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Abstract

This paper investigates the stock market implications of the Federal Reserve’s abil-
ity to control inflation, focusing on investor uncertainty and learning about it. Investor
uncertainty about the Fed’s ability to control inflation heightens stock market volatility
and risk premium, particularly during pronounced monetary tightening and easing cy-
cles. Moreover, investor learning generates an asymmetry that amplifies the impact of
inflation surprises when the Fed tightens or loses its inflation control credibility, caus-
ing particularly high volatility and risk premium. Empirical tests support our model’s
predictions, highlighting the importance of investors learning about the Fed’s ability
to control inflation in shaping financial markets.
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1 Introduction

Inflation, a key economic indicator, can disrupt economies and significantly affect people’s

well-being. The COVID-19 pandemic led to a resurgence of inflation as governments world-

wide implemented drastic measures. Lockdowns forced people to stay home and businesses

to halt operations, prompting governments and central banks to introduce lenient fiscal and

monetary policies to assist firms and consumers. However, reduced output and a sharp rise

in the money supply created an imbalance, sparking inflation. The United States Consumer

Price Index (CPI) saw a significant jump one year after lockdowns started, with year-over-

year growth hitting 2.6% in March 2021 and exceeding 8.5% in March 2022. In response,

the Federal Reserve (henceforth, “Fed”) began raising interest rates in March 2022.

This raises an important question: Can the Fed effectively control inflation? The Fed’s

ability to control inflation greatly influences financial markets, investor trust, and overall

economic stability. Without the Fed’s inflation-fighting credibility, inflation is at risk of

becoming self-perpetuating. This paper explores the Fed’s credibility problem from investors’

perspective, suggesting that they are uncertain about the Fed’s ability to manage inflation

and must therefore gather information from observed inflation data. Incorporating this

learning process into a general equilibrium model reveals that the market risk premium and

volatility increase when the Fed loses its credibility in fighting inflation. Furthermore, when

the Fed responds to high inflation data by raising interest rates, it leads to a stock market

downturn, heightened volatility, and a surge in the market risk premium.

While scholars and policymakers have long debated the Fed’s ability to effectively control

inflation (Bernanke and Mishkin, 1997; Svensson, 1999; Clarida, Gali, and Gertler, 2000),

and emphasized the importance of maintaining credibility to keep inflation at bay (Kydland

and Prescott 1977; Alesina and Summers 1993; Barro and Gordon 1983; Walsh 2017), our

study introduces a fresh perspective. We agree that credibility is paramount, but we also

focus on the role of investor uncertainty and learning in shaping the relationship between

the Fed’s credibility and its ability to control inflation. By integrating these elements into

our analysis, we explore the following question: What are the stock market implications of

investors’ uncertainty and learning about the Fed’s ability to manage inflation?

Our analysis employs a general equilibrium economy model (Lucas, 1978), featuring a

representative agent with Epstein and Zin (1989) preferences who consumes the aggregate

output. The nominal price of the consumption good acts as a proxy for the consumer price

index. In this setting, the Fed adjusts the nominal interest rate based on the Taylor rule,

increasing rates in response to inflation growth or signs of overheating. Meanwhile, the

representative agent observes inflation data and updates their beliefs about the Fed’s ability
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to control inflation via interest rate hikes. As the Fed raises interest rates and a subsequent

decline in inflation is observed, the agent’s confidence in the Fed’s ability grows. However, if

inflation persists, the agent loses faith in the Fed’s ability, realizing that interest rate hikes

are insufficient to curb inflation, ultimately eroding the Fed’s credibility.

The analysis uncovers two novel effects that set our study apart from existing literature.

First, we find that uncertainty about the Fed’s ability to control inflation results in higher

stock market volatility and risk premium, especially during intense monetary tightening

or easing periods. As inflation strays from its target, the Fed’s credibility is called into

question, prompting the stock market to react strongly to new information. For instance, a

high inflation reading during aggressive tightening may cause a significant market decline,

similar to a stock market crash. Conversely, a low inflation reading in the same context

could trigger a substantial market rally.

The second effect relates to the representative agent’s valuation of monetary policy. As-

suming a preference for early resolution uncertainty (Bansal and Yaron, 2004), monetary

policy is valuable for the agent because it reduces long-run risk. The Fed tightens during

overheating and eases during weakening, stabilizing economic cycles. However, this desirable

stabilizing force comes at a cost to the stock market, which negatively correlates with the

Fed’s actions: the market falls when the Fed tightens and rises when the Fed eases. In asset-

pricing terms, the stock market is considered a “bad” asset due to its negative correlation

with a “good” risk, leading the agent to demand a risk premium to hold it. This effect

is asymmetric, depending on the cycle type (tightening or easing). The agent demands a

higher risk premium during tightening because learning magnifies the impact of inflation

surprises (positive or negative). For instance, a positive inflation surprise during tightening

weakens the Fed’s credibility, resulting in doubly bad news. In contrast, the agent requires

a lower risk premium during easing, as learning reduces the impact of inflation surprises. As

a result, investor learning leads to a higher risk premium during tightening periods.

To quantify these effects, we estimate the parameters of the model using Maximum

Likelihood, employing data on U.S. real GDP, Federal funds rate, and inflation rate from

1955 to 2021. The estimated parameter values yield asset-pricing moments that are in line

with the data. Specifically, the model predicts a real interest rate of 1%, nominal interest

rate of 4.5%, market risk premium of 8%, market return volatility of 19%, and market Sharpe

ratio of 0.43.

We empirically test the model’s predictions using the S&P 500 as a proxy for the market.

Our methodology unfolds in several stages. First, we calculate the empirical market risk

premium by fitting a regression of future S&P 500 excess return on the current S&P 500

dividend yield (Fama and French, 1989; Cochrane, 2008) and the realized S&P 500 return
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variance (French, Schwert, and Stambaugh, 1987; Guo, 2006). Next, we determine the

empirical market return volatility by fitting an Exponential GARCH model (Nelson, 1991)

to the S&P 500 excess return, capturing the asymmetric response of volatility to return

shocks of different signs. We also compute the empirical price-dividend ratio by dividing the

S&P 500 price by the cumulative dividend paid by the index over the past twelve months.

The empirical real interest rate is computed as the Federal funds rate minus the inflation rate.

Lastly, the empirical expected output growth rate is obtained by fitting an Autoregressive-

Moving-Average model to the real GDP growth rate. We then derive the model-implied

market risk premium, market return volatility, market price-dividend ratio, real interest

rate, and expected output growth rate by inputting the state variables extracted from the

Maximum Likelihood estimation into our theoretical framework.

Our model aligns well with the data, showing positive and statistically significant re-

lations between empirical and model-implied quantities. As predicted by the model, we

observe an increase in the empirical real interest rate, expected output growth rate, market

risk premium, and market return volatility when the Fed tightens, alongside a drop in the

empirical market price-dividend ratio. These relations are statistically significant at the 1%

level. The empirical real interest rate, expected output growth rate, and market price drop

as inflation increases, consistent with the predictions of the model. Moreover, we find that

a decrease in the Fed’s ability to control inflation leads to a statistically significant increase

in the empirical market risk premium and market return volatility, in line with the model.

Overall, our empirical findings support the theoretical predictions of the model, providing

further evidence of its validity.

Our paper builds on previous studies examining the Fed’s role in controlling inflation and

maintaining credibility, as mentioned earlier, along with additional contributions (Bernanke,

Laubach, Mishkin, and Posen, 1998; Woodford, 2003). It also relates to studies on investor

learning and its impact on market outcomes, such as asset pricing, volatility, and risk premia

(Timmermann, 1993; Pastor and Veronesi, 2009). Moreover, we connect our work with the

literature on the effects of monetary policy on financial markets and risk premia (Bernanke

and Kuttner, 2005; Rigobon and Sack, 2004; Gürkaynak, Sack, and Swanson, 2004). Lastly,

the model we develop stems from the general equilibrium literature (Lucas, 1978) and ex-

plores the interaction between incomplete information (Detemple, 1986), inflation (Xiong

and Yan, 2010; Cochrane, 2011), interest rates (Buraschi and Jiltsov, 2005; Wachter, 2006),

and asset prices, thereby expanding the literature on asset prices in monetary economies

(Danthine and Donaldson, 1986; Bakshi and Chen, 1996; Gallmeyer, Hollifield, Palomino,

and Zin, 2007).

In related work, Bauer, Pflueger, and Sunderam (2022) analyze how professional fore-
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casters perceive the Federal Reserve’s monetary policy rule and how these perceptions im-

pact asset prices and monetary policy transmission. They demonstrate that the perceived

dependence of the federal funds rate on economic conditions is time-varying and cyclical,

with forecasters updating their beliefs in response to monetary policy actions. Their study

highlights the importance of understanding public perceptions of monetary policy and their

implications for policy effectiveness, which is relevant to our research on the Fed’s ability to

control inflation. Our paper extends this line of research by incorporating investor uncer-

tainty and learning in a monetary economy, further exploring the relationship between the

Fed’s credibility and its capacity to effectively manage inflation.

Although our study focuses on investor learning and the Fed’s ability to control inflation,

we acknowledge that our analysis simplifies the complex economic dynamics by omitting as-

pects such as fiscal policy (Sargent and Wallace, 1981; Leeper, 1991), international trade and

exchange rates (Obstfeld and Rogoff, 1995; Calvo and Reinhart, 2002; Gali and Monacelli,

2005), or the role of a financial intermediation sector in shaping inflation and asset prices

(Bernanke, Gertler, and Gilchrist, 1999; Gertler and Kiyotaki, 2010; Corhay and Tong, 2021).

Nevertheless, by emphasizing the role of investor learning, our research complements the ex-

isting literature and encourages further exploration of the interplay between these areas.

The paper proceeds as follows: Section 2 presents our model and its main implications;

Section 3 describes the estimation of model parameters; Section 4 reports the empirical tests

and results; and Section 5 concludes with a summary of our findings and potential avenues

for future research.

2 Model

The economy is defined over a continuous-time infinite horizon and consists of a single

representative agent who derives utility from consumption. The agent has Kreps-Porteus

preferences (Epstein and Zin, 1989; Weil, 1990) with a subjective discount rate ρ, relative

risk aversion γ, and elasticity of intertemporal substitution ψ. The agent’s indirect utility

function is given by

Jt = Et
[∫ ∞

t

h(Cs, Js)ds

]
,

where the aggregator h is defined as in Duffie and Epstein (1992):

h(C, J) =
ρ

1− 1/ψ

(
C1−1/ψ

[(1− γ)J ]1/θ−1
− (1− γ)J

)
, with θ ≡ 1− γ

1− 1/ψ
.
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The aggregate consumption in the economy, denoted by δ, follows the dynamic process

dδt
δt

= µδ,tdt+ σδdBδ,t, (1)

where µδ,t is the expected consumption growth rate, σδ > 0 is a known constant, and Bδ

is a one-dimensional Brownian motion. The expected consumption growth rate varies over

time and is determined endogenously from the agent’s optimality conditions, as we will

demonstrate below.

The consumption price level, pt, evolves according to

dpt/pt = πtdt,

where πt is the expected rate of inflation, which follows the mean-reverting process:

dπt = λπ (πt − πt) dt+ σπdBπ,t. (2)

In equation (2), λπ > 0 is a known constant and represents the mean-reversion speed of infla-

tion, σπ > 0 is a known constant, and Bπ is a one-dimensional Brownian motion uncorrelated

with Bδ. The mean of inflation, πt, varies over time according to

πt = π̆ − at(rN,t − rN),

where rN,t is the nominal interest rate, whose long-term mean is rN , π̆ is the long-term mean

of inflation under neutral interest rates (when rN,t = rN), and at is a parameter that governs

how inflation responds to deviations of the nominal rate from its long-term mean.

Our model’s central assumption is that the Fed governs the mean of inflation πt by setting

the nominal interest rate rN,t. In doing so, the Fed modifies the gap πt− πt in equation (2),

which governs the reversion of inflation towards its mean. Importantly, the Fed controls the

mean of inflation, πt, and not directly inflation, creating a lag between rate changes and the

inflation’s response to those changes.

Consider an example where, without loss of generality, the expected inflation πt is high,

and the Fed is tightening (rN,t−rN > 0). Then, a positive value for the parameter at implies

a low πt and a faster reversion of inflation to lower levels. That is, positive values for the

parameter at imply that the Fed can control inflation by increasing its mean-reversion speed.

Conversely, a negative value for the parameter at weakens the Fed’s ability to bring down

inflation, meaning that inflation remains sticky and the Fed cannot control it effectively.

The focus of our paper is on the parameter at, which reflects the Fed’s ability to control
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inflation. We assume that the representative agent does not observe at. That is, the agent is

unsure whether the Fed can bring inflation back down in the near future when it has become

excessively high. The parameter at follows a hidden diffusion process

dat = −λaatdt+ σadBa,t, (3)

where λa > 0 and σa > 0 are known constants, and Ba is a one-dimensional Brownian

motion, uncorrelated with Bδ and Bπ.

The representative agent observes the process of aggregate consumption δt, nominal in-

terest rates rN,t set by the Fed, and consumption prices pt. Since consumption prices are

observable, so is the expected inflation process (2). The history of the expected inflation

process together with the history of nominal interest rates allows the agent to learn about

Fed’s ability to control inflation, i.e., about at. Defining Fπ,rNt the information set of the

agent at time t, standard filtering theory (Liptser and Shiryaev, 2001) implies that the agent’s

posterior mean, ât ≡ E[at|Fπ,rNt ], and the posterior variance, νa,t ≡ E[(at− ât)2|Fπ,rNt ], follow

dât = −λaâtdt−
(rN,t − rN)λπνa,t

σπ
dB̂π,t, (4)

dνa,t =

[
σ2
a − 2λaνa,t −

(
(rN,t − rN)λπνa,t

σπ

)2
]
dt, (5)

where B̂π is a Brownian motion under agent’s filtration and represents a surprise change in

expected inflation. Post-filtering, the agent perceives the expected inflation process as

dπt = λπ [π̆ − ât(rN,t − rN)− πt] dt+ σπdB̂π,t. (6)

The agent’s updating of beliefs in Equation (4) depends on the difference rN,t−rN . To fix

ideas, assume that the Fed is tightening, meaning that rN,t > rN . Then a positive surprise

change in expected inflation (dB̂π,t > 0, or an inflationary shock) lowers the agent’s estimate

ât. The agent’s confidence in Fed’s ability to control inflation decreases after the inflationary

shock because inflation keeps rising despite the Fed’s tightening. If, on the contrary, the

agent observes a negative surprise change in expected inflation—a deflationary shock—then

ât increases, restoring the agent’s confidence in Fed’s ability to fight inflation.

We observe an asymmetric response of ât to inflation surprises. When the Fed is tight-

ening, a positive inflation surprise not only represents bad news but also lowers the agent’s

estimate ât or their perception of the Fed’s ability to control inflation. Conversely, in the

case of an easing episode, the same positive surprise in inflation leads the agent to perceive
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an improvement in the Fed’s ability to bring inflation back to its long-term mean. This

asymmetric response of ât will be essential for some of our asset pricing results.

The posterior uncertainty νa,t evolves locally deterministically over time as described

in (5). It tends to increase when interest rates are close to being neutral (rN,t ≈ rN)

because valuable information about the Fed’s ability to control inflation can only be observed

when the Fed tries to either fight inflation (rN,t > rN) or increase inflation (rN,t < rN).

Importantly, the posterior uncertainty never vanishes since the agent learns about a moving

target, which evolves as in (3). As shown below, νa,t is the channel through which the agent’s

confidence in the Fed’s ability to control inflation generates novel asset pricing results.

The Fisher equation states that the nominal interest rate rN,t must equal the sum of the

real interest rate rR,t and the expected inflation rate:

rN,t = rR,t + πt. (7)

The Fed uses the Taylor rule to guide its response to deviations in inflation and economic

growth. The rule relies on two positive and known constants, namely βπ and βµ. If the

recent history of inflation and economic growth exceed their target levels, the Fed increases

the nominal interest rate according to:

rN,t = rN + βπ (φπ,t − π) + βµ (φµ,t − µδ) . (8)

The Taylor rule considers the difference between the current inflation index φπ,t and the

targeted inflation rate π, and the difference between the current consumption growth index

φµ,t and the natural expected consumption growth rate µδ = E(dδt/δt)
dt

. The inflation index,

φπ,t, is based on the history of observations of the price level, while the consumption growth

index, φµ,t, is based on the history of observations of the aggregate consumption:

φπ,t = ωπ

∫ t

0

e−ωπ(t−s)dps
ps
, (9)

φµ,t = ωµ

∫ t

0

e−ωµ(t−s)dδs
δs
. (10)

To understand the meaning of the indices φπ,t and φµ,t, note first that (9) and (10) imply

the following dynamics:

dφπ,t = ωπ(πt − φπ,t)dt, (11)

dφµ,t = ωµ(µδ,t − φµ,t)dt+ ωµσδdBδ,t, (12)
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where it can be shown that the unconditional means of φπ,t and φµ,t are respectively π and

µδ. Consider now a discretization of (11) with time steps ∆t:

φπ,t =
(
1− e−ωπ∆t

) ∞∑
n=0

e−ωπn∆tπt−n∆t. (13)

The expression (13) resembles an exponential moving average, with the parameter ωπ driving

the weight associated with the present relative to the past. If ωπ is large, the past price growth

influences to a small degree the index, causing it to closely represent current price growth.

On the other hand, if ωπ is small, the past history of price growth influences the index to a

greater extent. This logic also applies to the index φµ,t, with the added impact of Bδ shocks,

reminiscent of an ARMA model. In fact, discretizing (12) produces:

φµ,t =
(
1− e−ωµ∆t

) ∞∑
n=0

e−ωµn∆tµδ,t−n∆t + ωµσδ

√
1− e−ωµ∆t

2ωµ

∞∑
n=0

e−ωµn∆tZt−n∆t,

where Z is the N(0, 1) discrete counterpart of the Brownian Bδ. The parameter ωµ controls

the weight associated with the present consumption growth relative to the past, with a higher

ωµ giving more weight to recent data.

To summarize, the indices φπ,t and φµ,t allow the Fed to base its interest rate decision

not only on the latest estimates of inflation and expected consumption growth but on their

entire history. The Taylor rule is thus fairly general and can be specialized to cases when

φπ,t = πt and φµ,t = µδ,t, as well as cases when the past observations are given more weight.

The parameter values ωπ, ωµ, βπ, and βµ will be estimated from the data in Section 3.

It is worth noting that when ωπ = ωµ ≡ ω, the dynamics of the process

φt ≡ βπ (φπ,t − π) + βµ (φµ,t − µδ) , (14)

which enters the Taylor rule in (8), do not include the two indices φπ,t and φµ,t:

dφt = ω[βµ(µδ,t − µδ) + βπ(πt − π)− φt]dt+ ωβµσδdBδ,t. (15)

The dynamics in (15) show that φt mean-reverts at speed ω towards its stochastic mean,

which is determined by the weighted sum of the inflation and consumption growth deviations

from their targets. This reduction of φπ,t and φµ,t into a single state variable φt when

ωπ = ωµ ≡ ω not only simplifies the numerical method but also facilitates the interpretation

of φt. Specifically, high values of φt indicate tightening, and low values indicate easing.

In Section 3, we will provide evidence that the estimated values of the mean-reversion
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speeds ωπ and ωµ are nearly identical. Since eliminating one state variable simplifies the

numerical solution of the equilibrium and helps us to interpret our findings more easily, we

assume going forward that ωπ = ωµ ≡ ω. This implies that φt satisfies (14) and that the

nominal interest rate is determined by:

rN,t = rN + φt, (16)

with the dynamics of φt provided in (15).

We observe that the process φt = rN,t − rN has a direct impact on the agent’s updating

of beliefs in equation (4). This establishes a clear connection between the Fed’s decisions,

as governed by (16), and the agent’s learning process regarding the Fed’s ability to control

inflation, as described in (4).

Solving for the equilibrium in this economy involves writing the HJB equation:

max
C
{h(C, J) + LJ} = 0, (17)

with the differential operator LJ following from Itô’s lemma. In keeping with existing work

(e.g., Benzoni, Collin-Dufresne, and Goldstein, 2011), we guess the following value function:

J(C, π, â, φ, νa) =
C1−γ

1− γ
[
ρeI(xt)

]θ
, (18)

where I(xt) is the log wealth-consumption ratio and xt ≡ [πt ât φt νa,t]
> denotes the state

vector. (Note that the state vector does not include µδ,t, which in our model will be endoge-

nously determined in equilibrium as a function of the other state variables.)

Substituting the guess (18) into the HJB Equation (17) and imposing the market-clearing

condition Ct = δt, yields a partial differential equation for the log wealth-consumption ratio.

We numerically solve this equation using Chebyshev polynomials (Judd, 1998). Appendix

A describes the solution method and details the numerical procedure.

Equilibrium market price of risk and real risk-free rate Following Duffie and Epstein

(1992), the state price density in this economy is given by

ξt = exp

[∫ t

0

hJ(Cs, Js)ds

]
hC(Ct, Jt) = exp

[∫ t

0

(
θ − 1

eI(xs)
− ρθ

)
ds

]
ρθC−γt (eI(xt))θ−1.

A two-dimensional Brownian vector, B̂t ≡ [Bδ,t B̂π,t]
>, drives the state variables in this

economy. As a result, the market price of risk in this economy is also two-dimensional,

denoted as mt ≡ [mδ,t mπ,t]
>. Both the market price of risk and the real risk-free rate rR,t
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result from the dynamics of the state price density,

dξt
ξt

= −rR,tdt−m>t dB̂t, (19)

Itô’s Lemma yields the market prices of risk for Bδ and B̂π:

mδ,t = γσδ + (1− θ)σδβµωIφ, (20)

mπ,t = (1− θ)
[
σπIπ −

λπνa,t
σπ

Iâ(rN,t − rN)

]
, (21)

where we denote by Iz the partial derivative of the log wealth-consumption ratio with respect

to the state variable z ∈ {π, â, φ, νa}.
Focusing on the market price of risk mδ,t, the Fed’s monetary policy plays an important

role in mitigating growth fluctuations caused by Bδ. The Fed tightens when facing an

overheating economy (high φt), leading to an expected negative sign for Iφ. Conversely,

the Fed eases when facing a weak economy, also implying Iφ < 0. (We will confirm the

assumed signs of the partial derivatives of I(xt) in Section 4.) The agent values the Fed’s

stabilizing force through the long-run risk channel, with 1− θ measuring the preference for

early resolution of uncertainty. From the long-run risk agent’s perspective, the Fed’s response

to changes in φt reduces long-run risk and, with it, mδ,t. This effect is stronger as σδ (the

scale of economic fluctuations), βµ (the output gap coefficient in the Taylor rule), and ω (the

weight given to recent growth data) increase.

For the market price of risk mπ,t, we expect a negative Iπ (as higher inflation reduces

expected real consumption growth and the wealth-consumption ratio) and a positive Iâ

(since greater trust in the Fed’s inflation control ability raises the wealth-consumption ratio).

Assuming the Fed is tightening (rN,t− rN > 0) and considering the signs Iπ < 0 and Iâ > 0,

we obtain a negative mπ,t. Consequently, the agent is willing to pay a premium for assets

whose returns covary positively with inflation. The magnitude of the price of risk mπ,t

grows with a strong preference for early resolution of uncertainty (large 1− θ), with higher

inflation volatility (large σπ), and, crucially, with higher uncertainty in the Fed’s inflation

control ability (large νa,t).

Itô’s Lemma applied to (19) yields the equilibrium real risk-free rate:

rR,t = ρ+
µδ,t
ψ
− γ(1 + ψ)

2ψ
σ2
δ −

1− θ
2

(
σ2
W,t − σ2

δ

)
, (22)
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where σ2
W,t is the instantaneous variance of wealth,

σ2
W,t ≡ σ2

δ + 2σ2
δβµωIφ + σ2

πI
2
π +

λ2
πν

2
a,t(rN,t − rN)2

σ2
π

I2
â + σ2

δβ
2
µω

2I2
φ − 2λπνa,t(rN,t − rN)IπIâ.

The first two terms in (22) are familiar drivers of the real risk-free rate: the time pref-

erence rate and the expected growth rate of consumption. The last two terms result from

precautionary saving and represent an adjustment for risk, which includes consumption risk

and excess wealth risk. The last term vanishes in the CRRA case (θ = 1).

Replacing rR,t in the Fisher equation (7), then fixing rN,t = rN and taking unconditional

expectations on both sides determines the neutral level of interest rates, rN , as a known

function of the other parameters:

rN = ρ+ π +
µδ
ψ
− γ(1 + ψ)

2ψ
σ2
δ −

1− θ
2

(
2σ2

δβµωIφ + σ2
πI

2

π + σ2
δβ

2
µω

2I
2

φ

)
,

where Iπ and Iφ are the values of the partial derivatives of the log wealth-consumption ratio

measured when all state variables are at their long-term means: π = π, â = 0, φ = 0, and

νa = νa.

In our economy, the expected growth rate of consumption is endogenously determined

in equilibrium and depends on monetary policy. Equation (22), together with the Fisher

equation (7), lead to an equilibrium expected growth rate:

µδ,t = ψ(rN,t − πt − ρ) +
γ(1 + ψ)

2
σ2
δ +

ψ(1− θ)
2

(σ2
W,t − σ2

δ ). (23)

Equation (23) determines the expected growth given a real interest rate, with the lat-

ter being a function of the nominal rate and expected inflation. Meanwhile, equation (6)

describes the inflation path based on the agent’s perceived impact of the Fed’s decisions.

In order to close the model, these two equations are supplemented with the Taylor rule

(8), which determines the nominal interest rate rN,t. Collectively, these three equations im-

ply that the real consumption’s equilibrium path depends on monetary policy, making the

expected consumption growth µδ,t endogenous and monetary policy non-neutral.

In equation (23), the nominal interest rate does not move one-for-one with expected

inflation1, resulting in fluctuations in the real interest rate. These changes in the real interest

rate, in turn, impact consumption since the representative agent adjusts her expected future

1Applying Itô’s Lemma to the Taylor rule equation (8) shows that the nominal interest rate depends
on the Brownian Bδ, while expected inflation πt depends on the Brownian Bπ as given in equation (2).
Therefore, based on the Fisher equation (7), a change in expected inflation results in a change in the real
interest rate. In other words, monetary policy is non-neutral.
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consumption growth to align with the new real interest rate level. To illustrate this, let us

consider the log level of real consumption, denoted by ct = log(δt). By discretizing equation

(1) and using equation (23), we can write Et[ct+1]− ct = µδ,t − σ2
δ/2, which implies:

ct − Et[ct+1] = ψ(ρ+ πt − rN,t)−
(
γ(1 + ψ)

2ψ
+

1

2

)
σ2
δ −

ψ(1− θ)
2

(σ2
W,t − σ2

δ ). (24)

The optimality condition (24), arising from the representative agent’s first-order condition for

consumption today versus consumption tomorrow, aligns with conditions found in standard

monetary policy frameworks (e.g., Gaĺı, 2015, Chapter 3, p. 54). According to this condition,

the agent consumes more today relative to tomorrow when either the subjective discount

rate ρ or the inflation rate πt is high, and consumes less today relative to tomorrow when

the nominal interest rate rN,t is high. As anticipated, by raising the nominal interest rate,

the Fed curbs current consumption.

The final term in Equation (24) acts as the “exogenous preference shifter” in monetary

economies. A change in this term can be interpreted as a discount rate shock (Gaĺı, 2015,

Chapter 3). A key difference in our model is that this shock is endogenous and driven by

the excess variance of wealth, σ2
W,t− σ2

δ . An increase in the excess variance of wealth results

in lower consumption today relative to tomorrow because the representative agent prefers

early resolution of uncertainty. As such, the excess variance of wealth boosts precautionary

saving and discourages current consumption.

Equilibrium asset prices As in Bansal and Yaron (2004), we will now consider an asset

(the “market”) that pays an aggregate dividend, which follows the dynamic process

dDt

Dt

= [(1− α)µδ + αµδ,t]dt+ σDdBD,t, (25)

where BD is a one-dimensional Brownian motion uncorrelated with {Bδ, B̂π}, α is the div-

idend leverage on expected consumption growth (Abel, 1999), and σD helps calibrate the

volatility of dividends which in the data is larger than that of consumption. Assuming

non-zero correlations between BD and {Bδ, B̂π} is possible but not necessary to achieve our

main objective of isolating the impact of learning about the Fed on asset prices. In equation

(25), the expected growth rate of dividends is an affine function of the economy’s expected

growth rate, µδ,t. As inflation and monetary policy impact µδ,t, we will analyze how asset

pricing reflects this impact. Lastly, the constant (1 − α)µδ in the drift of (25) ensures that

the average dividend growth rate is equal to the average consumption growth rate, µδ.

Denote the log price-dividend ratio by Π(xt), which solves a partial differential equation

12



we relegate to Appendix A. The diffusion of market returns is a vector with three elements:

sδ,t = σδβµωΠφ, (26)

sπ,t = σπΠπ −
λπνa,t
σπ

Πâ(rN,t − rN), (27)

sD,t = σD.

Multiplying each of the market prices of risk in (20)-(21) with the corresponding diffusions

in (26)-(27), then taking the sum, yields the market risk premium (the market price of risk

for BD is zero, and thus σD does not enter the risk premium):

RPt = γσ2
δβµωΠφ + (1− θ)σ2

δβ
2
µω

2ΠφIφ + (1− θ)σ2
πΠπIπ

− (1− θ)νa,t(ΠπIâ + ΠâIπ)λπ(rN,t − rN) + (1− θ)
λ2
πν

2
a,t

σ2
π

ΠâIâ(rN,t − rN)2.
(28)

In line with our analysis of the log wealth-consumption ratio, we hypothesize—and con-

firm in Section 4—that: Πφ < 0 (the Fed tightens during an overheating economy and

eases during a weakening economy, resulting in a negative relationship between φt and asset

prices); Πâ > 0 (confidence in the Fed’s ability to control inflation boosts asset prices); and

Ππ < 0 (inflation reduces growth and negatively affects asset prices).

Two primary factors influence the risk premium. First, for the long-run risk agent, the

Fed’s monetary policy lowers the market price of Bδ risk—refer to our discussion of equation

(20)—resulting in Iφ < 0. Consequently, the term (1− θ)σ2
δβ

2
µω

2ΠφIφ in (28) is positive. In

other words, the Fed’s tightening or easing policy reduces long-run risk and is thus favorable.

However, the market declines when the Fed tightens (when φ increases) and rises when the

Fed eases (when φ decreases), creating a negative correlation between Bδ and the market,

which leads to a positive risk premium. The magnitude of this effect on the risk premium

depends on the agent’s perceived confidence in the Fed’s ability to control inflation, ât.

Suppose ât is positive and large. In that case, the Fed’s strong ability to control inflation

lowers the risk premium, as the Fed’s actions today will promptly bring back inflation to

its long-term mean. This weakens the impact of long-run risk and thus the risk premium.

Further discussion on this effect can be found in Section 4.

The uncertainty channel νa,t is the second factor affecting the market risk premium. It is

represented by the second-row terms in equation (28), which form a quadratic expression in

(rN,t− rN). The product ΠâIâ is positive, and thus the quadratic term generates a U-shape.

This means that uncertainty about the Fed’s ability to control inflation increases the risk

premium when the Fed deviates from a neutral monetary policy. Moreover, the linear term

13



in (rN,t − rN) leads to an asymmetric response. Since ΠπIâ + ΠâIπ < 0, the risk premium is

higher during a tightening cycle than during an easing cycle. This asymmetry follows from

equation (4), which shows that learning amplifies the impact of inflation surprises during

tightening episodes and dampens it during easing episodes. Finally, the risk premium is

magnified by the term (1 − θ)σ2
πΠπIπ, which is positive when both the aggregate wealth

and the market decrease with inflation, in other words, when Ππ < 0 and Iπ < 0. All these

effects are more pronounced when there is high uncertainty, the economy is in a more extreme

tightening or easing cycle, or the agent strongly prefers early resolution of uncertainty.

These two forces driving the risk premium reflect our paper’s main contributions. The

first force is based on the idea that the Fed’s monetary policy stabilizes aggregate fluctuations

and is therefore desirable in a long-run risk economy. However, the market bears a cost in

the form of a risk premium, especially when the Fed’s ability to control inflation, ât, is low

or negative. The second force is based on the idea that the agent is uncertain about the

Fed’s ability to control inflation. This uncertainty increases the risk premium when the Fed

deviates from a neutral monetary policy, creating concerns that the Fed may not be able to

bring inflation back to target, particularly during tightening periods.

Turning now to stock market variance, the process (25) together with the log price-

dividend ratio Π(xt) imply the instantaneous stock return variance in this economy:

σ2
t = σ2

D + σ2
δβ

2
µω

2Π2
φ + σ2

πΠ2
π − 2λπνa,tΠâΠπ(rN,t − rN) +

λ2
πν

2
a,t

σ2
π

Π2
â(rN,t − rN)2. (29)

The last two terms in the stock return variance are novel, and are caused by the uncer-

tainty about the Fed’s ability to control inflation. These terms show that the stock return

variance increases when the Fed deviates from a neutral monetary policy (rN 6= rN,t). The

term linear in (rN,t − rN) is positive during tightening episodes and negative during easing

episodes, which creates an asymmetry that follows from the agent’s learning. As a result, we

observe an asymmetric U-shaped pattern for stock return variance, with uncertainty about

the Fed’s ability to control inflation becoming more important during tightening cycles.

3 Parameter Estimation

We estimate the model’s parameters by Maximum Likelihood using U.S. real Gross Domestic

Product (GDP) data, Federal funds rate (Fed Funds rate) data, and Consumer Price Index

(CPI) data. Appendix B provides details about the Maximum Likelihood estimation. Real

GDP is from NIPA tables, while the Fed funds rate and the CPI are from FRED. The

data is at the monthly frequency from January 1955 to December 2021. The log real GDP
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Figure 1: GDP Growth, Inflation, and Federal Funds Rate.
This figure plots the observed annualized U.S. real GDP growth rate (top panel), CPI
inflation rate (middle panel), and Federal Funds rate (bottom panel).

growth rate, log CPI growth rate, and continuously compounded Fed funds rate are used

as proxies for the real log output growth rate log (δt+∆/δt), the inflation rate πt, and the

nominal interest rate rNt, respectively. These time series are depicted in Figure 1. The

bottom panel reveals that the Federal funds rate exceeded 10% in the mid-1970s and early

1980s to combat soaring inflation, as shown in the middle panel. These elevated interest

rates contributed to the economic downturns visible in the top panel of the figure.

Table 1 presents the parameter values estimated using Maximum Likelihood. The esti-

mated output gap and inflation coefficients βµ and βπ suggest that nominal interest rates
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Parameter Symbol Value
Output growth volatility σδ 0.0243∗∗∗

(0.0005)

Mean inflation π 0.0345∗∗∗

(0.0013)

Mean nominal interest rate rN 0.0452∗∗∗

(0.0009)

Mean-reversion speed of inflation index ωπ 0.4479∗∗∗

(0.0364)

Mean-reversion speed of output growth index ωµ 0.4236∗∗∗

(0.0455)

Interest rate sensitivity to inflation βπ 1.3247∗∗∗

(0.0310)

Interest rate sensitivity to output growth βµ 1.0251∗∗∗

(0.0790)

Inflation volatility σπ 0.0124∗∗∗

(0.0002)

Mean inflation under neutral interest rates π̆ 0.0322∗∗∗

(0.0030)

Mean-reversion speed of inflation λπ 0.6295∗∗∗

(0.1240)

Volatility of the Fed’s ability to control inflation σa 0.8412∗∗∗

(0.2763)

Mean-reversion speed of the Fed’s ability to control inflation λa 1.3149∗∗∗

(0.4890)

Table 1: Parameter values estimated by Maximum Likelihood.
This table reports the parameter values estimated by Maximum Likelihood. The estimation
procedure is detailed in Appendix B. The data is at the monthly frequency from January
1955 to December 2021. Output data is in real terms. Standard errors are reported in
brackets, and statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and
***, respectively.

respond more to inflation than to output growth (Clarida et al., 2000; Ang, Boivin, Dong,

and Loo-Kung, 2011). The inflation and output growth indexes revert to their means at

nearly identical rates, ωπ and ωµ. As a result, and in line with Section 2, we assume equal

mean-reversion speeds: ωπ = ωµ ≡ ω = 0.4479. Throughout our sample period, average

inflation stands at 3.45%, and nominal interest rates at 4.52%, yielding an approximate

average real interest rate of 1%. Notably, the historical average inflation rate is roughly

72% higher than the Fed’s current 2% target, raising questions about the attainability and

sustainability of this target.

Figure 2 displays the historical paths of the process φt = rN,t − rN (top panel) and the

agent-inferred mean of inflation (bottom panel), denoted as π̂t ≡ π̆ − ât(rN,t − rN). These
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Figure 2: Tightening cycles and inferred mean of inflation.
This figure plots the tightening measure φt = rN,t − rN (top panel) and agent-inferred
mean of inflation (bottom panel), denoted as π̂t ≡ π̆ − ât(rN,t − rN ). These time series are
extracted from the Maximum Likelihood estimation.

time series result from the Maximum Likelihood estimation. The process φt characterizes

the Fed’s tightening (φt = rN,t − rN > 0) and easing (φt = rN,t − rN < 0) cycles. The Fed

tightened from late 1965 to early 1992 and eased from early 1955 to mid-1965, as well as

from mid-1992 to late 2021. The tightening measure φt exhibits a volatility of around 2.9%

and an autocorrelation of approximately 0.996, indicating highly persistent tightening and

easing cycles.

In the bottom panel of Figure 2, the inferred mean of inflation, π̂t ≡ π̆ − ât(rN,t − rN),

is driven by the perceived Fed’s ability to control inflation. It has a volatility of 1.9% and

an autocorrelation of 0.927, making it a relatively persistent process as well. The inferred

mean of inflation hits lows between -1.9% and 0% in early 1982 and late 2008 to mid-2009.

The highs range from 7% to 19% in mid-1973 to late 1974, mid-1979 to mid-1981, and

mid to late 2021. The 1980–1982 recession lows followed the drastic interest rate increase

implemented by the Paul Volcker-led Federal Reserve in mid-1981. The 2009 lows occurred

at the end of the Great Recession, spurred by the subprime and financial crises. The highs

in the inferred mean of inflation followed the 1973 oil crisis, during which Arab members of
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Moment Data Model

Real risk-free rate 0.0105 0.0107

Nominal risk-free rate 0.0450 0.0453

Market risk premium 0.0605 0.0818

Market return volatility 0.1431 0.1896

Market Sharpe ratio 0.4228 0.4313

Table 2: Asset-Pricing Moments.
This table presents asset-pricing moments, with the first column displaying empirical mo-
ments and the second column showing model-implied counterparts. We calculate empirical
moments using the Fed funds rate as the nominal interest rate, the difference between the
Fed funds rate and the CPI inflation rate as the real interest rate, and the S&P 500 as the
market. Model-implied moments are derived by inputting the state variable time series from
the Maximum Likelihood estimation into the model. The data span monthly from January
1955 to December 2021.

the Organization of Petroleum Exporting Countries (OPEC) imposed an oil embargo. The

most recent highs resulted from the unprecedented fiscal and monetary stimulus provided

during the COVID-19 health crisis.

Consistent with the existing literature, we set the relative risk aversion, the elasticity

of intertemporal substitution (EIS), subjective discount rate, dividend leverage on expected

consumption growth, and dividend growth volatility to γ = 10, ψ = 1.5, ρ = 0.0045, α = 2.5,

and σD = 0.05, respectively. As discussed later, these chosen parameter values, combined

with the estimated parameters in Table 1 yield model-implied real interest rates, nominal

interest rates, market risk premium, market return volatility, and market Sharpe ratio that

reasonably match the data.

Table 2 presents asset-pricing moments, with the first column displaying empirical mo-

ments and the second column showing model-implied moments. We calculate empirical

moments using the Fed funds rate as the nominal interest rate, the difference between the

Fed funds rate and the CPI inflation rate as the real interest rate, and the S&P 500 as the

market. Model-implied moments are derived by inputting the state variable time series from

the Maximum Likelihood estimation into the model. The model-implied real and nominal

interest rates stand at 1% and 4.5%, respectively, aligning with their empirical counterparts.

The model-implied market risk premium, market return volatility, and market Sharpe ratio

are 8%, 19%, and 0.43, respectively. These values are reasonably close to their empirical
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counterparts, suggesting that the model generates realistic asset-pricing moments.

4 Results

In this section, we present the model’s predictions and subsequently offer empirical evidence

to support them. All the illustrations are derived after solving the model using a numerical

algorithm, which relies on the parameters estimated in Section 3. Details of the model

solution can be found in Appendix A.

4.1 Model Predictions

Figure 3 illustrates the expected consumption growth µδ,t, the real risk-free rate rR,t, and the

log price-dividend ratio Π(xt) as functions of the model’s main state variables. The primary

drivers of µδ,t, rR,t, and Π(xt) are the expected inflation πt and the tightening variable φt.

As a reminder, high values of φt indicate tightening, while low values signify easing.

Figure 3 demonstrates that the expected consumption growth rate and the real risk-

free rate decline as expected inflation increases. As shown in equation (23), equilibrium

expected consumption growth is adversely impacted by inflation. High inflation encourages

the agent to consume more today relative to tomorrow, reducing the expected consumption

growth. Moreover, the Fisher Equation (7) suggests that when the nominal interest rate

remains constant, an increase in expected inflation leads to a decrease in the real risk-free

rate. Lastly, an increase in φt results in monetary tightening and, via the Fisher equation

(7), an increase in the real risk-free rate, which in turn leads to higher expected consumption

growth as the agent optimally chooses to increase borrowing and delay consumption.

Shifting our attention to the price-dividend ratio (bottom panels), it decreases with

expected inflation and the tightening variable φt and increases with the Fed’s perceived

ability to control inflation ât. Thus, the inequalities conjectured in Section 2 (Ππ < 0,

Πâ > 0, and Πφµ < 0) are now verified with our estimated parameter values.

The price-dividend ratio declines with expected inflation through equation (23), which

demonstrates that the expected growth rate diminishes as expected inflation rises. This

represents the pathway through which inflation introduces long-run risk into the economy.

If the inflation process exhibits high persistence, an agent favoring early resolution of un-

certainty will be averse to its fluctuations. The price-dividend ratio increases with the Fed’s

ability to control inflation because when ât is large and positive, the agent trusts that the Fed

will promptly bring inflation back to its target, mitigating the long-run risk that it causes.

Conversely, if ât is large and negative, the Fed will likely lose control of inflation, delaying
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Figure 3: Model Predictions This figure plots the expected consumption growth µδ,t, the
real risk-free rate rR,t, and the price-dividend ratio as functions of the main state variables
of the model. For this illustration, we have solved the model numerically (see Appendix A)
using the parameters estimated in the Section 3.

its reversion to target and exacerbating long-run risk. Finally, the price-dividend ratio de-

creases with φt because a high value for this variable signifies monetary tightening, leading

to an increase in the discount rate through a rise in the real risk-free rate. Consequently,

the price-dividend ratio falls when the tightening variable φt increases.
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Figure 4: Model Predictions This figure plots the risk premium and the stock market
volatility as functions of the main state variables of the model. For this illustration, we
have solved the model numerically (see Appendix A) using the parameters estimated in the
Section 3.

Figure 4 displays the risk premium and stock market volatility as functions of the model’s

main state variables. The top three panels reveal that the risk premium is largely unrespon-

sive to expected inflation but decreases significantly with the Fed’s perceived ability to

control inflation, as denoted by ât. This effect was discussed in relation to equation (28):

since inflation is a source of long-run risk in this economy, the Fed’s ability to revert it to

its target holds value for the agent, resulting in a lower risk premium as ât increases.

Figure 4 additionally reveals that the risk premium exhibits a U-shaped relationship

with the tightening variable φt. This arises from the uncertainty about the Fed’s ability to

control inflation. In equation (28), the terms in the second row form a quadratic expression

in φt. Consequently, uncertainty about the Fed’s ability to control inflation amplifies the

risk premium when the Fed deviates from a neutral monetary policy. Equation (28) also

highlights an asymmetry, with the risk premium being higher during tightening; however,

this effect is less pronounced with our estimated parameter values.
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The bottom panels of Figure 4 depict the volatility of market returns as a function of

the state variables, conveying a similar message to that of the risk premium: volatility

is mostly unresponsive to expected inflation but decreases as the Fed’s ability to control

inflation improves and increases with the tightening variable φt. A notable distinction is

the significant surge in volatility during tightening episodes, as shown in the bottom-right

panel. This effect directly results from the term linear in φt in equation (29) and can be

interpreted as follows: during a deep tightening cycle, inflation surprises are amplified by

the agent’s learning process (an increase in inflation is doubly bad news, while a decrease is

doubly good news). This intensifies the stock price’s sensitivity to inflation news, especially

when the Fed embarks on an aggressive tightening cycle.

4.2 Empirical Evidence

Does the data support our model’s predictions? To answer this question, we regress both the

empirical and model-implied expected output growth rate, real interest rate, market price-

dividend ratio, market risk premium, and market return volatility on the state variables.

In other words, we verify and confirm that the data support the relationships depicted in

Figures 3 and 4.

The empirical expected output growth rate is the fitted value of an ARMA(2,2) model

applied to the realized GDP growth rate. The AR(1) and MA(2) coefficients are positive,

whereas the AR(2) and MA(1) are negative. The AR(1), AR(2), and MA(2) coefficients

are statistically significant at the 1% level, whereas the MA(1) coefficient is statistically

significant at the 10% level. The empirical real interest rate is the difference between the

Fed funds rate and the CPI inflation rate. The empirical market risk premium is the fitted

value obtained by regressing the 1-year-ahead S&P 500 excess return on the current S&P

500 dividend yield (Fama and French, 1989; Cochrane, 2008) and realized S&P 500 return

variance (French et al., 1987; Guo, 2006).2 In the predictive regression, both the dividend

yield and realized variance load positively and significantly at the 5% level and 1% level,

respectively. The empirical market return volatility is obtained by fitting an Exponential

GARCH(1,1) model (Nelson, 1991) on the S&P 500 excess return residual,3, where the return

residual is the difference between the S&P 500 excess return and the empirical risk premium.

The ARCH(1) and GARCH(1) coefficients are positive and statistically significant at the 1%

level, and the LEVERAGE(1) coefficient is negative and statistically significant at the 1%

level. The model-implied moments are obtained by feeding the model with the state variables

extracted from the Maximum Likelihood estimation performed in Section 3.

2S&P 500 returns, dividend yield, and realized variance are obtained from Amit Goyal’s website.
3The Exponential GARCH model accounts for the asymmetric response of volatility to return shocks.
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Expected Real Log price-div. Risk Volatility

output growth interest rate ratio premium

µδ,t 0.084∗∗∗

(9.864)

rR,t 0.790∗∗∗

(5.649)

logPDt 0.485∗∗∗

(4.157)

RPt 1.687∗∗∗

(6.332)

V olt 0.318∗∗∗

(8.300)

R2 0.099 0.448 0.404 0.206 0.036

Obs. 804 804 804 804 804

Table 3: Empirical Moments vs. Model-Implied Counterparts.
This table reports the outputs obtained by regressing the empirical moments on their model-
implied counterparts. t-statistics are in brackets and are computed using Newey and West
(1987)-adjusted standard errors. Statistical significance at the 1%, 5%, and 10% levels are
denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at the monthly frequency from January
1955 to December 2021.

Table 3 documents the relationships between the empirical moments and their model-

implied counterparts. The table shows that the dynamics of the model-implied moments

align with the dynamics of the empirical moments. All relations are positive, statistically

significant at the 1% level, and feature high R2s. The explanatory power of the model-

implied moments is particularly high for the risk premium, log price-dividend ratio, and real

interest rate. Indeed, the model-implied risk premium, log price-dividend ratio, and real

interest rate explain respectively 20.6%, 40.4%, and 44.8% of the variation in their empirical

counterparts.

We now test the relationships depicted in Figure 3. Table 4 reports the empirical and

model-implied relations between the state variables and the expected output growth rate

µδ,t, real interest rate rR,t, and log price-dividend ratio Π(xt). As Figure 3 shows, the main

drivers of µδ,t, rR,t, and Π(xt) are the tightening measure φt and inflation πt, which the

“Model”-labeled columns in Table 4 confirm. Indeed, the tightening measure and inflation

explain more than 99% of the variation in µδ,t, rR,t, and Π(xt). The “Data”-labeled columns

confirm these relations. The expected output growth rate and the real interest rate increase

with the tightening measure and decrease with inflation, with statistically significant slopes

at the 1% level. This occurs because an increase in φt leads to monetary tightening, causing
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Expected output growth Real interest rate Log price-dividend ratio

Model Data Model Data Model Data

φt 1.498∗∗∗ 0.106∗∗∗ 1.000∗∗∗ 0.812∗∗∗ −15.581∗∗∗ −7.544∗∗∗

(> 100) (8.125) (> 100) (5.253) (< −100 (−2.694)

πt −1.489∗∗∗ −0.175∗∗∗ −1.000∗∗∗ −0.732∗∗∗ −2.787∗∗∗ −1.198

(< −100) (−8.272) (< −100) (−9.055) (−24.163) (−0.968)

R2 0.999 0.152 1.000 0.456 0.997 0.391

Obs. 804 804 804 804 804 804

Table 4: Expected Output Growth, Real Interest Rate, and Log Price-Dividend
Ratio vs. State Variables.
This table reports the model-implied and empirical relations between the expected real
output growth rate, real interest rate, log price-dividend ratio, and their drivers. The
drivers are the tightening measure φt and inflation πt. t-statistics are in brackets and are
computed using Newey and West (1987)-adjusted standard errors. Statistical significance
at the 1%, 5%, and 10% levels are denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at
the monthly frequency from January 1955 to December 2021.

the nominal interest rate to rise through the Fed’s Taylor rule (16). The Fisher equation (7)

then implies that the real interest rate rises with the tightening measure φt and decreases

with inflation πt. Furthermore, the equilibrium relation (22) implies that the real interest

rate depends linearly on the expected output growth rate. Thus, φt and πt drive the expected

output growth rate in the same direction they drive the real interest rate.

Table 4 further shows that the price-dividend ratio decreases significantly with the tight-

ening measure φt, both in the model and in the data. An increase in φt raises discount rates

through tightening. As a result, prices drop as the tightening measure rises. Furthermore,

both the model-implied and empirical price-dividend ratios decrease with inflation, although

the empirical relation is not statistically significant. A rise in inflation implies a decrease

in expected output growth and, therefore, in expected dividend growth, leading to a lower

price-dividend ratio.

Table 5 presents the empirical and model-implied relations between the market risk pre-

mium, market return volatility, and their primary drivers. As shown in Figure 4, the key

drivers include the Fed’s ability to control inflation ât, the tightening measure φt, and the

squared tightening measure φ2
t . The “Model”-labeled columns in Table 5 support this ob-

servation. These three state variables explain over 86% of the variation in the market risk

premium and market return volatility. In both the model and data, an increase in the Fed’s

ability to control inflation significantly reduces the market risk premium and market return

volatility. As the Fed’s inflation control ability improves, the likelihood of encountering high
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Risk premium Risk premium

Model Data Model Data

ât −0.012∗∗∗ −0.017∗∗∗ −0.011∗∗∗ −0.016∗∗∗

(−9.988) (−3.581) (−9.701) (−3.329)

φt 0.104∗∗∗ 0.275∗∗∗ 0.070∗∗∗ 0.224∗∗∗

(4.508) (3.964) (4.728) (2.724)

φ2
t 2.408∗∗∗ 3.641∗∗∗

(6.147) (2.914)

R2 0.721 0.205 0.863 0.228

Obs. 804 804 804 804

Volatility Volatility

Model Data Model Data

ât −0.014∗∗∗ −0.034∗∗∗ −0.011∗∗∗ −0.034∗∗∗

(−6.288) (−6.700) (−6.406) (−6.569)

φt 0.632∗∗∗ 0.151∗∗∗ 0.509∗∗∗ 0.173∗∗∗

(10.150) (5.610) (13.161) (7.642)

φ2
t 8.715∗∗∗ −1.518

(6.228) (−1.628)

R2 0.745 0.101 0.884 0.102

Obs. 804 804 804 804

Table 5: Market Risk Premium and Return Volatility vs. State Variables.
This table reports the model-implied and empirical relations between the market risk pre-
mium, market return volatility, and their drivers. The drivers are the Fed’s ability to control
inflation ât, the tightening measure φt, and the squared tightening measure φ2

t . t-statistics
are in brackets and are computed using Newey and West (1987)-adjusted standard errors.
Statistical significance at the 1%, 5%, and 10% levels are denoted by ∗∗∗, ∗∗, and ∗, re-
spectively. The data are at the monthly frequency from January 1955 to December 2021.

future inflation during tightening (or low future inflation during easing) diminishes (refer to

equation (6)). In other words, the Fed reduces the persistence of inflation and the associ-

ated long-run risk, which consequently leads to a lower market risk premium and decreased

market return volatility in equilibrium.

Moreover, both in the model and the data, the market risk premium and market return
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volatility significantly increase with the tightening measure φt. As previously mentioned,

inflation surprises are amplified during tightening through investor learning. For example,

a positive inflation surprise during tightening is doubly bad news because it weakens the

agent’s confidence in the Fed; in contrast, the same inflation surprise during easing is good

news, as it boost the Fed’s credibility. This asymmetry contributes to a higher market risk

premium and market return volatility during tightening episodes.

Lastly, in the model, the market risk premium and market return volatility increase

significantly with the squared tightening measure. This quadratic relationship stems from

the last term in equations (28) and (29), where (rN,t−rN)2 = φ2
t , and arises due to uncertainty

surrounding the Fed’s ability to control inflation. The data confirm the positive impact of

the squared tightening measure on the market risk premium, with a statistically significant

relationship at the 1% level. However, the data reveal no significant empirical correlation

between the market return volatility and the squared tightening measure.

5 Conclusion

This paper examines how the market perceives the Fed’s ability to control inflation. Investors

infer the success of rate hikes from inflation data, which has stock market implications.

When the Fed’s credibility is high, market risk premiums and volatility decline. Conversely,

when investors doubt the Fed’s ability to control inflation, these financial measures increase,

potentially causing significant market drops. Empirical evidence reinforces these theoretical

predictions, highlighting the role of the market’s perception of the Fed’s inflation-fighting

credibility on stock market dynamics.

The Fed has developed effective tools to address inflation by building on experiences from

the 1970s’ Great Inflation, increased policy autonomy, and a more comprehensive grasp

of inflation causes and countermeasures. Among these tools, we argue that credibility in

combating inflation may be the Fed’s most valuable asset. Our research emphasizes the

importance of investors’ confidence in the Fed’s ability and the need for a solid reputation

in effectively managing monetary policy to ensure economic stability.

Additionally, this paper emphasizes the importance of investors’ responses to the Fed’s

actions as a critical economic factor. While our study does not explore the effect of current

events on investors’ attention, it is plausible that heightened uncertainty, such as during

aggressive tightening periods, could lead to increased focus on news, intensifying the observed

effects. This insight offers avenues for future research and encourages a deeper understanding

of monetary policy’s impact on the stock market and the economy.
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Appendix

A Details on Model Resolution in Section 2

Learning: To obtain the agent’s posterior mean ât ≡ E[at|Fπ,rNt ] and the posterior variance
νa,t ≡ E[(at − ât)2|Fπ,rNt ] as in (4)-(5), apply Theorem 12.7 in Liptser and Shiryaev (2001) with:

A0 = λπ(π̆ − πt), A1 = −λπ(rN,t − rN ), B1 = 0, B2 = [0 σπ],

a0 = λaa, a1 = −λa, b1 = σa, b2 = [0 0].

The surprise change in expected inflation according to the agent’s information set Fπ is

dB̂π,t = dBπ,t +
λπ
σπ

(ât − at)(rN,t − rN )dt.

HJB equation: The partial differential equation (PDE) that results from (17)-(18) is:

0 = e−I − ρ+
γ − 1

θ

(
γσ2

δ

2
− µδ,t

)
+ λπ [ât(rN − rN,t) + π̆ − πt] Iπ − λaâtIâ

+ ω
[
βπ(πt − π) + βµ(µδ,t − µδ)− φt − βµ(γ − 1)σ2

δ

]
Iφ

+
σ2
π

2
Iππ +

(rN − rN,t)2λ2
πν̆

2
a

2σ2
π

Iââ +
σ2
δβ

2
µω

2

2
Iφφ + (rN − rN,t)λπν̆aIπâ

+
θσ2

π

2
I2
π +

θ(rN − rN,t)2λ2
πν̆

2
a

2σ2
π

I2
â +

θσ2
δβ

2
µω

2

2
I2
φ + θ(rN − rN,t)λπν̆aIπIâ.

To derive this PDE, we set νa,t = ν̆a, which removes one state variable and simplifies the
numerical solution process. It is important to note that the theoretical results stated in Section 2
are not affected by this assumption. Moreover, our numerical analysis of the model with a time-
varying νa,t showed that the price-dividend ratio barely changes in response to νa,t, although the
solution process becomes significantly slower. Consequently, we decided to use a fixed νa,t = ν̆a.

The PDE for I(πt, â, φ) is solved numerically using the Chebyshev collocation method (Judd,
1998). That is, we approximate the function I(πt, â, φ) as follows:

I(πt, â, φ) ≈ P(πt, â, φ) =
I∑
i=0

J∑
j=0

K∑
k=0

ai,j,kTi[π]× Tj [â]× Tk[φ],

where Tm[·] is the Chebyshev polynomial of order m. The interpolation nodes are obtained by
meshing the scaled roots of the Chebyshev polynomials of order I + 1, J + 1, and K + 1. We
scale the roots of the Chebyshev polynomials such that they cover approximately 99% of the
unconditional distributions of the three state variables (which are all mean-reverting).

The polynomial P(πt, â, φ) and its partial derivatives are then substituted into the PDE, and
the resulting expression is evaluated at the interpolation nodes. This yields a system of (I + 1)×
(J + 1)× (K+ 1) equations with (I + 1)× (J + 1)× (K+ 1) unknowns (the coefficients ai,j,k). This
system of equations is solved numerically.

To verify the solution method’s accuracy and address potential concerns about anomalous
numerical outcomes, we employed two distinct platforms (Mathematica and Python) and multiple
grid dimensions for solving the PDE. In all cases, the results were consistently similar, reinforcing
the method’s reliability.
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Finally, the PDE for the log price dividend ratio Πt of the asset that is a claim to the dividend
process (25) is given by:

0 = e−Π − ρ+
γσ2

δ (ψ + 1)

2ψ
+ (1− α)µδ +

(
α− 1

ψ

)
µδ,t + λπ[ât(rN − rN,t) + π̆ − πt]Ππ

− λaâtΠâ + ω
[
βπ(πt − π) + βµ(µδ,t − µδ)− φt − βµγσ2

δ

]
Πφ +

σ2
π

2
Πππ +

(rN − rN,t)2λ2
πν̆

2

2σ2
π

Πââ

+
σ2
δβ

2
µω

2

2
Πφφ + (rN − rN,t)λπν̆Ππâ − (θ − 1)σ2

δβµωIφ +
σ2
π

2
Π2
π + (rN − rN,t)λπν̆ΠπΠâ

+ (θ − 1)σ2
πΠπIπ + (θ − 1)(rN − rN,t)λπν̆ΠπIâ + (θ − 1)(rN − rN,t)λπν̆ΠâIπ

+
(rN − rN,t)2λ2

πν̆
2

2σ2
π

Π2
â +

(θ − 1)(rN − rN,t)2λ2
πν̆

2

σ2
π

ΠâIâ +
σ2
δβ

2
µω

2

2
Π2
φ + (θ − 1)σ2

δβ
2
µω

2ΠφIφ

− θ − 1

2
σ2
πI

2
π − (θ − 1)(rN − rN,t)λπν̆IπIâ −

(θ − 1)(rN − rN,t)2λ2
πν̆

2

2σ2
π

I2
â −

1

2
(θ − 1)σ2

δβ
2
µω

2I2
φ.

We replace the solution for the log-wealth consumption ratio I in the above PDE, then solve
for the log price-dividend ratio Π using the same numerical procedure.

B Maximum Likelihood Estimation in Section 3

U.S. GDP is from NIPA tables. Real values are used as proxies for the output δt and dividend Dt.
The Fed funds rate is from FRED, and its annualized continuously compounded value is used as
proxy for nominal risk-free rate rNt. The year-over-year log growth rate of the Consumer Price
Index (CPI) is the proxy for πt. Time series are at the monthly frequency from January 1955 to
December 2021.

The GDP growth rate volatility is obtained by maximizing the following log-likelihood function

lδ(Θδ;uδ,∆, . . . , uδ,J∆) =

J∑
j=1

log

 1

(2π)1/2
√
σ2
δ∆

− 1

2

(
σ2
δ∆
)−1

u2
δ,j∆,

where ∆ = 1/12, Θδ ≡ (σδ)
>, J is the number of observations, > is the transpose operator, and

uδ,t+∆ = log (δt+∆/δt)−
(

avg(GDP growth)− 1

2
σ2
δ

)
∆.

avg(GDP growth) stands for the annualized empirical average of the GDP growth rate.
The unconditional mean of inflation is obtained by maximizing the following log-likelihood

function

lp(Θp;up,∆, . . . , up,J∆) =

J∑
j=1

log

(
1

(2π)1/2
√

var(inflation)∆

)
− 1

2
(var(inflation)∆)−1 u2

p,j∆,

where ∆ = 1/12, Θp ≡ (π)>, J is the number of observations, > is the transpose operator, and

up,t = πt − π∆.

var(inflation) stands for the annualized empirical variance of inflation.
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The parameters driving the Taylor rule are obtained by maximizing the following log-likelihood
function

lr(Θr;ur,∆, . . . , ur,J∆) =
J∑
j=1

log

(
1

(2π)1/2
√
σ2
r∆

)
− 1

2

(
σ2
r∆
)−1

u2
r,j∆,

where Θr ≡ (rN , ωπ, ωµ, βπ, βµ, σr)
> and

ur,t = rNt − [rN + βµ (φµ,t − avg(GDP growth)) + βπ (φπ,t − avg(Inflation))] .

The annualized empirical averages of the Fed funds rate, GDP growth rate, and inflation rate are
denoted by avg(Fed funds), avg(GDP growth), and avg(Inflation), respectively. The performance
indices φµ,t and φπ,t are obtained by discretizing the dynamics in (10) and (9) as follows

φµ,t = ωµ

K∑
k=0

e−ωµk∆ log
(
δt−k∆/δt−(k+1)∆

)
,

φπ,t = ωπ

K∑
k=0

e−ωπk∆πt−k∆∆,

where K is the number of observations prior to time t.
To obtain the parameters driving inflation, we discretize the solutions of the stochastic differ-

ential equations in (6) and (4) as follows

πt+∆ = πte
−λπ∆ + π̂t

(
1− e−λπ∆

)
+
√
varπεπ,t+∆,

π̂t = π̆ − ât(rNt − rN )

ât+∆ = âte
−λa∆ − (rNt − rN )λπνa,t

σπ

√
1− e−2λa∆

2λa
επ,t+∆, (B30)

νa,t+∆ = νa,t +

[
σ2
a − 2λaνa,t −

(
(rNt − rN )λπνa,t

σπ

)2
]

∆, (B31)

where varπ = σ2
π

2λπ

(
1− e−2λπ∆

)
and επ,t+∆ is a normally distributed random variable with mean

zero and variance one. The parameters driving inflation are obtained by maximizing the following
log-likelihood function

lπ(Θπ;uπ,∆, . . . , uπ,J∆) =

J∑
j=1

log

(
1

(2π)1/2√varπ

)
− 1

2
(varπ)−1 u2

π,j∆,

where Θπ ≡ (σπ, π̆, λπ, σa, λa)
> and

uπ,t+∆ = πt+∆ −
[
πte
−λπ∆ + π̂t

(
1− e−λπ∆

)]
.

The updating rule for ât and νa,t are provided in (B30) and (B31), respectively.
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