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Abstract

This paper studies how banking regulators should disclose the models they use

to assess banks that have reporting discretion. In my setting, assessments depend

on both economic conditions and the fundamental of banks’ asset. The regulatory

models provide signals about economic conditions and banks report the fundamental

of their asset. On the one hand, disclosing the models helps banks to understand how

their assets perform under different economic environments. On the other hand, it

induces banks with assets that are socially undesirable to manipulate the report and

obtain favorable assessments. While the regulator can partially deter manipulation

by designing the assessment rule optimally, the disclosure of regulatory models is

necessary. The optimal disclosure policy is to disclose the regulatory models when

the assessment rule is more likely to induce manipulation and keep them secret

otherwise. In this way, disclosure complements the assessment rule by reducing

manipulation in cases that harm the regulator more. The analyses speak directly

to the supervisory stress test and climate risk stress test.
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1 Introduction

Regulators assess banks on a regular basis to ensure the stability and sustainability of banking

industry. In order to do this, regulators rely on models which capture various features of the

economy and banks. These models are not always disclosed to banks, making the process

of regulatory assessment opaque and its implications unclear. One important reason for not

disclosing the models is to prevent banks from gaming the regulatory assessment (Flannery 2019;

Clark and Li 2022). A common way for banks to game is to provide uninformative reports that

do not represent the underlying risks (Huizinga and Laeven 2012; Bushman and C. D. Williams

2012; Bushman 2016). However, regulatory models contain valuable information which can help

banks to understand how their assets perform under different economic conditions. By disclosing

the models, regulators enable banks to make more informed decisions. In this paper, I study

how regulators should disclose the models they use to assess banks, when banks have reporting

discretion.

This study is especially relevant for supervisory stress test and climate risk stress test. The

supervisory stress test employs a batch of regulatory models to evaluate the resilience of large

banks to adverse macroeconomic shocks. The regulatory models translate the macroeconomic

shocks into the risk parameters at banks’ level and assign losses to particular positions. While

some countries disclose the models transparently, some other countries choose not to disclose

them. For example, in the past, the Federal Reserve only provided the broad framework and

methodology used in the supervisory stress test. In recent years, it has moved towards more

disclosure about the models, including key variables and certain equations. Whereas in Eu-

rope, comprehensive disclosure about the stress test methodologies becomes common practice.1

Disclosing the models helps banks to understand the impact of macroeconomic shocks on their

business activities. But it also facilitates banks to manipulate information, which then benefits

banks at the expense of the reliability of the stress test results. The severity of such manipula-

tions, which is governed by banks’ reporting discretion, crucially affects the tradeoff of disclosing

the stress test models.

In the case of climate risk stress tests, the tradeoff of disclosing the regulatory models is even

more pertinent. Several countries have conducted climate risk stress tests in recent years.2 To

1For example, the European Banking Authority (EBA) discloses the details of models used
in stress test (see https://www.eba.europa.eu/eba-launches-2023-eu-wide-stress-test-0),
the Federal Reserve instead discloses high-level information about the models underlying
Dodd-Frank Act Stress Test (DFAST) and demonstrates how these models work on hy-
pothetical loan portfolios (See https://www.federalreserve.gov/publications/files/
2022-march-supervisory-stress-test-methodology.pdf).

2For example, the Bank of England describes the climate risk stress test scenarios in June 2021. See
https://www.bankofengland.co.uk/climate-change. The ECB has conducted the climate stress test
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fully capture the climate risk factors, the time horizons for climate risk stress tests usually range

between 30 and 50 years. Such long time horizons considerably increase the uncertainty about

the implication of any business activities.3 Nevertheless, the regulatory models used in the test

are kept confidential. In the meanwhile, banks’ report about climate related issue has gained

growing attention in recent years. Governments and market watchdogs have proposed several

reporting rules for banks to follow.4 However, the reporting framework is yet to be standardized,

leading to substantial reporting discretion.

I develop a tractable model to study the optimal disclosure policy about the regulatory

models. The model features one bank and one regulator. The bank has an existing asset whose

payoff is increasing in both the economic conditions and the fundamental of the asset. To

evaluate the asset, the regulator conducts a stress test. In the stress test, the regulatory models

produce a signal about the economic conditions. The regulator discloses the signal to the bank

according to the disclosure choice (discussed later). The bank, which has reporting discretion,

then reports the fundamental of the asset that can be either high or low. The regulator makes

a pass/fail decision based on the signal and the bank’s report. If the bank passes the test, the

bank can continue to hold the asset. Otherwise, it needs to liquidate the asset.5

The bank has large private benefit when retaining the asset such that it prefers to hold

the asset regardless of its payoff. But the regulator prefers to keep the asset only when the

fundamental is high. This conflict of interests gives bank incentive to manipulate its report.

Specifically, manipulation influences the mapping from the asset’s fundamental to the report

and reduces the informativeness of the report. Manipulation is costly to the bank, and the cost

is governed by the prevailing accounting standards which determines the amount of reporting

discretion that the bank has.

I first show that the bank’s manipulation causes losses to the regulator even when the

pass/fail decision is optimal. When making the pass/fail decision, the regulator faces two po-

tential errors: passing a low fundamental asset (i.e., inefficient continuation) and failing a high

fundamental asset (i.e., inefficient liquidation). The relative cost of the two inefficiencies, which

since 2021 and published the results. See results for 2022 https://www.bankingsupervision.europa.
eu/ecb/pub/pdf/ssm.climate_stress_test_report.20220708~2e3cc0999f.en.pdf.

3See https://www.bis.org/fsi/publ/insights34.htm
4For example, in Europe, the Corporate Sustainability Reporting Directive (CSRD) en-

tered into force on 5 January 2023, which requires large companies and listed SMEs to
disclose social and environmental related information. See https://finance.ec.europa.
eu/capital-markets-union-and-financial-markets/company-reporting-and-auditing/
company-reporting/corporate-sustainability-reporting_en. The U.S. Securities and Ex-
change Commission (SEC) also proposed rule changes which require registrants to include certain
climate-related disclosures. See https://www.sec.gov/news/press-release/2022-46.

5I assume that liquidation is the only possible remedial action after failing the stress test. Further
discussions on this point are in Section 2.
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depends on both the economic conditions and the asset fundamental, then pins down the regula-

tor’s pass/fail decision. Since the regulator observes the economic conditions from the regulatory

model and infers the asset fundamental from the bank’s report, the two elements also determine

how the regulator perceives the relative cost of inefficient continuation and that of inefficient

liquidation, which in turn feeds into the pass/fail decision. For given manipulation contained

in the bank’s report, the expected payoff of the asset is increasing as the regulator receives

higher signal from the regulatory models, increasing the relative cost of inefficient liquidation.

Accordingly, the regulator’s pass/fail decision becomes more lenient in the sense that the bank

is more likely to pass the test. The effect of manipulation on the pass/fail decision, however,

is more nuanced. Manipulation decreases the informativeness of the bank’s report, increasing

the similarity between the report of low fundamental asset and that of high fundamental asset.

As a result, both inefficient continuation and inefficient liquidation are more likely to occur.

Depending on the relative cost of the two, the regulator adjusts the pass/fail decision rule in

order to address the error that is more costly. In this way, the pass/fail decision rule optimally

trades off inefficient liquidation against inefficient continuation. However, the optimal pass/fail

decision is an ex post response to the bank’s manipulation. That is, when making the pass/fail

decision, the regulator takes the bank’s manipulation choice as given. As a result, ex ante, the

regulator still bears the cost of passing a low fundamental asset too often, which is the adverse

consequence of manipulation on the regulator.

Disclosure of the regulatory models complements the pass/fail decision as an ex ante approach

to influence the bank’s manipulation incentive. In my model, the disclosure of regulatory models

is equivalent to the disclosure of the signal generated by the models. On the one hand, disclosure

of the signal enables the bank to learn the economic conditions and their impact on the asset

payoff, which then affects the bank’s manipulation incentive.6 On the other hand, since the

regulator passes or fails the bank depending on both the regulator’s signal and the bank’s report,

disclosure of the signal also informs the bank how its report affects the regulator’s pass/fail

decision, which may induce the bank to strategically manipulate its report and self-select the

outcome of the stress test.

I show that the disclosure of regulatory models affects the bank’s manipulation in two ways.

First, it commands the bank’s manipulation to vary with the regulator’s signal. Since the

signal determines the relative cost of inefficient liquidation and inefficient continuation, the

disclosure of the signal also commands the bank’s manipulation to vary with the tradeoff of the

pass/fail decision. I show that, when disclosure incentivizes the bank to learn the asset payoff

6In the context of my model, learning affects the bank’s manipulation choice and I abstract away any
real activity that the bank might take after learning the regulator’s signal.
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from regulatory models, the bank manipulates less when the asset payoff is low. The regulator

benefits from this manipulation choice since the bank manipulates less when the regulator suffers

more losses from passing a low fundamental asset. Hence, disclosure of the signal diverts the

bank’s manipulation from cases where the regulator suffers more losses from manipulation.

However, if the bank strategically manipulates to increase the probability of passing the test,

then the bank manipulates more particularly in cases where the pass/fail decision is susceptible

to manipulation. In this case, disclosure of signal aggravates the regulator’s losses caused by

the bank’s manipulation, confirming the conventional wisdom about the cost of disclosing the

regulatory model.

The second effect of disclosure is that it affects the bank’s expected amount of manipulation.

Disclosing the regulatory models reduces the expected amount of manipulation if bank’s ma-

nipulation incentive is driven by learning from the regulatory models. If the bank manipulates

to exploit the pass/fail decision, then disclosing the regulatory models increases the expected

amount of manipulation. This additional effect arises from the interaction between the bank’s

manipulation response and the regulator’s pass/fail decision and it amplifies the first effect of

the disclosure of regulatory models.

The optimal disclosure policy is to disclose the regulatory models when the cost of inefficient

continuation and that of inefficient liquidation are comparable and keep the models secret oth-

erwise. When the cost of the two inefficiencies is comparable, the pass/fail decision is relatively

insensitive to the bank’s manipulation. In other words, the bank can increase the probability of

passing the test by manipulation without triggering regulatory response in the pass/fail decision.

Given that manipulation is effective in increasing the passing probability, the bank’s manipu-

lation incentive is then driven by the expected gain after passing the test which is determined

by the asset payoff. As a result, disclosing the regulatory models is optimal, since it decreases

the expected amount of manipulation and distributes more manipulation to cases where the

regulator is less affected by it. However, when the cost of one inefficiency dominates the cost

of the other one, the pass/fail decision becomes responsive to the bank’s manipulation. The

bank then manipulates more when manipulation results in larger increase in the probability of

passing the test, which contradicts to the regulator’s preference. Hence, the regulator should

not disclose the regulatory models.

The optimal disclosure policy crucially depends on the bank’s private benefit when passing

the test and the bank’s reporting discretion. Large reporting discretion and/or large private

benefit from passing the test increases the bank’s incentive to manipulate, making the bank

more likely to exploit pass/fail decision. Hence, the amount of disclosure should decrease in
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response.

The remainder of the paper is organized as follows. The rest of the introduction discusses

the relevant literature. Section 2 presents the model. Section 3 studies the optimal pass/fail

decision and the bank’s manipulation response. Section 4 analyzes the optimal disclosure policy

about the regulatory models. Section 5 conducts comparative statics and demonstrates how the

bank’s reporting discretion affects the optimal disclosure policy. Section 6 discusses the model

assumptions. Section 7 concludes. All proofs are included in Appendix A.

1.1 Related literature

The growing literature on stress test design has focused on disclosure about the results

(Goldstein and Sapra 2013; Goldstein and Leitner 2018; Corona, Nan, and Zhang 2019; Quigley

and Walther 2020) and scenario design (Parlatore and Philippon 2022). Instead, I focus on,

before conducting the stress test, whether the regulator should communicate with the bank

about the stress test models. Similar to my paper, Leitner and B. Williams (2023) also study

the disclosure policy about the regulatory models. In their paper, revealing the regulatory models

induces the bank to always invest in risky asset even when the value is low, but not revealing may

lead to underinvestment. While their focus is on the riskiness of bank’s investment, I examine

the role of bank’s information input in the stress test and study how reporting discretion affects

the disclosure policy about regulatory models.

Several papers study the impact of stress test assessment on policy design (Agarwal and

Goel 2020) and on the bank’s opaqueness (Petrella and Resti 2013). In this paper, I show that

the disclosure policy about the regulatory models affect the bank’s reporting incentive which

further influence the accuracy and reliability of stress test results.

The disclosure literature (e.g., Verrecchia (1983) and Dye (1985)) focuses on the disclosure of

firms’ (in my case, the bank’s) information and its impact on the market’s expectation. Instead,

I focus on the disclosure of the regulator’s private information, and I study how it affects the

interactions between the regulator and the bank.

Regarding the bank, I study its reporting incentive when reporting discretion exists. The

bank’s reporting discretion determines how much information the regulator can communicate

with the bank. The role of reporting discretion is also analyzed in Gao and Jiang (2018) in

the context of bank run. In their paper, the reporting discretion reduces the panic-based runs,

but it may also reduce the fundamental-based run. In general, this paper contributes to the

literature on the determinants of reporting quality (e.g., Leuz, Nanda, and Wysocki 2003; Barth,

Landsman, and Lang 2008; Holthausen 2009; Leuz and Wysocki 2016). The consensus is that
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the reporting quality depends on various factors. Among others, the regulatory environment

and the development of capital market are crucial. This paper shows that the stress test design

can affect the reporting quality of banks.

More broadly, this paper contributes to the discussion about the interplay between pruden-

tial and accounting regulation. Bertomeu, Mahieux, and Sapra (2020) show that accounting

measurement complements capital requirements to affect the level and efficiency of banks’ credit

decisions. Corona, Nan, and Zhang (2015) examine the impact of accounting information qual-

ity on banks’ risk-taking incentives, taking into account the interbank competition. This paper

shows that the stress test design should be coherent with the prevailing accounting regulation

to achieve informative assessment.

2 The model

Consider a risk-neutral economy with no discounting. There is one regulator and one bank.

The regulator conducts stress test on the bank. I model the stress test as a four-period game.

At t = 1, the stressed scenarios are given exogenously and are observable by everyone. The

regulator uses regulatory models to predict the impact of the macroeconomic variables included

in stressed scenarios on the banking industry. The output of the regulatory models is summarized

in a signal s ∈ S = [
¯
s, s̄] with a cumulative distribution function F and density f . The density

f has full support. The regulator privately observes s. Throughout the paper, I refer the signal

s as the economic condition. The signal s could represent the probability of a liquidity shock in

the interbank market, or the aggregate amount of deposit withdrawal by a given industry due

to supply chain disruption.

The focus of this paper is to study the optimal disclosure policy about the signal s. At

t = 0, the regulator commits to a disclosure policy before conducting the stress test. The

disclosure policy is defined by the disclosure set D ⊆ S and the no-disclosure sets Nn ⊆ S,

where n ∈ [1,+∞) denotes the number of no-disclosure sets, and, for simplicity, the first no-

disclosure set is denoted by N ≡ N1. For any signal s ∈ D, the regulator communicates it

truthfully to the bank. For any signal s ∈ Nn, the regulator communicates to the bank that the

signal belongs to Nn. I restrict the analyses of no-disclosure sets to monotone disclosure rule in

which Nn pools signals from connected intervals.

The continuation value of the bank’s asset is X(s, ω), which depends on a state variable

ω and the economic condition s. The variable ω represents the fundamental of the asset. It

is either ωh with probability qh or ωl with probability ql ≡ 1 − qh and ωh > ωl. The asset’s
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liquidation value is L(s, ω). Let x(s, ω) denote the relative gains from continuing the asset. That

is,

x(s, ω) = X(s, ω)− L(s, ω).

In the rest of the paper, I derive solutions in terms of x(s, ω). To define efficient liquidation

and efficient continuation, I assume that x(s, ωl) ≤ 0 ≤ x(s, ωh). This suggests that the asset

should continue if and only if its fundamental is high. I assume that x(s, ω) is increasing and

weakly concave in s. I also assume that x(s, ωl) is weakly log-concave in s to ensure that

x(s, ωl) is not too concave in s.7 For example, x(s, ω) = sq + ω for 0 < q ≤ 1 satisfies all the

assumptions for
¯
s ≥ 0 and appropriate values of ω. I also assume that for high fundamental

asset, the relative gain from continuation increases weakly faster and less concave in s. That is,

x′′(s, ωh) ≥ x′′(s, ωl) and x′(s, ωh) ≥ x′(s, ωl). I make the following further assumption about

the bank’s asset.

Assumption 1. Eω

[
x(s, ω)

]
∈ [0, qhx(s̄, ωh)] for s ∈ [

¯
s, s̄].

This assumption states that ex-ante, the bank’s asset is worth continuing. Equivalently,

this assumption assumes that the bank’s asset has higher expected continuation value than

liquidation value for any signal s. Consequently, failing high fundamental asset (inefficient

liquidation) is more costly than passing low fundamental asset (inefficient continuation). This

assumption helps to characterize the optimal disclosure policy, but my main results can be

extended to cases where these conditions are violated. I discuss this assumption in Section 6.1.

The fundamental of the bank’s asset determines the report distribution. In particular, if the

fundamental is ωi, then the report t is drawn from a distribution with density gi(t) over t ∈ [
¯
t, t̄],

where i = {h, l}. The density functions have full support and satisfy monotone likelihood ratio

property (MLRP), i.e., gl(t)
gh(t)

is decreasing in t. Hence, the report t is informative about the asset

fundamental. Moreover, I assume that the ratio gl(t)
gh(t)

is concave in t. Moreover, I impose the

regularity condition that the hazard rate gh(t)
1−Gh(t)

and gl(t)
1−Gl(t)

are decreasing on the support of t.

This assumption means that the probability that the reported value will be below t conditional

on the reported value is already t is decreasing in t. In other words, once the bank gets high

value report, it is more likely to get a even higher report.

At t = 2, the bank may engage in costly manipulation to affect the report generating

process. I follow Gao and Jiang (2020) to model bank’s manipulation as ex-ante manipulation.

That is, the bank chooses the manipulation level before observing the fundamental of the asset.

7Notice that x(s, ωh) is non-negative and concave in s, which then implies that x(s, ωh) is also weakly
log-concave in s. However, given that x(s, ωl) is assumed to be non-positive, such implication breaks
down for x(s, ωl). Hence, I impose the weakly log-concavity assumption on x(s, ωl) only.
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Specifically, the bank chooses manipulation m ∈ [0, 1] to change the report distribution from

gi(t) to

gim(t) = gi(t) +m
(
gh(t)− gi(t)

)
. (1)

If m = 0, the report generating process is not affected by manipulation. If m = 1, then the

report is always generated from the distribution of high fundamental asset gh(t). If m ∈ (0, 1),

then manipulation improves the distribution in the sense of first-order stochastic dominance.

The cost of manipulation m is kc(m) for the bank. Assume that k ∈ (0,+∞) and the cost

function c(m) is increasing and convex with c(0) = c′(0) = 0. I also assume that c′(m)
c′′(m) is weakly

increasing in m, or, equivalently, that c′(m) is weakly log-concave. The conditions are often used

in the literature (see Gao and Jiang (2020)) and are satisfied for common convex functions, e.g.

c(m) = mq for q ≥ 2.

After observing s and receiving report t from the bank, the regulator makes a pass/fail

decision a at t = 3. In particular, the regulator passes (a = 1) or fails (a = 0) the bank to

maximize u in the following

u ≡ ax(s, ω). (2)

The bank’s payoff v is

v ≡ a
(
x(s, ω) +B

)
− kc(m). (3)

Where B is the bank’s private benefit from continuing the asset. I assume x(s, ω)+B > 0 for all

s and ω, meaning that the bank’s private benefit B is large enough such that the bank prefers

continuation for any value of x. The private benefit then leads to conflict of interest between

the regulator and the bank.

The timeline of the model is as follows,

At t = 0, the regulator commits to a disclosure policy about the signal s.

At t = 1, the regulatory models generate a signal s. The regulator privately observes s and

discloses s to the bank according to the disclosure policy.

At t = 2, the bank chooses the level of manipulation m to affect the report generating

process.

At t = 3, state ω is realized, and the bank’s report t is generated. Based on the signal s and

report t, the regulator passes or fails the bank. And payoffs are realized.

The equilibrium consists of the regulator’s disclosure policy about s and the pass/fail decision

a, and the bank’s manipulation m. I solve the model by backward induction. That is, I first

solve for the regulator’s pass/fail decision a for given manipulation level m and disclosure policy

about s. Anticipating the pass/fail decision rule, the bank then chooses the manipulation m
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for given disclosure policy about s. Lastly, the regulator chooses the disclosure policy about s,

taking into account its impact on the bank’s manipulation choice and in turn on the pass/fail

decision.

3 Manipulation and pass/fail decision

In this section, I discuss the bank’s manipulation choice and the regulator’s pass/fail decision,

taking the disclosure policy as given.

At t = 3, the regulator forms expectation of the continuation value x based on her own

signal s and the bank’s report t. The regulator passes the bank if and only if

Eω[x(s, ω)|t, m̂] ≥ 0. (4)

Where m̂ is the regulator’s conjecture about the bank’s manipulation.8 Since gh(t) is a mono-

tone likelihood ratio improvement of gl(t), the expected continuation value Eω[x(s, ω)|t, m̂] is

increasing in the report t. As a result, the pass/fail decision follows a cutoff rule

Lemma 1. For given signal s and bank’s report t and conjecture about the bank’s manipulation

m̂, the regulator passes the bank if and only if t ≥ tp(s, m̂), where the passing threshold tp(s, m̂)

solves

Eω[x(s, ω)|tp, m̂] = 0.

All proofs are included in Appendix A. The passing threshold tp(s, m̂) is defined by the

regulator’s indifferent condition. That is, the regulator is indifferent between passing and failing

the bank when the report is tp(s, m̂). In other words, the passing threshold is chosen to equalize

the expected cost of failing high fundamental asset (inefficient liquidation) and the expected cost

of passing low fundamental asset (inefficient continuation) for given signal s and given conjecture

about manipulation m̂. The following lemma characterizes the passing threshold tp(s, m̂).

Lemma 2. For given level of manipulation m, the passing threshold tp(s,m) is decreasing in s.

For given signal s, the passing threshold tp(s,m) is decreasing in m.

8The conditional expectation is

Eω[x(s, ω)|t, m̂] = x(s, ωh) Pr(ω = ωh|t, m̂) + x(s, ωl) Pr(ω = ωl|t, m̂)

= x(s, ωh)
qhg

h(t)

qhgh(t) + qlglm̂(t)
+ x(s, ωl)

qlg
l
m̂(t)

qhgh(t) + qlglm̂(t)
.
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The intuition of this lemma follows from how the cost of failing high fundamental asset and

that of passing low fundamental asset changes with the signal s and the manipulation m. For

given manipulation level m, the relative gain from continuing the asset x(s, ω) is increasing

in s which implies that failing high fundamental asset becomes more costly relative to passing

low fundamental asset. In response to the increasing relative cost of inefficient liquidation,

the regulator is willing to lower the passing threshold and pass the bank more often. The

second result captures how manipulation affects the relative cost of failing high fundamental

asset and passing low fundamental asset. Assumption 1 assumes that in absence of the report,

the regulator’s expectation of the relative gain from continuing the asset is non-negative. This

implies that inefficient liquidation (failing high fundamental asset) is more costly than inefficient

continuation (passing low fundamental asset) in expectation for all signal s. Manipulation makes

the report distribution of low fundamental asset and that of high fundamental asset more similar,

making it more difficult for the regulator to differentiate the two types of assets. In order to

preserve the high fundamental asset, the regulator needs to decrease the passing threshold.

At t = 2, the bank anticipates the passing threshold tp(s, m̂) and chooses the manipulation

m to maximize the expected payoff. The bank’s expected payoff depends on the disclosure of s.

If the bank does not observe the regulator’s signal s, the expected payoff is

V (m̂,m) =Es

[
qh
(
x(s, ωh) +B

) ∫
t≥tp(s,m̂)

gh(t)dt+ ql
(
x(s, ωl) +B

) ∫
t≥tp(s,m̂)

glm(t)dt

∣∣∣∣∣ s ∈ Nn

]
− kc(m).

Where Nn is the no disclosure set containing signals s that are not disclosed to the bank. For

ease of exposition, I introduce the following definition.

∆
(
tp(s, m̂)

)
≡
∫
t≥tp(s,m̂)

(
gh(t)− gl(t)

)
dt. (5)

This term is the difference in passing probability between high fundamental asset and low fun-

damental asset. It also measures the increases in passing probability of low fundamental asset

after one unit of manipulation. Taking derivative of V (m̂,m) with respect to m, I obtain the

following first-order condition of the bank’s manipulation m,

Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s, m̂)

)∣∣ s ∈ Nn

]
− kc′(m) = 0.

In equilibrium, the regulator’s conjecture about the manipulation m̂ is consistent with the bank’s
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choice. The equilibrium manipulation mNn solves

Es

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn) = 0. (6)

This condition suggests that no disclosure of s forces the bank’s manipulation mNn to be constant

over the regulator’s signal s.

If the bank observes the regulator’s signal s, the expected payoff is

V (s, m̂,m) = qh
(
x(s, ωh) +B

) ∫
t≥tp(s,m̂)

gh(t)dt+ ql
(
x(s, ωl) +B

) ∫
t≥tp(s,m̂)

glm(t)dt− kc(m).

The first-order condition of the bank’s manipulation response m is as follows,

ql
(
x(s, ωl) +B

)
∆
(
tp(s, m̂)

)
− kc′(m) = 0.

Similar to no disclosure case, the regulator’s conjecture about the manipulation is consistent

with the bank’s choice in equilibrium. The equilibrium manipulation mD(s) is determined by

ql
(
x(s, ωl) +B

)
∆
(
tp
(
s,mD(s)

))
− kc′

(
mD(s)

)
= 0. (7)

I make the following notation for ease of exposition

MBb

(
s, tp(s,m)

)
≡ ql

(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
. (8)

Where "MB" stands for "marginal benefit" and "b" represents "bank". MBb

(
s, tp(s,m)

)
is the

bank’s marginal benefit of manipulation for given regulator’s signal s and manipulation level

m. It consists of two components. The first component is the expected gain after passing the

test with manipulation ql
(
x(s, ωl) +B

)
. Given that the relative gain from continuing the asset

x(s, ωl) is increasing in the signal s, the expected gain after passing the test with manipulation

is increasing in s. All else equal, the bank manipulates more when the signal s is high.

The second component ∆
(
tp(s,m)

)
represents the increases in the passing probability if the

bank changes the report distribution from gl(t) to gh(t). This term crucially depends on the

passing threshold tp(s,m). Lemma 2 shows that the passing threshold tp(s,m) is decreasing in

s, since the relative cost of failing the high fundamental asset is rising. As the passing threshold

decreases, the test becomes more lenient in the sense that low fundamental asset is more likely

to pass the test without manipulation. In other words, the difference in the passing probability

between gh(t) and gl(t) shrinks. The following lemma summarizes the impact of the signal s on

12



the difference in passing probability ∆
(
tp(s,m)

)
.

Lemma 3. For given manipulation level m, ∆
(
tp(s,m)

)
is decreasing in s.

This lemma suggests that all else equal, the bank manipulates less when the signal s is high.

When evaluating the bank’s manipulation incentive MBb, the differences in passing probability

∆
(
tp(s,m)

)
acts as a counterforce to the expected gain after passing the test with manipulation

ql
(
x(s, ωl)+B

)
. The magnitude of the two forces then determines how the manipulation mD(s)

responds to the signal s.

Proposition 1. When s is disclosed, the level of manipulation mD(s) is unique and it is in-

creasing in s for s < sD and it is decreasing in s for s > sD, where sD is the unique solution

for
∂MBb

(
s,tp(s,mD)

)
∂s = 0.

This result identifies the forces that determines the bank’s manipulation mD(s) when s is

disclosed, and it highlights the effect of passing threshold tp(s,m) on the bank’s manipulation

mD(s). When the signal is relatively low, i.e., s < sD, the cost of inefficient liquidation compared

to that of inefficient continuation is moderate. Hence, the passing threshold is set at a medium

level such that it is effective in preventing both types of error. In this case, the passing probability

between gh(t) and gl(t) differs substantially, making the manipulation incentive MBb to be

sensitive to the changes in the expected gain after passing the test with manipulation. As a

result, the bank’s manipulation mD(s) follows the changes in the expected gain after passing the

test with manipulation and it is increasing in s. When s > sD, the inefficient liquidation becomes

very costly compared to inefficient continuation. Hence, the passing threshold is set primarily

to prevent inefficient liquidation. Consequently, the low fundamental asset is more likely to pass

the test even without manipulation, leaving little incremental effect for manipulation, hence,

little incentive for the bank to manipulate.

Disclosure of s affects how manipulation changes with s. When s is not disclosed, the bank’s

manipulation mNn is constant over the signal s. When s is disclosed, the bank’s manipula-

tion incentive changes with both the expected gain after passing the test with manipulation

ql(x(s, ωl) + B) and the increases in passing probability of low fundamental asset after ma-

nipulation ∆
(
tp
(
s,mD(s)

))
. Consequently, the manipulation mD(s) varies with s and such

variation further affects the expected level of manipulation. The following proposition compares

the expected level of manipulation when s is disclosed with the one when s is not disclosed.

Proposition 2. Es

[
mD(s)|s ∈ N

]
≤ mN if N ⊆ [

¯
s, sD] and Es

[
mD(s)|s ∈ N

]
≥ mN if

N ⊆ [sD, s̄].

13



This result shows the additional effect of disclosing s. When s ≤ sD, the bank’s manipulation

mD(s) is driven by the expected gain after passing the test with manipulation ql
(
x(s, ωl) +B

)
and it is increasing in the signal s. In response, the regulator decreases the passing threshold

tp
(
s,mD(s)

)
, which makes the bank more likely to pass the test regardless of the fundamental

value. Such endogenous response of the regulator’s pass/fail decision then decreases the mag-

nitude of passing probability that can be increased by manipulation, leaving manipulation less

useful and decreases the bank’s manipulation incentive. Such endogenous response is absent if s

is not disclosed. Hence, the expected level of manipulation is less if s is disclosed. However, when

s > sD, the bank manipulates to increase the passing probability and the manipulation level

mD(s) is decreasing in s. In response, the regulator increases the passing threshold tp
(
s,mD(s)

)
to make the test more difficult. Such endogenous response of the regulator’s pass/fail decision

then widens the difference of passing probability between low and high fundamental asset. More

importantly, such response makes the manipulation useful in increasing the passing probability

for low fundamental asset, amplifying the bank’s manipulation incentive. Hence, the expected

level of manipulation when s is disclosed is larger compared to the case when s is not disclosed.

4 Disclosure

In this section, I discuss the optimal disclosure policy about the regulator’s signal s, taking

into account the bank’s manipulation response and its impact on the regulator’s pass/fail deci-

sion. I show that disclosure and passing threshold are complementary tools for the regulator to

minimize the adverse consequence of the bank’s manipulation.

For given signal s, the regulator’s expected payoff at t = 1 is obtained by integrating all

reports value that are higher than the passing threshold tp(s,m
∗),

u(s,m∗) =

∫
t≥tp(s,m∗)

Eω[x(s, ω)|t,m∗]gm∗(t)dt

=

∫
t≥tp(s,m∗)

(
qhx(s, ωh)g

h(t) + qlx(s, ωl)g
l
m∗(t)

)
dt.

(9)

Where m∗ = {mD(s),mNn} is the equilibrium manipulation choice of the bank and gm∗(t) is

the unconditional distribution of report t when the manipulation is m∗. That is,

gm∗(t) = qhg
h(t) + qlg

l
m∗(t).
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At t = 0, the regulator chooses disclosure policy D and Nn to maximize the ex-ante payoff

U =

∫
s∈D

u
(
s,mD(s)

)
dF (s) +

∑
n

(∫
s∈Nn

u(s,mNn)dF (s)

)

=

∫
s∈D

(∫
t≥tp
(
s,mD(s)

) (qhx(s, ωh)g
h(t) + qlx(s, ωl)g

l
mD(s)(t)

)
dt

)
dF (s)

+
∑
n

(∫
s∈Nn

(∫
t≥tp(s,mNn )

(
qhx(s, ωh)g

h(t) + qlx(s, ωl)g
l
mNn

(t)
)
dt

)
dF (s)

)
.

(10)

As briefly discussed in Lemma 2, manipulation increases the similarity between the report

of low fundamental asset and that of the high fundamental asset, making it more likely that the

regulator fails the high fundamental asset (inefficient liquidation) and passes the low fundamental

asset (inefficient continuation). The regulator is able to use the pass/fail decision to control this

adverse consequence of manipulation, but only partially. Because when choosing the passing

threshold tp(s,m), the regulator trades off the cost of inefficient liquidation against the cost of

inefficient continuation for given level of manipulation m. However, manipulation increases the

likelihood of inefficient continuation ex-ante, which cannot be prevented by using the optimal

pass/fail rule. I first define the additional losses caused by manipulation for given signal s.

Taking derivative of u(s,m) in (9) with respect to m, I obtain9

MLr

(
s, tp(s,m)

)
≡ qlx(s, ωl)∆

(
tp(s,m)

)
. (11)

Where "ML" stands for "marginal loss" and "r" represents "regulator". Given that the asset

should be liquidated when fundamental is low, i.e., x(s, ωl) < 0 for all s, this term is negative.

It captures the regulator’s marginal losses from continuing the low fundamental asset due to

manipulation.

The additional losses caused by manipulation MLr

(
s, tp(s,m)

)
consists of two components.

The first component is the expected loss of passing the low fundamental asset qlx(s, ωl). The

second component ∆
(
tp(s,m)

)
is the increases in passing probability after the bank changes

the report distribution from gl(t) from gh(t). This component captures the regulator’s inability

to distinguish the low fundamental asset and the high fundamental asset due to the bank’s

manipulation.

Lemma 4. For any disclosure set D or no-disclosure set Nn, MLr

(
s, tp(s,m

∗)
)

is increasing

in s for m∗ = {mD(s),mNn}.
9Notice that the passing threshold tp(s,m) is chosen optimally for given signal s and manipulation m,

hence, the derivative with respect to tp(s,m) is zero and does not appear in MLr, i.e., ∂u(s,m)
∂tp(s,m)

∂tp(s,m)
∂m =

0.
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This lemma suggests that, regardless of the disclosure of s, the regulator bears less additional

losses from manipulation as the signal s increases. The intuition is as follows. Since the relative

gain from continuing the asset x(s, ωl) is increasing in s, the regulator’s loss from passing the

low fundamental asset is ameliorated. In addition, the passing threshold tp(s,m
∗) is decreasing

in the signal s, shrinking the difference in passing probability between the low fundamental asset

and high fundamental ∆
(
tp(s,m

∗)
)
. This means that when the signal s increases, the increase in

passing probability decreases even if the bank shifts the report distribution from gl(t) to gh(t),

decreasing the chance of passing low fundamental asset due to manipulation. Notice that when

the passing threshold is very low, the regulator is more likely to pass the low fundamental asset,

but such continuation is not driven by manipulation but rather by the tradeoff of inefficient

liquidation and inefficient continuation. Such tradeoff is incorporated in the optimal passing

threshold tp(s,m
∗). MLr

(
s, tp(s,m

∗)
)

does not capture such continuation and it only reflects

the regulator’s additional mistakes caused by the bank’s manipulation.

The regulator needs additional tool to control ML
(
s, tp(s,m)

)
. In what follows, I discuss

how disclosure of the regulatory signal s can affect ML
(
s, tp(s,m)

)
. Lemma 4 shows that

the regulator’s additional loss caused by manipulation MLr

(
s, tp(s,m)

)
is increasing in the

signal s. To minimize the regulator’s expected loss from manipulation, the regulator should

distribute more manipulation to cases where the marginal loss MLr

(
s, tp(s,m)

)
is small. Recall

that Proposition 1 and Proposition 2 state that disclosure not only affect how manipulation

distributes across the signal s but also affect the expected amount of manipulation across all

signal s. Hence, the regulator can use the disclosure of the regulatory signal s to minimize the

expected loss from manipulation.

First, for given expected amount of manipulation, the disclosure of the regulatory signal

s affects how manipulation distributes across the regulator’s marginal loss MLr. Disclosing s

reveals ∆
(
tp(s,m)

)
which is the increases in the passing probability after changing the report

distribution from gl(t) to gh(t). As captured by MBb(s, tp(s,m)), all else equal, the bank’s gain

from manipulation is higher when ∆
(
tp(s,m)

)
is large. A large ∆

(
tp(s,m)

)
also means that the

regulator is more likely to be misled by manipulation and make wrong passing decisions, which

in turn increases the regulator’s expected loss from bank’s manipulation ML(s, tp(s,m)). This

means that the bank’s and the regulator’s interests are not aligned after observing ∆
(
tp(s,m)

)
.

Hence, disclosure of s incurs cost for the regulator because it facilitates the bank to manipulate

more when the regulator is more susceptible to manipulation. Disclosing s also gives benefit to

the regulator. Since the payoff of the asset x(s, ω) depends both on the regulator’s information s

and on the state ω, disclosing s reduces the bank’s uncertainty about asset payoff. All else equal,
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the bank manipulates less when the expected gain after passing the test with manipulation is

low, i.e., when ql(x(s, ωl) + B) is low. This manipulation choice is beneficial to the regulator.

Because when x(s, ωl) is low, passing the bank incurs large loss for the regulator. In other words,

the regulator demands more informative report when x(s, ωl) is low. Disclosing s then makes

the regulator’s pass/fail decision more accurate. Given the result in Proposition 1, the benefit

dominates the cost of disclosure when the signal s is small.

In addition, Proposition 2 shows that disclosure of the signal s also changes the expected

manipulation level. This additional layer strengthens the existing tradeoff of disclosure. As a

result, the optimal disclosure policy follows a simple cutoff rule.

Proposition 3. The optimal disclosure policy follows a cutoff rule where D = [
¯
s, s∗) and N =

[s∗, s̄]. That is, the regulator discloses the signal s when s < s∗ and does not disclose the signal

s when s > s∗, where s∗ ∈ [
¯
s, sD].

The intuition for this result is embedded in the tradeoff of disclosure. It is beneficial for the

regulator to disclose the signal s when the manipulation is driven by the expected gain after

passing the test with manipulation ql
(
x(s, ωl) + B

)
. In this case, the bank’s manipulation is

increasing in s which implies that the bank’s manipulation is less (more) when it causes more

(less) losses to the regulator as measured by ML(s, tp(s,m)). In addition, the bank manipulates

less in expectation when observing the regulator’s signal s. Hence, disclosure improves the

regulator’s ex-ante payoff. However, as the signal s increases, the bank’s manipulation is driven

by the increases in passing probability after manipulation ∆
(
tp(s,m)

)
. If the signal is disclosed

to the bank, then the bank would manipulate more when the regulator is more susceptible

to manipulation. Hence, no disclosure complements the passing threshold to deter the bank’s

manipulation. No disclosure at all can be optimal if it sufficiently reduces the expected level of

manipulation. In sum, the disclosure of s complements the pass/fail decision to minimize the

adverse consequence of the bank’s manipulation for the regulator.

5 Comparative statics

In this section, I analyze how the optimal disclosure policy changes with the bank’s private

benefit B when passing the test and the cost of manipulation k.

All else equal, increasing the private benefit B or decreasing the manipulation cost k incen-

tivizes the bank to manipulate more. Such increase in manipulation occurs no matter the signal

s is disclosed or not disclosed to the bank. As a result, the implications on the disclosure policy
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is unclear. However, the following lemma shows that disclosure is more likely to happen when

the cost of manipulation increases and/or when the bank’s private benefit decreases.

Proposition 4. The disclosure cutoff point s∗ is increasing in k and decreasing in B.

As the cost of manipulation increases or the private benefit decreases, the disclosure point

cutoff point s∗ becomes greater, suggesting more disclosure. The intuition is as follows. Recall

that disclosure is beneficial to the regulator when the bank’s manipulation incentive is driven

by the expected gain after passing the test with manipulation. In this case, the disclosure of s

commands the bank to manipulate less when the regulator suffers more losses from manipulation,

maximizing the regulator’s utility. Since the disclosure cutoff point s∗ is less than sD, the

manipulation incentive MBb

(
s, tp(s,mD(s))

)
is still driven by the expected gain after passing

the test with manipulation, which means that the regulator would gain from increasing the

disclosure as long as the manipulation is controlled. Therefore, when the cost of manipulation

k increases, the regulator’s concern over manipulation is alleviated, supporting more disclosure.

On the contrary, when the bank’s private benefit B increases, the bank has stronger incentive to

manipulate to increase the passing probability, which suggests that the regulator should reduce

disclosure.

6 Discussions

6.1 Cost of inefficient liquidation and inefficient continuation

Assumption 1 assumes that the bank’s asset is worth continuing ex-ante. This assumption

affects how the regulator’s choice of passing threshold tp(s,m) responds to the bank’s manipula-

tion m (Lemma 2) and how the bank’s manipulation changes with the regulatory signal s when

s is disclosed (Lemma 3 and Proposition 1). Nevertheless, the main insight for the disclosure

of the regulator’s signal s does not depend on this assumption. The regulator’s pass/fail deci-

sion is still insufficient in restricting the adverse consequence of bank’s manipulation. Hence,

disclosure of the regulatory signal s is useful. When the signal s is disclosed, the bank’s manip-

ulation is determined by two forces: the expected gain after passing the test with manipulation

ql
(
x(s, ωl) + B

)
and the increases in passing probability after manipulation ∆

(
tp(s,m)

)
. And

the regulator’s losses from manipulation MLr(s, tp(s,m)) depends on the expected losses of

inefficient continuation qlx(s, ωl) and the increases in passing probability after manipulation

∆
(
tp(s,m)

)
. Disclosure is always beneficial to the regulator when both the bank’s manipulation

and the regulator’s loss from manipulation are driven by the changes in the relative gain from
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continuing the asset x(s, ωl). Instead, no disclosure is preferred when the changes in manip-

ulation is driven by the increases in passing probability after manipulation ∆
(
tp(s,m)

)
. The

former force is more likely to dominate when the tradeoff of the cost of inefficient liquidation

and the cost of inefficient continuation is moderate. Because in such case, the regulator’s choice

of passing threshold leads to large increases in passing probability if the bank manipulates, i.e.,

∆
(
tp(s,m)

)
is large. This then incentivizes the bank to care about the gain after passing the

test when choosing the manipulation. Hence, the bank’s manipulation is more likely to be driven

by the expected gain after passing the test with manipulation ql
(
x(s, ωl) + B

)
. As discussed

above, such manipulation choice benefits the regulator. In any case, the disclosure of s still

complements the pass/fail decision. In Appendix B, I derive the results formally.

6.2 No commitment to disclosure policy

Suppose that the regulator cannot commit to any disclosure policy about s. Instead, the

regulator chooses to disclose or not to disclose the signal s after observing the realization of it.

In the following, I show that the only equilibrium is full disclosure.

The intuition is as follows. Suppose that the no disclosure set is N = [s1, s2] with s1 < s2.

Denote the bank’s manipulation response as mN . After observing the signal s, the regula-

tor would disclose s with which the bank has manipulation mD(s) < mN . This implies

that the no disclosure set must consist of signals s such that mN ≤ mD(s), implying that

E
[
MB(s, tp(s,mN ))|s ∈ [s1, s2]

]
≤ MB(s, tp(s,mD(s)) for s ∈ [s1, s2]. Since MB(s, tp(s,m))

is a continuous function of s, the regulator must be indifferent between disclosing and not dis-

closing the signals at the boundary of not disclosure set, i.e., mN = mD(s1) = mD(s2). Hence,

the following condition must hold

Es

[
MB(s, tp(s,mN )|s ∈ [s1, s2]

]
= MB(s1, tp(s1,mN )) = MB(s2, tp(s2,mN )).

However, given that MB(s, tp(s,m)) is first increasing and then decreasing in s for any given

manipulation m, this condition cannot hold if s1 < s2. Hence, s1 = s2 and full disclosure is the

equilibrium.

6.3 Real activity

In the baseline model, the bank exerts costly effort to manipulate the report generating

process. Manipulation improves the report in the sense of first-order stochastic dominance but

it does not affect the asset payoff. Hence, the disclosure of the regulator’s private information
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only has informational consequence on the bank. It informs the bank about the gain from

manipulation and the probability of obtaining the gain. In Appendix C, I discuss an extension

in which the disclosure of the regulator’s private information not only affects the bank’s reporting

choice, but also affects how the bank invests. More specifically, the bank exerts costly effort

to improve the payoff of the asset and such effort manifests itself in the report. Such effort

still increases the similarity of the report of low fundamental asset and that of high fundamental

asset, but such increases in report similarity comes from the actual improvement in asset quality.

As a result, the disclosure of the regulator’s private information affects the real activities of the

bank, i.e., effort choice.

7 Conclusion

This paper presents a tractable model to characterize the optimal disclosure policy about the

regulatory assessment models, when facing the manipulation concern. Disclosing the regulatory

models helps the bank to learn about its asset, which deters the bank’s manipulation incentive.

However, disclosing the model also makes it easier for the bank to game the assessment. The

main message of the paper is that the disclosure policy about regulatory models complements the

assessment rule. I also show that the accounting regulation, which governs the banks’ reporting

discretion, complements the design and improves the effectiveness of regulatory assessment. This

study may provide regulatory implications for supervisory and climate risk stress test design, and

it may help us better understand the interactions between performing stress tests and reporting

incentives of banks.
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A Proofs

For ease of exposition, I define the following ratio

r(t) ≡ gl(t)

gh(t)
. (12)

Due to the assumption that the density function of report t satisfies MLRP, the ratio r(t) is

decreasing in t.

Proof. Lemma 1

All the necessary steps for the cutoff rule are explained in the text.

Proof. Lemma 2

The regulator chooses the passing threshold based on the signal s and the conjecture about

the bank’s manipulation m̂. I drop the ·̂ for simplicity.

The passing threshold is determined by

Eω[x(s, ω)|tp,m] = 0.

This condition is equivalent to

x(s, ωh)
qhg

h(tp)

qhgh(tp) + qlglm(tp)
+ x(s, ωl)

qlg
l
m(tp)

qhgh(tp) + qlglm(tp)
= 0,

Since the density function gl(t) and gh(t) have full support, the condition reduces to

x(s, ωh)qhg
h(tp) + x(s, ωl)qlg

l
m(tp) = 0.

This is equivalent to

x(s, ωh)qh + x(s, ωl)ql − x(s, ωl)ql(1−m)
(
1− r(tp)

)
= 0. (13)

Apply implicit function theorem, I derive the following two partial derivatives.

∂tp
∂s

= −
qh

(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)
(1−m)ql

(
x(s, ωl)

)2
r′(tp)

. (14)

Given that the relative gain from continuing the asset x(s, ωl) and x(s, ωh) are increasing in s

and the ratio r(t) is decreasing in t, this derivative is negative.
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And the following is the partial derivative of tp with respect to m,

∂tp
∂m

= − qhx(s, ωh) + qlx(s, ωl)

(1−m)2qlx(s, ωl)r′(tp)
. (15)

where r′(tp) is the derivative of r(tp) with respect to tp. Given Assumption 1, the unconditional

expected relative gain from continuing the asset is non-negative. Hence, this derivative is non-

positive and it equals to zero only when s =
¯
s.

Proof. Lemma 3

For given passing threshold tp(s,m), the difference in passing probability between gl and gh

is ∆
(
tp(s,m)

)
. I repeat the definition of ∆

(
tp(s,m)

)
here

∆
(
tp(s,m)

)
≡
∫
t≥tp(s,m)

(
gh(t)− gl(t)

)
dt.

Taking derivative with respect to s, I obtain the following

∂∆
(
tp(s,m)

)
∂s

=
d∆
(
tp(s,m)

)
dtp(s,m)

∂tp(s,m)

∂s

=
(
gl
(
tp(s,m)

)
− gh

(
tp(s,m)

))∂tp(s,m)

∂s

∝
(
r
(
tp(s,m)

)
− 1
)∂tp(s,m)

∂s
.

Recall that equation (13) pins down the passing threshold tp(s,m), and the ratio r
(
tp(s,m)

)
solves

r
(
tp(s,m)

)
=

mqlx(s, ωl) + qhx(s, ωh)

mqlx(s, ωl)− qlx(s, ωl)
≥ mqlx(s, ωl)− qlx(s, ωl)

mqlx(s, ωl)− qlx(s, ωl)
= 1. (16)

The inequality holds because Assumption 1 implies that qhx(s, ωh) ≥ −qlx(s, ωl) for all s and

equality holds only when s =
¯
s. As a result, the derivative

d∆
(
tp(s,m)

)
dtp(s,m) is non-negative. Given

the result of Lemma 2 that ∂tp(s,m)
∂s < 0, the derivative

∂∆
(
tp(s,m)

)
∂s ≤ 0 and equality holds only

when s =
¯
s.

Proof. Proposition 1

When s is disclosed, the manipulation level is determined by the first-order condition in

equation (7). I repeat the first-order condition here,

ql
(
x(s, ωl) +B

)
∆
(
tp(s,mD)

)
− kc′(mD) = 0.

The first term of the left-hand side is MBb

(
s, tp(s,mD)

)
. Apply implicit function theorem to
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the first-order condition, I derive the derivative of mD with respect to s,

∂mD

∂s
=

∂MBb

(
s,tp(s,mD)

)
∂s

kc′′(mD)−
∂MBb

(
s,tp(s,mD)

)
∂mD

=

ql

(
∆
(
tp(s,mD)

)dx(s,ωl)
ds +

(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s

)
kc′′(mD)− ql

(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂mD

.

(17)

The derivative
∂∆
(
tp(s,m)

)
∂m is given by

∂∆
(
tp(s,m)

)
∂m

=
d∆
(
tp(s,m)

)
dtp(s,m)

∂tp(s,m)

∂m
∝
(
r
(
tp(s,m)

)
− 1
)∂tp(s,m)

∂m
≤ 0. (18)

I omit the proof, since it is similar to the proof of Lemma 3. Consequently, the following holds

∂mD

∂s
∝

∂MBb

(
s, tp(s,mD)

)
∂s

∝ ∆
(
tp(s,mD)

)dx(s, ωl)

ds
+
(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s
.

For ease of exposition, I introduce the following notation

F ≡ ∆
(
tp(s,mD)

)dx(s, ωl)

ds
+
(
x(s, ωl) +B

)∂∆(tp(s,mD)
)

∂s

In the following, I first show that F = 0 holds at some s ∈ (
¯
s, s̄) and then I prove that F = 0 is

unique at s = sD.

When s =
¯
s, Assumption 1 assumes that x(

¯
s, ωh)qh + x(

¯
s, ωl)ql = 0. According to equation

(13), the passing threshold satisfies r
(
tp(

¯
s,m)

)
= 1 which implies that

∂∆
(
tp(s,m)

)
∂s = 0, hence,

the function F is

F |s=
¯
s = ∆

(
tp(

¯
s,mD)

) dx(s, ωl)

ds

∣∣∣∣
s=

¯
s

> 0.

When s = s̄, Assumption 1 implies that x(s̄, ωl) = 0. Hence, the passing threshold is tp(s̄,mD) =

¯
t and ∆(

¯
t) = 0. Hence, the function F is

F |s=s̄ = B
∂∆
(
tp(s,mD)

)
∂s

∣∣∣∣∣
s=s̄

< 0.

By the intermediate value theorem, F = 0 must hold at some value of s ∈ (
¯
s, s̄).

Next, I show that F = 0 is unique at s = sD. When F = 0, the following equation holds,

∆
(
tp(s,mD)

) dx(s,ωl)
ds

x(s, ωl) +B
= −

∂∆
(
tp(s,mD)

)
∂s

.
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I drop the indicator D for the manipulation mD. Then F = 0 is equivalent to

Gl
(
tp(s,m)

)
−Gh

(
tp(s,m)

)
gh
(
tp(s,m)

)
− gl

(
tp(s,m)

) dx(s,ωl)
ds

x(s, ωl) +B
=

∂tp(s,m)

∂s
. (19)

I first show that the left-hand side is increasing in s. I drop the arguments for tp when no

confusion caused. The left-hand side is equivalent to

LHS ≡ −∆(tp)

∆′(tp)

dx(s,ωl)
ds

x(s, ωl) +B
.

Where ∆′(tp) ≡ d∆(tp)
dtp

. The derivative of LHS with respect to s is

∂LHS

∂s
= −

d
(

∆(tp)
∆′(tp)

)
dtp

∂tp
∂s

dx(s,ωl)
ds

x(s, ωl) +B
−

d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds

∆(tp)

∆′(tp)
.

The derivative
d
(

∆(tp)

∆′(tp)

)
dtp

is

d
(

∆(tp)
∆′(tp)

)
dtp

=
∆′(tp)

2 −∆(tp)∆
′′(tp)

∆′(tp)2
.

By assumption, the decreasing hazard rate gi(t)
1−Gi(t)

implies that gi(t) is decreasing in t. Moreover,

the MLRP assumption implies that r(t) is decreasing in t, that is

dr(t)

dt
=

dgl(t)
dt gh(t)− dgh(t)

dt gl(t)

gh(t)2
< 0.

Recall that at the passing threshold tp, it holds that r(tp) > 1 which is equivalent to gl(tp) >

gh(tp). Hence, it also holds that dgl(tp)
dtp

<
dgh(tp)
dtp

. That is, ∆′′(tp) < 0, which in turn implies

that
d
(

∆(tp)

∆′(tp)

)
dtp

> 0. The derivative
d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds is

d

(
dx(s,ωl)

ds
x(s,ωl)+B

)
ds

=
−
(
dx(s,ωl)

ds

)2
+
(
x(s, ωl) +B

)d2x(s,ωl)
ds2(

x(s, ωl) +B
)2 .

Since x(s, ωl) is increasing and concave in s, this derivative is negative. As a result, ∂LHS
∂s > 0.

Now consider the right-hand side of equation (19),

RHS =
∂tp(s,m)

∂s
.
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And the derivative of the right-hand side is

∂RHS

∂s
=

∂2tp(s,m)

∂s2
.

Recall the derivative ∂tp(s,m)
∂s in equation (14). By the chain rule, the second derivative ∂2tp

∂s2
is,

∂2tp
∂s2

=
∂
∂tp
∂s

∂s
+

∂
∂tp
∂s

∂tp

∂tp
∂s

=qh
Eω

[
x(s, ω)

]
r′(tp)

2 dx(s,ωl)
ds

(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)
(1−m)2q2l x(s, ωl)4

(
1− r(tp)

)
r′(tp)3

+qh

Eω

[
x(s, ω)

]
r′(tp)

2x(s, ωh)

(
x(s, ωl)

d2x(s,ωl)
ds2

−
(
dx(s,ωl)

ds

)2)
(1−m)2q2l x(s, ωl)4

(
1− r(tp)

)
r′(tp)3

+qh
Eω

[
x(s, ω)

]
r′(tp)

2x(s, ωl)
(
−x(s, ωl)

d2x(s,ωh)
ds2

+
(
dx(s,ωl)

ds

)(
dx(s,ωh)

ds

))
(1−m)2q2l x(s, ωl)4

(
1− r(tp)

)
r′(tp)3

+qh
qh
(
r(tp)− 1

)
r′′(tp)

(
x(s, ωl)

dx(s,ωh)
ds − x(s, ωh)

dx(s,ωl)
ds

)2
(1−m)2q2l x(s, ωl)4

(
1− r(tp)

)
r′(tp)3

.

(20)

This derivative is negative. Hence, ∂RHS
∂s < 0.

I have shown that when F = 0, the left-hand side of equation (19) is increasing in s whereas

the right-hand side of equation (19) is decreasing in s, which implies that F = 0 has a unique

solution sD. And F > 0 for s < sD and F < 0 for s > sD. Recall that ∂mD(s)
∂s is proportionate

to F , hence, mD(s) is increasing in s for s < sD and is decreasing in s for s > sD. Since
∂MBb

(
s,tp(s,mD)

)
∂s is proportionate to F , sD also solves

∂MBb

(
s,tp(s,mD)

)
∂s = 0.

Proof. Proposition 2

I prove this proposition by contradiction.

Suppose that Es

[
mD(s)|s ∈ [

¯
s, sD]

]
> mN for N = [

¯
s, sD]. Denote Es

[
mD(s)|s ∈ [

¯
s, sD]

]
by mD,

mD −mN ∝ kc′(mD)− kc′(mN )

≤ Es

[
kc′
(
mD(s)

)∣∣ s ∈ [
¯
s, sD]

]
− kc′(mN )

=

∫ sD

¯
s kc′

(
mD(s)

)
dF (s)∫ sD

¯
s dF (s)

− kc′(mN )

∝
∫ sD

¯
s

(
kc′
(
mD(s)

)
− kc′(mN )

)
dF (s).

The inequality is due to the assumption that kc′(m) is weakly convex in m.
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The first-order condition for mD(s) is

MBb

(
s, tp

(
s,mD(s)

))
= kc′

(
mD(s)

)
. (21)

And the first-order condition for mN when N = [
¯
s, sD] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [

¯
s, sD]

]
= kc′(mN ).

I can simplify the difference between mD and mN further.

mD −mN ≤
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mN )

)
|s ∈ [

¯
s, sD]

])
dF (s)

≤
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− Es

[
MBb

(
s, tp(s,mD)

)
|s ∈ [

¯
s, sD]

])
dF (s)

=

∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

)))
dF (s)− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [

¯
s, sD]

] ∫ sD

¯
s

dF (s)

=

∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
−MBb

(
s, tp(s,mD)

))
dF (s)

=

∫ sD

¯
s

(
ql
(
x(s, ωl) +B

)(
∆
(
tp(s,mD(s))

)
−∆

(
tp(s,mD)

)))
dF (s)

≤0.

The first line is obtained by using the first-order condition of mN and mD(s). The second line

is due to the fact that MBb

(
s, tp(s,m)

)
is decreasing in m. This is verified by the following

derivative
∂MBb

(
s, tp(s,m)

)
∂m

= ql
(
x(s, ωl) +B

)∂∆(tp(s,m)
)

∂m
≤ 0. (22)

The derivative
∂∆
(
tp(s,m)

)
∂m is non-positive as shown in equation (18). Then the assumption

that mN < mD implies the second line. The third and fourth line follow from the definition of

conditional expectation. The last inequality is obtained by applying FKG inequality, which I now

explain in details. The manipulation level mD(s) is increasing in s when s < sD. And equation

(18) shows that
∂∆
(
tp(s,m)

)
∂m ≤ 0. This means that the term ∆

(
tp(s,mD(s))

)
is decreasing in s

through mD(s). The term ql
(
x(s, ωl) +B

)
is increasing in s. By FKG inequality, the following

holds

Es≤sD

[
ql
(
x(s, ωl) +B

)
∆
(
tp
(
s,mD(s)

))]
≤ Es≤sD

[
ql
(
x(s, ωl) +B

)
∆
(
tp(s,Es≤sD [mD(s)])

)]
.

Where Es≤sD denotes expectation over s conditional on s ≤ sD. This implies that the last

inequality holds and it contradicts to mN < mD.
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Next I prove by contradiction that mD ≥ mN for N = [sD, s̄]. Suppose that the opposite

holds, that is, mD < mN for N = [sD, s̄]. Then the following holds,

mD −mN ∝ log
(
kc′(mD)

)
− log

(
kc′(mN )

)
≥ Es

[
log
(
kc′
(
mD(s)

))∣∣∣ s ∈ [sD, s̄]
]
− log

(
kc′(mN )

)
=

∫ s̄
sD

log
(
kc′
(
mD(s)

))
dF (s)∫ sD

¯
s dF (s)

− log
(
kc′(mN )

)
∝
∫ s̄

sD

(
log
(
kc′
(
mD(s)

))
− log

(
kc′(mN )

))
dF (s)

=

∫ s̄

sD

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

dF (s)

≥
∫ s̄

sD

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

dF (s)

∝
∫ s̄

sD

(
kc′
(
mD(s)

)
− kc′(mN )

)
dF (s)

The first inequality holds because c′(m) is weakly log-concave. By the definition of conditional

expectation, I obtain the first equality. I derive the second equality by using mean value theorem,

where kc′(ms) ∈
(
kc′
(
mD(s)

)
, kc′(mN )

)
or kc′(ms) ∈

(
kc′(mN ), kc′

(
mD(s)

))
depending on the

relation between kc′(mN ) and kc′
(
mD(s)

)
. I now explain the second inequality.

• If kc′
(
mD(s)

)
< kc′(mN ), then kc′(ms) ∈

(
kc′
(
mD(s)

)
, kc′(mN )

)
. Hence, the following

holds
1
1

kc′(mN )

≥ 1
1

kc′(ms)

≥ 1
1

kc′(mD(s))

.

Which implies that

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mD(s))

.

• If kc′
(
mD(s)

)
> kc′(mN ), then kc′(ms) ∈

(
kc′(mN ), kc′

(
mD(s)

))
. Hence, the following

holds
1
1

kc′(mN )

≤ 1
1

kc′(ms)

≤ 1
1

kc′(mD(s))

.

Which implies that

kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mN )

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(ms)

≤
kc′
(
mD(s)

)
− kc′(mN )

1
kc′(mD(s))

.
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Hence, regardless of the difference between kc′
(
mD(s)

)
and kc′(mN ), the second inequality

holds.

The first order condition for mD(s) is the same as in equation (21). And the first-order

condition for mN when N = [sD, s̄] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [sD, s̄]

]
= kc′(mN ).

I further simplify the difference between mD and mN ,

mD −mN ≥
∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mN )

)
|s ∈ [sD, s̄]

])
dF (s)

≥
∫ sD

¯
s

(
MBb

(
s, tp

(
s,mD(s)

))
− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [sD, s̄]

])
dF (s)

=

∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

)))
dF (s)− E

[
MBb

(
s, tp(s,mD)

)
|s ∈ [sD, s̄]

] ∫ sD

¯
s

dF (s)

=

∫ s̄

sD

(
MBb

(
s, tp

(
s,mD(s)

))
−MBb

(
s, tp(s,mD)

))
dF (s)

=

∫ s̄

sD

(
ql
(
x(s, ωl) +B

)(
∆
(
tp(s,mD(s))

)
−∆

(
tp(s,mD)

)))
dF (s)

≥0.

The second inequality uses the assumption that mN > mD. The last inequality is derived by

using FKG inequality. The manipulation level mD(s) is decreasing in s when s > sD. Hence

∆
(
tp
(
s,mD(s)

))
is increasing in s through mD(s). Given that the term ql

(
x(s, ωl) + B

)
is

increasing in s, FKG inequality implies the last inequality.

Proof. Lemma 4

I first show that MLr

(
s, tp(s,m)

)
is increasing in s for any given m.

dMLr

(
s, tp(s,m)

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,m)

)
+ qlx(s, ωl)

d∆
(
tp(s,m)

)
ds

.

Lemma 3 shows that for any given m, ∆
(
tp(s,m)

)
is decreasing in s. Hence,

d∆
(
tp(s,m)

)
ds < 0.

Since the low fundamental asset has negative value, i.e., x(s, ωl) < 0, the derivative
dMLr

(
s,tp(s,m)

)
ds >

0. Hence, the derivative
dMLr

(
s,tp(s,mNn )

)
ds > 0 for any no-disclosure set Nn.

Next, consider MLr

(
s, tp(s,mD(s))

)
.

dMLr

(
s, tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
dtp

(
∂tp(s,mD(s))

∂s
+

∂tp(s,mD(s))

∂m

∂mD(s)

∂s

)
.
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Lemma 2 shows that ∂tp
∂m and ∂tp

∂s are non-positive. Therefore, when ∂mD(s)
∂s is non-negative, the

derivative
dMLr

(
s,tp(s,mD(s))

)
ds is positive. In the following, I show that the derivative

dMLr

(
s,tp(s,mD(s))

)
ds

is non-negative even when ∂mD(s)
∂s is negative. When mD(s) is decreasing in s, the marginal ben-

efit MBb

(
s, tp(s,mD)

)
is decreasing in s for given mD. Taking into account of the changes in

mD(s), the following shows that the total derivative of
dMBb

(
s,tp(s,mD(s))

)
ds is proportionate to

∂MBb

(
s,tp(s,mD)

)
∂s ,

dMB
(
s, tp

(
s,mD(s)

))
ds

=
∂MB

∂s
+

∂MB

∂tp

(
∂tp(s,mD)

∂s
+

∂tp(s,mD)

∂mD

∂mD(s)

∂s

)
=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
+

∂MB

∂tp

∂tp(s,mD)

∂mD

∂mD(s)

∂s

=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
+

∂MB

∂tp

∂tp(s,mD)

∂mD

 ∂MB
∂s + ∂MB

∂tp

∂tp(s,mD)
∂s

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD


=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)1 +

∂MB
∂tp

∂tp(s,mD)
∂mD

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD


=

(
∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s

)
kc′′(mD(s))

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)
∂mD

∝ ∂MB

∂s
+

∂MB

∂tp

∂tp(s,mD)

∂s
.

Since kc′′(mD(s))

kc′′(mD(s))− ∂MB
∂tp

∂tp(s,mD)

∂mD

is positive, the total derivative of MB
(
s, tp

(
s,mD(s)

))
with re-

spect to s is proportionate to the partial derivative of MB
(
s, tp

(
s,mD(s)

))
with respect to s

taking mD(s) as given.

When ∂mD(s)
∂s is negative, the following holds

∂mD(s)

∂s
∝

∂MB
(
s, tp

(
s,mD

))
∂s

∝
dMB

(
s, tp

(
s,mD(s)

))
ds

< 0.

The total derivative
dMB

(
s,tp
(
s,mD(s)

))
ds equals to

dMB
(
s, tp

(
s,mD(s)

))
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ ql

(
x(s, ωl) +B

)d∆(tp(s,mD(s))
)

ds
.

Hence, ∂mD(s)
∂s < 0 implies

d∆
(
tp(s,mD(s))

)
ds

< −
∆
(
tp(s,mD(s))

)
x(s, ωl) +B

dx(s, ωl)

ds
. (23)
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Then the total derivative
dMLr

(
s,tp(s,mD(s))

)
ds is

dMLr

(
s, tp(s,mD(s))

)
ds

= ql
dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ qlx(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

∝ dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ x(s, ωl)

d∆
(
tp(s,mD(s))

)
ds

≥ dx(s, ωl)

ds
∆
(
tp(s,mD(s))

)
+ x(s, ωl)

(
−
∆
(
tp(s,mD(s))

)
x(s, ωl) +B

dx(s, ωl)

ds

)

=
B

x(s, ωl) +B
∆
(
tp(s,mD(s))

)dx(s, ωl)

ds
≥ 0.

The first inequality uses the results in equation (23) and the assumption that x(s, ωl) ≤ 0.

Hence, the derivative
dMLr

(
s,tp(s,mD(s))

)
ds ≥ 0 always hold.

Proof. Proposition 3

I complete the proof in three steps. I first show that a cutoff disclosure dominates all other

form of disclosures. Next, I solve for the optimal cutoff point s∗ and show that s∗ < sD. Lastly,

I show that mD(s
∗) = mN where N = [s∗, s̄] holds.

Suppose that D = [
¯
s, sD) and N = [sD, s̄]. The regulator’s ex-ante expected utility with

this disclosure policy is denoted as U

U =

∫ sD

¯
s

u
(
s,mD(s)

)
dF (s) +

∫ s̄

sD

u(s,mN )dF (s).

In the following, I show that adding more cutoff points to partition the signal space does not

improve the regulator’s ex-ante expected utility. First, I show that adding cutoff point in D

does not improve the regulator’s ex-ante utility. Without loss of generality, consider a disclosure

policy which partition the signal space into N2 = [
¯
s, s1], D = (s1, sD) and N1 ≡ N = [sD, s̄].

The regulator’s ex-ante expected payoff with such disclosure policy is

U ′ =

∫ s1

¯
s

u
(
s,mN2

)
dF (s) +

∫ sD

s1

u
(
s,mD(s)

)
dF (s) +

∫ s̄

sD

u(s,mN )dF (s).
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The difference in the regulator’s expected utility is

U − U ′ =

∫ sD

¯
s

u
(
s,mD(s)

)
dF (s)−

∫ s1

¯
s

u
(
s,mN2

)
dF (s)−

∫ sD

s1

u
(
s,mD(s)

)
dF (s)

=

∫ s1

¯
s

u
(
s,mD(s)

)
dF (s)−

∫ s1

¯
s

u
(
s,mN2

)
dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

) du(s,m)

dm

∣∣∣∣
m=m(s)

dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

)( ∂u(s,m)

∂m

∣∣∣∣
m=m(s)

+
∂u(s,m)

∂tp(s,m)

∂tp(s,m)

∂m

∣∣∣∣
m=m(s)

)
dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

) ∂u(s,m)

∂m

∣∣∣∣
m=m(s)

dF (s)

=

∫ s1

¯
s

(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
dF (s)

≥
∫ s1

¯
s

(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
dF (s)

∝ Es≤s1

[
mD(s)MLr

(
s, tp(s,mN2)

)]
−mN2 Es≤s1

[
MLr

(
s, tp(s,mN2)

)]
≥ Es≤s1

[
mD(s)MLr

(
s, tp(s,mN2)

)]
− Es≤s1

[
mD(s)

]
Es≤s1

[
MLr

(
s, tp(s,mN2)

)]
≥ 0.

The first two lines are derived from simplifications of the differences in expected utility. Ap-

ply mean-value theorem to the second line gives the third line, where m(s) ∈ (mD(s),mN2) if

mD(s) < mN2 or m(s) ∈ (mN2 ,mD(s)) if mN2 < mD(s). The fourth line shows the total deriva-

tive of u(s,m) with respect to m, and it reduces to the fifth line because the passing threshold

tp(s,m) maximizes the regulator’s utility u(s,m) for given signal s and given manipulation m,

hence, ∂u(s,m)
∂tp(s,m) = 0. Equation (11) defines MLr

(
s, tp(s,m)

)
. I now explain the first inequality

in details. The following derivative shows that MLr

(
s, tp(s,m)

)
is increasing in m,

∂MLr

(
s, tp(s,m)

)
∂m

= qlx(s, ωl)
∂∆
(
tp(s,m)

)
∂m

.

Equation (18) implies that this derivative is non-negative. The following proves the first in-

equality

• If mD(s) < mN2 , then m(s) ∈ (mD(s),mN2). Hence, the following holds

MLr

(
s, tp(s,mD(s))

)
≤ MLr

(
s, tp(s,m(s))

)
≤ MLr

(
s, tp(s,mN2)

)
,
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which implies that

(
mD(s)−mN2

)
MLr

(
s, tp(s,mD(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
.

• If mD(s) > mN2 , then m(s) ∈ (mN2 ,mD(s)). Hence, the following holds

MLr

(
s, tp(s,mD(s))

)
≥ MLr

(
s, tp(s,m(s))

)
≥ MLr

(
s, tp(s,mN2)

)
,

which implies that

(
mD(s)−mN2

)
MLr

(
s, tp(s,mD(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,m(s))

)
≥
(
mD(s)−mN2

)
MLr

(
s, tp(s,mN2)

)
.

Hence, regardless of the difference between mD(s) and mN2 , the first inequality holds. The

second inequality generalize the result from Proposition 2. Since mD(s) is increasing in s for s ≤

s1, and Lemma 4 shows that MLr

(
s, tp(s,mD(s))

)
is increasing in s, hence, the last inequality

is obtained by FKG inequality. This proof can be generalized to the cases where more than one

cutoff point is added on D.

Apply the same approach, I show that adding cutoff point in N does not improve the

regulator’s ex-ante utility. The proof is similar and thus omitted.

Given that the disclosure policy with D = [
¯
s, sD] and N = [sD, s̄] dominates all other forms

of disclosure, I next solve for the optimal cutoff point. Denote the regulator’s ex-ante utility

with the optimal disclosure policy by U∗,

U∗ =

∫ s∗

¯
s

u
(
s,mD(s)

)
dF (s) +

∫ s̄

s∗
u(s,mN )dF (s).

First, the optimal cutoff point s∗ ≤ sD must hold. Otherwise, by the previous proof, the

regulator can gain by not disclosing the signals s ∈ [sD, s
∗]. But such disclosure policy features

two no-disclosure sets which is dominated by the disclosure policy with signal no-disclosure set

[sD, s̄]. Hence, s∗ ≤ sD must hold.

Take derivative of U∗ with respect to the cutoff point s∗, the first-order condition determines

the optimal cutoff point,

(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)
f(s∗) +

∂mN

∂s∗

∫ s̄

s∗
MLr

(
s, tp(s,mN )

)
dF (s) = 0. (24)
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The first-order condition for mN when N = [s∗, s̄] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [s∗, s̄]

]
= kc′(mN ).

By implicit function theorem, I derive the derivative ∂mN
∂s∗ ,

∂mN

∂s∗
=

f(s∗)∫ s̄
s∗ dF (s)

Es≥s∗
[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s

∗,mN )
)

kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] .

With this derivative, I further reduce the first-order condition in equation (24) to the following

(
u
(
s∗,mD(s

∗)
)
− u(s∗,mN )

)
+
(
Es≥s∗

[
MBb

(
s, tp(s,mN )

)]
−MBb

(
s∗, tp(s

∗,mN )
)) Es≥s∗

[
MLr

(
s, tp(s,mN )

)]
kc′′(mN )− Es≥s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] = 0.

(25)
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B Cost of inefficiencies

In this appendix, I derive the regulator’s optimal disclosure policy assuming that the bank’s

asset is not worth continuing ex-ante. That is, I replace Assumption 1 by the following

Assumption 2. Eω

[
x(s, ω)

]
∈ [qlx(

¯
s, ωl), 0] for s ∈ [

¯
s, s̄].

For given bank’s report t with conjectured manipulation level m̂ and the signal s, the reg-

ulator’s pass/fail decision still follows equation (4). As in Lemma 1, the regulator’s pass/fail

decision is characterized by a cutoff rule on the bank’s report t. That is, the regulator passes

the bank if and only if the bank’s report t is higher than the threshold tp(s, m̂).

Lemma 5. For given level of manipulation m, the passing threshold tp(s,m) is decreasing in s.

For given signal s, the passing threshold is increasing in m.

Proof. The proof follows the proof of Lemma 2. The only difference is that Assumption 2

assumes that qhx(s, ωh) + qlx(s, ωl) < 0 which implies that ∂tp
∂m in equation (15) is positive.

Compare to Lemma 2, the effect of the signal s on the regulator’s choice of the passing

threshold remains the same. However, the effect of manipulation is the opposite. The rea-

son is that with Assumption 2, the inefficient continuation is more costly than the inefficient

liquidation. Although manipulation still increases the report similarity between low and high

fundamental asset, the regulator is more concerned with the inefficient continuation. Hence,

when the regulator is facing a report that is less informative, the regulator would increase the

passing threshold in order to avoid inefficient continuation.

The regulator’s choice of passing threshold determines the difference in passing probability

between low and high fundamental asset. The following lemma shows that this difference in

passing probability becomes larger as the signal increases.

Lemma 6. For given manipulation level m, ∆
(
tp(s,m)

)
is increasing in s.

Proof. The proof is similar to the proof of Lemma 3. The only difference is that Assumption 2

implies that qhx(s, ωh) ≤ −qlx(s, ωl) for all s. As a result, the ratio r
(
tp(s,m)

)
is less than 1,

which then implies that ∆
(
tp(s,m)

)
is increasing in s.

Anticipate the regulator’s pass/fail decision, the bank chooses the manipulation level. The

bank’s manipulation choice depends on whether regulator discloses the regulatory signal s.

Proposition 5. When s is disclosed, the level of manipulation mD(s) is increasing in s for all

s. When s is not disclosed, the level of manipulation mNn is a constant over the no-disclosure

set Nn for n ∈ [1,+∞).

34



Recall that the bank’s manipulation incentive is determined by the increases in the passing

probability after manipulation ∆
(
tp(s,m)

)
and the expected gain after passing the test with

manipulation ql
(
x(s, ωl) + B

)
. As the signal s increases, both incentives become stronger,

leading the bank to manipulate more.

Compare the manipulation level under different disclosure policy

Proposition 6. Es

[
mD(s)|s ∈ N

]
≤ mN for any N ⊆ S.

Proof. The proof follows the proof of Proposition 2 when mD(s) is increasing in s.

The disclosure of regulator’s private information reduces the expected manipulation level.

The reason is rooted in the interaction between the bank’s manipulation choice and the regula-

tor’s passing threshold choice when s is disclosed. When manipulation increases, the regulator

increases the passing threshold tp(s,m) according to Lemma 5. Such response of the passing

threshold reduces the bank’s passing probability, more importantly, it reduces the difference in

passing probability between high fundamental asset and low fundamental asset, lowering the

bank’s manipulation incentive. Such interaction between the bank’s manipulation choice and

the regulator’s passing threshold choice is muted, if the signal s is not disclosed. Hence, the

expected manipulation level is lower when s is disclosed.

I now analyze the regulator’s disclosure policy of signal s. Following Lemma 4, I derive

how the regulator’s loss caused by the bank’s manipulation MLr

(
s, tp(s,m

∗)
)

changes with the

signal s.

Lemma 7. If the following condition holds,

d

ds

 d∆
(
s,tp(s,m∗)

)
ds

∆
(
s, tp(s,m∗)

)
 ≤ 0, (26)

then MLr

(
s, tp(s,m

∗)
)

is decreasing in s for s < sr and increasing in s for s > sr, where

m∗ = {mD(s),mNn} and sr is the unique solution for
dMLr

(
s,tp(s,m∗)

)
ds = 0.

Proof. The derivative of MLr

(
s, tp(s,m

∗)
)

with respect to s is given by the following,

dMLr

(
s, tp(s,m

∗)
)

ds
= ql

(
x(s, ωl)

d∆
(
s, tp(s,m

∗)
)

ds
+∆

(
s, tp(s,m

∗)
)dx(s, ωl)

ds

)
.

When s =
¯
s, Assumption 2 assumes that x(

¯
s, ωh) = 0. According to equation (13), the pass-

ing threshold is tp(
¯
s,m∗)

)
= t̄ which implies that ∆

(
tp(

¯
s,m∗)

)
= 0, hence, the derivative

35



dMLr

(
s,tp(s,m∗)

)
ds is

dMLr

(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=

¯
s

= qlx(
¯
s, ωl)

d∆
(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=

¯
s

< 0.

When s = s̄, Assumption 2 implies that x(s̄, ωh)qh + x(s̄, ωl)ql = 0. According to equation (13),

the passing threshold satisfies r
(
tp(s̄,m

∗) = 1. Hence, the derivative MLr

(
s̄, tp(s̄,m

∗)
)

is

dMLr

(
s, tp(s,m

∗)
)

ds

∣∣∣∣∣
s=s̄

= ql∆
(
s̄, tp(s̄,m

∗)
)dx(s, ωl)

ds

∣∣∣∣
s=s̄

> 0.

By the intermediate value theorem,
dMLr

(
s,tp(s,m∗)

)
ds = 0 must hold at some value of s ∈ (

¯
s, s̄).

Next, I show that
dMLr

(
s,tp(s,m∗)

)
ds = 0 is unique at s = sr. When

dMLr

(
s,tp(s,m∗)

)
ds = 0, the

following equation holds,

x(s, ωl)
d∆
(
s, tp(s,m

∗)
)

ds
+∆

(
s, tp(s,m

∗)
)dx(s, ωl)

ds
= 0.

This is equivalent to
d∆
(
s,tp(s,m∗)

)
ds

∆
(
s, tp(s,m∗)

) = −
dx(s,ωl)

ds

x(s, ωl)
.

The left-hand side is positive for s ∈ (
¯
s, s̄). In addition, condition in equation (26) ensures

that it is weakly decreasing in s. The right-hand side is also positive for s ∈ (
¯
s, s̄). And the

function x(s, ωl) is log-concave in s which implies that the right-hand side is weakly increasing

in s. Hence,
dMLr

(
s,tp(s,m∗)

)
ds = 0 is unique and the solution is denoted as sr.

This result shows that under certain condition, the regulator’s marginal loss from manipu-

lation has U-shape. That is, the marginal loss MLr first decreases in s and then increases in s.

The condition in equation (26) means that ∆
(
s, tp(s,m)

)
is log-concave in s which ensures that

∆
(
s, tp(s,m)

)
is not too convex in s.

Following the intuition of Proposition 3, the optimal disclosure policy should minimize the

part of regulator’s loss that cannot be controlled by the optimal pass/fail decision. For given

level of manipulation, the disclosure policy should allocate less manipulation to cases when the

regulator is more susceptible to it. In addition, the optimal disclosure policy should minimize

the expected level of manipulation. To see this, I decompose the regulator’s ex-ante utility
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difference between disclosure UD and no disclosure UN for a given set of signals S′

UD − UN =

∫
S′

(
u
(
s,mD(s)

)
− u(s,mN )

)
dF (s)

=

∫
S′

(
mD(s)−mN

)
MLr

(
s, tp

(
s,m(s)

))
dF (s)

=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
−mN Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
− Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
+ Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
−mN Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
=Es∈S′

[
mD(s)MLr

(
s, tp

(
s,m(s)

))]
− Es∈S′

[
mD(s)

]
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
︸ ︷︷ ︸

Distribution effect

+
(
Es∈S′

[
mD(s)

]
−mN

)
Es∈S′

[
MLr

(
s, tp

(
s,m(s)

))]
︸ ︷︷ ︸

Expected level effect

Where mN is the bank’s manipulation response when N = S′ and m(s) is the manipulation level

that satisfies the mean value theorem. The first two terms capture whether disclosure is able to

distribute more manipulation to cases where the regulator suffers less from it. And the last two

terms captures the impact of disclosure on the expected level of manipulation. The following

proposition characterizes the optimal disclosure policy. It shows that the optimal disclosure

policy still follows a single cutoff rule.

Proposition 7. Suppose that condition (26) holds. The optimal disclosure policy follows a cutoff

rule where D = (s∗, s̄] and N = [
¯
s, s∗]. That is, the regulator discloses the signal s when s > s∗

and does not disclose the signal s when s < s∗, where s∗ ∈ [sr, s̄].

Proof. The proof of the optimality of a cutoff disclosure policy is omitted, because it is similar to

the proof of Proposition 3. The only difference is that the signal cutoff disclosure policy is optimal

because the regulator’s marginal loss caused by the bank’s manipulation MLr

(
s, tp(s,m)

)
has

U-shape across s. The regulator’s ex-ante utility with the optimal disclosure policy is U∗,

U∗ =

∫ s∗

¯
s

u(s,mN )dF (s) +

∫ s̄

s∗
u
(
s,mD(s)

)
dF (s).

Where the optimal cutoff point s∗ solves the following,

(
u(s∗,mN )− u

(
s∗,mD(s

∗)
))

f(s∗) +
∂mN

∂s∗

∫ s∗

¯
s

MLr

(
s, tp(s,mN )

)
dF (s) = 0. (27)
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The first-order condition for mN when N = [s∗, s̄] is

Es

[
MBb

(
s, tp(s,mN )

)
|s ∈ [

¯
s, s∗]

]
= kc′(mN ).

By implicit function theorem, I derive the derivative ∂mN
∂s∗ .

∂mN

∂s∗
=

f(s∗)∫ s∗

¯
s dF (s)

MBb

(
s∗, tp(s

∗,mN )
)
− Es≤s∗

[
MBb

(
s, tp(s,mN )

)]
kc′′(mN )− Es≤s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] .

With this derivative, I further reduce the first-order condition to the following

(
u(s∗,mN )− u

(
s∗,mD(s

∗)
))

+
(
MBb

(
s∗, tp(s

∗,mN )
)
− Es≤s∗

[
MBb

(
s, tp(s,mN )

)] ) Es≤s∗
[
MLr

(
s, tp(s,mN )

)]
kc′′(mN )− Es≤s∗

[
∂MBb

(
s,tp(s,mN )

)
∂mN

] = 0.

(28)
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C Real activity

In this appendix, I discuss an extension in which the bank exerts costly effort to improve

the payoff of the asset and such effort manifests itself in the report. Although, similar to the

baseline model, the bank’s effort choice improves the report in the sense of first order stochastic

dominance, such improvement in report arises endogenously from the improvement in asset

quality. As a result, the disclosure of the regulator’s private information affects the real activities

of the bank, i.e., effort choice.

Suppose that the bank can exert effort m to improve the quality of the asset. To keep

the notation consistent, I still use m to denote the bank’s effort. The effort m determines the

probability that bank’s fundamental value is ωh. That is, if the bank exerts effort m, then

the relative gain from continuing the asset is x(s, ωh) with probability m and x(s, ωl) with

probability 1−m when the regulator’s signal is s.

The fundamental of the asset determines the report distribution in the same way as in the

baseline model. That is, the report t is drawn from a distribution with density gi(t) when the

fundamental is ωi, where i = {h, l}. Hence, the effort manifests itself in the bank’s report.

With effort m, the bank’s report generating process is gh(t) with probability m and gl(t) with

probability 1−m. Notice that Assumption 1 cannot hold since the expected relative gain from

continuing the asset for given s is now endogenously determined by the bank’s effort. I assume

that x(s, ωl) ≤ x(s̄, ωl) ≡ 0 and x(s, ωh) ≥ x(
¯
s, ωh) ≡ 0. All other elements of the model are the

same as in Section 2. The focus of the following analysis is to show how the regulator should

disclose the regulatory signal to the bank to affect the bank’s effort choice. I solve the model

backwards.

Consider the regulator’s pass/fail decision after observing the private information s and the

bank’s report t. Same as in the baseline model, the regulator passes the bank if and only if the

expected gain from passing the bank is greater than failing the bank. That is,

Eω[x(s, ω)|t, m̂] ≥ 0.

Where m̂ is the regulator’s conjecture about bank’s effort. The conditional expectation is

Eω[x(s, ω)|t, m̂] = x(s, ωh) Pr(ω = ωh|t, m̂) + xm̂(s, ωl) Pr(ω = ωl|t, m̂)

= x(s, ωh)
m̂gh(t)

m̂gh(t) + (1− m̂)gl(t)
+ x(s, ωl)

(1− m̂)gl(t)

m̂gh(t) + (1− m̂)gl(t)
.

The pass/fail decision still features a threshold tp(s, m̂) on the bank’s report. Specifically, the
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bank passes the test if and only if the report t satisfies t ≥ tp(s, m̂). The passing threshold

tp(s, m̂) solves Eω[x(s, ω)|tp, m̂] = 0, which indicates that the regulator is indifferent between

passing and failing the bank when the bank’s report is tp(s, m̂).

Lemma 8. For given level of effort m, the passing threshold tp(s,m) is decreasing in s. For

given signal s, the passing threshold tp(s,m) is decreasing in m.

This lemma echoes to Lemma 2. The explanation for the first result is the same as in

Lemma 2. However, the effect of effort is different from manipulation. Effort improves the

relative gain from continuing the asset x(s, ω), which endogenously increases relative cost of

inefficient liquidation. Consequently, the regulator decreases the passing threshold.

Anticipate the regulator’s pass/fail decision, the bank chooses the effort level. Suppose that

the bank observes the regulator’s private signal s. The bank’s payoff is

V (s, m̂,m) = m
(
x(s, ωh)+B

) ∫
t≥tp(s,m̂)

gh(t)dt+(1−m)
(
x(s, ωl)+B

) ∫
t≥tp(s,m̂)

gl(t)dt−kc(m).

The first-order condition with respect to m determines the bank’s effort choice. In equilibrium,

the regulator’s conjecture about the effort is consistent with the bank’s choice. Hence, the

equilibrium manipulation mD(s) is determined by

(
x(s, ωh)+B

) ∫
t≥tp
(
s,mD(s)

) gh(t)dt−(x(s, ωl)+B
) ∫

t≥tp
(
s,mD(s)

) gl(t)dt−kc′
(
mD(s)

)
= 0. (29)

The first two terms are the marginal benefit of effort. I modify the definition of MBb in equation

(8) to the following

MBb

(
s, tp(s,m)

)
≡
(
x(s, ωh) +B

) ∫
t≥tp(s,m)

gh(t)dt−
(
x(s, ωl) +B

) ∫
t≥tp(s,m)

gl(t)dt

=
(
x(s, ωh)− x(s, ωl)

) ∫
t≥tp(s,m)

gh(t)dt+
(
x(s, ωl) +B

)
∆
(
tp(s,m)

)
.

(30)

Where ∆
(
tp(s,m)

)
is defined in equation (5) and it captures the difference in passing proba-

bility between low and high fundamental asset. The first term of MBb is the bank’s gain from

improving the fundamental from low to high, provided that the bank passes the test. This term

captures the effect of effort on the relative gain from holding the asset. The second term is

identical to equation (8) and it captures the bank’s expected gain from having low fundamental

asset pass the test. This term captures the effect of effort on the bank’s report. This effect is

identical to the effect of manipulation in the baseline model.
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Lemma 9. For given signal s, if

(
x(s, ωh)− x(s, ωl)

)
gh(

¯
t) <

(
x(s, ωl) +B

)(
gl(

¯
t)− gh(

¯
t)
)
,

then MBb

(
s, tp(s,m)

)
is increasing in m for m < mr(s) and it is decreasing in m for m > mr(s),

where mr(s) solves
∂MBb

(
s,tp(s,m)

)
∂m = 0. Otherwise, MBb

(
s, tp(s,m)

)
is increasing in m.

This result shows that the bank’s marginal benefit of exerting effort is nonmonotonic in

the level of effort m. The intuition is as follows. The first component of MBb

(
s, tp(s,m)

)
is(

x(s, ωh)−x(s, ωl)
) ∫

t≥tp(s,m) g
h(t)dt, and it represents the bank’s gain from improving the asset

fundamentals. As the effort m increases, the bank is more likely to have high fundamental

asset. In response, the regulator is more likely to pass the bank (by lowering the passing

threshold). Consequently, the first term
(
x(s, ωh)−x(s, ωl)

) ∫
t≥tp(s,m) g

h(t)dt is increasing in the

amount of effort, incentivizing the bank to exert more effort. However, the second component(
x(s, ωl) + B

)
∆
(
tp(s,m)

)
may be decreasing in the effort m, depending on how ∆

(
tp(s,m)

)
changes with m. Lemma 8 shows that the passing threshold tp(s,m) is decreasing in effort m,

meaning that the bank is more likely to pass the test when exerting more effort. When the level

of effort is very low (high), the regulator will set the passing threshold very high (low) which

makes the bank less (more) likely to pass the test regardless of the fundamental of the asset.

When the level of effort is intermediate, the regulator will also set the passing threshold at an

intermediate level which makes the passing probability depend crucially on the fundamental of

the asset. Hence, the difference in passing probability between low and high fundamental asset

∆
(
tp(s,m)

)
is first increasing and then decreasing in the effort level m, which then makes the

second component of MBb

(
s, tp(s,m)

)
follow the same pattern.

The condition in Lemma 9 guarantees that the effect of first component does not always

dominate the effect of the second component. This condition depends on the bank’s private

benefit of passing the test. When the private benefit B is relatively small, the first effect

("learning the regulator’s signal to improve the asset quality") always dominates the second

effect in which the bank exerts effort only when it leads to higher chance of passing the test

("learning the regulator’s signal to improve the report without improving the asset quality") .

One implications of Lemma 9 is that the first-order condition in equation (29) may be

nonmonotonic in m, hence, the interior solution of mD(s) may not exist and the solution of

mD(s) may not be unique. One sufficient condition for the interior solution of mD(s) to exist is

x(s, ωh)− x(s, ωl) < kc′(1), ∀s. (31)
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This condition means that the effort is costly such that the bank does not have incentive to

improve the fundamental to x(s, ωh). To avoid having multiple equilibria for the effort mD(s), I

assume that the bank chooses the highest effort level when the bank is indifferent. The solution

mD(s) must satisfy the second order condition ∂FOC
∂m < 0.

Proposition 8. When s is disclosed, the level of manipulation mD(s) is increasing in s for

s < sD and it is decreasing in s for s > sD, where sD is the unique solution for ∂MBb
∂s = 0.

Now consider the effort choice when the bank does not observe the regulator’s signal s. The

equilibrium effort mN solves,

Es

[
MBb

(
s, tp(s,mNn)

)∣∣ s ∈ Nn

]
− kc′(mNn) = 0.

The effort mN is unique and it is a constant over the regulator’s signal s.

The following proposition compares the effort level when the bank observes the signal with

the effort level when the bank does not observes the signal.

Proposition 9. If the following holds for all s

∂MBb

(
s, tp(s,m)

)
∂m

∣∣∣∣∣
m=mD(s)

>= 0, (32)

then Es

[
mD(s)|s ∈ N

]
≥ mN if N ⊆ [

¯
s, sD] and Es

[
mD(s)|s ∈ N

]
≤ mN if N ⊆ [sD, s̄].

The intuition is as follows. When s ∈ [
¯
s, sD], the effort mD(s) is increasing in s if s is

disclosed. In response, the regulator decreases the passing threshold tp, which makes the test to

be more lenient regardless of the asset fundamental. Such endogenous response of the passing

threshold has two opposite effects on the bank’s incentive to exert effort. One the one hand, an

easier test allows the bank to pass the test even without exerting effort, which then decreases the

bank’s incentive to exert effort. On the other hand, an easier test increases the possibility that

the bank’s effort is realized, i.e., the bank passes the test after increase the asset quality. This

effect increases the bank’s incentive to exert effort. (Notice that this second effect is missing

in the baseline model.) Depending on the magnitude of the two forces, the bank may increase

or decrease effort. When condition (32) holds, the second effect dominates. As a result, the

interactions between the regulator’s pass/fail decision and the bank’s effort choice increases the

expected level of effort, comparing to the case when such interactions are absent, i.e. when s is

not disclosed. When s ∈ [sD, s̄], the manipulation mD(s) is decreasing in s if s is disclosed. In

response, the regulator increases the passing threshold tp to make the test more difficult. Such
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endogenous response of the pass/fail decision then increases the magnitude of passing probability

that can be increased by exerting effort, incentivizing the bank to exert more effort. However, as

the test gets more difficult, it also increases the likelihood that the bank may not be paid off by

exerting effort. That is, the bank may still fail the test even after exerting effort. (Again, this

second effect is missing in the baseline model.) The second effect dominates the bank’s effort

choice if condition (32) holds. As a result, the interactions between the regulator’s pass/fail

decision and the bank’s effort choice decreases the expected level of effort when s is disclosed

compare to the case when s is not disclosed.

Consider the regulator’s disclosure policy. For given signal s and equilibrium effort m∗, the

regulator’s payoff is

u(s,m∗) =

∫
t≥tp(s,m∗)

Eω[x(s, ω)|t,m∗]gm∗(t)dt

= m∗x(s, ωh)

∫
t≥tp(s,m∗)

gh(t)dt+ (1−m∗)x(s, ωl)

∫
t≥tp(s,m∗)

gl(t)dt.

Where gm∗(t) is the unconditional distribution of report t when the bank’s effort is m∗. That

is,

gm∗(t) = m∗gh(t) + (1−m∗)gl(t).

Taking derivative of u(s,m) with respect to m, I obtain the marginal effect of bank’s effort on

the regulator. I modify the definition of MLr in equation (11) to the following,

MLr

(
s, tp(s,m)

)
≡ x(s, ωh)

∫
t≥tp(s,m)

gh(t)dt− x(s, ωl)

∫
t≥tp(s,m)

gl(t)dt

=
(
x(s, ωh)− x(s, ωl)

) ∫
t≥tp(s,m)

gh(t)dt+ x(s, ωl)∆
(
tp(s,m)

)
.

Lemma 10. For any disclosure set D or no-disclosure set Nn, MLr

(
s, tp(s,m

∗)
)

is increasing

in s for m∗ = {mD(s),mNn}.

As argued in the baseline model, disclosure is less likely to be optimal when the changes

in manipulation m and changes in the regulator’s marginal utility change MLr are driven by

the the difference in passing probability between low and high fundamental asset ∆(tp(s,m)).

This is still the case in this extension with effort choice. However, the effort exertion makes

disclosure more likely to occur. Because in addition to inform the bank about the gain after

passing the test, the regulator’s disclosure about s is also informative about the improvement

of such gain by exerting effort. Hence, disclosure is more useful to align the regulator’s and the

bank’s interest regarding when effort is more desirable.
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Proposition 10. When condition (32) holds, the optimal disclosure policy follows a cutoff rule

where D = [
¯
s, s∗) and N = [s∗, s̄]. That is, the regulator discloses the signal s when s < s∗ and

does not disclose the signal s when s > s∗, where s∗ ∈ [
¯
s, sD).
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