm
rf∆rft+1)

V(m+1−Et(mt+1))
V(−λm

ik∆ikt+1)
V(m+1−Et(mt+1))

V(−λm
ε ∆εt+1)

V(m+1−Et(mt+1))

COV (−λm
rf∆rft+1,−λm

ik∆ikt+1)

V(m+1−Et(mt+1))

COV (−λm
rf∆rft+1,−λm

ε ∆εt+1)

V(m+1−Et(mt+1))
COV (−λm

ik∆ikt+1,−λm
ε ∆εt+1)

V(m+1−Et(mt+1))

1.4% 98.9% 4.0% -0.8% -0.2% -3.3%

This table presents variance decomposition of unexpected innovations in the log SDF, mt+1−Et[mt+1], into three primitive shocks, profitability
growth shock, −λm

ε eε,t+1, expected profitability growth shock, −λm
s es,t+1, and profitability growth uncertainty shock −λm

σ eσ,t+1 in the top
panel, and into three observable shocks, investment rate growth −λm

ik∆ikt+1, profitability growth rates −λm
ε ∆εt+1, and real rates growth

−λm
rf
∆rft+1 in the bottom panel.
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Table 4: Pricing of 6 SZ/BM & 6 SZ/OP & 6 SZ/INV portfolios

6 SZ/BM 6 SZ/OP 6 SZ/INV

Realized Predicted Realized Predicted Realized Predicted
Small-X1 1.96 2.14 2.10 2.42 3.06 2.62
Small-X2 2.75 2.35 2.67 2.32 2.87 2.35
Small-X3 3.16 2.90 3.01 2.79 1.96 2.45
Big-X1 1.74 1.43 1.33 2.11 2.11 1.46
Big-X2 1.66 2.07 1.58 1.92 1.68 1.80
Big-X3 2.19 2.79 1.96 1.52 1.69 1.83

MAE 0.36 0.41 0.39

This table presents realized and predicted average excess returns of 6 size-
book-to-market-sorted portfolios, 6-size-investment-sorted portfolios, 6-size-
profitability-sorted portfolios. X1, X2, X3 represents Predicted average excess
returns are calculated as the negative unconditional covariance between the re-
covered SDF and portfolios returns divided by the unconditional mean of the
recovered SDF.
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Figure 1: Recovery of underlying state variables

Notes: This figure shows the time series of ex ante real risk-free rates, real investment rates, recovered
expected profitability growth rates, and recovered profitability growth uncertainty. Ex ante real risk-free
rates are fitted values from regressing ex post real risk-free rates on nominal risk-free rates and inflation
in the past four quarters. Real investment rates are constructed using the perpetual inventory method.
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Figure 2: Model-implied equity premium

Notes: This figure presents the time series of model-implied equity premia. The equity premium is calcu-
lated as the model-implied expected investment excess return adjusted by the leverage ratio. Quarterly
excess returns are then smoothed by taking four-quarter moving average.
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Figure 3: Recovered SDF

Notes: This figure presents the time series of the stochastic discount factor recovered from real investment
rates, profitability growth rates, and real rates.
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Figure 4: Unexpected innovations in the log SDF and decomposition into primitive shocks

Notes: The top panel of this figure presents the time series of unexpected innovations in the log SDF,
mt+1 −Et[mt+1] = −λm

ε eε,t+1 −λm
s es,t+1 −λm

σ eσ,t+1, and three components, profitability growth shock,
−λm

ε eε,t+1, expected profitability growth shock, −λm
s es,t+1, and profitability growth uncertainty shock

−λm
σ eσ,t+1, respectively. The bottom panel of this figure presents the time series of unexpected innova-

tions in the log SDF, mt+1 − Et[mt+1] = −λm
ik∆ikt+1 − λm

ε ∆εt+1 − λm
rf
∆rft+1, and three components,

investment rate growth −λm
ik∆ikt+1, profitability growth rates −λm

ε ∆εt+1, and real rates −λm
rf
∆rft+1,

respectively.
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Figure 5: Pricing of 10 size-sorted portfolios
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Notes: This figure presents model-implied average returns against realized average returns of 10 size-
sorted portfolios.
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Figure 6: Pricing of 6 SZ/BM & 6 SZ/OP & 6 SZ/INV portfolios
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Notes: This figure presents model-implied average returns against realized average returns of 6 size-book-
to-market-sorted portfolios, 6-size-investment-sorted portfolios, 6-size-profitability-sorted portfolios, and
all 18 portfolios together.
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Figure 7: Decomposition of covariances between unexpected innovations in the SDF and portfolio returns
into primitive shocks
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Notes: This figure presents a decomposition of covariances between unexpected innovations in the SDF
and portfolio returns into primitive shocks.
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Figure 8: Decomposition of covariances between unexpected innovations in the SDF and portfolio returns
into observable shocks
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Notes: This figure presents a decomposition of covariances between unexpected innovations in the SDF
and portfolio returns into observable shocks.
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Figure 9: Model-implied annualized yield curve of bonds

Notes: This figure presents model-implied yield curve of risk-free bonds and time variations in yield of
1-year and 10-year bonds.
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Figure 10: Model-implied term structure of expected one-quarter holding returns on bonds

Notes: This figure presents model-implied expected one-quarter holding returns on risk-free bonds across
maturities and time variations in expected one-quarter holding returns on 1-year and 10-year bonds.
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Figure 11: Model-implied term structure of expected one-quarter holding returns on dividend strips

Notes: This figure presents model-implied expected one-quarter holding returns on dividend claims across
maturities and time variations in expected one-quarter holding returns on 1-year and 3-year dividend
claims.
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Appendices

A Model Solution

A.1 Investment Euler equation

Denote a vector of state variables, Xt = (Kt, Et). The producer’s maximization problem is:

V (Xt) = max
{It}

{
Dt + Et[Mt+1V (Xt+1)]

}
subject to the following contraints,

Dt = Π(Et,Kt)− Φ(It,Kt)

Π(Et,Kt) = EtKt

Φ(It,Kt) =
κ

η + 1
IKη+1

t Π(Et,Kt)

Kt+1 = (1− δ)Kt + It

where IKt ≡ It/Kt denotes the investment-to-capital ratio, the investment rate.
The value function is then

V (Xt) = max
{It}

{
EtKt −

κ

η + 1
IKη+1

t EtKt + Et[Mt+1V (Xt+1)]

}
(A.1)

The first-order condition is given by

∂V (Xt)

∂It
: κIKη

t Et = Et[Mt+1VK(Xt+1)] (A.2)

where the RHS is the expected discounted marginal value of capital.
By the envelope theorem, the marginal value of capital is given by recursively

VK(Xt) = Et + κ
η

η + 1
IKη+1

t Et + (1− δ)Et[Mt+1VK(Xt+1)] (A.3)

Combing (A.2) and (A.3), we have

VK(Xt) = Et + κ
η

η + 1
IKη+1

t Et + (1− δ)κIKη
t Et (A.4)

which, substituted back in (A.2), yields the investment Euler equation (6) and the investment return
(7),

1 = Et[MtR
I
t+1]

RI
t+1 =

Et+1[1 + κ η
η+1IK

η+1
t+1 + (1− δ)κIKη

t+1]

Et[κIKη
t ]

One can prove that the ex-dividend value equals the marginal/average q times the capital stock
at the end of current period, Pt ≡ V (Xt) − Dt = (κIKη

t Et)Kt+1 ≡ qtKt+1. To show this, multiply
the numerator and the denominator of the investment return by Kt+1. We obtain RI

t+1 = (Dt+1 +

(κIKη
t+1Et+1)Kt+2)/(κIK

η
t Et)Kt+1, equivalent to RI

t+1 = Dt+1+Pt+1

Pt
.

A.2 Log-linearization

To obtain approximate analytical solutions, we log-linearize the investment return as follows.

rIt+1 = log

(
Et+1

Et

)
+ log

(
1 + κ

η

η + 1
IKη+1

t+1 + (1− δ)κIKη
t+1

)
− log(κIKη

t ) (A.5)

≈ (a1 + b1ikt+1)− (a2 + b2ikt) +∆εt+1 (A.6)
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where a1 = log
(
1 + κ η

η+1 exp[(η + 1)ik∗] + (1 − δ)κ exp(ηik∗)
)
− κη exp(ηik∗)[exp(ik∗)+(1−δ)]

1+κ η
η+1 exp[(η+1)ik∗]+(1−δ)κ exp(ηik∗) ik

∗,

b1 = κη exp(ηik∗)[exp(ik∗)+(1−δ)]
1+κ η

η+1 exp[(η+1)ik∗]+(1−δ)κ exp(ηik∗) , a2 = log κ, and b2 = η.

To derive key variables in the model, we also need to log-linearize the dividend-price ratio.

Dt

Pt
=

EtKt − κ
η+1IK

η+1
t EtKt

(κIKη
t Et)Kt+1

=
1− κ

η+1IK
η+1
t

κIKη
t

Kt

Kt+1
(A.7)

which can be approximated as follows.

dpt = log

(
1− κ

η + 1
IKη+1

t

)
− log(κIKη

t )−∆kk+1 (A.8)

≈ (a3 + b3ikt)− (a2 + b2ikt)− (a4 + b4ikt) (A.9)

≡ a5 + b5ikt (A.10)

where a3 = log
(
1− κ

η+1 exp[(η+1)ik∗]
)
− −κ exp[(η+1)ik∗]

1− κ
η+1 exp[(η+1)ik∗] ik

∗, b3 = −κ exp[(η+1)ik∗]
1− κ

η+1 exp[(η+1)ik∗] , a4 = log(eik
∗
+

1− δ)− eik
∗

eik∗+1−δ
ik∗, and b4 = eik

∗

eik∗+1−δ
, a5 = a3 − a2 − a4, b5 = b3 − b2 − b4.

The growth of the ex-dividend value is given by

Pt+1

Pt
=

qt+1Kt+2

qtKt+1
=

Et+1[κIK
η
t+1]

Et[κIKη
t ]

Kt+2

Kt+1
=

(
IKt+1

IKt

)η Et+1

Et
Kt+2

Kt+1
(A.11)

which can be approximated as

∆pt+1 = η(ikt+1 − ikt) +∆εt+1 +∆kt+2

= a4 + (b4 + η)ikt+1 − ηikt +∆εt+1 (A.12)

The sum of the log dividend-price ratio and the log growth of the ex-dividend value can be approxi-
mated by

dpt+1 +∆pt+1 = a5 + b5ikt+1 + a4 + (b4 + η)ikt+1 − ηikt +∆εt+1

≡ a6 + (b6 + η)ikt+1 − ηikt +∆εt+1 (A.13)

where a6 ≡ a4 + a5, b6 ≡ b4 + b5.
The dividend growth is given by

Dt+1

Dt
=

DPt+1

DPt

Pt+1

Pt
(A.14)

which can be approximated by

∆dt+1 = dpt+1 − dpt +∆pt+1

≈ b5(ikt+1 − ikt) + a4 + (b4 + η)ikt+1 − ηikt +∆εt+1

≡ a4 + (b6 + η)ikt+1 − (b5 + η)ikt +∆εt+1 (A.15)

A.3 Solving the investment rate

We omit solutions to Case I, which is simpler to solve than Case II. In Case II, SDF and profitability
are specified exogenously as in (39), (36), (37), (38).

mt+1 = −µm − ρms st − ρmσ σ2
t − λm

ε σteε,t+1 − λm
s σtes,t+1 − λm

σ σσeσ,t+1

∆εt+1 = µε + st + σteε,t+1

st+1 = µs + ρsst + φsσtes,t+1

σ2
t+1 = µσ + ρσσ

2
t + σσeσ,t+1

where eε,t, es,t, eσ,t
i.i.d∼ N(0, 1) and are orthogonal to each other.
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We conjecture the following policy function for the investment rate as in (40)

ikt = α+ βεt + ϕσ2
t

Now the investment return can be expressed as (41)

rIt+1 ≈ (a1 − a2) + b1ikt+1 − b2ikt +∆εt+1

= (a1 − a2) + b1(α+ βst+1 + ϕσ2
t+1)− b2(α+ βst + ϕσ2

t ) + (µε + st + σteε,t+1)

= [(a1 − a2) + (b1 − b2)α+ µε] + b1βst+1 + (1− b2β)st + b1ϕσ
2
t+1 − b2ϕσ

2
t + σteε,t+1

= [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ] + [(b1ρs − b2)β + 1]st + [(b1ρσ − b2)ϕ]σ
2
t

+ σteε,t+1 + (b1βφs)σtes,t+1 + (b1ϕ)σσeσ,t+1

Conditional moments of the investment return are

Et[r
I
t+1] = [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ]

+ [(b1ρs − b2)β + 1]st + [(b1ρσ − b2)ϕ]σ
2
t (A.16)

Vt[r
I
t+1] = σ2

t + (b1βφs)
2σ2

t + (b1ϕ)
2σ2

σ (A.17)

COVt(mt+1, r
I
t+1) = −λm

ε σ2
t − λm

s (b1βφs)σ
2
t − λm

σ (b1ϕ)σ
2
σ (A.18)

Plugging all terms into (16), we have

0 = Et[mt+1] + Et[r
I
t+1] +

1

2
Vt[mt+1] +

1

2
Vt[r

I
t+1] + COVt(mt+1, r

I
t+1)

= (−µm − ρms st − ρmσ σ2
t ) +

1

2
[(λm

s )2σ2
t + (λm

ε )2σ2
t + (λm

σ )2σ2
σ]

+ [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ] + [(b1ρs − b2)β + 1]st + [(b1ρσ − b2)ϕ]σ
2
t

+
1

2
[σ2

t + (b1βφs)
2σ2

t + (b1ϕ)
2σ2

σ]− λm
ε σ2

t − λm
s (b1βφs)σ

2
t − λm

σ (b1ϕ)σ
2
σ

= [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ − µm +
1

2
(λm

σ − b1ϕ)
2σ2

σ]

+ [(b1ρs − b2)β + 1− ρms ]st + [(b1ρσ − b2)ϕ− ρmσ +
1

2
(λm

ε − 1)2 +
1

2
(λm

s − b1βφs)
2]σ2

t

Using the property that the Investment Euler equation holds at all times, we solve for the coefficients
of the policy function of investment by method of undetermined coefficients.

We obtain coefficients of the optimal investment rate, (42), (43), and (44).

β =
ρms − 1

b1ρs − b2

ϕ =
ρmσ − 1

2 (λ
m
ε − 1)2 − 1

2 (λ
m
s − b1βφs)

2

b1ρσ − b2

α =
µm − 1

2 (λ
m
σ − b1ϕ)

2σ2
σ − (a1 − a2)− µε − b1βµs − b1ϕµσ

b1 − b2

A.4 Term structure of interest rates

The price of a n-period risk-free zero-coupon bond is

Bn
t = Et[Mt+1...Mt+n] = Et[Mt+1B

n−1
t+1 ] (A.19)

in the log form,

bnt = Et

[ n∑
i=1

mt+i

]
+

1

2
Vt

[ n∑
i=1

mt+i

]
(A.20)
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and the yield of a n-period bond is

ynt = −bnt
n

= − 1

n
Et

[ n∑
i=1

mt+i

]
− 1

2n
Vt

[ n∑
i=1

mt+i

]
(A.21)

Particularly, the 1-period risk-less bond yield, or the risk-free rate, is given by,

rft = y1t = −b1t = −Et[mt+1]−
1

2
Vt[mt+1]

With the SDF process specified in (39), we can express bond prices as functions of state variables. The
1-period bond price is given by

b1t = [−µm +
1

2
(λm

σ )2σ2
σ]− ρms st + [−ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2]σ2
t

Since the 1-period bond price and yield are linear in the state variable εt and σ2
t , and we conjecture

that the log n-period bond price has a linear form as in (58)

bnt = An +Bnst + Cnσ
2
t

We can find a recursive solution for An, Bn, shown by (59), (60), (61), by mathematical induction

An+1 = An +Bnµs + Cnµσ − µm +
1

2
(λm

σ − Cn)
2σ2

σ

Bn+1 = Bnρs − ρms =
ρms

1− ρs
(ρn+1

s − 1)

Cn+1 = Cnρσ − ρmσ +
1

2
(λm

ε )2 +
1

2
(λm

s −Bnφs)
2

Proof: First, note that when n = 0

b0t = log1 = 0 =⇒ A0 = 0, B0 = 0, C0 = 0

Given A0, B0, C0, we can calculate and verify A1, B1, C1

A1 = [−µm +
1

2
(λm

σ )2σ2
σ], B1 = −ρms , C1 = −ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2

which are consistent with the price conjecture and coefficients above.
Second, implied by (A.19), we have,

bn+1
t = logEt[Mt+1B

n
t+1] = logEt[exp(mt+1 + bnt+1)]

= Et[mt+1 + bnt+1] +
1

2
Vt[mt+1 + bnt+1]

= Et[mt+1] + Et[b
n
t+1] +

1

2
Vt[mt+1] +

1

2
Vt[b

n
t+1] + COVt[mt+1, b

n
t+1]

= b1t + Et[b
n
t+1] +

1

2
Vt[b

n
t+1] + COVt[mt+1, b

n
t+1] (A.22)

where the last equality is by the expression of the one-period bond price.
With the conjecture (58), we have

bn+1
t = b1t + Et[b

n
t+1] +

1

2
Vt[b

n
t+1] + COVt[mt+1, b

n
t+1]

= [−µm +
1

2
(λm

σ )2σ2
σ]− ρms st + [−ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2]σ2
t

+ [An +Bnµs + Cnµσ] +Bnρsst + Cnρσσ
2
t +

1

2
(Bnφs)

2σ2
t +

1

2
(Cn)

2σ2
σ − λm

s (Bnφs)σ
2
t − λm

σ (Cn)σ
2
σ

= [An +Bnµs + Cnµσ − µm +
1

2
(λm

σ − Cn)
2σ2

σ] + [Bnρs − ρms ]st + [Cnρσ − ρmσ +
1

2
(λm

ε )2 +
1

2
(λm

s −Bnφs)
2]σ2

t
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Therefore, we verify the assumed linearity of log bond prices (58) and verify (59), (60), and (61) as the
rescursive solution for An, Bn, Cn. □

Define the one-period holding return on a n-period bond as

rnt+1 = bn−1
t+1 − bnt (A.23)

Implied by (A.22), where n is replaced by n− 1, the risk premium on an n-period bond over a 1-period
bond (the term preimum) is given by (62)

Et[r
bn
t+1]− rft +

1

2
Vt[r

bn
t+1] = Et[b

n−1
t+1 ]− bnt + b1t +

1

2
Vt[b

n−1
t+1 ]

= −COVt[mt+1, b
n−1
t+1 ] = λm

s (Bn−1φs)σ
2
t + λm

σ Cn−1σ
2
σ

A.5 Term structure of equity premia

Let Dn
t denote the time-t price of a claim to the dividend paid in n periods. The price of the dividend

claim follows the recursive relationship

Dn
t = Et[Mt+1D

n−1
t+1 ] (A.24)

When n = 1, the price of the first dividend strip is simply given by (D0
t+1 = Dt+1)

D1
t = Et[Mt+1Dt+1] (A.25)

Scaled by the ex-dividend value, it can be solved as follows

D1
t

Pt
= Et

[
Mt+1

Dt+1

Pt+1

Pt+1

Pt

]
(A.26)

Given

dpt+1 +∆pt+1 = a6 + (b6 + η)ikt+1 − ηikt +∆εt+1

= a6 + (b6 + η)(α+ βst+1 + ϕσ2
t+1)− η(α+ βst + ϕσ2

t ) +∆(µε + st + σteε,t+1)

= [a6 + b6α+ µε + (b6 + η)βµs + (b6 + η)ϕµσ] + [(b6 + η)βµs + 1− ηβ]st + [(b6 + η)ϕρσ]σ
2
t

+ σteε,t+1 + [(b6 + η)βφs]σtes,t+1 + [(b6 + η)ϕ]σσeσ,t+1

We can calculate the price

d1t − pt = Et(mt+1) +
1

2
Vt(mt+1) + Et(dpt+1 +∆pt+1) +

1

2
Vt(dpt+1 +∆pt+1) + COVt(mt+1, dpt+1 +∆pt+1)

= [−µm +
1

2
(λm

σ )2σ2
σ]− ρms st + [−ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2]σ2
t

+ [a6 + b6α+ µε + (b6 + η)βµs + (b6 + η)ϕµσ] + [(b6 + η)βµs + 1− ηβ]st + [(b6 + η)ϕρσ]σ
2
t

+
1

2
σ2
t +

1

2
[(b6 + η)βφs]

2σ2
t +

1

2
[(b6 + η)ϕ]2σ2

σ − λm
ε σ2

t − λm
s [(b6 + η)βφs]σ

2
t − λm

σ

1

2
[(b6 + η)ϕ]σ2

σ

= [a6 + b6α+ µε + (b6 + η)βµs + (b6 + η)ϕµσ − µm +
1

2
(λm

σ − (b6 + η)ϕ)2σ2
σ]

+ [(b6 + η)βρs − ηβ + 1− ρms ]st + [(b6 + η)ϕρσ − ρmσ +
1

2
(λm

ε − 1)2 − 1

2
(λm

s − (b6 + η)βφs)
2]σ2

t

The log price of 1-period dividend claim scaled by the ex-dividend value is affine in state variables.
Therefore we conjecture that the price of a n-period dividend claim scaled by the ex-dividend value is
given by (63)

dnt − pt = A′
n +B′

nst + C ′
nσ

2
t
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where coefficients are given by (64), (65), (66)

A′
n+1 = A′

n + a4 + b4α+ µε + [B′
n + (b4 + η)β]µs + [C ′

n + (b4 + η)ϕ]µσ

− µm +
1

2
[λm

σ − (C ′
n + (b4 + η)ϕ)]2σ2

σ

B′
n+1 = [B′

n + (b4 + η)β]ρs − ηβ + 1− ρms

C ′
n+1 = [C ′

n + (b4 + η)ϕ]ρσ − ρmσ +
1

2
(λm

ε − 1)2 +
1

2
[λm

s − (Bn + (b4 + η)β)φs]
2

Proof: First, note that when n = 0

d0t − pt = dpt = (a5 + b5α) + b5βst + b5ϕσ
2
t =⇒ A′

0 = a5 + b5α, B
′
0 = b5β, C

′
0 = b5ϕ

Given A′
0, B

′
0, C

′
0, we can calculate and verify A′

1, B
′
1, C

′
1

A′
1 = a6 + b6α+ µε + (b6 + η)βµs + (b6 + η)ϕµσ − µm +

1

2
[λm

σ − (b6 + η)ϕ]2σ2
σ

B′
1 = (b6 + η)βρs − ηβ + 1− ρms

C ′
1 = (b6 + η)ϕρσ − ρmσ +

1

2
(λm

ε − 1)2 +
1

2
[λm

s − (b6 + η)βφs]
2

which are consistent with the price conjecture and coefficients above.
Second, using the recursive relation (A.24), we have

dn+1
t − pt = Et[mt+1] +

1

2
Vt[mt+1] + Et[d

n
t+1 − pt+1 +∆pt+1] +

1

2
Vt[d

n
t+1 − pt+1 +∆pt+1]

+ COVt[mt+1, d
n
t+1 − pt+1 +∆pt+1]

= [−µm +
1

2
(λm

σ )2σ2
σ]− ρms st + [−ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2]σ2
t

+ [A′
n + a4 + b4α+ µε + (B′

n + (b4 + η)β)µs + (C ′
n + (b4 + η)ϕ)µσ]

+ [(B′
n + (b4 + η)β)ρs − ηβ + 1]st + [(C ′

n + (b4 + η)ϕ)ρσ]σ
2
t

+
1

2
σ2
t +

1

2
[(B′

n + (b4 + η)β)φs]
2σ2

t +
1

2
[C ′

n + (b4 + η)ϕ]2σ2
σ

− λm
ε σ2

t − λm
s [(B′

n + (b4 + η)β)φs]σ
2
t − λm

σ [C ′
n + (b4 + η)ϕ]σ2

σ

= [A′
n + a4 + b4α+ µε + (B′

n + (b4 + η)β)µs + (C ′
n + (b4 + η)ϕ)µσ − µm +

1

2
[λm

σ − (C ′
n + (b4 + η)β)]2σ2

σ]

+ [(B′
n + (b4 + η)β)ρs − ηβ + 1− ρms ]st

+
[
(C ′

n + (b4 + η)ϕ)ρσ − ρmσ +
1

2
(λm

ε − 1)2 +
1

2
[λm

s − (B′
n + (b4 + η)β)φs]

2
]
σ2
t

from which we obtain the recursive formulae (64), (65), (66). □
Now we compute the one-period holding return on a n-periods dividend claim.

Rn
t+1 =

Dn−1
t+1

Dn
t

=
Dn−1

t+1 /Kt+1

Dn
t /Kt

Kt+1

Kt
(A.27)

rnt+1 = (dn−1
t+1 − kt+1)− (dnt − kt) +∆kt+1 (A.28)

The recursive relation above yields the risk premium on a n-period dividend claim in (67).

Et[r
n
t+1] +

1

2
Vt[r

n
t+1]− rft = Et[d

n−1
t+1 − kt+1] +

1

2
Vt[d

n−1
t+1 − kt+1]− (dnt − kt)− rft +∆kt+1

= −COVt(mt+1, d
n−1
t+1 − kt+1)

= λm
ε σ2

t + λm
s [(B′

n−1 + (b4 + η)β)φs]σ
2
t + λm

σ [C ′
n−1 + (b4 + η)ϕ]σ2

σ
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A.6 Recovery of SDF

The expected profitability growth and the uncertainty of the profitability growth and their shocks can
be recovered from data of the risk-free rate and the investment rate.[

rft
ikt

]
=

[
a
α

]
+

[
b c
β ϕ

] [
st
σ2
t

]
where, for convenience, a ≡ µm − 1

2 (λ
m
σ )2σ2

σ, b ≡ ρms , c ≡ ρmσ − 1
2 (λ

m
ε )2 − 1

2 (λ
m
s )2.

The solution is given by[
st
σ2
t

]
=

[
b c
β ϕ

]−1 [
rft − a
ikt − α

]
=

1

bϕ− βc

[
ϕ −c
−β b

] [
rft − a
ikt − α

]
In short-hand notations, state variables are recovered as

st = ηs,0 + ηs,1r
f
t + ηs,2ikt

σ2
t = ησ,0 + ησ,1r

f
t + ησ,2ikt

where coefficients are given by

ηs,0 =
−ϕa+ cα

bϕ− βc
, ηs,1 =

ϕ

bϕ− βc
, ηs,2 =

−c

bϕ− βc
(A.29)

ησ,0 =
βa− bα

bϕ− βc
, ησ,1 =

−β

bϕ− βc
, ησ,2 =

b

bϕ− βc
(A.30)

Their shocks can be recovered as

φsσtes,t+1 = (1− ρs)(ηs,0 − s̄) + ηs,1(r
f
t+1 − ρsr

f
t ) + ηs,2(ikt+1 − ρsikt)

σσeσ,t+1 = (1− ρσ)(ησ,0 − σ̄2) + ησ,1(r
f
t+1 − ρσr

f
t ) + ησ,2(ikt+1 − ρσikt)

The remaining shock to the profitability growth can be recovered from profitability growth.

σteε,t+1 = ∆εt+1 − st − µε

The SDF therefore can be recovered as

mt+1 = −µ′
m − ρmrf r

f
t − ρmikikt − λm

rf
∆rft+1 − λm

ik∆ikt+1 − λm
ε ∆εt+1

where coefficients are given by

µ′
m = µm − λm

ε µε + (ρms − λη
ε)ηs,0 + ρmσ ησ,0

+ λm
s

1

φs
(1− ρs)(ηs,0 − s̄) + λm

σ (1− ρσ)(ησ,0 − σ̄2)

ρmrf = (ρms − λm
ε )ηs,1 + ρmσ ησ,1 + λm

s

1

φs
ηs,1(1− ρs) + λm

σ ησ,1(1− ρσ)

ρmik = (ρms − λm
ε )ηs,2 + ρmσ ησ,2 + λm

s

1

φs
ηs,2(1− ρs) + λm

σ ησ,2(1− ρσ)

λm
rf

= λm
s

1

φs
ηs,1 + λm

σ ησ,1

λm
ik = λm

s

1

φs
ηs,2 + λm

σ ησ,2
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B Estimation

B.1 Target moments

Unconditional moments of state variables are given by

V(σtes,t+1) = E(σ2
t e

2
s,t+1)− E(σtes,t+1)

2 = E(Et(σ
2
t e

2
s,t+1))− E(Et(σtes,t+1))

2

= E(σ2
tEt(e

2
s,t+1))− E(σtEt(es,t+1))

2 = E(σ2
t ) = σ̄2

V(st) = ρ2sV(st−1) + V(φsσtes,t+1) =⇒ V(st) = φ2
sσ̄

2/(1− ρ2s)

V(σ2
t ) = ρ2σV(σ2

t−1) + σ2
σ =⇒ V(σ2

t ) = σ2
σ/(1− ρ2σ)

1. The maximum possible Sharpe ratio in the economy.

E[Re
t ]

V[Re
t ]

1
2

≤ V[Mt]
1
2

E[Mt]
=

(
exp

[
V[mt]

]
− 1

) 1
2

≡ maxSR

where the first inequality is derived from 0 = E[MtR
e
t ] and the first equality is due to the property of

the log-normality of SDF. As ex − 1 ≈ x for small x, we may simply have

maxSR ≈ V[mt]
1
2 = [(ρms )2V(st) + (ρmσ )2V(σ2

t ) + (λm
ε )2V(σteε,t+1) + (λm

s )2V(σtes,t+1) + (λm
σ )2σ2

σ]
1
2

= [(ρms )2
φ2
sσ̄

2

1− ρ2s
+ (ρmσ )2

σ2
σ

1− ρ2σ
+ (λm

ε )2σ̄2 + (λm
s )2σ̄2 + (λm

σ )2σ2
σ]

1
2

2. The mean, variance, and autocovariance of the risk-free rate in the economy

rft =
[
µm − 1

2
(λm

σ )2σ2
σ

]
+ ρms st +

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
σ2
t

E(rft ) =
[
µm − 1

2
(λm

σ )2σ2
σ

]
+ ρms s̄+

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
σ̄2

V(rft ) = (ρms )2V(st) +
(
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
)2

V(σ2
t )

= (ρms )2
φ2
sσ̄

2

1− ρ2s
+

(
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
)2

σ2
σ

1− ρ2σ

COV (rft , r
f
t−1) = COV (ρms st +

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
σ2
t , ρms st−1 +

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
σ2
t−1)

= (ρms )2ρsV(st) +
(
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
)2

ρσV(σ2
t )

= (ρms )2ρs
φ2
sσ̄

2

1− ρ2s
+

(
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
)2

ρσ
σ2
σ

1− ρ2σ

3. The mean, variance, and autocovariance of the investment rate

ikt = α+ βst + ϕσ2
t

E(ikt) = α+ βE(st) + ϕE(σ2
t )

= α+ βs̄+ ϕσ̄2

V(ikt) = β2V(st) + ϕ2V(σ2
t )

= β2 φ2
sσ̄

2

1− ρ2s
+ ϕ2 σ2

σ

1− ρ2σ

COV (ikt, ikt−1) = COV (βst + ϕσ2
t , βst−1 + ϕσ2

t−1)

= β2ρs
φ2
sσ̄

2

1− ρ2s
+ ϕ2ρσ

σ2
σ

1− ρ2σ
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The covariance between the risk-free rate and the investment rate

COV (ikt, rft ) = COV (βst + ϕσ2
t , ρms st +

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
σ2
t )

= βρms V(st) + ϕ
[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
]
V(σ2

t )

= βρms
φ2
sσ̄

2

1− ρ2s
+ ϕ

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
] σ2

σ

1− ρ2σ

4. The mean and variance of the average excess return

ret+1 =rIt+1 − rft = rIt+1 + Et[mt+1] +
1

2
Vt[mt+1]

= [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ] + [(b1ρs − b2)β + 1]st + [(b1ρσ − b2)ϕ]σ
2
t

+ σteε,t+1 + (b1βϕs)σtes,t+1 + (b1ϕ)σσeσ,t+1

+
[
− µm +

1

2
(λm

σ )2σ2
σ

]
− ρms st +

[
− ρmσ +

1

2
(λm

ε )2 +
1

2
(λm

s )2
]
σ2
t

= [(a1 − a2) + (b1 − b2)α+ µε + b1βµs + b1ϕµσ − µm +
1

2
(λm

σ )2σ2
σ]

+ [(b1ρs − b2)β + 1− ρms ]st + [(b1ρσ − b2)ϕ− ρmσ +
1

2
(λm

ε )2 +
1

2
(λm

s )2
]
σ2
t

+ σteε,t+1 + (b1βϕs)σtes,t+1 + (b1ϕ)σσeσ,t+1

= [
1

2
(λm

σ )2σ2
σ − 1

2
(λm

σ − b1ϕ)
2σ2

σ] + [
1

2
(λm

ε )2 +
1

2
(λm

s )2 − 1

2
(λm

ε − 1)2 − 1

2
(λm

s − b1βφs)
2]σ2

t

+ σteε,t+1 + (b1βϕs)σtes,t+1 + (b1ϕ)σσeσ,t+1

=
1

2
σ2
σ[(2λ

m
σ − b1ϕ)b1ϕ] +

1

2
σ2
t [(2λ

m
ε − 1) + (2λm

s − b1βφs)b1βφs]

+ σteε,t+1 + (b1βφs)σtes,t+1 + (b1ϕ)σσeσ,t+1

whose moments are

E(ret+1) =
1

2
σ2
σ[(2λ

m
σ − b1ϕ)b1ϕ] +

1

2
σ̄2[(2λm

ε − 1) + (2λm
s − b1βφs)b1βφs]

V(ret+1) =

[
1

2
[(2λm

ε − 1) + (2λm
s − b1βφs)b1βφs]

]2
σ2
σ

1− ρ2σ
+ σ̄2 + (b1βφs)

2σ̄2 + (b1ϕ)
2σ2

σ

The covariance between the excess return and the investment rate

COV (ikt, Et(r
e
t+1)) = COV (βst + ϕσ2

t ,
1

2
σ2
t [(2λ

m
ε − 1) + (2λm

s − b1βφs)b1βφs])

=
1

2
ϕ[(2λm

ε − 1) + (2λm
s − b1βφs)b1βφs]V(σ2

t )

=
1

2
ϕ[(2λm

ε − 1) + (2λm
s − b1βφs)b1βφs]

σ2
σ

1− ρ2σ

5. The mean and variance of the dividend-price ratio.

dpt = a5 + b5ikt

E[dpt] = a5 + b5(α+ βs̄+ ϕσ̄2)

V[dpt] = (b5)
2

[
β2 φ2

sσ̄
2

1− ρ2s
+ ϕ2 σ2

σ

1− ρ2σ

]
COV (dpt, dpt−1) = COV (b5(βst + ϕσ2

t ), b5(βst−1 + ϕσ2
t−1))

= (b5)
2

[
β2ρs

φ2
sσ̄

2

1− ρ2s
+ ϕ2ρσ

σ2
σ

1− ρ2σ

]
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The covariance between dpt and ikt, r
f
t are given by

COV (dpt, ikt) = b5

[
β2 φ2

sσ̄
2

1− ρ2s
+ ϕ2 σ2

σ

1− ρ2σ

]
COV (dpt, rft ) = b5

[
βρms

φ2
sσ̄

2

1− ρ2s
+ ϕ

[
ρmσ − 1

2
(λm

ε )2 − 1

2
(λm

s )2
] σ2

σ

1− ρ2σ

]
COV (ikt, Et(r

e
t+1)) = b5

[
1

2
ϕ[(2λm

ε − 1) + (2λm
s − b1βφs)b1βφs]

σ2
σ

1− ρ2σ

]
6. The mean and variance of the dividend growth.

∆dt+1 = a4 + (b6 + η)ikt+1 − (b5 + η)ikt +∆εt+1

E[∆dt+1] = a4 + b4E(ikt) + E(∆εt+1)

V[∆dt+1] =
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B.2 Estimation strategy

We choose the parameter vector Θ that minimizes weighted mean squared errors between the model-
implied moments X(Θ) and actual moments of data X.

Θ̂ = argmin
Θ

(
X −X(Θ)

)′
W

(
X −X(Θ)

)
We choose the following moments

E(rft ) =
[
µm − 1

2 (λ
m
σ )2σ2

σ

]
+ ρms s̄+

[
ρmσ − 1

2 (λ
m
ε )2 − 1

2 (λ
m
s )2

]
σ̄2

V(rft ) = (ρms )2
φ2

sσ̄
2

1−ρ2
s
+

(
ρmσ − 1

2 (λ
m
ε )2 − 1

2 (λ
m
s )2

)2
σ2
σ

1−ρ2
σ

COV (rft , r
f
t−1) = (ρms )2ρs

φ2
sσ̄

2

1−ρ2
s
+

(
ρmσ − 1

2 (λ
m
ε )2 − 1

2 (λ
m
s )2

)2

ρσ
σ2
σ

1−ρ2
σ

E(ikt) = α+ βs̄+ ϕσ̄2

V(ikt) = β2 φ2
sσ̄

2

1−ρ2
s
+ ϕ2 σ2

σ

1−ρ2
σ

COV (ikt, ikt−1) = β2ρs
φ2

sσ̄
2

1−ρ2
s
+ ϕ2ρσ

σ2
σ

1−ρ2
σ

E(ret+1) = 1
2σ

2
σ[(2λ

m
σ − b1ϕ)b1ϕ] +

1
2 σ̄

2[(2λm
ε − 1) + (2λm

s − b1βφs)b1βφs]

V(ret+1) =

[
1
2 [(2λ

m
ε − 1) + (2λm

s − b1βφs)b1βφs]

]2
σ2
σ

1−ρ2
σ
+ σ̄2 + (b1βφs)

2σ̄2 + (b1ϕ)
2σ2

σ

E(∆εt+1) = µε + s̄

V(∆εt+1) =
φ2

sσ̄
2

1−ρ2
s
+ σ̄2

COV (ikt, rft ) = βρms
φ2

sσ̄
2

1−ρ2
s
+ ϕ

[
ρmσ − 1

2 (λ
m
ε )2 − 1

2 (λ
m
s )2

] σ2
σ

1−ρ2
σ

COV (ikt, ret+1) = 1
2ϕ[(2λ

m
ε − 1) + (2λm

s − b1βφs)b1βφs]
σ2
σ

1−ρ2
σ

where investment coefficients are given by

β =
ρms − 1

b1ρs − b2
, ϕ =

ρmσ − 1
2 (λ

m
ε − 1)2 − 1

2 (λ
m
s − b1βφs)

2

b1ρσ − b2

α =
µm − 1

2 (λ
m
σ − b1ϕ)

2σ2
σ − (a1 − a2)− µε − b1βµs − b1ϕµσ

b1 − b2

and log-linearization constants are given by

a1 = log
(
1 + κ

η

η + 1
exp[(η + 1)ik∗] + (1− δ)κ exp(ηik∗)

)
− κη exp(ηik∗)[exp(ik∗) + (1− δ)]

1 + κ η
η+1 exp[(η + 1)ik∗] + (1− δ)κ exp(ηik∗)

ik∗

b1 =
κη exp(ηik∗)[exp(ik∗) + (1− δ)]

1 + κ η
η+1 exp[(η + 1)ik∗] + (1− δ)κ exp(ηik∗)

, a2 = log κ, b2 = η
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C Transformation of productivity across states

In this section, we present a model in which the representation of production technology is flexible
across states as in Cochrane (1993) and Belo (2010). Specifically, the producer is allowed to choose the
state-contingent productivity level Et, subject to the constraint set defined by the following analytically
tractable CES aggregator:

Et

[(
Et+1

Θt+1

)α] 1
α

≤ 1 (C.1)

where Θt+1 is the state-contingent natural productivity level and α > 1 is a curvature parameter a
controls the producer’s ability to transform productivity across states.

With this novel technology, the producer chooses both the investment in the current period and the
state-contingent productivity levels in the next period to maximize the cum-dividend value of the firm.

V (Xt) = max
{It, Et+1}

{
Dt + Et[Mt+1V (Xt+1)]

}
where Xt = (Θt, Et,Kt), subject to the capital’s law of motion (3), the flow of funds constraint (5), and
the constrained set of productivity levels (C.1).

Form a Lagrangian and let λt be the Lagrange multiplier associated with the technology constraint.

Lt = EtKt −
κ

η + 1
IKη+1

t EtKt + Et[Mt+1V (Xt+1)] + λt

(
1− Et

[(
Et+1

Θt+1

)α] 1
α
)

The first-order condition with respect to the investment remains unchanged. We have the same
investment Euler equation (6) with the same investment return (7). The difference now is that we have
a structure on the stochastic discount factor.

The first-order condition and the envelope condition with respect to the productivity Et+1 are given
by

Mt+1VE(Xt+1) = λt

Eα−1
t+1

Θα
t+1

(C.2)

VE(Xt) = Kt −
κ

η + 1
IKη+1

t Kt (C.3)

Combining both conditions, we have

Mt+1Kt+1

[
1− κ

η + 1
IKη+1

t+1

]
= λt

Eα−1
t+1

Θα
t+1

(C.4)

Taking expectation on both sides, we can substitute λt = Et[Mt+1]Kt+1

[
1− κ

η+1IK
η+1
t+1

]
/Et

[
Eα−1
t+1

Θα
t+1

]
,

leading to

Mt+1

Et[Mt+1]
=

Eα−1
t+1

Θα
t+1

Et

[
Eα−1
t+1

Θα
t+1

] =

(Et+1

Et

)α−1
/
(Θt+1

Θt

)α
Et

[(Et+1

Et

)α−1
/
(Θt+1

Θt

)α] =

∆Eα−1
t+1

∆Θα
t+1

Et

[
∆Eα−1

t+1

∆Θα
t+1

] (C.5)

This expression suggests that we can obtain the process of the SDF given processes of the natural
productivity and the chosen productivity or we can obtain the process of the chosen productivity given
processes of the natural productivity and the SDF.

Alternatively, apply the SDF (C.4) on the investment return, we have λt

Kt+1[1− κ
η+1 IK

η+1
t+1 ]

= Et

[
Eα−1
t+1

Θα
t+1

RI
t+1

]−1

,

leading to

Mt+1 = Et

[Eα−1
t+1

Θα
t+1

RI
t+1

]−1 Eα−1
t+1

Θα
t+1

= Et

[
∆Eα−1

t+1

∆Θα
t+1

RI
t+1

]−1∆Eα−1
t+1

∆Θα
t+1

(C.6)
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Now, as we do in the paper, we specify exogenously the process of the natural productivity and the
SDF. Given these processes, we first solve for the process of the chosen productivity and then solve for
the optimal investment.

C.1 Case I: ∆θt is an AR(1)

We assume the log natural productivity growth is an AR(1) process with time-varying conditional volatil-
ity, which is also an AR(1). The SDF is driven by the natural productivity growth and the time-varying
conditional volatility and subject to their shocks. Denote the log natural productivity growth as st ≡ ∆θt.

st+1 = µs + ρsst + σtes,t+1 (C.7)

σ2
t+1 = µσ + ρσσ

2
t + σσeσ,t+1 (C.8)

mt+1 = −µm − ρms st − ρmσ σ2
t − λm

s σtes,t+1 − λm
σ σσeσ,t+1 (C.9)

where µs = (1− ρs)s̄ = (1− ρs)∆θ̄ and µσ = (1− ρσ)σ̄
2. When ρs = 0, the natural productivity growth

is i.i.d. When ρs = 1, the natural productivity growth is a random walk.
We first solve for the chosen productivity. We conjecture and verify that the chosen productivity has

the following functional form

∆εt+1 = µε + ρεsst + ρεσσ
2
t + λε

sσtes,t+1 + λε
σσσeσ,t+1 (C.10)

The last equality of expression (C.5) implies the following log-linear relations between the SDF and
productivity growth.

mt+1 − logEt[mt+1] = [(α− 1)∆εt+1 − α∆θt+1]− logEt[exp((α− 1)∆εt+1 − α∆θt+1)]

mt+1 − Et[mt+1]−
1

2
Vt[mt+1] = [(α− 1)∆εt+1 − α∆θt+1]− Et[(α− 1)∆εt+1 − α∆θt+1]−

1

2
Vt[(α− 1)∆εt+1 − α∆θt+1]

mt+1 − Et[mt+1]−
1

2
Vt[mt+1] = (α− 1)(∆εt+1 − Et[∆εt+1])−

1

2
(α− 1)2Vt[∆εt+1]

− α(∆θt+1 − Et[∆θt+1])−
1

2
α2Vt[∆θt+1] + (α− 1)αCOVt(∆εt+1, ∆θt+1)

(C.11)

Plugging in processes of the SDF, the natural productivity and the chosen productivity, we have the
LHS and RHS of (C.11)

LHS = −λm
s σtes,t+1 − λm

σ σσeσ,t+1 −
1

2
[(λm

s )2σ2
t + (λm

σ )2σ2
σ]

RHS = [(α− 1)λε
s − α]σtes,t+1 + [(α− 1)λε

σ]σσeσ,t+1 −
1

2
[(α− 1)λε

s − α]2σ2
t −

1

2
(α− 1)2(λε

σ)
2σ2

σ

whose equality pins down λs
θ, λ

ε
σ

λε
s =

α− λm
s

α− 1
, λε

σ =
−λm

σ

α− 1

We still need to pin down µε, ρ
ε
θ, ρεσ using another condition. Since the productivity constraint (C.1) is

always binding given that the value function is strictly increasing in productivity in each state of nature,
we have

1 = Et[exp(α(εt+1 − θt+1))]
1
α

1 = Et[exp(α(∆εt+1 −∆θt+1))]
1
α

0 = αEt[∆εt+1 −∆θt+1] +
α2

2
Vt[∆εt+1 −∆θt+1]

0 = Et[∆εt+1]− Et[∆θt+1] +
α

2
Vt[∆εt+1] +

α

2
Vt[∆θt+1]− αCOVt(∆εt+1, ∆θt+1) (C.12)
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which yields

0 = [µε − µs +
α

2
(λε

σ)
2σ2

σ] + (ρεs − ρs)st + [ρεσ +
α

2
(λm

s − 1)2]σ2
t

from which we obtain

µε = µs −
α

2
(λε

σ)
2σ2

σ, ρεs = ρs, ρεσ = −α

2
(λε

s − 1)2

In summary we have the coefficients of ∆εt+1

µε = µs −
α

2
(λε

σ)
2σ2

σ = µs −
α

2

(
−λm

σ

α− 1

)2

σ2
σ (C.13)

ρεs = ρs (C.14)

ρεσ = −α

2
(λε

s − 1)2 = −α

2

(
α− λm

s

α− 1
− 1

)2

(C.15)

λε
s =

α− λm
s

α− 1
(C.16)

λε
σ =

−λm
σ

α− 1
(C.17)

Now we can solve for the optimal investment rate given the chosen productivity process using the
investment Euler equation (16). We assume that the optimal investment rate has the following functional
form

ikt = α+ βst + ϕσ2
t (C.18)

The investment return (10) now becomes

rIt+1 = (a1 − a2) + (b1ikt+1 − b2ikt) +∆εt+1

= (a1 − a2) + b1(α+ βst+1 + ϕσ2
t+1)− b2(α+ βst + ϕσ2

t ) +∆εt+1

= [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε] + [(b1ρs − b2)β + ρεs]st + [(b1ρσ − b2)ϕ+ ρεσ]σ
2
t

+ (b1β + λε
s)σtes,t+1 + (b1ϕ+ λε

σ)σσeσ,t+1

The investment Euler equation (16) yields

0 = Et[mt+1] + Et[r
I
t+1] +

1

2
Vt[mt+1] +

1

2
Vt[r

I
t+1] + COVt(mt+1, r

I
t+1)

= (−µm − ρms st − ρmσ σ2
t ) +

1

2
[(λm

s )2σ2
t + (λm

σ )2σ2
σ]

+ [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε] + [(b1ρs − b2)β + ρεs]st + [(b1ρσ − b2)ϕ+ ρεσ]σ
2
t

+
1

2
(b1β + λε

s)
2σ2

t +
1

2
(b1ϕ+ λε

σ)
2σ2

σ − λm
s (b1β + λε

s)σ
2
t − λm

σ (b1ϕ+ λε
σ)σ

2
σ

= [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε − µm +
1

2
[λm

σ − (b1ϕ+ λε
σ)]

2σ2
σ]

+ [(b1ρs − b2)β + ρεs − ρms ]st + [(b1ρσ − b2)ϕ+ ρεσ − ρmσ +
1

2
[λm

s − (b1β + λε
s)]

2]σ2
t

Therefore we obtain

α =
µm − (a1 − a2)− b1βµs − b1ϕµσ − µε − [λm

σ − (b1ϕ+ λε
σ)]

2σ2
σ

b1 − b2
(C.19)

β =
ρms − ρεs
b1ρs − b2

(C.20)

ϕ =
ρmσ − ρεσ − 1

2 [λ
m
s − (b1β + λε

s)]
2

b1ρσ − b2
(C.21)
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C.2 Case II: ∆θt has a time-varying component

We assume that the log natural productivity growth is driven by a time-varying component, which is an
AR(1), and subject to time-varying conditional volatility, which is also an AR(1). The SDF is driven by
both state variables and subject to three sources of shocks.

∆θt+1 = µθ + st + σteθ,t+1 (C.22)

st+1 = µs + ρsst + φsσtes,t+1 (C.23)

σ2
t+1 = µσ + ρσσ

2
t + σσeσ,t+1 (C.24)

mt+1 = −µm − ρms st − ρmσ σ2
t − λm

θ σteθ,t+1 − λm
s σtes,t+1 − λm

σ σσeσ,t+1 (C.25)

where µs = (1− ρs)s̄ and µσ = (1− ρσ)σ̄
2.

Now we first solve for the chosen productivity. We conjecture and verify that the chosen productivity
has the following functional form

∆εt+1 = µε + ρεsst + ρεσσ
2
t + λε

θσteθ,t+1 + λε
sσtes,t+1 + λε

σσσeσ,t+1 (C.26)

Again using (C.5), where

LHS = −λm
θ σteθ,t+1 − λm

s σtes,t+1 − λm
σ σσeσ,t+1 −

1

2
[(λm

θ )2σ2
t + (λm

s )2σ2
t + (λm

σ )2σ2
σ]

RHS = [(α− 1)λε
θ − α]σteθ,t+1 + (α− 1)λε

sσtes,t+1 + (α− 1)λε
σσσeσ,t+1

+ σ2
t [−

1

2
(α− 1)2(λε

θ)
2 − 1

2
(α− 1)2(λε

s)
2 − 1

2
α2 + (α− 1)αλε

θ]−
1

2
(α− 1)2(λε

σ)
2σ2

σ

from which we obtain

λε
θ =

α− λm
θ

α− 1
, λε

s =
−λm

s

α− 1
, λε

σ =
−λm

σ

α− 1

Using the binding constraint (C.1), we have

0 = (µε + ρεsst + ρεσσ
2
t )− (µθ + st) +

α

2
[(λε

θ)
2σ2

t + (λε
s)

2σ2
t + (λε

σ)
2σ2

σ] +
α

2
σ2
t − αλε

θσ
2
t

from which we obtain

µε = µθ −
α

2
(λε

σ)
2σ2

σ, ρ
ε
s = 1, ρεσ = −α

2
(λε

θ − 1)2 − α

2
(λε

s)
2

In summary, we have the coefficients the chosen productivity process

µε = µθ −
α

2
(λε

σ)
2σ2

σ = µθ −
α

2

(
−λm

σ

α− 1

)2

σ2
σ (C.27)

ρεs = 1 (C.28)

ρεσ = −α

2
(λε

θ − 1)2 − α

2
(λε

s)
2 = −α

2

(
1− λm

θ

α− 1

)2

− α

2

(
−λm

s

α− 1

)2

(C.29)

λε
θ =

α− λm
θ

α− 1
(C.30)

λε
s =

−λm
s

α− 1
(C.31)

λε
σ =

−λm
σ

α− 1
(C.32)

Now we proceed to solve for the optimal investment. We conjecture

ikt = α+ βst + ϕσ2
t (C.33)
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The investment return (10) now becomes

rIt+1 = (a1 − a2) + (b1ikt+1 − b2ikt) +∆εt+1

= (a1 − a2) + b1(α+ βst+1 + ϕσ2
t+1)− b2(α+ βst + ϕσ2

t ) +∆εt+1

= [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε] + [(b1ρs − b2)β + ρεs]st + [(b1ρσ − b2)ϕ+ ρεσ]σ
2
t

+ (λε
θ)σteθ,t+1 + (b1βφs + λε

s)σtes,t+1 + (b1ϕ+ λε
σ)σσeσ,t+1

The investment Euler equation (16) yields

0 = Et[mt+1] + Et[r
I
t+1] +

1

2
Vt[mt+1] +

1

2
Vt[r

I
t+1] + COVt(mt+1, r

I
t+1)

= (−µm − ρms st − ρmσ σ2
t ) +

1

2
[(λm

θ )2σ2
t + (λm

s )2σ2
t + (λm

σ )2σ2
σ]

+ [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε] + [(b1ρs − b2)β + ρεs]st + [(b1ρσ − b2)ϕ+ ρεσ]σ
2
t

+
1

2
(λε

θ)
2σ2

t +
1

2
(b1β + λε

s)
2σ2

t +
1

2
(b1ϕ+ λε
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2σ2
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θσ
2
t − λm
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2
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2
σ

= [(a1 − a2) + (b1 − b2)α+ b1βµs + b1ϕµσ + µε − µm +
1

2
[λm

σ − (b1ϕ+ λε
σ)]

2σ2
σ]

+ [(b1ρs − b2)β + ρεs − ρms ]st + [(b1ρσ − b2)ϕ+ ρεσ − ρmσ +
1

2
[λm

θ − λε
θ]

2 +
1

2
[λm

s − (b1β + λε
s)]

2]σ2
t

We obtain investment coefficients

α =
µm − (a1 − a2)− b1βµs − b1ϕµσ − µε − [λm

σ − (b1ϕ+ λε
σ)]

2σ2
σ

b1 − b2
(C.34)

β =
ρms − ρεs
b1ρs − b2

(C.35)

ϕ =
ρmσ − ρεσ − 1

2 [λ
m
θ − λε

θ]
2 − 1

2 [λ
m
s − (b1β + λε

s)]
2

b1ρσ − b2
(C.36)
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C.3 Micro-foundation of productivity transformation

Consider an economy populated by a continuum of firms indexed by i ∈ [0, 1] in perfectly competitive
markets. They are heterogenous in their productivity process Ai,t.

Ai,t = XtZi,t (C.37)

which contains an aggregate component Xt and an idiosyncratic component Zi,t.
Define aggregate productivity as At ≡ (

∫
Ai,tKi,tdi)/(

∫
Ki,tdi). The aggregate productivity growth

is given by

At+1

At
=

(
∫
Ai,t+1Ki,t+1di)/(

∫
Ki,t+1di)

(
∫
Ai,tKi,tdi)/(

∫
Ki,tdi)

=

∫
Ai,t+1Ki,t+1di∫

Ai,tKi,tdi
/

∫
Ki,t+1di∫
Ki,tdi

(C.38)

The second component is simply the aggregate capital growth Kt+1/Kt. The first component can be
decomposed into ∫

Ai,t+1Ki,t+1di∫
Ai,tKi,tdi

=

∫
Xt+1Zi,t+1Ki,t+1di∫

XtZi,tKi,tdi
=

Xt+1

Xt

∫
Zi,t+1Ki,t+1di∫
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=
Xt+1

Xt

[∫
(1− δi)Zi,t+1Ki,tdi∫

Zi,tKi,tdi
+

∫
Zi,t+1Ii,tdi∫
Zi,tKi,tdi

]
(C.39)

We have

At+1

At
=

Xt+1

Xt

[∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

]
/
Kt+1

Kt
(C.40)

where Xt+1

Xt
corresponds to Θt+1

Θt
and At+1

At
corresponds to Et+1

Et
.

The underlying productivity can be measured as

Xt+1

Xt
=

At+1

At

Kt+1

Kt
/

[∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

]
=

Yt+1

Yt
/

[∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

]
(C.41)

The expression (C.5)

Mt+1

Et[Mt+1]
=

∆Eα−1
t+1

∆Θα
t+1

Et

[
∆Eα−1

t+1

∆Θα
t+1

]
suggests an SDF M∗

t+1 for excess returns.

M∗
t+1 =

∆Eα−1
t+1

∆Θα
t+1

=
∆Aα−1

t+1

∆Xα
t+1

=
∆Aα−1

t+1(
∆At+1∆Kt+1 /

[ ∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

])α

= ∆A−1
t+1∆K−α

t+1

[∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

]α
(C.42)

= ∆Y −1
t+1∆K1−α

t+1

[∫
Zi,t+1Ki,t+1di∫

Zi,tKi,tdi

]α
(C.43)
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