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Abstract
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1 Introduction

A long standing idea in the corporate world is that most firms face a strategic choice between

growth and efficiency, as they cannot easily grow and become efficient at the same time. For

instance, management consultants and strategic experts routinely advise firms to either pursue a

“growth strategy” and allocate resources and effort to increase their scale and revenues, or instead

choose an “efficiency strategy” focusing on rendering firms’ operations and capital more efficient

and eliminating waste.1 When valuing companies, analysts and investors consider both growth and

efficiency as value drivers but typically predict them independently. Conventional wisdom and life

cycle arguments also suggest that firms should “pivot” from growth to efficiency as they mature.

While the tug of war between growth and efficiency appears central in practice, existing research

in corporate finance provides limited insights regarding how firms should choose between growth

and efficiency, whether there is an optimal balance between both strategies, and if so, at what stage

of their life should firms favor one over the other. This limitation arises mainly because, unlike

the inputs to growth, the policies towards achieving a given level of efficiency are not observable or

difficult to quantify. Hence, researchers do not consider efficiency as something firms choose, but

treat it as exogenous. For instance, in models following the neoclassical tradition, growth results

from firms’ choice of productive inputs (e.g., physical and intangible capital, or labor), for a given

level of efficiency modelled via an exogenous productivity process. In this framework, the level of

firms’ efficiency is therefore treated as a “residual”.

In this paper, we consider that efficiency is not a residual but a choice, and we estimate the

unobservable effort that firms put into boosting their efficiency. To do so, we develop a model in

which a firm chooses capital and labor inputs jointly with the level of productive efficiency, and

estimate this efficiency level from the data. In the model, a firm employs capital and labor to

produce earnings, but can also choose the level of effort to make these inputs more productive

period by period. We view this choice as a problem of short-term effort provision, and specifically

posit that the effects of the firm’s efficiency-boosting effort on earnings only last one period. Hence,

unlike the choice of capital and labor, the effort to increase productive efficiency does not affect the

1See for instance: “Profit vs Growth: What is the Correct Strategy for Your Business? in Forbes, Decem-
ber 2018, or “Stop Focusing on Profitability and Go for Growth” in Harvard Business Review, May 2017.
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firm’s growth rate. In the model, short-term effort modifies output without any change in capital

and labor. By choosing its short-term effort, the firm directly influences its level of productivity.

Our main contribution is to identify the unobservable level of efficiency-boosting short-term

effort from the data. The model’s solution describes the firm’s optimal capital investment, la-

bor growth and short-term effort policies in closed form, as a result of the trade-offs between the

marginal benefits and costs of adjusting each factor or exerting efficiency-boosting effort. Higher

levels of short-term effort increases the firm’s productive efficiency and makes the firm more valu-

able. This in turn increases the marginal benefit of investment and labor. Therefore, short-term

effort, investment, and hiring decisions are complements in the earnings function for any given

firm, and their allocation depends on their relative adjustment costs. Using the model, we show

that the firm’s steady-state optimal short-term effort can be identified as a function of its observed

investment and labor growth policies and the time series of operating earnings.

We estimate the model for over 12,000 U.S. public firms between 1971 and 2019 using an

Unscented Kalman filter with Maximum Likelihood. This procedure, which follows from the non-

linear nature of production and optimal policies, has three main advantages: (i) it takes into account

the measurement error in the observed inputs, (ii) it uses time consistent policies, and (iii) it uses

the explicit closed form dynamics of latent capital and labor based on the model equilibrium growth

path. We estimate the model (14 parameters) at a very granular level by forming 1,346 distinct

groups composed of ten homogeneous firms (exposed to similar shocks). This granular estimation

enables us to describe the optimal allocations of investment, hiring, and short-term effort across

cohorts of firms within industries and over time.

We find a large heterogeneity in the chosen level of productive efficiency across firms. The

heterogeneity is not only in the level of short-term effort but also in the ratio of short-term effort to

investment, which captures the relative importance of efficiency over growth. That is, firms choose

very different allocations of growth and efficiency. Consistent with the idea that firms should pivot

from growth to efficiency as they mature, we show that a significant part of this heterogeneity relates

to firms’ age. In particular, the ratio of short-term effort to investment increases significantly from

firms’ IPO decade to the next. This increased focus on efficiency is present across industries and

firms’ cohorts, i.e., when they went public. The average increase in the ratio of short-term effort to
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investment ranges between 15% in the Manufacturing industry to 36% for Consumer Goods. For

the Technology and Healthcare sectors, this ratio increases on average by 27% and 24%.

We find that these results cannot be fully explained by changes in fundamentals, such as the

elasticity of earnings to capital or the volatility of shocks to firms’ capital stock. For example, firms

that went public in the 70s, 80s or 90s increased significantly their focus on efficiency relative to

growth from the first decade as public firms to the next even if the earnings elasticity of capital

increased. Yet, cross-sectional variation in fundamentals matters. For example, the volatility of

shocks to the capital stock is negatively and significantly correlated with investment during firms’

IPO decade but not later. And a higher earnings elasticity of capital is associated, on average,

with lower short-term effort and lower ratios of short-term effort to investment. To some extent,

amongst firms of the same age and in the same industry those with riskier and less productive

capital focus more on efficiency and less on growth, if not systematically at all stages in their life.

Cross-sectionally, short-term effort and investment policies are strongly related to product mar-

ket outcomes. For every additional one standard deviation difference in the level of short-term effort,

the firm’s marginal cost markup is higher by 10 to 14 percentage points and its annual sales are

higher by 30% to 33% on average during the same decade. The investment rate is not correlated

with the markup in the same decade. It is though, significantly negatively correlated with annual

sales: a one standard deviation difference in the investment rate is associated with annual sales

that are lower by 50% on average. In short, efficient firms are large and charge high markups while

growth firms tend to be smaller and have less market power.

Furthermore, we show that different short-term effort and investment policies when firms are

young have long-term consequences. In a nutshell, firms focused on growth when young achieve

the highest markups in the long-term, whereas firms focused on efficiency have higher chances of

surviving in the long-term. For example, a one standard deviation increase in the investment rate

within the IPO decade predicts a price-cost markup that is higher by 8, 9 and 13 percentage points

in the three following quinquenia. But such an increase in investment is also associated with a

decrease of 0.24 in the probability of surviving the IPO decade.

We complete the analysis with two exercises to check the external validity of our estimates. First,

we show that a sorting of firms based on the ratio of short-term effort to investment, calculated
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between and 1997 and 2006, predicts well which firms survived or failed during the Great Financial

Crisis of 2008 to 2009. Indeed, the short-term effort-to-investment ratio is higher by 16.5% for the

average survivor relative to the average firm that failed. Second, we show that our estimates of

investment, short-term effort and the earnings elasticity of capital, help explain the cross-section

of returns via the supply channel of the investment CAPM (Hou, Xue, and Zhang, 2015). In

particular, we find that firms with higher short-term effort or higher earnings elasticity of capital,

which, being more profitable should have a higher excess returns, have indeed higher profitability

factor betas. Moreover, firms with higher estimated investment rates, which should have lower

excess returns, have indeed lower investment factor betas. That is, our estimates of firms’ policies

and deep parameters can explain firms’ different exposures to the investment and profitability

factors as theory would predict.

Our paper primarily adds to the sparse literature studying firms’ choice between growth and

efficiency strategies. The idea that firms may have to choose between these strategies is not new

and popular in practice. Yet it is only found in distinct pockets of the literature. For instance,

Loderer, Stulz, and Waelchli (2017) informally rely on this idea to explain why firms’ valuation

(their Tobin’s Q) declines as they mature. This idea is also indirectly present in papers focusing on

the trade-off between exploration and exploitation (e.g., Holmstrom (1989) or Manso (2011)).2 To

shed new light on how firms choose between growth and efficiency, we take a more direct road and

develop a neoclassical model in which firms separately choose growth and their level of operating

efficiency. We then use the model to estimate the unobservable level of firms short-term efficiency-

boosting effort. We use these new estimates to characterize the determinants and implications of

firms’ growth and efficiency strategies.

The paper also adds to the recent work studying how firms’ decisions and performance vary over

their life cycles. Loderer et al. (2017) show that, as firms age, they have less growth opportunities,

become more rigid and less able to respond to growth opportunities. Arikan and Stulz (2016)

report that firms’ acquisition rate changes over their life cycle, and follows a U-shaped pattern with

respect to age. Focusing on firms’ product life cycles Hoberg and Maksimovic (2021) indicate that

2In this context, “exploration” could be associated with the strategy of growing a firm’s assets, whereas
“exploitation” corresponds to the strategy of making these assets more productive.
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firms invest in intangible and tangible capital early in their cycle, acquire assets as they mature,

and divest as they decline. Bustamante, Cujean, and Frésard (2021) examine firm’s investment

over their knowledge cycles. We complement these studies by studying firms’ decision to focus on

growth or efficiency, estimate firms’ choice of efficiency, and show that it varies over their life.

The paper also belongs to a stream of recent models in the neoclassical tradition that allow firms

to influence their profits directly, outside of their choice of production inputs (i.e., different types of

capital and labor). Specifically, Hackbarth, Rivera, and Wong (2021) and Gryglewicz, Mayer, and

Morellec (2020) also consider that firms can exert short-term effort to study the impact of permanent

and transitory shocks on optimal compensation and investment in dynamic moral hazard models.

We use a similar modelling approach, but study instead firms’ decision between growing or becoming

more efficient. Unlike these papers, we also develop a framework to estimate the unobservable level

of firms’ short-term effort, and analyse empirically its determinants. Methodologically, our model’s

estimation resembles that used by Gryglewicz, Mancini, Morellec, Schroth, and Valta (2022) to

disentangle empirically the permanent and transitory shock of firms’ cash flows.

The structure of the paper proceeds as follows. Section 2 presents the firm model and derives

the optimal policies. Section 3 discusses the estimation method and data. In Section 4 we describe

our estimation results. Section 5 focuses on growth versus efficiency choices. Section 6 presents

an empirical asset pricing application as a validation of our estimates. Section 7 concludes. The

appendix collects technical derivations.

2 A model of optimal short-term efficiency effort

Managers make decisions on behalf of risk neutral shareholders that discount cash flows at a con-

stant rate r > 0. Time is continuous and uncertainty is modeled by a filtered probability space

(Ω,F ,F, Q) satisfying the usual conditions.
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2.1 Earnings

The firm employs capital and labor to produce earnings. The capital stock Kt evolves according

to the controlled process

dKt = (It − δKKt) dt+ σKKt dWK,t (1)

where It > 0 is the firm’s investment choice and δK > 0 is the depreciation rate. The growth of

the capital stock also has an exogenous random component, with constant volatility σK > 0 and

random shocks drawn off a standard Brownian motion WK,t. Similarly, the total work force Lt

evolves as

dLt = (Ht − δLLt) dt+ σLLt dWL,t (2)

where Ht > 0 is the firm’s hiring choice and δL > 0 is the separation rate, that is, the expected

percentage of employees that resign, retire or are laid off. Shocks to the growth rate of the work

force are drawn from a standard Brownian motion WL,t. The constant volatility of the work force

growth rate is σL > 0. These dynamics imply that shocks to capital or labor stocks have permanent

effects. We interpret them as embodied technological progress or training of the work force.

Operating earnings at any time t ≥ 0 are proportional to a Cobb–Douglas function Kγ
t L

β
t with

decreasing returns to scale, in which 0 < γ < 1 and 0 < β < 1 are the elasticity of earnings to

capital and labor, and γ + β ≤ 1. In addition to permanent shocks to capital and labor growth,

earnings are subject to short-lived shocks, dAt. The At process is the firm’s efficiency level, which

is controlled by the choice of short-term effort, st, and evolves as

dAt = st dt+ σA dWA,t (3)

where the standard Brownian motion WA,t is a source of exogenous shocks with constant volatility

σA > 0. Thus, the firm sets the expected efficiency in operating the mix of capital and labor by

exerting a flow of effort period by period. For simplicity, all Brownian motions are assumed to be

uncorrelated. In the appendix we show that this assumption is not essential for estimation, which
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can be adapted to any arbitrary correlation structure between the three shocks.

Operating earnings over the time increment dt are given by Kγ
t L

β
t dAt. All other things constant,

higher levels of st imply higher earnings. Note too that earnings can be negative if and only if dAt

is negative. The earnings model in (1)–(3) nests popular models in the literature. If It − δKKt =

σK = 0 (constant capital stock), γ = 1 (constant return to scale of capital), and β = 0 (no labor

factor), we obtain the stationary cash flow process of dynamic agency models (see DeMarzo and

Sannikov (2006) or DeMarzo, Fishman, He, and Wang (2012)) and liquidity management models

(see Décamps, Mariotti, Rochet, and Villeneuve (2011) or Bolton, Chen, and Wang (2011)). Our

earnings model also includes shocks with permanent effects, which must be empirically identified.

If σA = 0 (no short-term shocks), It − δKKt is proportional to Kt, β = 0, and γ = 1, we obtain

the model with time-varying profitability that is commonly used in dynamic capital structure

(see Leland and Toft (1996), Leland (1998), Goldstein, Ju, and Leland (2001), Hackbarth, Miao,

and Morellec (2006), or Strebulaev (2007)) and real-options models (see Abel and Eberly (1994)

or Carlson, Fisher, and Giammarino (2004)). Unlike such models with permanent shocks only,

combining short-term and permanent shocks allows the model to better match the earnings and

assets volatilities in the data (see Gorbenko and Strebulaev (2010) and Gryglewicz et al. (2022)).

Finally, if β = 0 and γ = 1, we obtain the dynamic agency model recently used by Gryglewicz et al.

(2020) and Hackbarth et al. (2021).

2.2 Input adjustment costs

Adjusting short-term effort, investment or hiring is increasingly costly. We consider the following

quadratic adjustment cost function

C(st, It, Ht,Kt, Lt) =
λs
2
s2tK

γ
t L

β
t +

λK
2

(
It
Kt

)2

Kγ
t L

β
t +

λL
2

(
Ht

Lt

)2

Kγ
t L

β
t (4)

where the parameters λs, λK , λL are strictly positive. As in Hayashi (1982), the cost function is

homogeneous of degree one in Kγ
t L

β
t and depends on the investment and hiring rates rather than

their levels. In the appendix we consider more general cost functions in which capital and labor are

cost complements or substitutes. The model solution derived below is robust to these alternative
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specifications of the cost function.

2.3 Firm policies

Management chooses short-term effort, investment and hiring policies to maximize firm value,

which is given by the expected discounted flow of earnings net of adjustment costs. With two state

variables, Kt and Lt, we can write the maximization problem as

V (K0, L0) = sup
s,I,H

E
∫ ∞
0

e−rt(Kγ
t L

β
t dAt − C(st, It, Ht,Kt, Lt) dt) (5)

where the expectation E is conditional on the starting values of capital and labor, K0 and L0.

Standard arguments yield that the firm value V satisfies the following Hamilton–Jacobi–Bellman

(HJB) equation

rV (K,L) = sup
s,I,H
{KγLβs− C(s, I,H,K,L) + VK(I − δKK) + VL(H − δLL)

+
1

2
VKKσ

2
KK

2 +
1

2
VLLσ

2
LL

2} (6)

where Vx and Vxx denote, respectively, the first- and second-order derivatives of V (K,L) with

respect to x = K,L. The left-hand side of this equation represents the required rate of return for

investing in the firm’s equity. The right-hand side is the expected change in equity value, which

is maximized by choosing short-term effort, investment and hiring. The first two terms are the

expected earnings net of adjustment costs. The next two terms are the effects of expected changes

in capital (I − δKK) and labor (H − δLL) on equity value. The last two terms are the effects of

volatility of capital and labor.

Firm’s policies are obtained by solving the system of first-order conditions to (6), which are

KγLβ = Cs, VK = CI , VL = CH (7)

where Cx is the derivative of C(s, I,H,K,L) with respect to x. Each condition equates the marginal

value of each input to its marginal cost. We guess, and verify in the appendix, that the solution to
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the value function V (K,L) is cKγLβ, where the constant c is a function of the model’s primitives

γ, β, λs, λK , λL, δK , δL, σK , σL and σA.

Solving, we obtain the optimal policies

s∗ =
1

λs
, I∗t =

cγ

λK
Kt ≡ i∗Kt, H∗t =

cβ

λL
Lt ≡ h∗Lt. (8)

The optimal level of short-term effort, s∗, is constant along the steady-state growth path and

inversely related to its marginal adjustment cost, λs. The steady-state optimal investment and

hiring rates, i∗ and h∗, are each increasing in c and in the earnings elasticities of capital and labor,

but decreasing with their marginal adjustment costs.

In this model, higher levels of short-term effort make the firm more valuable, which in turn

increases the marginal benefit of investment. Hence, lower short-term effort costs λs imply higher

optimal short-term effort and, therefore, a higher optimal investment rate. The left panel of Figure 1

plots the different combinations of optimal i∗ and s∗ as λs varies. For the blue or black lines, along

which all other parameters are kept constant, i∗ and s∗ are positively correlated. However, keeping

λs constant, an increase in the capital adjustment costs (from λK = 2.5 black line, to λK = 3.2

blue line) reduces optimal investment. Therefore, even if short-term effort and capital investment

are complements in the earnings function for any given firm, the optimal combinations of efficiency

and investment rates in the cross section could be negatively correlated if, for example, short-term

and capital adjustment costs were inversely related across firms.

Insert Figure 1 here

The right panel of Figure 1 shows the optimal combinations of efficiency and investment for

different short-term effort adjustment costs and volatility of shocks to the capital stock, σK . Along

the black line, σK is a relatively low 0.15; for the blue line σK is higher: 0.35. Again, if short-term

adjustment costs and capital shocks volatility were negatively correlated across firms, then so would

be short-term effort and investment, despite being earnings complements.
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2.4 Robustness

The Cobb–Douglas specification implies that short-term effort is complementary to either invest-

ment or hiring in the earnings function. However, the interaction between short-term effort and

investment or hiring policies predicted by the model across firms depends on how the adjustment

costs function parameters and the capital and labor stocks volatilities are jointly distributed in

the cross-section. As we show below, we can estimate the model using the time series of earnings,

investment, hiring, and capital and labor stocks identifying the short-term effort policy at a very

granular level. We can therefore characterize the joint distribution of the three policies and of most

model parameters across all public firms.

Specifically, all policies and all parameters but λK and λL are identified. As we show in the

appendix, this result is robust to other more general specifications of the model. For example,

we can identify the same parameters as in the benchmark model if we allowed the shocks to the

capital and labor stocks to be correlated, or if we included also linear adjustment costs on each

policy, or if we included adjustment costs interactions, e.g., substitutes or complements, between

investment and hiring. Allowing for cost adjustment interactions between short-term effort and

any other policy compromises only the identification of λs, but not the identification of s∗.

3 Estimation and Data

We describe in this section our method to estimate the model’s policies and parameters with the

maximum possible level of granularity. While firm-by-firm estimation is not feasible, for example

because of data scarcity, we are able to estimate different parameter vectors, each for the represen-

tative firm of small, homogeneous group.

3.1 Steady-state dynamics

Plugging the optimal firm’s policies in the dynamics of capital, labor and short-term shocks, i.e.,

substituting (8) into (1)–(3), gives the controlled dynamics of these processes. The result is the

optimal time series trajectory of each controlled variable, which is therefore free of any endogeneity

bias. In fact, the model describes how each endogenous variable (short-term effort, investment
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and hiring) determines observable (possibly noisy) quantities like capital and labor stocks through

exogenous model parameters which are the objective of the inference procedure. Along the steady-

state path, capital and labor stocks follow geometric Brownian motions

dKt = (i∗ − δK)Kt dt+ σKKt dWK,t (9)

dLt = (h∗ − δL)Lt dt+ σLLt dWL,t (10)

while the the firm’s efficiency level follows an arithmetic Brownian motion

dAt = s∗ dt+ σAdWA,t. (11)

These dynamics form the basis to estimate model parameters.

3.2 Estimation

Estimation of equations (9) to (11) faces several challenges. First, any period’s earnings are simul-

taneously hit by shocks with short- and long term-effects and these must be separately identified.

Second, capital and labor stocks data are subject to measurement errors. Unaddressed, this error-

in-variables problem would result in inconsistent estimates of the model’s parameters. Third,

Compustat earnings data are plagued by missing values. Relative to complete panels which we use

for estimation, more than 50% of data are missing. Fourth, operating earnings are non-linearly

related to capital and labor through the Cobb–Douglas production technology. This issue cannot

be fixed by taking logarithms because operating earnings are often negative at the firm level. Given

equations (9) to (11), the most efficient estimation procedure while addressing these problems is

by maximum likelihood with an unscented Kalman filter. In what follows, we describe the steps of

this procedure for the case of a complete data set. Appendix B provides the full details, including

the case in which there are missing observations.

The first step is to write the model in state space form. The transition equation is two-
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dimensional and describes the discrete-time dynamic of the state variables

log(Kt+1) = log(Kt) + µK + w1,t, (12)

log(Lt+1) = log(Lt) + µL + w2,t, (13)

where µK ≡ i∗ − δK − σ2K/2 is the drift of the capital stock, µL ≡ h∗ − δL − σ2L/2 is the drift

of the labor stock, wt = [w1,t ww,t]
′ is the vector of transition errors, with wt ∼ N (0,Q) and Q

a diagonal covariance matrix with entries σ2K and σ2L. The time step from t − 1 to t is one year.

Because each state variable follows a geometric Brownian motion, the transition equation above is

an exact discretization of the continuous-time dynamic. The measurement equations are given by

z1,j,t = s∗Kγ
t L

β
t + v1,j,t (14)

z2,j,t = Kt + v2,j,t (15)

z3,j,t = Lt + v3,j,t (16)

z4,j,t = i∗Kt + v4,j,t (17)

z5,j,t = h∗Lt + v5,j,t (18)

where z1,j,t, . . . , z5,j,t are, respectively, the noisily observed operating earnings, capital stock, labor

stock, investment and hiring of firm j in year t. The measurement errors, v1,j,t, . . . , v5,j,t have

variances σ2v,1, . . . , σ
2
v,5. We let this set of equations and parameters represent a set of firms j =

1, . . . , N . Therefore, the vector of measurement errors for each group of N firms, vt, is 5N -

dimensional with vt ∼ N (0,R) and R a diagonal covariance matrix. Altogether, this state space

model has 14 parameters: three related to firm policies, s∗, i∗, h∗, six to deep parameters, γ, β,

µK , µL, σK , σL, and five for the variances of the measurement errors, σ2v,1, . . . , σ
2
v,5.

Estimation at the firm level is unfeasible because the earnings’ time series are too short: In

our Compustat panel, the operating earnings series are on average (median) only 10.8 (8) years

long. To achieve high granularity we follow the same approach as in Gryglewicz et al. (2022): To

estimate the model’s parameters for each of many small groups of very similar firms, namely

N = 10, assuming each firm in the group is exposed to the same permanent shocks. Given
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the model parameters, the unscented Kalman filter recovers the unobserved state process xt ≡

[log(Kt), log(Lt)]
′ that determines the likelihood function of the observed 5N -dimensional data

zt ≡ [z1,1,t, . . . , z5,1,t, . . . , z1,40,t, . . . , z5,40,t, ], i.e., earnings, capital, labor, investment and hiring of

the N firms in each group and for t = 1, . . . , T :

T∑
t=1

−1

2

[
5N log(2π) + log |Ft|t−1|+ (zt − ẑt|t−1)′F−1t|t−1(zt − ẑt|t−1)

]
(19)

where zt|t−1 is the one-step-ahead prediction of zt based on the filtered state process xt, and Ft|t−1

is the error covariance matrix. Maximization of this likelihood function takes about 15 seconds for

a panel of N = 10 firms observed over T = 50 years.

3.3 Identification and inference

Estimation of the state space model in equations (12) to (18) allows for identification of all three

policies: Because the steady-state rates of investment, i∗, hiring, h∗ and short-term effort, s∗ are

constant, they are recovered as the slope parameters of the earnings (equation 14), investment

(equation 17) and hiring (equation 18) measurement equations, respectively. Amongst the model’s

deep parameters, the earnings’ elasticities to capital and labor, γ and β, are identified directly off

equation (14) by the Cobb–Douglas mapping from inputs to earnings. Further, the volatilities of the

shocks to the capital and labor stocks are identified off the volatilities of the errors in the transition

equations (12) and (13). Note finally that the constant terms to the two transition equations are

the drift rates µK and µL. Hence, estimates of i∗, h∗, σK and σL allow us to recover, rather than

having to impute, the depreciation rates δK and δL.

Adjustment costs parameters are generally not identified by this estimation method. The

marginal costs of investment and hiring (λK and λL) are absorbed in the investment and hiring

rates, i∗ = (cγ/λK) and h∗ = (cβ/λL), where c is a constant that is a function of all the model’s

parameters. And while we can recover the marginal costs of effort λs from 1/s∗ in this version of

the model, this parameter would not be identified for more general specifications of the investment

adjustment costs function.

To illustrate how the model makes inference, we analyze how different combinations of param-
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eter values would imply different characteristics of the data set. Consider Figure 2, which shows

the sensitivity of two model-implied moments to s∗ and σK . Both curves in blue represent all the

combinations of values for the short-term effort policy, s∗, and the volatility of shocks to the capital

stock, σK , that imply the same expected earnings growth rate, E[CFt+1/CFt], all else constant.

These iso-curves are monotonically increasing, implying that any given earnings growth rate, say

2% along the solid blue line, is only attainable with more short-term effort if shocks to the capital

stock were more volatile. And for a given level of volatility, less short-term effort would imply a

lower earnings growth rate, e.g., from 2% to 1.9% (dash-dotted blue line).

Insert Figure 2 here

The black isocurves plot the combinations of s∗ and σK that imply the same earnings growth

variance, V [CFt+1/CFt], ceteris paribus. Keeping s∗ constant, e.g., at 0.25, a higher σK , e.g., from

0.18 to almost 0.2, implies a higher earnings growth volatility, e.g., from 0.3% (dash-dotted black

line) to 0.36% (solid line). Moreover, the black isocurves have a negative slope, meaning that with

higher s∗, the same earnings growth volatility is obtained with lower σK . Further, Figure 2 shows

that there is a unique combination of s∗ and σK that produce any given combination of earnings

growth rates and volatility. Thus, the model will infer high level of both short-term effort and

capital shocks volatility from data with relatively high earnings growth rates and volatilities, and

vice versa for data with both relatively low earnings growth rates and volatilities.

3.4 Data

We use accounting data for publicly listed U.S. firms in Compustat between 1970 and 2019. We

exclude financial services firms (SIC codes 6000 to 6999), Utilities (SIC codes 4900 to 4999), Reg-

ulated (SIC 8000 to 9999) and firms whose annual asset growth exceeds 500% in any given year.

We express all variables in constant 2000 US dollars using the GDP deflator and winsorize them at

the 1st and 99th percentiles. Our sample includes 210,637 firm-year observations for 18,026 firms.

We measure operating earnings as EBITDA (oibdp in Compustat) plus investments in intangible

assets. Investments in intangibles must be added back to EBITDA because they are treated as an

expense rather than a capital investment for accounting purposes. We define intangible investments
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as R&D expense plus organizational capital and measure the latter using the standard proxy: 30%

of SG&A (see, for example, Peters and Taylor 2017 or Crouzet and Eberly 2021).

We define a firm’s total capital as the sum of its physical capital (ppegt) and intangible capital.

Following the literature (Peters and Taylor, 2017), we measure a firm’s intangible capital as the sum

of its knowledge and organizational capital. We proxy knowledge capital investments with R&D

and organizational capital investments with SG&A. We apply the perpetual-inventory method to a

firm’s past R&D and SG&A to measure the respective replacement cost. We compute new capital

investments as the sum of physical capital investments (capx) and intangible investments.

Compustat provides the total number of employees (emp) and the total expense in salaries (xlr)

but not individual wages. We approximate the number of new hires with the yearly variation in

the number of employees, i.e., empt − empt−1, plus the number of employees leaving the company,

predicted using the U.S. Bureau of Labor Statistics’ average separation rate for all firms within the

same 5 Fama and French (1997) industrial classification. For their salaries, we impute the average

salary per firm-year across all firms in the same industry, based on the 5-group classification by

Fama and French (1997).

To ensure homogeneity across firms, we normalize each variable by the first availabe observation

of book values of total asset (at). Table 1 defines each variables and presents its summary statistics.

Insert Table 1 here

3.5 Firm grouping

We estimate the earnings model in (12)–(18) for each of many small groups of firms. Therefore,

we assume that all firms within each group g have the same parameters and, as a result, they

choose the same short-term, investment and hiring policies. Fitting the model to relatively small

sets of firms allows greater estimation accuracy because the parameter estimates will adjust to

the data features specific to each group of firms. Moreover, we obtain a large set of possibly very

heterogeneous vectors of estimates of the model’s policies and parameters, instead of just very few

for the representative firms. Short of firm-by-firm estimation, which is not feasible, estimation by

small groups enables the analysis of cross sectional variation in deep parameters and policies.
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The fist criterion to classify firms into estimation group is the decade of their IPO. IPO market

cyclicality makes firms anticipate or delay their decision to go public, so that firms enter the

Compustat sample at different ages or maturities (Ibbotson and Jaffe, 1975). Heterogeneity in the

IPO timing decision may imply parameter heterogeneity that we attempt to capture by classifying

firms according to their cohort, i.e., decade, of becoming publicly traded. Thus, we split firms into

5 IPO cohorts: 1970s to 2010s.

The other two grouping criteria follow Gryglewicz et al. (2022). These criteria are motivated

by the assumption that permanent shocks are common to all firms in the group, while short-

term shocks are idiosyncratic. Hence, we group firms based on their 5 Fama and French (1997)

industrial classification. We expect firms within the same industrial classification to be exposed

to similar short-term volatility (e.g., industry demand uncertainty) and similar permanent shocks

(e.g., technology or labor market shocks). Finally, within each cohort and 5 Fama and French

(1997) industry, we group firms based on their average annual earnings’ growth rate. Indeed, firms

with similar permanent shocks will have similar average earnings growth rates in the long-run.

The assumption that permanent shocks are common to all firms in the group is weakened

significantly by subsequently (i) sorting by earnings growth rates and (ii) making the groups small.

We achieve a high level of granularity with sufficiently high precision in our estimates when all

but one of the industry-cohort groups include only ten firms.3 For N = 10, the permanent shock

commonality assumption is almost innocuous, and significantly weaker than grouping firms even

at the four-digit SIC code level.4,5 Applying the criteria above, our sample of 18,026 firms is split

3Because the number of firms with the same cohort and 5 Fama and French (1997) industry is not
generally a multiple of 10, the last group of firms for each cohort-5 Fama and French (1997) industry will
include between 10 and 19 firms. In the rare cases in which there are fewer than 10 firms in a cohort and 5
Fama and French (1997) industry, we include all firms in one group.

4For example, Bates, Kahle, and Stulz (2009) use the volatility of the average cash flow over all firms in
each two-digit SIC code. Similarly, Duchin (2010) uses the correlation between a firm’s current cash flow
and the median or mean R&D expense over all firms with the same three-digit SIC code.

5The assumption that permanent shocks are common to a group of firms encompasses situations in which
firms face common technology, labor, regulatory, or consumer preference shocks. An alternative assumption
would be to consider that short-term shocks are common to a group of firms while permanent shocks are
firm-specific. This would encompass situations in which firms in the same group end up with different
productivity growth paths but always face similar temporary disruptions, e.g., weather shocks or common
supply-chain disruptions. Because missing values are pervasive in corporate data, it is unclear how to filter
out the firm-specific permanent shocks when data are missing. This problem hinders accurate estimation of
this alternative model.
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into 1,801 cohort-5 Fama and French (1997) industry -earnings growth groups.

Table 2 shows the decomposition of the total variation of several firm-specific characteristics

into the between- and within-group components. Relative to the four-digit SIC or the 17 Fama and

French (1997) industry definitions, our classification produces less within-group variation for the

ratios of cash flows to initial assets, capital and labor to initial assets, for the age at IPO and firm life,

and for key policy variables such as investment and hiring to initial assets. Remarkably, grouping

only by long-run similarity in the average cash flow growth rate within each cohort- 5 Fama and

French (1997) industry produces similarities across many other dimensions. Table 2 shows that our

grouping method also produces the most between-group variation for as many firm characteristics

relative to the four-digit SIC or the 17 Fama and French (1997) industrial classifications as well as

markups estimated following De Loecker, Eeckhout, and Unger (2020). In a nutshell, our grouping

approach produces many small and heterogeneous groups of alike firms.

Insert Table 2 here

4 Estimation results

Table 3 presents estimates of the policies i∗, h∗, and s∗, of the growth rates and volatilities of

capital and labor, µK , σK , µL, and σL, and of the production function parameters γ, β. Panel A

shows the summary statistics assuming the model parameters, and therefore, the policies, remain

constant throughout the firms’ spell in Compustat. The precision of the estimates is summarized

in panel B, as the absolute values of their t-statistics.

All policies exhibit significant heterogeneity across the 1,346 groups of Compustat firms. For

example, 95% of firm’s investment in tangible and intangible capital ranges between 9% and 34%

of total assets. Our estimated average (median) total investment of 20% (18%) for the period

of 1970 to 2019 is very close to the average of 21% reported by Peters and Taylor (2017) for

1975–2011. This result is not surprising because we use the same definition of total investment.

However, our estimates are not as volatile, i.e., 8% v. 18%, because they represent steady-state

policies and only vary cross-sectionally. The average estimated hiring rate is 15%, with 95% of the

group estimates between 6% and 32%. The average of the short-term effort estimates is 0.29. This
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quantity represents the average factor productivity, i.e., the expected earnings per efficient units of

labor and capital. Like the other two policies, s∗ also varies significantly across firm groups: 95%

of the estimates range between 0 and 0.64.

Insert Table 3 here

Table 3 shows that, on average, the labor growth rate is lower (3%) but is more volatile (69%)

than that of the the capital stock (8% and 20%). The fact that estimates of σK also exhibit

large variation across groups underscores the importance of the joint estimation of policies and the

model’s deep parameters: as shown in Figure 2, correct inference about s∗ and i∗ depends crucially

on controlling for variation in σK .6 The average estimated earnings elasticities are 0.56 for capital

and 0.27 for labor. These numbers are direct estimates of the earnings elasticities and the averages

are obtained from granular estimates of public firms only. Hence, they are not directly comparable

to available estimates based on the measured labor and capital shares using aggregate census data.

4.1 Capital accumulation over time

The estimates above are obtained for each group of firms for the whole sample period. Hence, they

ought to be interpreted as long-run steady state values. Next, we present and discuss the results

from estimating the firm model for each group of firms at different stages of their life as a publicly

traded firm: during their IPO decade and then next. We can now compare estimates across groups

conditional on the firm’s stage in life as a public firm. Thus, differences in parameters and policies

are unlikely to be driven by heterogeneity in the duration of firm’s Compustat spell.7

Figure 3 plots the average estimated growth of the capital stock, µ̂K , for all firms in a given

cohort during their IPO decade and the next. We distinguish between firms that exited Compustat

due to bankruptcy during the IPO decade (red line) and firms that survived or were acquired in

6These estimates imply an average depreciation rate of capital of 0.10, i.e., δ̂K = î∗ − σ̂2
K/2 − µ̂K =

0.2− 0.22/2− 0.08 = 0.10. This estimate coincides with the quarterly depreciation rate of 0.025 calibrated
by Clementi and Palazzo (2019).

7Figures IA.1 and IA.2 in the Internet Appendix show the distributions of s∗, h∗, and i∗ by cohort. The
absolute average estimated short-term effort intensity decreases monotonically with the decade in which the
IPO occurred. In contrast, the average hiring rate increases as the investment rate has a U shape and is
highest for firms going public between 2010 and 2019. In these plots, cross-cohort differences may be due to
age differences between the earliest and most recent cohorts.
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their IPO decade (black line). Estimates for survivors in their second decade are shown in the blue

line. Note that each firm has only one estimate per decade, so that time variation in the mean is

due to changing composition, i.e., entry or exit of firms within the decade and cohort.

Insert Figure 3 here

There are some very clear patterns in this figure. First, the average µ̂K is fairly constant and

precisely estimated for any cohort during the firms’ second decade since the IPO. Second, among

surviving firms capital growth is significantly slower on average in the second decade relative to the

first. Third, capital grows more slowly on average during the first decade for firms that eventually

fail relative to those who survive that period, although the difference is not statistically significant

for the firms going public in the 1990s. In addition, second decade average growth rates are quite

similar for firms going public in the 70s (8%), 90s (9%), or 2000s (7%). Firms who went public

during the 80s exhibit a significantly faster average growth (11.5%) in their second decade of public

life, i.e., between 1990 and 1999.

We carry out the same analysis for the estimates of the volatility of the growth rate of the

capital stock, σ̂K , and display the results in Figure 4. Firms that failed in their first decade since

the IPO have on average a significantly higher σ̂K than the survivors, especially for firms that went

public but failed within the 2000s. And for any cohort, the set of survivors is stable throughout the

whole second decade since the IPO, resulting in a constant and very precisely estimated average σ̂K .

We see also that estimates of σK increase, from 1% to 2.5% and from 2% to 4%, for firms that went

public in the 70s and 80s. However, for survivors of the 90s and 2000s IPOs, we cannot reject that

the average σ̂K changes between the first and second decades.

Insert Figure 4 here

Not having imposed any restriction a priori, it is remarkable that the average of the estimates

of σK change little over two decades, and not at all for firms that went public since 1990. Moreover,

this result implies that the reason for the drop in the average growth rate of the capital stock from

the IPO decade to the next, a pattern that pervades all cohorts, cannot be solely that investment

became more risky. Indeed, recall that µK along the steady-state path is given by i∗ − δK − σ2K/2,
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so that σK impacts the average growth rate negatively, both directly and indirectly through its

equilibrium effect on investment.8 And yet the most pronounced drop in the average µ̂K is for the

90s and 2000s cohorts, whose average σ̂K remained constant from their IPO decade to the next.

Corroborating this finding, Figure 5 shows that the drop in average µ̂K coincides with reductions

in the investment rate, i∗, and again especially in the decades during which average σ̂K remained

constant.

Insert Figure 5 here

The decrease in average µK or i∗ as firms survive their IPO decade into the next cannot be

easily reconciled either with the change in the average estimated earnings elasticity of capital, γ̂.

Figure 6 shows that the average γ̂ increases for all but the 2000s cohort. That is, for firms going

public in the 70s, 80s and 90s capital accumulation slowed down on average despite becoming

marginally more productive from the IPO decade to the next. If changes in γ or σK cannot fully

account for slower investment as firms mature, then what else could be the reason? To answer this

question, we now look into what happened to investment jointly with the provision of short-term

effort during the same transition.

Insert Figure 6 here

4.2 Investment and short-term effort over time

We compare short-term effort and investment policies in Figure 7, which plots the time series of

the average of the ratio of optimal short-term effort to optimal investment, s∗/i∗, distinguishing

between the firms that failed during the IPO decade (red line), and the firms that survived it (black

line, for the IPO decade, and blue line for the next decade).

Insert Figure 7 here

Figure 7 shows that, amongst survivors, the average s∗/i∗ ratio increased significantly from the

IPO decade to the next regardless of the cohort. The later the cohort, the larger the increase: For

8We show in Appendix A.1 that ∂i∗/∂σ2
K < 0.
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firms that went public in the 2000s, the average ratio almost doubles, from 1.5 to 2.75. Except

for the 70s cohort, the s∗/i∗ ratio is also significantly higher for firms that survived rather than

failed during the decade of the IPO. Figure 8 explores whether the difference between the average

s∗/i∗ ratios of firms that survived and firms that failed during the IPO decade can be explained by

age differences at the time of the IPO: It presents the distributions of the s∗/i∗ ratio in the IPO

decade conditional on the firm’s age when going public. We also distinguish between firms that

failed during this decade (red), that did not fail but were acquired and therefore de-listed (white),

or survived (blue). Figure 8 shows that, conditional on a firm’s fate after the IPO decade, the

average s∗/i∗ ratio increases with the firm’s age at the time of IPO. However, these differences are

relatively small compared to the differences in s∗/i∗ between failed and surviving firms within each

age group.

Insert Figure 8 here

We make two observations that summarize the findings so far. First, the model estimates suggest

that firms prioritize efficiency over growth as they mature by increasing the intensity of short-term

effort relative to capital investment over time. Second, that controlling for age, firms going public

with higher short-term effort to investment ratios are more likely to survive and mature. In short,

a firm’s prevalence is related to its s∗ and i∗ policies early on.

4.3 Investment and short-term effort across industries

Figure 9 displays the distributions of the s∗/i∗ ratio during the IPO decade and the next for the four

major industry groups in the 5-industry Fama and French (1997) classification: Consumer Goods,

Manufacturing, Technology and Healthcare. Table 4 presents additional statistics of these policies

and parameter estimates conditional on the industry and whether the firms survived or failed during

the IPO decade (Panel A) as well as their changes from the IPO decade to the next (Panel B).

Panel A shows that firms in the Healthcare sector are on average the youngest to go public. In

the second decade after the IPO, the average firm in Healthcare has the lowest average ŝ∗/̂i∗. The

highest average ratio is for Manufacturing, which also has the lowest average optimal investment

rate during the second decade after the IPO: 15%.
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Figure 9 shows that the ŝ∗/̂i∗ average ratio increases from the firm’s IPO decade to the next in

all four major industry groups. The ratio goes up by 0.41 (standard error 0.12) in the Healthcare

industry, where the change is most pronounced (Panel B of Table 4), but it is also economically and

statistically significant for the Consumer Goods industry, 0.41 (0.10), Manufacturing, 0.29 (0.11),

and the Technology sector, 0.37 (0.09). For all industries, the ŝ∗/̂i∗ ratios are more dispersed in

the second decade, as the distribution skews more to the right.

Insert Figure 9 here

Insert Table 4 here

Table 5 describes in detail the changes in the ŝ∗/̂i∗ ratio over both decades by the firm’s industry

and cohort. This table reports the slope coefficients from the regression of the group-specific change

in the ŝ∗/̂i∗ ratio from the IPO decade to the next on a constant, binary indicators (0 or 1) for the

decade of IPO of the firms in each group (1{IPO in DD} for DD = 80s, 90s or 00s), and the products

between these cohort dummies and the changes from one decade to the next in the capital stock

volatility, ∆σ̂K , and the elasticity of earnings with respect to capital, ∆γ̂. As additional controls,

the regressions include the labor stock volatility and the labor elasticity of earnings (unreported).

We see in Table 5 that none of the coefficients for the cohort dummies in any industry are negative

and statistically significantly different from zero. This result confirms that the average ŝ∗/̂i∗ ratio

increases from the IPO decade to the next for all cohorts and all four major industry groups.

There are only three cases in which the increase in short-term effort relative to investment occurs

simultaneously with an increase in the capital stock volatility: for the 80s and 2000s cohorts in the

Consumer Goods industry and for the 70s cohorts in Healthcare. For all other cases, the increased

focus on efficiency relative to growth is uncorrelated with the change in σ̂K or, as for Healthcare

since the 1980s or Technology since 2000, occurs despite a decrease in σ̂K .

Insert Table 5 here

If not the case on average, the coefficients in Table 5 suggest that the increased focus on efficiency

from the first decade as a public firm to the next is associated with lower capital productivity for

some industries and cohorts. Some of the coefficients of the interactions between cohort dummies
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and ∆γ̂, namely for 90s entrants in all but the Healthcare industry, or for all 00s entrants not in

Consumer Goods, are indeed negative and significantly different from zero. To summarize, our

model estimates show an increased focus in efficiency relative to growth that is partially driven

by a decreasing earnings elasticity of capital for some industries and cohorts but not often by a

higher capital stock volatility. However, firms across all industries and cohorts exert relatively

more short-term effort than investment going from the decade of IPO to the next over and above

the changes in these fundamentals. In other words, the increased focus of efficiency over growth

appears to come naturally with maturity.

5 Understanding growth versus efficiency choices

Short-term effort and investment policies not only change over time but also vary significantly

within each decade and cohort. We ask next what explains the cross-sectional variation and what

are the long-term consequences of these choices.

5.1 Determinants of short-term effort and investment policies

Table 6 explores the relation between short-term or investment policies and the deep parameters

of the model. It shows the coefficients of firm-level cross-sectional regressions of ŝ∗, î∗, or the ratio

ŝ∗/̂i∗ on estimates of the earnings elasticities of capital and labor, and the volatilities of the shocks

to the capital and labor stocks. Controls include the logarithm of the age, in years, of the firm

at the time of the IPO and Fama and French (1997) 5-industry fixed effects. The estimates in

the second row show that higher values of σ̂K are significantly correlated with lower investment

rates only during the IPO decade for firms that eventually survived it. For these firms, a higher

capital stock volatility is also associated, on average, with lower short-term effort. However, we

cannot reject that the correlation between σK and the s/i ratio is different from zero. For these

same firms, differences in the capital stock volatility are no longer related to either s nor i in the

next decade. Instead, and similar to the time series analysis, differences in s∗, i∗ or their ratio are

better explained by heterogeneity in the estimated capital elasticity of earnings, γ̂: the third row of

Table 6 shows negative and statistically significant coefficients of s∗ or s∗/i∗ on γ in either decade
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for firms that survived the IPO decade. That is, amongst the survivors, firms with higher capital

productivity are on average more focused on growth as opposed to efficiency relative to equally

aged firms during their IPO decade or beyond.

Insert Table 6 here

The coefficients on the cohort fixed effects reveal that the largest s∗/i∗ ratios in the decade after

the IPO, over and above differences explained by the estimated fundamentals, are for the firms that

went public in the 90s or 2000s. Finally, the cross-sectional analysis confirm that heterogeneity in

the firm’s age at the time of the IPO is strongly negatively correlated with investment and positively

correlated with short-term effort, for any firm but only in the decade of IPO and not afterwards.

To summarize, the cross-sectional heterogeneity in s∗ and i∗ policies amongst firms that survive

beyond their IPO decade is partially explained by heterogeneity in capital productivity early on.

The only common factor explaining differences in policies for both failed firms and survivors is age,

with older firms more focused on efficiency than growth, i.e., higher s∗/i∗ ratios.

5.2 Policies and outcomes for young firms

Table 7 explores the relation between different product market outcomes and firm policies. It shows

the coefficients from the regressions of the estimates of the marginal cost markups in De Loecker

et al. (2020) (Panel A) or of the logarithm of annual sales (Panel B) on the short-term effort and

investment policies during the IPO decade, controlling for the age of the firm at its IPO and cohort

(decade of IPO) and industry (5-industry Fama and French 1997) fixed effects. We distinguish

between firms that failed or survived the IPO decade. To facilitate the comparison between groups,

we report the economic significance, in brackets, as the change in the dependent variable relative

to its sample mean given a one standard deviation change in each policy.

Insert Table 7 here

The coefficient estimates in the first column of Table 7 show that the surviving firms with the

highest short-term effort are, on average, also those with the highest markups and annual sales.

High investment firms tend to also have higher markups but lower sales, on average. Similar results
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are obtained for firms that failed. After controlling for the firm’s age at IPO (columns 4 to 6),

investment is no longer related to the markups of either surviving or failed firms during the IPO

decade. The variation in investment appears to be subsumed by the variation in the firm’s age at

its IPO in that firms going public earlier invest more on average and have higher markups during

the IPO decade. However, differences in short-term effort provision are positively correlated with

differences in the markup, and the relation is statistically and economically significant: one standard

deviation differences in s∗ are associated with 8.2% and 15.2% differences (average of 10.5%) in

the average price-cost markup for survivors and failed firms. The other consistent result amongst

either failed firms or survivors, after controlling for age at IPO is that high investment firms have

lower sales. However, the investment differences amongst survivors only are economically more

meaningful than amongst failed firms: a one standard deviation increase in investment implies

50.5% lower sales for the former but 29.8% lower sales for the latter.

We summarize our analysis of the IPO decade as follows. On average, older firms are larger

and invest less than younger firms of the same cohort and industry. As they exert more short-term

effort, they are already more focused on efficiency as opposed to growth and can charge higher

markups.

5.3 Policies and outcomes for mature firms

We repeat the previous analysis but this time for the decade following the IPO decade. In addition

to the markup and the logarithm of annual sales, we also analyze the growth in average sales from

the first decade to the next. Results are presented in Table 8. Qualitatively, the results are very

similar for this decade than the previous. Namely, that firms that went public older, which exhibit

higher short-term effort but lower investment, are larger and have higher markups on average.

Insert Table 8 here

Quantitatively, the relation between short-term effort policy and the markup or sales is bigger:

a one standard deviation increase in s∗ is associated with a 14.2% increase in the average markup

and 33.1% more sales. In addition, firms with the highest short-term effort in the second decade

are those whose sales grew the most from the IPO decade to the next. In short, the increasing focus
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on efficiency over growth by larger, older firms appears more pronounced in the period following

the IPO decade. But if the evidence so far shows that the choice between growth and efficiency

depends to a large extent on the firm’s age and maturity, and to a lesser extent on deep parameters

of the production function, there still exists significant heterogeneity in s∗ and i∗ over and above

such fundamentals. To understand this additional heterogeneity, we ask what is the impact on

long-term product market outcomes of policy choices made during the IPO decade.

5.4 Long-term effects of policies

We test whether policy choices made in the IPO decade predict product market outcomes after-

wards. We look into the markups, the logarithm of sales and the sales growth over three different

horizons: years 0 to 5, years 6 to 10 and years 11 to 15 after the IPO decade. Table 9 reports the

coefficient estimates from these predictive regressions. The first column shows that higher short-

term effort predicts higher markups, higher sales and higher sales growth in the five-year period

following the IPO decade: For each outcome, the coefficients of s∗ are positive and statistically

different from zero. Higher investment also predicts higher markups and sales growth, if lower

sales. Column 1 also shows that the economic effect, shown in brackets, of IPO decade investment

on the markup in the subsequent five-year period is not as large as the effect of short-term effort.

But caution is warranted in interpreting these results: the estimates of these predictive regressions

have a sample selection bias in that some firms fail and are de-listed during the IPO decade. And

Figure 7 already shows that the firms least likely to survive past the IPO decade are those with the

lowest s∗/i∗ ratios. Hence, OLS estimates are based on samples that are biased towards firms with

low investment rates, compromising our inference about the long-run effects of early investment by

the average public firm.

Insert Table 9 here

We address the sample selection problem due to firm de-listing during the IPO decade using the

Heckman (1979) correction, which we implement by maximum likelihood. We model the selection
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equation as the following probabilistic model:

Prob[Firm f survives IPO decade] = 1.06
(0.09)

+ 1.08
(0.10)

s∗f − 3.05
(0.27)

i∗f − 1.95
(0.25)

σK,f − 0.37
(0.27)

µK,f

+ 0.02
(0.01)

Prob[U.S. goes into Recession] (20)

where the dependent variable is the probability that the firm f survives its IPO decade. As

determinants of the firm’s survival we include the firm’s short-term effort and investment policies

in the IPO decade. As instruments for selection we include the firm-specific values of the deep

parameters σK,f and µK,f . As an additional instrument capturing the state of the economy we

include the probability that the U.S. economy enters into a recession in the next month, estimated

by the Federal Reserve Bank of St. Louis, and recorded at the month of the firm’s IPO.

The signs of the estimates of equation (20) are as expected and are consistent with our time series

analysis: Firms with higher short-term effort but lower investment, i.e., relatively more focused on

efficiency than growth, have a higher chance of surviving their IPO decade. Additionally, firms with

more volatile shocks to the value of their capital stock or that went public when a recession was

more likely to follow are less likely to survive. Column 2 (labeled ‘Heckman’) shows the coefficients

of the predictive regressions after correcting the sample selection bias. Across all panels and for

the 0 to 5 and 6 to 10 horizons, the results are the same, qualitatively. Quantitatively, there are

noteworthy differences.

Correcting for sample selection bias, the economic effect of early short-term effort on the future

markup becomes much smaller, decreasing by a factor of 11 (Panel A). Moreover, the economic

effect of early investment on the future markup remains constant or becomes even stronger following

the Heckman (1979) correction. This effect is about eight times that of short-term effort in the 0 to

5-year period following the IPO decade, and almost 1.5 times or 3.4 times larger in the 6 to 10- or 11

to 15-year periods following the IPO decades. These results confirm that it is the high investment

firms that drop out, and that the post-IPO decade sample includes firms that invested less early on

but survived. Further, the results also show that firms focused on growth early on expect higher

markups than those focused on efficiency conditional on surviving into the next decade. On the

downside, it appears these firms were relatively more vulnerable to negative shocks, and therefore,
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more likely to fail during their IPO decade. In a nutshell, firms face the following trade-off: high

investment implies higher long-term markups but a higher risk of early failure.

5.5 External validity: the Great Financial Crisis of 2008

If our interpretation that growth firms aim for higher markups in the long run while risking failure

shortly after going public is correct, our estimates of s∗ and i∗ should be able to predict survival

and failure following an identifiable shock common to all firms. As external validation of our policy

estimates and of our interpretation, we check whether high s∗/i∗ firms were more likely to survive

the Great Financial Crisis of 2008 (GFC).

To implement this validation we estimate our model for all groups of firms the decade before

and the decade after the GFC: from 1996 to 2006 and 2010 to 2019. Figure 10 shows the average

s∗/i∗ ratio each year leading to and following the GFC, in blue for surviving firms and in red for

firms that failed during the GFC. Validating our interpretation, the figure shows that the average

survivor of the GFC had significantly higher levels of short-term effort relative to the investment

rate than the average failed firm.

Insert Figure 10 here

6 Asset pricing implications

Our framework provides granular estimates of Compustat firms’ deep parameters and policies that

directly impact their states of profitability and their investment. Hence, our estimates should

capture the heterogeneity in a panel of firms that determines equity returns via the supply side.

Therefore, one natural way to validate our exercise consists of testing whether our estimates of

short-term effort, investment and the earnings elasticity to capital help explain the cross-section of

returns as predicted by the Investment CAPM.

In the Investment CAPM, each firm’s loading on the aggregate investment and profitability

factors, i.e., the investment and profitability betas, are functions of the firm’s own state of invest-

ment and profitability (Hou et al., 2015; Liu, Whited, and Zhang, 2015; Zhang, 2017). The reason
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is that profitability and investment are jointly determined with the firm’s discount rate: high prof-

itability but low investment imply high discount rates because, in the steady state equilibrium, low

investment can only occur simultaneously with high profitability if the discount rate is high, so as

to lower the NPV of investment opportunities.

Our method provides direct estimates of the firm’s optimal investment. Also, in our model,

profitability is monotonically increasing in s∗ and γ, given that profitability equals cγKγ−1Lβ

and that ∂c/∂s∗ > 0 (see Appendix A.1 for the proof). Hence, our data set produces different

combinations of investment and profitability that can be compared to actual excess returns in the

data. In particular, as high profitability firms expect higher stock returns, it follows that our

estimates of short-term effort or of the earnings elasticity to capital should be strongly positively

correlated with the cross section of profitability betas, i.e., with the loading on the expected positive

return of the profitability (return on equity – ROE) factor. Conversely, as high investment firms

expected lower excess returns, it follows that our estimates of the investment rate should be strongly

negatively correlated with the investment factor betas, that is, the loading on the expected positive

return of the investment factor.

We follow the standard practice to implement these tests. We form portfolios of stocks based on

our grouping of firms (Section 3.5) and consider the monthly returns of these portfolios throughout

our sample period, from 1971 to 2019. We compute the betas for investment, profitability and size,

i.e., βI/A, βROE , βME , from the time series regressions of the portfolio returns on the investment,

profitability and size factors calculated by Hou et al. (2015), controlling for market returns.9 Then,

we regress the cross section of each estimated beta on the cross-sectional estimates of s∗, i∗ and γ,

controlling for cohort and industry fixed effects.

Table 10 summarizes the regression results. Three findings there are worth mentioning. First,

the investment rate impacts negatively the investment beta, βI/A. Second, the profitability beta,

βROE , loads positively on short-term effort. Third, the profitability beta also correlates positively

with the elasticity of earnings to capital. The coefficients supporting these results are different

from zero with 95% or 99% confidence. All of these findings are in line with the Investment CAPM

9The investment, profitability, size, and market factors are available at https://global-q.org/factors.
html.
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theory.

As discussed above, our estimates of short-term effort and investment policies reflect the firms’

choices between growth and efficiency over their life cycle. Young firms focus on growth, investing

relatively more and exerting relatively less short-term effort than mature firms. The asset pricing

implication is that young firms are less exposed to both the investment and profitability factors.

Mature firms are more efficient and productive, as captured by higher s∗ and γ, and therefore

have a higher exposure to the profitability factor. Table 10 also analyzes the exposure to the size

factor. The third column shows that the size beta, βME , loads negatively on short-term effort

and positively on investment. As we showed previously, large firms are relatively more focused on

efficiency and smaller firms on growth. Therefore, our results suggest that large firms tend to have

a low exposure to the size factor (Hou et al., 2015) because large firms tend to have high s∗ but

low i∗.

Insert Table 10 here

In sum, our estimates of short-term effort and investment, which appear to capture the stage

in the life cycle of a firm, suggest that the choice between growth versus efficiency plays a role in

explaining the cross section of stock returns from the supply side, not only via their exposure to

the investment and profitability factors, but also to the size factor.

7 Conclusion

We can observe how much a firm invests in tangible or intangible capital and labor but not how

much effort it exerts in the short-term to make production more efficient. This paper develops

a framework to model the firm’s decision between growing or being efficient and to estimate the

unobservable level of short-term effort. Representing the majority of Compustat firms since the

1970s, and with a high level of granularity, the estimates produce the robust finding that young

firms focus on growth and mature firms prioritize efficiency. This result pervades all industries and

firm cohorts.

This paper also identifies the consequences of different short-term effort and investment policies

by firms of the same age and in the same industry: firms focused on growth when young have
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the highest markups in the long-term, whereas firms focused on efficiency have higher chances of

surviving in the long-term. Why similar firms choose growth versus efficiency differently can be

partially explained by some observable fundamentals, but a full explanation ought to be given in

future research.

As a tool to measure unobservable short-term policy, this framework can be viewed as a stepping

stone towards quantifying the impact of managerial biases, such as short-termism, on the choice

between efficiency and growth. Estimation of this model, augmented with agency conflicts, is a

natural extension we undertake in ongoing research.
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Appendix

A Model Solution and Robustness of Policies

This section discusses the solution of the HJB equation (6) and the robustness of the optimal

policies to various specifications of the cost function and shock correlations.

A.1 Solving the HJB Equation

Following the standard approach, we first guess the functional form of the value function and then

verify that it satisfies the HJB equation. The guessed functional form is V (K,L) = cKγLβ. Then,

plugging the partial derivatives of V and the optimal polices (8) in the HJB equation (6) gives the

following equation in c

rc =
1

λs
−
(

1

2λs
+
c2γ2

2λK
+
c2β2

2λL

)
+ cγ

(
cγ

λK
− δK

)
+ cβ

(
cβ

λL
− δL

)
+

1

2
cγ(γ − 1)σ2K +

1

2
cβ(β − 1)σ2L (21)

where the terms KγLβ canceled out. Rearranging the equation as ac2 + bc+ d = 0, with

a =
γ2

2λK
+

β2

2λL
(22)

b = −γδK −
1

2
γ(1− γ)σ2K − βδL −

1

2
β(1− β)σ2L − r (23)

d =
1

2λs
(24)

provides the usual solution of c = (−b−
√

∆)/(2a) > 0, where ∆ = b2−4ad > 0. Notice that b < 0.

In essence, this solution of c corresponds to the first-best firm value in Gryglewicz et al. (2020),

which is attained when agency conflicts are absent in their setting. Second order conditions of the

optimal policies s∗, i∗, and h∗, are, respectively,

−Css = −λsKγLβ, −CII = −λKKγ−2Lβ, −CHH = −λLKγLβ−2 (25)

which are all negative, because K > 0 and L > 0 follow geometric Brownian motions in equilibrium,

ensuring that the objective function (5) is maximized.

The explicit solution of the constant c in the firm value V (K,L) = cKγLβ allows us to charac-

terize relevant sensitivities. For example, firm value is increasing in the short-term effort s∗ = 1/λs

∂c

∂s∗
=

1

2
√

∆
> 0. (26)
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Moreover, firm value is decreasing in the volatility of capital shocks σ2K

∂c

∂σ2K
=
γ(1− γ)

4a

(
1 +

b√
∆

)
< 0 (27)

because b/
√

∆ < −1, which in turn implies that the investment rate i∗ = cγ/λK is decreasing in σ2K

∂i∗

∂σ2K
=

γ

λK

∂c

∂σ2K
< 0. (28)

A.2 Alternative Model Specifications

The optimal policies in the baseline model are such that the short-term effort s∗ is constant, the

investment I∗ is linear in the capital stock K, and the hiring of new labor force H∗ is linear in

the total work force L. This section shows that the functional forms of these policies are robust

to a number of more general cost function and model specifications. Although these extended

specifications capture relevant economic aspects, their estimation from real data is challenging

because it would require some measurement of adjustment costs. Our objective here is not to

estimate these cost functions but to show that in a more general model the optimal policies have

the same form as in the baseline model.

A.2.i Complementarity or substitution of inputs

Complementarity or substitution of inputs can be accommodated in the firm model by extending

the cost function (4). As inputs we first consider short-term effort and investment. Then, the cost

function takes the form

C(s, I,H,K,L) =
λs
2
s2KγLβ +

λK
2

(
I

K

)2

KγLβ +
λL
2

(
H

L

)2

KγLβ + λsKs
I

K
KγLβ (29)

where the last term yields that ∂C/(∂s ∂I) 6= 0 when λsK 6= 0. Specifically, if λsK < 0, then short-

term effort and capital are complements. Alternatively, if λsK > 0, short-term effort and capital

are substitutes. The latter case appears to be particularly relevant from an empirical perspective

and captures a resource constraint on the firm’s capacity to increase inputs. In fact, an increase in

investment I makes short-term effort more costly as its marginal cost is given by

∂C(s, I,H,K,L)

∂s
= λs sK

γLβ + λsK
I

K
KγLβ

which is increasing in I when λsK > 0. Similarly, an increase in short-term effort makes investment

more expensive when λsK > 0.

Even if the cost function (29) features an additional term, the functional form of the optimal

polices are unchanged. The first order condition (FOC) for s is

KγLβ = Cs

KγLβ = λs sK
γLβ + λsKI K

γ−1Lβ
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which implies that the optimal short-term effort s∗ is

s∗ =
KγLβ

λsKγLβ
− λsKI

∗Kγ−1Lβ

λsKγLβ
=

1

λs
− λsK

λs

I∗

K
.

The second order condition for s∗ is always negative, −λsKγLβ < 0. Similarly, the FOC for I∗ is

VK = CI

VK = λKIK
γ−2Lβ + λsKsK

γ−1Lβ

which implies that the optimal investment I∗ is

I∗ =
VK

λKKγ−2Lβ
− λsKs

∗Kγ−1Lβ

λKKγ−2Lβ
=

cγ

λK
K − λsK

λK
s∗K

where in the second equality we used V (K,L) = cKγLβ. The second order condition for I∗ is

always negative, −λKKγ−2Lβ < 0.

To jointly determine I∗ and s∗, the system to be solved is given by

I∗ =
cγ

λK
K − λsK

λK
s∗K

s∗ =
1

λs
− λsK

λs

I∗

K
.

Solving for I∗ gives

I∗ =
cγ

λK
K − λsK

λK
s∗K

=
cγ

λK
K − λsK

λK

(
1

λs
− λsK

λs

I∗

K

)
K(

1−
λ2sK
λKλs

)
I∗ =

(
cγ

λK
− λsK
λK

1

λs

)
K

which yields that I∗ is linear in K and consequently s∗ is constant like in the baseline model.

In the cost function (29), replacing the last term by λsLsHK
γLβ−1 captures complementarity or

substitution between short-term effort and hiring, depending on the sign of λsL. Moreover, adding

the term λsLsHK
γLβ−1 to the cost function (29) yields interactions among the three inputs, while

preserving the functional form of the optimal policies.

Complementarity or substitution between capital and labor can be modelled by extending the

cost function (4) to

C(s, I,H,K,L) =
λs
2
s2KγLβ +

λK
2

(
I

K

)2

KγLβ +
λL
2

(
H

L

)2

KγLβ + λKL
I

K

H

L
KγLβ

where the last term yields that ∂2C/(∂I ∂H) 6= 0. Similar calculations as above show that the

optimal policies retain their functional form. The first order condition (FOC) for I is

VK = CI

VK = λKIK
γ−2Lβ + λKLHK

γ−1Lβ−1
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which implies that the optimal investment I∗ is given by

I∗ =
VK

λKKγ−2Lβ
− λKLH

∗Kγ−1Lβ−1

λKKγ−2Lβ
=

cγ

λK
K − λKL

λK

H∗

L
K (30)

where in the second equality we used V (K,L) = cKγLβ. Similarly, the FOC for H is

VL = CH

VL = λLHK
γLβ−2 + λKLIK

γ−1Lβ−1

which implies that the optimal hiring of new work force H∗ is given by

H∗ =
VL

λLKγLβ−2
− λKLI

∗Kγ−1Lβ−1

λLKγLβ−2
=
cβ

λL
L− λKL

λL

I∗

K
L. (31)

Solving (30) and (31) for I∗ and H∗ gives

I∗ =
cγ

λK
K − λKL

λK

(
cβ

λL
− λKL

λL

I∗

K

)
K(

1−
λ2KL
λKλL

)
I∗ =

(
cγ

λK
− λKLcβ

λKλL

)
K.

Thus, I∗ is again linear in K, which in turn gives that H∗ is linear in L. The FOC for s∗, and its

solution, is the same as in the baseline model.

A.2.ii Correlated shocks

In the baseline model the Brownian shocks to capital and labor in (1) and (2) are uncorrelated. If

these shocks are correlated, i.e., corr(dWK,t, dWL,t) = ρ, the additional term VKLρσKσLKL enters

the HJB equation. Because this term does not depend on the control variables, FOCs and optimal

polices are unchanged. In fact, guessing the functional form V (K,L) = cKγLβ, in the new HJB

equation all the terms in KγLβ cancel out, and the constant c solves a similar equation to (21).

Specifically, the new HJB equation with the additional term VKLρσKσLKL is

rV (K,L) = sup
s,I,K
{KγLβs− C(s, I,H,K,L) + VK(I − δKK) + VL(H − δLL)

+
1

2
VKKσ

2
KK

2 +
1

2
VLLσ

2
LL

2 + VKLρσKσLKL}.

Plugging in V (K,L) = cKγLβ and the optimal polices gives that the constant c solves

rc =
1

λs
−
(

1

2λs
+
c2γ2

2λK
+
c2β2

2λL

)
+ cγ(

cγ

λK
− δK) + cβ(

cβ

λL
− δL)

+
1

2
cγ(γ − 1)σ2K +

1

2
cβ(β − 1)σ2L + cγβρσKσL.
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A.2.iii Linear-quadratic adjustment cost function

The quadratic adjustment cost (4) implies that disinvesting, i.e., selling capital stock, generates no

revenue. This assumption can be relaxed by considering a linear-quadratic cost function

C(s, I,H,K,L) =
λs
2
s2KγLβ +

λK
2

(
I

K

)2

KγLβ +
λL
2

(
H

L

)2

KγLβ + αK

(
I

K

)
KγLβ

where the last term can induce negative costs, i.e., revenues, when adjusting the investment I. The

FOC for I is

VK = λKIK
γ−2Lβ + αKK

γ−1Lβ

and the optimal investment is

I∗ =
VK − αKKγ−1Lβ

λKKγ−2Lβ
=

(
cγ − αK
λK

)
K

where in the second equality we use V (K,L) = cKγLβ. The investment ratio I∗/K is still constant

like in the baseline model. FOCs and policies of the other inputs are unchanged.

B Model Estimation with Unscented Kalman Filter

This section provides a detailed exposition of the estimation method used in Section 3.2. We

describe the state space model, the unscented Kalman filter to compute the likelihood function,

and how we handle missing observations.

B.1 The state space model

The state space model in (12)–(18) consists of a transition equation and a measurement equation.

The transition equation describes the discrete-time dynamics of the latent state process, which

is the unobserved capital and labor stocks providing services for production. The measurement

equation describes the relation between the state process and the observed data (earnings, capital,

labor, investment, hiring) of firms that share the same state process in each group. To facilitate the

exposition, we use a standard notation in state space models, and present the model as if missing

observations were absent (Appendix B.3 discusses how we handle missing observations).

The transition equation describes the discrete time dynamic of the two-dimensional state process

xt = [log(Kt), log(Lt)]
′, with ′ denoting transposition,

xt+1 = φ0 + φ1xt + wt (32)

where φ0 = [µK µL]′, φ1 is the identity matrix, wt ∼ N (0, Q), Q is a diagonal covariance matrix

with entries σ2K and σ2L. The measurement equation links the observed data to the state process

and is given by

zt = h(xt) + vt (33)

where the measurement error vt ∼ N (0, R). We consider groups of N = 10 firms and for each

firm we obtain five variables, i.e., operating earnings, capital, labor, investment and hiring. The
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fifty-dimensional vector zt collects all the observed variables in every year t. We allow measurement

errors on each variable to have their specific variance, σ2v,1, . . . , σ
2
v,5, resulting in a block diagonal

covariance matrix R. Denoting by x1,t = log(Kt) and x2,t = log(Lt) the two components of the

state process, the nonlinear function h(xt) is given by

h(xt) = [s∗eγ x1,teβ x2,t1′, ex1,t1′, ex2,t1′, i∗ex1,t1′, h∗ex2,t1′]′ (34)

where 1 is an N -dimensional column vector of ones. The nonlinearity of h(xt) requires using the

Unscented Kalman filter (UKF) to filter out xt and to compute the likelihood function. Below we

provide a brief discussion of the UKF, starting from the Kalman filter.

B.2 The Unscented Kalman filter

If the function h(xt) were linear, i.e., h(xt) = h0 + h1xt, the Kalman filter would provide efficient

estimates of the conditional mean and variance of the state vector. Let x̂t|t−1 = Et−1[xt] and

ẑt|t−1 = Et−1[zt] denote the expectation of xt and zt, respectively, using information up to and

including time t− 1, and let Pt|t−1 and Ft|t−1 denote the corresponding error covariance matrices.

Furthermore, let x̂t = Et[xt] denote the expectation of xt including information at time t, and

let Pt denote the corresponding error covariance matrix. The Kalman filter consists of two steps:

prediction and update. In the prediction step, x̂t|t−1 and Pt|t−1 are given by

x̂t|t−1 = φ0 + φ1x̂t−1 (35)

Pt|t−1 = φ1Pt−1φ
′
1 +Qt (36)

where ẑt|t−1 and Ft|t−1 are in turn given by

ẑt|t−1 = h0 + h1x̂t|t−1 (37)

Ft|t−1 = h1Pt|t−1h
′
1 +R. (38)

In the update step, the estimate of the state vector is refined based on the difference between

observed and predicted quantities, with x̂t = Et[xt] and Pt given by

x̂t = x̂t|t−1 +Kt(zt − ẑt|t−1) (39)

Pt = Pt|t−1 −Kt Ft|t−1K
′
t (40)

where Kt is the so-called Kalman gain, obtained by minimizing the trace of Pt with respect to Kt,

and it is given by Kt = Pt|t−1h
′
1F
−1
t|t−1.

In our setting, the function h(xt) is nonlinear, and the Kalman filter has to be modified. Non-

linear state space models have traditionally been handled with the extended Kalman filter, which

effectively linearizes the measure equation around the predicted state. In recent years the UKF has

emerged as a superior alternative. Rather than approximating the measurement equation, it uses

the true nonlinear measurement equation and approximates the distribution of the state vector

with a deterministically chosen set of sample points, called “sigma points” that capture the true

mean and covariance of the state vector. When propagated through the nonlinear function h(xt),

the sigma points capture the mean and covariance of the data accurately to the 2nd order (3rd

order for Gaussian states) for any nonlinearity.

Specifically, a set of 2L + 1 sigma points and associated weights are selected according to the
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following scheme

χ̂0
t|t−1 = x̂t|t−1, ω0 = κ

L+κ

χ̂it|t−1 = x̂t|t−1 +
(√

(L+ κ)Pt|t−1

)
i
, ωi = 1

2(L+κ) , i = 1, . . . , L

χ̂it|t−1 = x̂t|t−1 −
(√

(L+ κ)Pt|t−1

)
i
, ωi = 1

2(L+κ) , i = L+ 1, . . . , 2L

(41)

where L is the dimension of x̂t|t−1, κ is a scaling parameter, ωi is the weight associated with the

i-th sigma point, and
(√

(L+ κ)Pt|t−1

)
i

is the i-th column of the matrix square root. Then, in

the prediction step, (37) and (38) are replaced by

ẑt|t−1 =
2L∑
i=0

ωi h(χ̂it|t−1) (42)

Ft|t−1 =

2L∑
i=0

ωi(h(χ̂it|t−1)− ẑt|t−1)(h(χ̂it|t−1)− ẑt|t−1)
′ +R. (43)

The update step is still given by (39) and (40), but with Kt computed as

Kt =

2L∑
i=0

ωi(χ̂it|t−1 − x̂t|t−1)(h(χ̂it|t−1)− ẑt|t−1)
′F−1t|t−1. (44)

Finally, the log-likelihood function is given by

T∑
t=1

−1

2

[
5N log(2π) + log |Ft|t−1|+ (zt − ẑt|t−1)′F−1t|t−1(zt − ẑt|t−1)

]
(45)

where T is the time series length of the sample. Model estimates are obtained by maximizing the

log-likelihood (45) with respect to the model parameters: s∗, (c/λK), (c/λL), γ, β, µK , µL, σK ,

σL, and the five variances of the measurement errors in the covariance matrix R. The procedure

jointly returns parameter estimates and the filtered trajectory of the latent state variable x̂t.

B.3 Missing observations handled with unscented Kalman filter

A prominent feature of corporate data are missing observations. In our Compustat panel, 78% of

firm-year observations are missing relative to a full balanced panel. Although the UKF is different

from the standard Kalman filter, missing observations can be handled by applying the usual method

in Kalman filtering; see Section 3 in Shumway and Stoffer (1982). For completeness we briefly recall

the method.

Suppose that there are no missing observations in year t. Then, the measurement equation (33)

holds. That is, zt collects all the observable variables (operating earnings, capital, labor, investment,

hiring) of the N firms in a year t. Suppose now that some data in year t is missing. The key idea

is to “select” the components of the 5N -dimensional vector zt corresponding to the observed (not

missing) data. This task is achieved by simply using a matrix St consisting of zeros and ones

with dimension Mt × 5N , where Mt is the number of observed variables. To illustrate, consider an

extreme and unrealistic case in which only the first variable (operating earnings) of the first firm

in zt is available in year t. In that case, St = (1, 0, . . . , 0) is a 1× 5N row vector, Mt = 1 and St zt

41



is the operating earning of that firm. If all variables of all N firms are available in year t, then St
is a 5N × 5N identity matrix.

The procedure to compute the log-likelihood value with missing observations is as follows. First,

for each year t, construct the matrix St based on the position of observed variables in zt. Then,

pre-multiply both sides of equation (33) by St and use this measurement equation to run the UKF.

Finally, compute the log-likelihood in (45) replacing 5N by Mt, which is the effective number of

observations used to compute the likelihood at time t.

The matrix St is time dependent and needs to be computed for each year t. This time de-

pendence allows the procedure to accommodate missing observations of different variables in the

5N -dimensional vector zt as well as entry and exit of firms in the panel.
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Figure 1: Model comparative statics. The figure plots the combinations of optimal
investment rate, i∗, and optimal short-term effort s∗, as short-term effort adjustment costs,
λs, vary between 3.33 (points A and Ã) and 6.66 (points B and B̃). For the black lines
in either panel, all other parameters are set to λK = 2.5, λL = 4.5, δK = 0.2, δL = 0.1,
σK = 0.15, σL = 0.3, γ = 0.4, β = 0.3, r = 0.045. For the blue lines, the parameters are the
same expect λK = 3.2 and σK = 0.35. On the left panel, the blue line is for a higher value of
capital adjustment costs (λK = 3.2). On the right panel, the blue line is for a higher capital
shocks volatility (σK = 0.35) and low (σK = 0.15).
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Figure 2: Sensitivity of model-implied moments to s∗ and σK. The figure plots
two maps of iso-curves. Each curve in blue represents all the combinations of values for
the short-term effort policy, s∗, and the volatility of shocks to the capital stock, σK , that
imply the same expected earnings growth rate, E[CFt+1/CFt], all else constant. For the
blue solid line, the earnings growth rate is 2%; for the blue dash-dotted line, it is 1.9%.
Each curve in black represents the combinations of s∗ and σK that imply the same earnings
growth variance, V [CFt+1/CFt], ceteris paribus : 0.36% for the solid line and 0.3% for the
dash-dotted line.
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Figure 8: Firm age and short-term effort-to-investment ratio during the IPO
decade. The figure shows the distribution of the estimated ratio of short-term effort to
investment, ŝ∗/̂i∗, during the decade in which the firm went public, conditional on the age
of the firm at the IPO and whether the firm failed, was acquired or survived the decade.
The sample includes all Compustat firms from 1971 to 2019 with at least (not necessarily
consecutive) 10 years of annual data. The firm model is estimated on 1,346 groups of firms.
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Figure 9: The short-term effort-to-investment ratio across industries. The figure
shows the distribution of the estimated ratio of short-term effort to investment, ŝ∗/̂i∗, during
the decade in which the firm went public and during the subsequent decade for the four major
groups in the 5-industry classification by Fama and French (1997). The sample includes all
Compustat firms from 1971 to 2019 with at least (not necessarily consecutive) 10 years of
annual data. The firm model is estimated on 1,346 groups of firms.
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Figure 10: The short-term effort-to-investment ratio around the Great Finan-
cial Crisis. This figure plots the time series of the average estimated short-term effort-to-
investment ratio, ŝ∗/̂i∗, for the ten-year periods before and after the Great Financial Crisis
of 2007 to 2009. For the 1996–2006 period, the model is estimated separately for firms that
failed and were de-listed (red line) or survived into the 2010-2019 period (black line). The
sample includes all Compustat firms from 1996 to 2019 with at least (not necessarily con-
secutive) 10 years of annual data. The firm model is estimated on 790 groups of firms. The
shaded area represents the 95% empirical confidence interval for the mean.
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Table 1: Definitions and descriptive of variables
This table presents the definitions (Panel A) and the descriptive statistics (Panel B) of the
main variables used in the analysis. The descriptive statistics are: Number of observations
(N); mean; standard deviation; and the percentiles p5, p25, p50, p75 and p95. The sample
covers the period 1971 to 2019.

Panel A: Variable definition
Variable name Variable definition
Earnings Annual cash flow from operations gross of intangible

investments, as defined by Peters and Taylor (2017):
Ebitda (oibdp) + R&D expense + 0.3 × SG&A expenses

Capital Stock of tangible plus intangible capital, computed as in
Peters and Taylor (2017)

Investment Investment in tangible & intangible assets, as defined
by Peters and Taylor (2017): Capex + R&D expense
+ 0.3 × SG&A expenses

Labor Total number of employees (emp) times the annual aver-
age salary in the four industry groups in the 5-industry
Fama and French (1997) classification: Consumer Goods,
Manufacturing, Technology, and Healthcare

Hiring Year-on-year change in the number of employees (empt-
empt−1) plus the average number of employees leaving the
company, estimated as emp times the US average annual
separation from the U.S. Bureau of Labor Statistics

Hiring costs Hiring times the average salary in the sector on the same
year

Markup Marginal cost markup by De Loecker et al. (2020)
Size Logarithm of the book value of total assets (at, in $M)
Initial assets First available observation of the Book value of total as-

sets (at, in $M) for each firm
ln(Sales) Logarithm of annual sales (sale, in $M)
Sales growth ln(Sales)t − ln(Sales)t−1
Age at IPO Offer date year - Founding year, Field-Ritter dataset

(Field and Karpoff, 2002; Loughran and Ritter, 2004)
Public life length Duration of the firm’s spell in Compustat in years

Panel B: Descriptive statistics
N mean sd p5 p25 p50 p75 p95

Earnings-to-initial assets 193,883 1.61 5.80 −0.48 0.08 0.31 0.88 6.55
Capital-to-initial assets 192,463 8.43 26.55 0.30 0.89 1.77 4.77 31.89
Labor-to-initial assets 166,732 4.46 15.16 0.03 0.28 0.77 2.25 17.31
Investment/Capital 189,430 0.23 0.18 0.04 0.10 0.18 0.29 0.61
Hiring/Labor 146,192 0.03 0.32 0.00 0.00 0.05 0.16 0.43
Markup 148,346 1.52 1.03 0.61 0.99 1.23 1.66 3.46
ROA 194,640 −0.12 0.48 −0.90 −0.09 0.02 0.07 0.17
Size 195,097 4.35 2.51 0.40 2.53 4.22 6.06 8.75
Age at IPO 84,878 19.76 25.38 1.00 5.00 10.00 22.00 79.00
Public life length 210,584 17.82 10.92 5.00 9.00 15.00 25.00 40.00
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Table 2: Decomposition of standard deviations by industries or estimation groups
This table shows the decomposition of the total standard deviation of firm characteristics
into the between- and within-group standard deviations. Firms are grouped according to
their 4-digit SIC code (SIC4), their 17-industry classifications in Fama and French (1997)
(FF17), or allocated into groups of ten firms sorted by average annual cash flow growth
rate within each 5 Fama and French (1997) industry (‘Groups’) and same decade of IPO.
The data is for all yearly observations of the Compustat firms with at least (not necessarily
consecutive) 10 years of cash flow data between 1971 and 2019. All other variables are
defined in Table 1.

Standard deviation

Within- Between-

SIC4 FF17 Groups SIC4 FF17 Groups

Earnings-to-initial assets 2.93 4.34 2.57 1.33 0.70 2.19
Capital-to-initial assets 13.21 20.53 12.61 6.25 3.36 9.30
Labor-to-initial assets 8.30 10.89 6.99 4.96 2.75 5.49
Investment-to-initial assets 1.99 3.11 2.21 0.93 0.62 1.52
Hiring-to-initial assets 1.17 1.39 1.08 0.53 0.29 0.60
Markup 0.50 0.68 0.76 0.34 0.23 0.56
ROA 0.32 0.43 0.40 0.11 0.12 0.27
Size 2.09 2.44 1.93 1.25 0.61 1.50
Age at IPO 20.22 28.44 11.16 21.55 6.40 18.19
Public life length 9.63 10.93 6.79 4.73 1.38 6.44
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Table 3: Summary of the model’s parameters and policies estimates
This table summarises the maximum likelihood estimates of the model equations (12)–(18).
The model parameters and policies are estimated for each of the 1,346 groups of firms in
Compustat between 1971 and 2019. The 5th, 25th, 75th and 95th percentiles are denoted
by p5, p25, p75, and p95.

Panel A: Point estimates

Standard
Mean Deviation p5 p25 Median p75 p95

1. Policies

î∗ 0.20 0.08 0.09 0.14 0.18 0.24 0.34

ĥ∗ 0.15 0.09 0.06 0.09 0.13 0.17 0.32
ŝ∗ 0.29 0.20 0.00 0.17 0.27 0.38 0.64

2. Capital and labor stocks

µ̂K 0.08 0.10 −0.04 0.04 0.08 0.13 0.21
σ̂K 0.20 0.32 0.00 0.04 0.15 0.25 0.51
µ̂L 0.03 0.18 −0.25 −0.01 0.05 0.11 0.21
σ̂L 0.69 4.03 0.00 0.17 0.33 0.53 1.26

3. Earnings elasticities to inputs

γ̂ 0.56 0.32 0.00 0.30 0.63 0.85 1.00

β̂ 0.27 0.28 0.00 0.07 0.16 0.40 0.93

Panel B: Absolute value of t-statistics

Standard
Mean Deviation p5 p25 Median p75 p95

î∗ 2.68 2.78 0.04 0.80 1.92 3.61 7.71

ĥ∗ 1.96 2.09 0.02 0.49 1.38 2.68 6.00
ŝ∗ 7.12 8.97 0.17 2.04 4.95 9.66 19.92
µ̂K 6.93 7.94 0.34 2.17 4.77 9.19 20.08
σ̂K 6.73 7.24 0.30 2.16 4.75 9.05 20.25
µ̂L 6.70 7.28 0.33 2.13 4.88 8.96 18.42
σ̂L 6.73 6.81 0.32 2.04 4.83 9.13 19.51
γ̂ 7.26 7.76 0.29 2.13 4.98 9.47 21.81

β̂ 6.83 7.66 0.21 1.98 4.81 8.83 20.44
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Table 4: Summary of the model’s parameters and policies estimates by industry
This table reports the mean and standard deviation of the maximum likelihood estimates of
the model equations (12)–(18) for the four major industries in the 5-industry classification
by Fama and French (1997). The model parameters and policies are estimated for each of the
1,346 groups of firms in Compustat between 1971 and 2019. For each group, the parameters
are estimated over two periods: the decade when the IPO took place (D1) and the next
decade (D2). For the first decade, groups include either firms that failed and were de-listed
in that decade or firms that survived.

Panel A: Point estimates by decade

Consumer Goods Manufacturing
Failed Survived Failed Survived

D1 D1 D2 D1 D1 D2

ŝ∗ Mean 0.26 0.38 0.35 0.28 0.38 0.32
Std. Dev. 0.17 0.13 0.25 0.18 0.21 0.24

î∗ Mean 0.29 0.25 0.17 0.25 0.20 0.15
Std. Dev. 0.08 0.06 0.04 0.06 0.06 0.04

ŝ∗/̂i∗ Mean 1.02 1.56 2.13 1.24 2.00 2.30
Std. Dev. 0.74 0.58 1.80 0.86 1.16 1.70

σ̂K Mean 0.10 0.02 0.03 0.07 0.04 0.04
Std. Dev. 0.24 0.11 0.09 0.13 0.14 0.23

γ̂ Mean 0.36 0.49 0.64 0.45 0.45 0.58
Std. Dev. 0.31 0.28 0.31 0.34 0.30 0.33

Log(Age at IPO) Mean 2.28 2.78 2.79 2.38 2.69 2.70
Std. Dev. 1.18 1.22 1.18 1.19 1.27 1.25

Number of firms 192 1,132 1,480 120 868 1,048

Technology Healthcare
Failed Survived Failed Survived

D1 D1 D2 D1 D1 D2

ŝ∗ Mean 0.44 0.52 0.46 0.22 0.41 0.32
Std. Dev. 0.32 0.25 0.31 0.17 0.32 0.29

î∗ Mean 0.37 0.32 0.21 0.30 0.31 0.19
Std. Dev. 0.08 0.08 0.05 0.09 0.06 0.03

ŝ∗/̂i∗ Mean 1.25 1.70 2.16 0.93 1.40 1.74
Std. Dev. 0.90 1.03 1.40 0.78 1.12 1.50

σ̂K Mean 0.10 0.02 0.02 0.06 0.04 0.03
Std. Dev. 0.21 0.05 0.05 0.14 0.07 0.09

γ̂ Mean 0.38 0.44 0.58 0.47 0.37 0.53
Std. Dev. 0.31 0.31 0.31 0.35 0.30 0.34

Log(Age at IPO) Mean 1.99 2.21 2.20 2.05 1.93 2.02
Std. Dev. 0.81 0.86 0.85 0.98 0.89 0.84

Number of firms 367 1,728 2,146 55 470 700

(Table continues)56



Table 4 -continued

Panel B: Changes in estimates between decades†

Consumer
Goods Manufacturing Technology Healthcare

∆ŝ∗/̂i∗ Mean 0.41∗∗∗ 0.29∗∗ 0.37∗∗∗ 0.41∗∗∗

Standard deviation 1.53 1.81 1.58 1.19

∆σ̂K Mean 0.02∗∗∗ 0.02∗ 0.002 −0.01
Standard deviation 0.10 0.15 0.09 0.10

∆γ̂ Mean 0.16∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.17∗∗∗

Standard deviation 0.41 0.47 0.43 0.45

Number of groups 248 234 316 98

† Estimates followed by ***, **, and * are statistically different from zero with 0.01, 0.05,

and 0.1 significance.
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Table 5: Interdecadal changes in short-term effort and investment policies
This table presents estimates from cross-sectional regressions of the change in the estimated
short-term effort-to-investment ratio, ∆s∗/i∗, from the decade of the firm’s IPO to the next,
on binary variables indicating the decade in which the firms went public (1{IPO in DD} for
DD = 70s, 80s, 90s, 00s) and the interaction between these dummy variables and changes in
the volatility of the capital stock, ∆σ̂K , and changes in the elasticity of earnings to capital,
∆γ̂ during the same period. The fixed effect of the 70s IPO cohort is subsumed by the
constant in the regression. Additional control variables (coefficients untabulated) are the
changes to the volatility of the labor stock and the elasticity of earnings to the labor factor.
Each regression includes all groups of firms in one of each of the four major industries in
the Fama and French (1997) 5-industry classification. Robust standard errors are reported
under each estimate in parentheses. Estimates followed by ∗ ∗ ∗, ∗∗, and ∗ have p-values
lower than 0.01, 0.05, and 0.1.

Consumer
Goods Manufacturing Technology Healthcare

Constant 0.556∗∗∗ 0.290∗∗ 0.028 0.390∗

(0.111) (0.130) (0.124) (0.204)
1{IPO in 80s} −0.219 0.091 0.635∗∗∗ 0.658∗∗

(0.163) (0.182) (0.155) (0.317)
1{IPO in 90s} 1.011∗∗ 0.600∗∗ 1.021∗∗∗ −0.398

(0.414) (0.239) (0.213) (0.289)
1{IPO in 00s} 0.156 0.084 0.692∗∗ 2.599∗∗∗

(0.194) (0.366) (0.296) (0.269)

1{IPO in 70s} ×∆σ̂K −4.599∗∗ −1.330 0.902 8.966∗∗

(1.902) (0.910) (0.869) (3.413)
1{IPO in 80s}×∆σ̂K 7.808∗∗∗ 1.455 −0.591 −7.961∗∗

(2.302) (1.170) (1.178) (3.854)
1{IPO in 90s}×∆σ̂K −4.061 1.569 2.109 −8.621∗∗

(4.798) (1.258) (1.691) (3.529)
1{IPO in 00s}×∆σ̂K 5.795∗∗∗ −0.580 −12.316∗∗ −19.099∗∗∗

(1.966) (1.274) (6.174) (5.232)

1{IPO in 70s}×∆γ̂ −1.756∗∗∗ −0.121 −1.430∗∗∗ −1.727∗∗∗

(0.319) (0.432) (0.346) (0.588)
1{IPO in 80s}×∆γ̂ 0.111 −0.840∗ −1.150∗∗∗ −0.964

(0.314) (0.447) (0.310) (0.657)
1{IPO in 90s}×∆γ̂ −2.474∗∗∗ −1.897∗∗∗ −1.456∗∗∗ 0.114

(0.851) (0.460) (0.385) (0.544)
1{IPO in 00s}×∆γ̂ 0.628 −5.211∗∗∗ −1.478∗∗ 8.553∗∗∗

(0.513) (1.662) (0.703) (0.990)

Number of Observations 248 234 316 98
R2 0.442 0.629 0.430 0.422
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Table 6: Cross-sectional regressions of short-term effort and investment policies
This table presents estimates from cross-sectional regressions of the estimated short-term
effort, s∗, investment, i∗, and short-term effort-to-investment ratio, s∗/i∗ on binary variables
indicating the decade in which the firms went public, i.e., 1{IPO in DD} for DD = 80s,
90s, 00s, the volatility of the capital stock, σ̂K , the elasticity of earnings to capital, during
the same period. Each regression controls for industry fixed effects using the Fama and
French (1997) 5-industry classification. The constant subsumes the fixed effects of the 70s
IPO cohort and the 5th industry (‘Other’). The parameters are estimated over two periods:
the decade when the IPO took place, and the next decade. Standard errors clustered at the
group level are reported under each estimate in parentheses. Estimates followed by ∗ ∗ ∗, ∗∗,
and ∗ have p-values lower than 0.01, 0.05, and 0.1.

Failed firms, IPO decade Survivors, IPO decade Survivors, Next decade

ŝ∗ î∗ ŝ∗/̂i∗ ŝ∗ î∗ ŝ∗/̂i∗ ŝ∗ î∗ ŝ∗/̂i∗

Constant 0.369∗∗∗ 0.208∗∗∗ 1.831∗∗∗ 0.388∗∗∗ 0.251∗∗∗ 1.507∗∗∗ 0.653∗∗∗ 0.203∗∗∗ 3.730∗∗∗

(0.122) (0.044) (0.342) (0.032) (0.010) (0.150) (0.054) (0.008) (0.301)

σ̂K 0.054 0.039 −0.018 −0.102∗ −0.056∗∗∗ 0.128 −0.069 0.013 −0.317
(0.098) (0.032) (0.293) (0.058) (0.016) (0.414) (0.045) (0.009) (0.256)

γ̂ 0.075 −0.006 0.124 −0.205∗∗∗ −0.001 −0.869∗∗∗ −0.508∗∗∗ −0.005 −3.026∗∗∗

(0.058) (0.028) (0.220) (0.028) (0.010) (0.113) (0.057) (0.006) (0.326)

1{IPO in 80s} −0.288∗∗ 0.069∗ −1.185∗∗∗ 0.028 0.015∗∗ 0.069 0.043∗∗ −0.016∗∗∗ 0.275∗∗∗

(0.116) (0.040) (0.290) (0.018) (0.007) (0.076) (0.019) (0.005) (0.089)

1{IPO in 90s} −0.180 0.047 −0.753∗∗∗ −0.008 −0.003 0.094 0.028 −0.040∗∗∗ 0.584∗∗∗

(0.113) (0.040) (0.284) (0.016) (0.006) (0.072) (0.022) (0.005) (0.126)

1{IPO in 00s} −0.320∗∗∗ 0.018 −1.068∗∗∗ −0.092∗∗∗ −0.042∗∗∗ 0.015 −0.061∗∗ −0.056∗∗∗ 0.327∗∗

(0.120) (0.046) (0.331) (0.022) (0.009) (0.094) (0.030) (0.006) (0.162)

Consumer Goods 0.004 0.055∗∗∗ −0.222 0.061∗∗∗ 0.034∗∗∗ 0.005 0.069∗∗ 0.023∗∗∗ 0.206
(0.044) (0.016) (0.208) (0.018) (0.007) (0.097) (0.027) (0.004) (0.176)

Manufacturing 0.013 0.019 −0.037 0.058∗∗∗ −0.010 0.416∗∗∗ 0.026 −0.005 0.271∗

(0.045) (0.015) (0.220) (0.020) (0.007) (0.114) (0.026) (0.004) (0.155)

Technology 0.167∗∗∗ 0.128∗∗∗ −0.030 0.205∗∗∗ 0.106∗∗∗ 0.162 0.157∗∗∗ 0.054∗∗∗ 0.221
(0.050) (0.015) (0.204) (0.021) (0.008) (0.104) (0.029) (0.005) (0.145)

Healthcare −0.052 0.069∗ −0.393 0.074∗∗ 0.087∗∗∗ −0.194 0.021 0.034∗∗∗ −0.242
(0.055) (0.037) (0.283) (0.036) (0.009) (0.146) (0.036) (0.005) (0.197)

Log(Age at IPO) 0.024∗∗∗ −0.012∗∗∗ 0.115∗∗∗ 0.011∗∗∗ −0.011∗∗∗ 0.126∗∗∗ −0.006∗ −0.007∗∗∗ 0.032
(0.008) (0.003) (0.030) (0.003) (0.001) (0.015) (0.004) (0.001) (0.022)

Observations 839 839 839 4,736 4,736 4,736 6,126 6,126 6,126
R2 0.183 0.359 0.103 0.235 0.393 0.143 0.257 0.367 0.244
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Table 7: Firm policies and product market outcomes during the IPO decade
This table presents estimates from cross-sectional regressions of the De Loecker et al. (2020)
price-marginal cost markup (Panel A) or the logarithm of total annual sales (Panel B) on the
estimates of short-term effort, s∗ and the investment rate, i∗, during the decade in which the
firm went public. Each specification includes cohort fixed effects (IPO in the 70s, 80s, 90s
or 00s) and industry fixed effects following the 5-industry classification by Fama and French
(1997). The number in brackets under each coefficient is its economic significance, computed
as the product of the coefficient times its associated variable’s sample standard deviation.
Robust standard errors are reported in parentheses under each coefficient. Estimates followed
by ∗ ∗ ∗, ∗∗, and ∗ have p-values lower than 0.01, 0.05, and 0.1.

Panel A: Markup

Survivors Failed All firms Survivors Failed All firms

ŝ∗ 0.338∗∗∗ 0.702∗∗∗ 0.470∗∗∗ 0.345∗∗ 0.642∗∗∗ 0.444∗∗∗

[0.080] [0.166] [0.111] [0.082] [0.152] [0.105]
(0.124) (0.154) (0.0897) (0.166) (0.229) (0.129)

î∗ 1.201∗∗∗ −0.131 0.737∗∗∗ 0.806∗ −0.165 0.526
[0.106] [−0.011] [0.064] [0.070] [−0.014] [0.046]
(0.352) (0.537) (0.281) (0.471) (0.872) (0.424)

Log(Age at IPO) −0.074∗∗∗ 0.039 −0.043∗∗

[−0.083] [0.045] [−0.048]
(0.027) (0.033) (0.021)

Observations 2,812 1,614 4,426 1,691 786 2,477
R2 0.052 0.079 0.057 0.084 0.124 0.093

Panel B: Log(Sales)

Survivors Failers All firms Survivors Failers All firms

ŝ∗ 1.579∗∗∗ 2.347∗∗∗ 2.088∗∗∗ 1.194∗∗∗ 1.449∗∗∗ 1.274∗∗∗

[0.374] [0.556] [0.495] [0.283] [0.343] [0.302]
(0.133) (0.175) (0.103) (0.153) (0.200) (0.121)

î∗ −9.329∗∗∗ −4.996∗∗∗ −8.468∗∗∗ −5.808∗∗∗ −3.420∗∗∗ −5.242∗∗∗

[−0.812] [−0.435] [−0.737] [−0.505] [−0.298] [−0.456]
(0.411) (0.514) (0.318) (0.528) (0.613) (0.403)

Log(Age at IPO) 0.521∗∗∗ 0.482∗∗∗ 0.517∗∗∗

[0.589] [0.545] [0.584]
(0.039) (0.057) (0.032)

Observations 5,588 2,735 8,323 2,336 833 3,169
R2 0.281 0.238 0.266 0.357 0.285 0.347
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Table 8: Firm policies and product market outcomes after the IPO decade
This table presents estimates from cross-sectional regressions of the De Loecker et al. (2020)
price-marginal cost markup, the logarithm of total annual sales, and sales growth from the
IPO decade to the next on the estimates of short-term effort, s∗ and the investment rate,
i∗, during the decade after the IPO decade. Each specification includes cohort fixed effects
for the IPO decade (70s, 80s, 90s or 00s) and industry fixed effects based on the 5-industry
classification by Fama and French (1997). The number in brackets under each coefficient
is its economic significance, computed as the product of the coefficient times its associated
variable’s sample standard deviation. Robust standard errors are reported in parentheses
under each coefficient. Estimates followed by ∗ ∗ ∗, ∗∗, and ∗ have p-values lower than 0.01,
0.05, and 0.1.

Markup Log Sales Sales Growth

ŝ∗ 0.427∗∗∗ 0.524∗∗∗ 1.468∗∗∗ 1.220∗∗∗ 0.598∗∗∗ 0.561∗∗∗

[0.116] [0.142] [0.398] [0.331] [0.162] [0.152]
(0.084) (0.123) (0.101) (0.117) (0.059) (0.081)

î∗ 0.351 −0.238 −12.59∗∗∗ −9.205∗∗∗ 0.516∗ −0.479
[0.020] [−0.013] [−0.704] [−0.515] [0.029] [−0.027]
(0.382) (0.574) (0.566) (0.715) (0.284) (0.461)

Log(Age at IPO) −0.066∗∗∗ 0.408∗∗∗ −0.177∗∗∗

[−0.077] [0.479] [−0.208]
(0.018) (0.034) (0.018)

Observations 5,384 2,795 7,001 3,048 6,156 2,600
R2 0.073 0.099 0.23 0.303 0.040 0.078
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Table 9: Predictive regressions of product market outcomes
This table presents estimates from regressions of the De Loecker et al. (2020) price-marginal
cost markup (Panel A), the logarithm of total annual sales (Panel B), and sales growth (Panel
C) in Period 1 (0 to 5 years of the decade after IPO), Period 2 (6 to 10 years), and Period 3 (11
to 15 years) on the estimates of short-term effort, s∗ and the investment rate, i∗, during the
IPO decade. Each specification includes cohort fixed effects for the IPO decade (70s, 80s, 90s
or 00s) and industry fixed effects based on the 5-industry classification by Fama and French
(1997). The coefficients of each regression are estimated by OLS or with a Heckman (1979)
correction for sample selection, where the selection equation is given by the probability that
a firm survives its IPO decade. Instruments include estimates of deep parameters (σK and
µK) and the St. Louis FED probability of a recession in the month following the firm’s IPO.
The number in brackets under each coefficient is its economic significance, computed as the
product of the coefficient times its associated variable’s sample standard deviation. Robust
standard errors are reported in parentheses under each coefficient. Estimates followed by
∗ ∗ ∗, ∗∗, and ∗ have p-values lower than 0.01, 0.05, and 0.1.

Panel A: Markup

Period 1 Period 2 Period 3
OLS Heckman OLS Heckman OLS Heckman

ŝ∗ 0.480∗∗∗ 0.427∗∗∗ 0.376∗∗∗ 0.287∗∗ 0.328∗∗∗ 0.170
[0.114] [0.010] [0.089] [0.068] [0.079] [0.040]
(0.109) (0.149) (0.098) (0.144) (0.119) (0.182)

î∗ 0.921∗∗∗ 0.927∗∗ 0.772∗∗∗ 1.016∗∗∗ 1.204∗∗∗ 1.527∗∗∗

[0.081] [0.081] [0.068] [0.089] [0.106] [0.134]
(0.284) (0.419) (0.260) (0.392) (0.329) (0.527)

Observations 4,320 3,226 3,741 2,902 2,152 2,068
R2 0.064 0.09 0.126

Panel B: Log(Sales)

Period 1 Period 2 Period 3
OLS Heckman OLS Heckman OLS Heckman

ŝ∗ 1.963∗∗∗ 1.304∗∗∗ 2.261∗∗∗ 1.480∗∗∗ 2.274∗∗∗ 0.842∗∗

[0.466] [0.309] [0.536] [0.351] [0.539] [0.200]
(0.136) (0.211) (0.160) (0.246) (0.229) (0.363)

î∗ −8.505∗∗∗ −5.899∗∗∗ −8.966∗∗∗ −5.648∗∗∗ −9.598∗∗∗ −5.865∗∗∗

[−0.746] [−0.517] [−0.786] [−0.495] [−0.842] [−0.514]
(0.409) (0.681) (0.467) (0.760) (0.676) (1.059)

Observations 5,625 3,506 4,679 3,103 2,724 2,236
R2 0.266 0.247 0.223
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Table 9 -continued

Panel C: Sale Growth

Period 1 Period 2 Period 3
OLS Heckman OLS Heckman OLS Heckman

ŝ∗ 0.374∗∗∗ 0.395∗∗∗ 0.672∗∗∗ 0.634∗∗∗ 0.743∗∗∗ 0.797∗∗∗

[0.089] [0.094] [0.160] [0.150] [0.176] [0.189]
(0.066) (0.098) (0.107) (0.159) (0.165) (0.291)

î∗ 0.962∗∗∗ 0.756∗∗∗ 0.555∗∗ 0.473 −0.235 −0.044
[0.084] [0.066] [0.049] [0.042] [−0.021] [−0.004]
(0.175) (0.283) (0.280) (0.449) (0.444) (0.770)

Observations 5,567 3,480 4,623 3,080 2,700 2,225
R2 0.028 0.034 0.027
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Table 10: Optimal s∗, i∗ and the Investment CAPM betas
This table presents estimates from cross-sectional regressions of the betas for investment,
βI/A, profitability, βROE, and size, βME, on the estimates of short-term effort, s∗, investment,
i∗, and the elasticity of earnings to capital, γ̂. Each specification also includes cohort fixed
effects for the IPO decade (70s, 80s, 90s or 00s) and industry fixed effects based on the
5-industry classification by Fama and French (1997). The constant term subsumes the fixed
effect of the 5th industry (‘Other’). Robust standard errors are reported in parentheses
under each coefficient. The betas for investment, profitability and size are obtained from
the time series regressions of the portfolio returns on the investment, profitability and size
factors calculated by Hou et al. (2015), controlling for market returns. We form portfolios
of stocks based on our grouping of firms (Section 3.5) and consider the monthly returns of
these portfolios throughout our sample period, from 1971 to 2019. Estimates followed by
∗ ∗ ∗, ∗∗, and ∗ have p-values lower than 0.01, 0.05, and 0.1.

βI/A βROE βME

ŝ∗ −0.080 0.710∗∗∗ −0.310∗∗

(0.168) (0.145) (0.121)

î∗ −1.058∗∗ −2.013∗∗∗ 0.920∗∗∗

(0.532) (0.463) (0.349)

γ̂ −0.125 0.364∗∗∗ −0.110
(0.103) (0.091) (0.073)

Consumer Goods −0.056 0.085 0.008
(0.010) (0.084) (0.071)

Manufacturing 0.018 −0.126 −0.023
(0.101) (0.086) (0.070)

Technology −0.765∗∗∗ −0.345∗∗∗ 0.020
(0.102) (0.090) (0.073)

Healthcare −0.737∗∗∗ 0.017 0.319∗∗∗

(0.122) (0.094) (0.082)

Constant 0.541∗∗∗ −0.341∗∗ 0.843∗∗∗

(0.168) (0.147) (0.120)

Observations 1,315 1,315 1,315
R2 0.154 0.111 0.052
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