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Breaking the Correlation between Corporate Bonds and
Stocks: The Role of Asset Variance

ABSTRACT

We show that firm default risk is the primary predictor of the correlation between corporate bond and

stock returns, both in the cross-section and over time. Bonds of less creditworthy firms behave more

like the issuing firms’ stocks, resulting in higher future comovement. As a direct implication, investing in

bonds and stocks of the most creditworthy firms significantly enhances diversification benefits and Sharpe

ratios out-of-sample. We develop a structural model with stochastic asset variance that rationalizes

these findings, whereby time-variation in asset variance plays a critical for breaking down the perfect

stock-bond correlation implied by the Merton model.

JEL Classification Numbers: G12, G13
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Stocks and bonds are both claims on a firm’s underlying assets, implying that their prices should co-

move positively with each other. Despite this basic intuition, and the fact that stock-bond correlation

plays a central role for portfolio and risk management decisions, we know surprisingly little about the

comovement between stock and corporate bond returns (see Bali, Goyal, Huang, Jiang and Wen 2022

for a review). For example, we still have limited knowledge on its magnitude, how it varies across firms

and over time, or about its underlying economic forces.1 A primary reason for this limited understanding

is that the no-arbitrage model of Merton (1974), which has become the de facto workhorse framework

for pricing corporate securities, implies a perfect correlation between a firm’s stock and bond returns. In

the data, however, the correlation between corporate bonds and stocks is neither constant nor perfect,

as illustrated by Figure 1, suggesting that the connection between these asset classes is far from trivial.

In this paper, we show that time-variation in asset variance plays a critical role for breaking down the

perfect stock-bond correlation implied by the Merton model. The reason is that a firm’s bond and equity

prices are typically exposed to changes in its asset variance in opposite directions. On one hand, higher

variance of assets increases a firm’s equity value, as equity can be viewed as a call option on the firm’s

assets. On the other hand, it also increases the value of the short put option embedded in the firm’s

bond, thereby decreasing bond valuation.

Despite its importance for enabling a less than perfect correlation between stocks and bonds, asset

variance is not the driver of the stock-bond comovement variation. But default risk is. Intuitively,

a bond’s sensitivity to firm fundamentals, and thus to equity, should increase when creditworthiness

deteriorates. To see this, consider a risk-free corporate bond, whose valuation is independent on the

firm’s fundamentals. In this case, the correlation with equity is nil. The bond of a distressed firm,

however, behaves more like its equity, thereby generating a high correlation between the two. So we

can expect stock-bond correlation to increase with the level of a firm’s default risk, especially when firm

asset variance strongly varies over time.

Using these insights, we provide novel evidence on the comovement between corporate bonds and stocks
1Stocks and corporate bonds have long been treated as separate asset classes and studied independently. To a large

extent, this is due to a view that markets are segmented and different investors operate in debt and equity markets,
respectively. Boyarchenko and Mueller (2019), for example, show that a large proportion of corporate bonds are held by
pension funds and insurance companies. The Flow of Funds report released by the Federal Reserve Board also shows that
from 1986 to 2017, 78% of corporate bonds are held by institutional investors, as opposed to equity markets, where 43%
of the market is held by the household sector, 33% by mutual funds and 15% by pension funds (see Bai et al., 2021).
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issued by the same firm and make three main contributions. First, we show that firm default risk is

the primary predictor of the future comovement between corporate bond and stock returns, both in the

time series and in the cross-section. This predictive relation arises directly from the time variation in

firm asset variance, as the relation is strongest for firms exhibiting highest fluctuations in asset variance

but disappears for firms with constant asset variance. Second, we develop a model that rationalizes

these stylized facts by introducing stochastic idiosyncratic and systematic asset variances into a standard

credit risk framework. Third, our findings have relevant implications for practitioners as we show that

the comovement predictability can be exploited to generate tangible out-of-sample economic gains for

investors adopting an active portfolio strategy.

Our empirical analysis first shows that stock-bond covariance and correlation varies strongly across

firms and over time, and that firm default risk is the primary driver of the one-year-ahead stock-bond

comovement.2 Such predictability is robust to using various firm-level default risk proxies such as market

leverage, bond yield spreads, credit default swap (CDS) spreads, distance-to-default, or a composite

default risk measure. A panel regression analysis demonstrates that the predictive ability of default risk is

robust in the cross-section and with firm fixed effects, which indicates that the predictability is not caused

by unobservable changes in aggregate conditions or by time-invariant differences across firms. We then

verify that the predictive ability of default risk holds after controlling for a wide range of variables that

are informative about firm and bond liquidity, shocks to the capital of financial intermediaries, changes

in Treasury yields and expected inflation, or macroeconomic conditions. Relative to these measures,

default risk is by far the most relevant variable for predicting stock-bond comovement; it accounts for

more than 70% of the total variation in comovement explained by our regression models. Importantly,

the impact of default risk on future stock-bond comovement is large and economically meaningful.

Unconditionally, the stock-bond correlation increases from 0.07 to 0.33, when moving from AAA/AA

rated firms to firms rated BB/C.

We rationalize these findings with a structural credit risk model which extends Du et al. (2019) along

two key dimensions. First, we allow for stochastic asset variance to have a systematic and an idiosyn-
2Our main sample uses TRACE data combined with stock and firm-level data from CRSP/COMPUSTAT and consists

of 1,290 firms with a total of 9,103 bonds over the period from August 2002 to August 2020. For robustness, we merge
various corporate bond data sets (i.e., Lehman Brothers Fixed Income Database, TRACE, and Datastream) to obtain an
extended sample consisting of 12,756 corporate bonds issued by 1,652 firms spanning the period April 1987 to August
2020. Results remain similar across the two samples.
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cratic component. Second, the model introduces a factor structure in asset returns, such that firms

differ in their exposure to aggregate asset returns and variance via their asset beta. Both extensions

are non-trivial, yet useful in generating reasonable predictions. On the one hand, the presence of priced

systematic variance is key to obtaining reasonable credit spreads, along with the level of systematic risk

in bond and stock markets we observe empirically. Systematic variation in the level and the variance of

a firm’s assets also helps generate meaningful time-series fluctuations in aggregate stock-bond comove-

ment. On the other hand, firm heterogeneity in asset betas and idiosyncratic variances contributes to

generating the observed cross-sectional variation in stock-bond correlation and covariance.

To grasp the fundamental role of stochastic asset variance in shaping stock-bond comovement, consider

a Merton-type model with constant asset variance. When the variation in the firm’s assets is the unique

source of uncertainty, bond and equity valuations perfectly comove with each other (i.e., good news

for equity is always good news for the bonds). Within our model, heterogeneity in equity and bond

exposures to asset variance risk is key to break down this perfect correlation. The reason is that equity

can be viewed as a call option on the firm’s assets and, hence, equity valuation increases with total

asset variance. In contrast, higher asset variance increases the firm’s default probability and reduces

the value of its bonds. Shocks to asset variance thus affect the pricing of stocks and bonds in opposite

directions in our model, consistent with what we observe empirically.

We compare the model predictions with the data by simulating a large cross-section of firms with one

bond and one stock each over 10 years. This allows us to calculate various bond and stock pricing

moments and structurally estimate the model parameters to match a set of empirical moments in the

bond and stock markets. The main finding is that we can reproduce the predictive relation between

future stock-bond comovement and current firm default risk, both over time and in the cross-section.

For robustness, we augment our model with stochastic interest rates and find that default risk remains

a strong driver of future stock-bond covariance and correlation.3

Our work complements the literature studying the stock-bond return relation with the hedge ratio, which

measures the sensitivity of corporate bond returns to changes in the value of equity. We have two novel
3Note that stochastic variation in interest rates helps to decrease the level of stock-bond comovement. A rise in the

risk-free rate effectively reduces the discounted value of future coupons, thereby decreasing the value of the bond. This in
turn increases the value of the firm’s stock for a given level of assets. So bond and stock valuations move in the opposite
direction upon a change in interest rates.
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insights.4 First, we decompose the empirical hedge ratio across rating categories into a stock-bond

correlation term and the Merton component, which is purely impacted by leverage. We document that

the correlation increases by a factor of about 6 from the safest to the riskiest ratings, whereas there is

virtually no cross-sectional variation in the Merton component. Thus, the relation between the hedge

ratio and default risk documented in Schaefer and Strebulaev (2008), among others, is almost uniquely

driven by fluctuations in the stock-bond correlation, consistent with our model. Second, we show that

the Merton model, which assumes constant asset volatility, can only fit the data once we compute the

model-implied hedge ratios with time-varying asset volatility. This finding highlights the importance

of accounting for stochastic asset volatility in credit risk models to generate meaningful variation in

stock-bond correlation and, thus, hedge ratios.

The findings documented in this paper also have relevant implications for investors and managers of

funds with a joint exposure to stocks and bonds. Investing in more creditworthy firms can generate

tangible out-of-sample economic gains through enhanced diversification benefits. To show this, we first

sort firms into quintiles based on default risk. We then evaluate, for each quintile, the diversification

benefits from investing in an equal-weighted allocation of stocks and bonds issued by the same firm,

compared to investing in the two asset classes separately. We find that the diversification benefits

are significantly higher for firms with less default risk.5 Notably, selecting the most creditworthy firms

reduces portfolio volatility more than it decreases excess returns, resulting in an improved risk-return

tradeoff. For example, the Sharpe ratio doubles when investing in stocks and bonds issued by firms with

the lowest instead of highest default risk. This finding suggests that reaching for yield, by selecting bonds

of firms with high default risk, can be particularly detrimental for balanced (and multi-asset) mutual

funds in terms of risk-adjusted performance. Exploiting the strong diversification between stocks and

bonds of the most creditworthy firms can add significant value to managers of such funds, which tend

to spread their overall investment across various rating categories.6

4See, for example, Kwan (1996), Schaefer and Strebulaev (2008), Bao and Hou (2017), Choi and Kim (2018), Augustin
et al. (2020), Bali et al. (2022), and Kelly et al. (2022).

5A portfolio combining stocks and bonds issued by firms with the lowest (highest) default risk can eliminate about 47%
(26%) of the average stock and bond return volatility. A central driver of this result is the fall in the correlation between
stock and bond portfolio returns, which decreases from 0.71 to 0.11 when moving from the highest to the lowest-default-risk
quintile portfolio.

6For example, consider BlackRock’s “Multi-Asset Income Fund”, which invests in corporate bonds (60%) and stocks
(40%), with about $15.6 billion under management. The fund’s bond allocation as of April 29, 2022 is as follows: 2.8%
in AAA, 3.7% in AA, 7.1% in A, 14.5% in BBB, 28.3% in BB, 27% in B, 7.2% in CCC, and 1.5% in CC and below.
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This paper builds on a growing literature analyzing the relation between stocks and corporate bonds.

The seminal work of Collin-Dufresne et al. (2001) suggests that the relation between stock returns

and changes in credit spreads is weak compared to what structural models would predict. In contrast,

Schaefer and Strebulaev (2008) find that the sensitivity of corporate bond returns to stock returns

(hedge ratio) is consistent with this class of models, while Bao and Hou (2017) document that such

sensitivity increases with a bond’s seniority. Bali et al. (2022) find that the return predictability of

corporate bonds, using stock and bond characteristics with machine learning, improves when imposing

the economic structure from the Merton model. Kelly et al. (2022) show that debt and equity markets

become more integrated than previous estimates suggest when computing the hedge ratio with the

systematic components of bond and stock returns. Based on portfolio sorts, Friewald et al. (2014) find

that firms’ stock returns strongly increase with credit risk premia. In contrast, Chordia et al. (2017)

and Choi and Kim (2018) suggest that stock characteristics do not help predict the cross-section of

corporate bond returns, thus questioning evidence regarding the existence of a tight link between stock

and corporate bond pricing. Consistent with this view, Bali, Subrahmanyam and Wen (2021) point

out that the correlation between stock and corporate bond returns is low on average.7 Relative to

these studies, our contribution is to investigate how default risk predicts stock-bond correlation and to

rationalize these findings through the lens of a new structural model.8

The results of our paper also complement the literature studying the degree of integration between the

stock and bond markets. Having different types of investors in either markets naturally implies some

degree of segmentation, as evidenced in Kapadia and Pu (2012), Chordia et al. (2017), Choi and Kim

(2018), Augustin et al. (2020), Sandulescu (2021), or Collin-Dufresne et al. (2021), among others.

Market segmentation is thus an important feature of the data to potentially explain the low average

correlation level between stocks and bonds. However, market segmentation is unlikely to drive the

variation in correlation across firms, especially regarding the role of default risk. Market segmentation

indeed tends to be more severe for speculative-grade firms (e.g., see Chernenko and Sunderam, 2012)

and, therefore, could not explain our finding that stock-bond comovement is higher for firms with more

default risk. In addition, a key contribution of the paper is to explore to what extent one can rationalize
7They document an average correlation of about 0.18, consistent with previously reported evidence (e.g., Kapadia and

Pu, 2012; Chordia et al., 2017).
8Table A.1 in the Online Appendix provides a selective summary of this literature.
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stylized facts about stock-bond comovement with a model assuming fully integrated markets.

On the theoretical front, our paper relates to recent structural credit risk models allowing for time

variation in asset variance and risk premia (e.g., see Cremers et al., 2008; Chen et al., 2009; Bhamra

et al., 2010). These papers aim to match empirical features of the equity and bond markets, such as

the level of credit spreads and the equity risk premium. Du et al. (2019) show that accounting for

priced asset variance risk helps generate the levels of credit spreads together with equity and bond total

volatilities we observe in the data.9 Collin-Dufresne et al. (2021) introduce a jump-diffusion process with

idiosyncratic and systematic risk to explain the level of implied volatilities in equity and credit derivative

markets. We contribute to this literature with novel insights on the dependence between stock and bond

returns while extending our understanding of their respective pricing moments. Specifically, we show

that a model with stochastic idiosyncratic and systematic asset variance can replicate the predictability

of the stock-bond comovement with default risk consistent with the data, and helps understand its

underlying economic forces. This makes the model particularly useful not only to study the pricing of

stocks and bonds but also their joint dynamics.

While the credit spread puzzle has been a central focus of the credit risk literature over the last two

decades (e.g., Huang and Huang, 2012), we uncover a novel dimension that structural models struggle

to reproduce: the low average correlation level between stock and bond returns. We find that a no-

arbitrage model with stochastic asset variance is successful in matching key individual equity and bond

pricing moments (e.g., firm-level and aggregate stock/bond volatilities) and default risk (e.g., CDS

spreads, financial leverage, and default probability), but implies a level of stock-bond correlation that

is too high relative to the data: around 0.79 (0.64) in our model with constant (stochastic) interest

rates, while it is around 0.20 in the data. We label this finding the ’stock-bond correlation puzzle.’

One potential way to reduce the unconditional correlation is to consider financial frictions, thereby

preventing stock and bond markets from being fully integrated.10 Given our focus on the conditional

variation of the stock-bond comovement across firms and over time, rather than on its unconditional

level, we intentionally do not introduce any friction in the model. The resolution of this correlation
9The presence of the variance risk premium creates a wedge between physical and risk-neutral asset variance, which

implies a high credit spread along with reasonable firm leverage.
10The introduction of financial constraints, stock/bond-specific shocks, asset-specific transaction costs, or asymmetric

information would mechanically weaken the tight link between corporate bonds and stocks that existing rational pricing
models imply.
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puzzle constitutes, however, a promising agenda for future research on credit models.

The remainder of the paper is organized as follows. Section 1 describes the data and presents the

results regarding the predictive relation between stock-bond comovement and default risk. Section 2

discusses the out-of-sample diversification gain by default risk. Section 3 outlines a credit risk model

with stochastic variance that rationalizes our empirical findings and sheds new light on the comovement

between corporate bonds and stocks. Section 4 concludes. The Online Appendix contains technical

details and presents additional results not included in the main body of the paper.

1 Predictability of stock-bond comovement with default risk

In this section, we empirically explore how default risk predicts stock-bond comovement at the firm level,

both in the cross-section and over time. We document a positive and asymmetric predictive relation,

that is, an increase in default risk has a stronger impact on the one-year-ahead stock-bond comovement

than a decrease in default risk. We verify that such predictability is robust to controlling for alternative

explanations, bond characteristics, and changes in financial/economic conditions. We first present the

data and then discuss the empirical results.

1.1 Data

We start by describing our data and introducing the measures of stock-bond comovement and default

risk.

Sample construction Our main analysis uses a comprehensive dataset of transaction-based bond

prices from the cleaned Enhanced TRACE dataset provided by WRDS. We extract corporate bond

characteristics data from Mergent FISD, which we then match with equity and accounting data from

CRSP and COMPUSTAT.11 Online Appendix A contains details on the construction, merging and

filtering rules applied to the datasets, which closely follow the literature. The final sample comprises

9,103 corporate bonds issued by 1,290 firms spanning the period from August 2002 to August 2020.
11We merge corporate bond data to firm-level data using the WRDS Bond Linker for the TRACE data and historical

Committee on Uniform Securities Identification Procedures (NCUSIP) identifiers at both the firm and issue levels for the
other databases. The remaining corporate bonds are manually matched using Bloomberg’s data point (BDP) function.
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Stock-bond comovement The estimation of stock-bond comovement requires firm-level measures of

stock and corporate bond returns. We compute stock returns as rS,i,t =
Si,t+Di,t
Si,t−1

− 1, where Si,t is the

stock price of firm i and Di,t is the dividend paid during month t (if any). For bond returns, since there

are multiple bonds issued by the same firm, we first compute monthly returns of individual bonds and

then aggregate the returns at the firm level. Individual corporate bond returns are computed as follows:

rB,i,j,t =
Bi,j,t +AIi,j,t + Couponi,j,t

Bi,j,t−1 +AIi,j,t−1
− 1, (1)

where Bi,j,t is the price of bond j of firm i in month t, AIi,j,t is the accrued interest, and Couponi,j,t

is the coupon payment, if any. The aggregate corporate bond return for firm i in month t, denoted by

rB,i,t, is the equal-weighted average of the firm’s outstanding corporate bond returns rB,i,j,t.12 Our main

measures of stock-bond comovement for firm i in month t are the covariance, σS,B,i,t, and correlation,

ρS,B,i,t, between stock and bond returns estimated using 12 monthly observations from t− 11 to t.13

Default risk measures We consider four firm-month default risk measures, which we describe in detail

in Online Appendix B. First, we use market leverage, Li,t, defined as the ratio between total book debt

and the sum of total book debt and the market value of equity. Second, we use the distance-to-

default (DD), given by (the log of) the distance between a firm’s assets and the face value of its debt

scaled by asset volatility. We follow Choi and Richardson (2016) and compute asset volatility as the

standard deviation of monthly asset returns measured over the previous year. The asset return for

firm i in month t, denoted by rA,i,t, is constructed as a weighted-average of bond and stock returns:

rA,i,t = Li,t×rB,i,t+(1−Li,t)×rS,i,t. A lower distance-to-default indicates a higher probability of default

and is thus commonly used as a negative default predictor in reduced-form models (e.g., Duffie et al.,

2007; Bharath and Shumway, 2008; Campbell et al., 2008). Third, we consider the equal-weighted

credit spreads of a firm’s outstanding bonds, which determines the compensation for bearing default

risk. The credit spread of an individual bond is computed as the difference between the yield of the bond

and the associated yield of the Treasury curve for the same maturity. We use the Benchmark Treasury
12Results remain quantitatively similar when using weights based on the outstanding amount in each of the firm’s bonds.
13For our regression analysis, we apply the Fisher transformation to the correlation, which is defined by ρFS,B,i,t =

1
2
ln(

1+ρS,B,i,t
1−ρS,B,i,t

). The Fisher transformation follows a standard normal distribution asymptotically and allows for correct
inference on the regression coefficients. We also consider longer estimation windows (up to 60 months) for robustness.
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rates from Datastream for maturities of 3, 5, 7, 10, and 30 years, and then use a linear interpolation

scheme to estimate the entire yield curve, following Duffee (1998) and Collin-Dufresne et al. (2001),

among others. Finally, we construct an aggregate firm-level default risk variable, labeled ‘Default Risk’,

as the sign-corrected average of the three standardized default risk measures.14 As we use one year

of data to compute the distance-to-default, the sample we consider for the remainder of our analysis

spans the period August 2003 to August 2020.

Table 1 summarizes the construction and the sources of the variables used in the paper. Panel A of

Table 2 presents summary statistics for the different measures of stock-bond comovement and default

risk, while Panel B presents the pairwise correlations between the variables. Once the sign for distance-

to-default is flipped, all measures are positively correlated and exhibit a positive correlation with both

measures of stock-bond comovement.

Table 1 and Table 2 [about here]

1.2 Default risk as the main driver of stock-bond comovement

In this section, we establish our main result that default risk predicts future comovement between

corporate bond and stock returns by running the following regression:

Comovementi,t+12 = a+ δDRi,t + Y′i,tδC + bi + εi,t+12, (2)

where Comovementi,t+12 is either the one-year-ahead stock-bond covariance, σS,B,i,t+12, or Fisher

correlation, ρFS,B,i,t+12, of firm i computed between months t + 1 and t + 12, DRi,t denotes firm-level

default risk observed in month t, and Yi,t is a vector of firm characteristics and aggregate variables

observed in month t that we use as controls. We include firm fixed effects bi to account for unobserved

time-invariant differences across firms. Standard errors are clustered at the firm and month level to

account for potential correlation across residuals, εi,t, across firms and time.

Table 3 reports the baseline predictive regression results using individual default risk measures. To
14Specifically, ‘Default Risk’ is computed as (Lev −DD+CS)/3, where Lev, DD, and CS are standardized measures

of leverage, distance-to-default, and credit spread, respectively. This variable is also standardized to ensure a mean of zero
and a standard deviation of one.
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make the coefficient estimates comparable, all measures are standardized.15 While Panel A reports

results for covariance, the results for correlation are presented in Panel B. In all cases the coefficients

are positive and highly statistically significant, i.e., default risk positively predicts the one-year-ahead

stock-bond covariance as well as the correlation. The predictive relation is not only statistically strong

but also economically meaningful. Using leverage as an example, a one-standard deviation increase in

firm default risk is associated with an increase in the correlation of about 28% over the following year.16

Table 3 [about here]

Given that the results are qualitatively similar across the individual default risk measures, we use the

aggregate default risk measure for the remainder of the empirical analysis. In Columns (1) and (3)

of Panel A in Table 4, we repeat the baseline regressions from Table 3 with firm fixed effects but

using ‘Default Risk’ as the regressor. Additionally, Columns (2) and (4) present results using the

Fama-MacBeth approach to explore the predictability across firms. Throughout, the impact of default

risk remains highly statistically significant and further strengthens in the cross-section. The results

with firm fixed effects suggest that stock-bond comovement doesn’t merely capture time-invariant

differences across firms.17 At the same time, the cross-sectional results suggest that the predictability

is not driven by unobservable changes in aggregate conditions. Furthermore, the results are similar

whether we compute stock-bond comovement using raw or excess returns, hence, we focus on raw

returns throughout the paper.18

Table 4 [about here]

To complement our regression analysis we study conditional portfolio sorts based on S&P bond ratings.

To this end, each month t, we form five groups of firms according to the following rating ranges: AAA
15In addition, the sign on distance-to-default is flipped so that the interpretation of the coefficient estimates remains

consistent across columns.
16Recall that our regressions use the Fisher correlation, such that the dependent variable is unbounded. Inverting the

Fisher transformation yields ρS,B,i,t = e
2ρFS,B,i,t−1

e
2ρF
S,B,i,t+1

. A one-standard-deviation increase in leverage increases the Fisher

correlation (ρFS,B,i,t) from 0.24 (unconditional mean) to 0.31 (as δ̂ = 0.07), which implies that the stock-bond correlation
(ρS,B,i,t) effectively changes from 0.235 to 0.300, i.e., an increase of 28%.

17In Online Appendix C, we consider additional panel specifications using different combinations of time and firm fixed
effects, as well as different dimensions of standard error clustering. Regardless of the specification, the predictive relationship
between default risk and measures of stock-bond comovement remains robust.

18Table A.3 in the Online Appendix reproduces the results of Table 4 using two different measures of excess returns:
stock and bond returns are computed in excess of i) the one-month T-Bill return and ii) the maturity-matched Treasury
Bond return. Results are robust across all return specifications.
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to AA-, A+ to A-, BBB+ to BBB-, BB+ to BB-, and B+ to C. For each group, we create value-

weighted portfolios, using market capitalization for the weights, and compute the respective stock-bond

covariances and correlations over the following year. Confirming our regression analysis, Panels A and

B of Figure 2 show that the one-year-ahead stock-bond comovement is monotonically decreasing in the

average level of credit rating. Specifically, the stock-bond correlation increases from 0.07 to 0.33, when

moving from AAA/AA rated firms to BB/C rated ones. This difference is economically sizable.

Figure 2 [about here]

The bar plots also suggest that the predictive relation between stock-bond comovement and default

risk is asymmetric. For example, when moving from A/BBB to BB/C rated firms, the increase in

correlation is four times larger than the increase measured when moving from AAA/AA to A/BBB

rated firms. To verify the robustness of this finding, we further sort firms into default risk quintiles

using the aggregate default risk measure. Panels C and D of Figure 2 again confirm the predictive

relationship between default risk and stock-bond comovement. Furthermore, the relationship continues

to be strongly convex, i.e., the impact of a decrease in default risk (e.g., from Q3 to Q1) is not the

mirror image of an increase in default risk (e.g., from Q3 to Q5). The asymmetry implies that the

predictive relation between stock-bond comovement and default risk strengthens for less creditworthy

firms.

In summary, the level of default risk dictates the fundamental relation between corporate bond and

stock valuations. When a firm has higher default risk, corporate bond prices become more sensitive

to changes in firm conditions and start behaving more like the firm’s equity. Consistent with this

intuition, we provide evidence that default risk is a strong predictor of the one-year-ahead covariance

and correlation between stocks and bonds. In addition, this predictability holds conditionally and is

particularly acute among firms with higher default risk.

These results have important implications for portfolio allocation. Investing in a balanced portfolio of

stocks and bonds of firms with low default risk (e.g., AAA-AA to A ratings) should offer a high level of

diversification, as the correlation of stocks and bonds issued by these firms is relatively low. In contrast,

a balanced allocation strategy that would invest in stocks and bonds of firms with high default risk

(e.g., B+ to C ratings) should offer lower diversification benefits as the correlation of stocks and bonds

11



issued by these firms is relatively high. We quantify the role of default risk on the diversification gain

of investing in stocks and bonds in Section 2.

1.3 Controlling for alternative explanations

We now verify that default risk remains a key predictor of stock-bond comovement after accounting

for various alternative channels. Although the literature on the determinants of the stock-corporate

bond covariance and correlation remains limited to date, several strands of studies are useful to identify

potential alternative factors that could impact the comovement between corporate bonds and stocks.

We now reestimate the benchmark specification controlling for such alternative channels. We present

the results in Table 5, where each column includes a different set of controls.

Table 5 [about here]

Bond and equity characteristics As a first robustness check, we control for various corporate bond

characteristics in Column (1). Bao and Hou (2017) find that the maturity of a bond shapes its relation

with the firm’s stock. To account for this channel, we directly control for time-to-maturity as well as the

debt coupon, which we average at the firm level. Other bond features such as the possibility to call the

bond (callability) could also affect its yield, return, and eventually its comovement with stock returns.

Bond callability is a crucial feature of most corporate bonds, as over 70% of the full sample of corporate

bonds have an embedded call option. Hence, we also control for a dummy variable equal to one if the

bond is callable and zero otherwise, following Chordia et al. (2017).19 In addition, we control for the

total size of a firm’s bonds with (the log of) the sum of all bonds outstanding for a given firm. Finally,

we account for firm-level bond illiquidity, which we compute as the value-weighted bond bid-ask spread.

Complementing these bond features, in Column (2), we account for firm-level stock characteristics

that are potentially related to default risk. Specifically, we control for stock illiquidity using Amihud

(2002)’s ratio, equity size using the log of stock market capitalization, and equity valuation using the

market-to-book ratio.
19We also verify that our findings remain qualitatively similar if we exclude all callable bonds and estimate our main

results using the reduced sample of option-free bonds. The results are reported in the Online Appendix C
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Aggregate liquidity conditions The literature on the comovement between stocks and Treasury bonds

suggests that aggregate liquidity conditions are central drivers of the stock-treasury bond covariance

(Baele et al., 2010). As such, aggregate liquidity conditions likely affect investment-grade bonds, as

they tend to fluctuate in line with risk-free securities. We thus control in Column (3) for the potential

impact of aggregate illiquidity using Pastor and Stambaugh (2003)’s liquidity risk-factor and the ‘noise’

illiquidity proxy of Hu et al. (2013).20 The noise measure captures episodes of liquidity crises of different

origins, thereby providing information beyond traditional liquidity proxies.

Intermediary capital risk We then check that the impact of default risk on the stock-bond covariance

and correlation is not capturing an intermediary asset pricing story. To this end, we control in Column (4)

for the intermediary capital risk factor of He et al. (2017), which is known to explain the cross-sectional

pricing of various asset classes, including stocks and bonds.21

Interest rates and expected inflation Another body of literature provides evidence that the term

structure of interest rates and expected inflation drive the stock-treasury bond covariance (see, e.g.,

David and Veronesi, 2013; Campbell et al., 2017, 2020). We thus control in Column (5) for these

effects using the 10-year U.S. Treasury rate, the 3-month U.S. Treasury Bill secondary market rate, and

their difference (slope) to proxy for the term structure. We separately control in Column (6) for the

one-quarter-ahead mean inflation forecast from the Survey of Professional Forecasters, obtained from

the Philadelphia FED, to proxy for expected inflation.

Macroeconomic conditions The comovement between stocks and corporate bonds tends to vary

with macroeconomic conditions, as depicted in Figure 1. In particular, the covariance and correlation

are expected to increase in times of financial stress, when default risk increases. At the same time,

Laarits (2022) finds that the covariance between stocks and risk-free bonds becomes more negative in

bad times, when the precautionary savings motive increases. So the effect may also vary with a firm’s

creditworthiness. To account for the role of global financial and economic conditions, we control in

Column (7) for the macro uncertainty index of Jurado et al. (2015) and the business conditions index

20We obtain the noise measure from Jun Pan’s website.
21We obtain the series from Asaf Manela’s website. The sample period is shorter in this analysis, as the intermediary

capital risk factor ends in December 2018.
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of Aruoba et al. (2009).

In all cases, default risk continues to positively predict the one-year-ahead stock-bond comovement,

with statistical significance robust at the 1% level. The same finding holds when including all the

controls jointly, as presented in Column (8).22 Notably, the inclusion of the various controls does not

weaken the economic magnitude of the predictive ability of default risk: the impact of default risk on

the stock-bond correlation in fact doubles (0.08 vs. 0.04) when adding controls. Overall, these results

show that, even after controlling for a multitude of stock-bond comovement proxies identified in the

market segmentation and asset pricing literature, the positive predictability coefficient of default risk

remains highly statistically significant and economically meaningful.

As a complementary exercise, we explore the relative importance of default risk vs. the different sets of

controls in explaining future fluctuations in stock-bond comovement. To do this, Figure 3 decomposes

the total R-squared of our baseline specification presented in Equation (2), excluding fixed effects, into

two parts: i) the part that is attributed to default risk; and ii) the part that is captured by a given

set of controls. The procedure is known as the Shapley-Owen marginal R2 decomposition, following

the methodology outlined in Shorrocks (1982). The results indicate that the role of default risk largely

dominates any alternative channel in explaining the one-year-ahead variation in stock-bond comovement.

Figure 3 [about here]

1.4 Additional robustness checks

We consider additional tests to assess the robustness of our findings, which we discuss in detail in Online

Appendix C. The results are reported in Table 6, where the first column reproduces the specification

with all controls (see Column 8 of Table 5) for comparison purposes.

Table 6 [about here]

22For conciseness, Table 5 does not present the coefficients of the controls. Table A.4 in the Online Appendix presents
the regression estimates of all controls used in Column (8). Stock-bond comovement appears to increase with various
bond characteristics (amount outstanding, and bid-ask spread) and decrease with equity size and illiquidity. In terms of the
aggregate controls, stock-bond comovement increases with the short-term risk-free rate, but decreases with the long-term
risk-free rate, expected inflation, macroeconomic uncertainty, and business conditions. Default risk is, however, clearly the
most relevant explanatory variable in terms of the t-statistic.
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Data and sample Our baseline panel regressions exploit firm-level data, but a firm can have several

distinct bonds outstanding. Column (2) verifies that the results continue to hold at the corporate bond

level.23 Given that a large number of bonds in the sample contain an embedded call option, Column (3)

reproduces the main results at the bond level excluding bonds with call options. Column (4) shows that

the results remain similar after excluding financial and insurance-related firms. Furthermore, Column

(5) reports similar comovement predictability with default risk using an extended data sample, which

combines several corporate bond databases starting in April 1987. Hence, our results are not limited to

the TRACE dataset or the post-2000 period.

Comovement measure Our inferences are also robust to the way we measure the stock-bond covari-

ance and correlation. For example, Column (6) shows that the firm-level results remain similar when

using covariance and correlation implied from an asymmetric DCC-GARCH model, rather than using

rolling estimates.

Default risk measure As an alternative measure of default risk, we consider firm-level credit default

swap (CDS) spreads using Markit data. Column (7) shows that the predictability of stock-bond co-

movement with the (standardized) 10-year CDS spread is of similar economic magnitude and statistical

significance as for the other default risk measures.24 This robustness analysis also verifies that the

baseline results are not driven by the relatively small firms, which typically do not have outstanding CDS

contracts.

Persistence and overlapping observations We then verify that the comovement predictability does

not arise mechanically from the persistence in stock-bond comovement or from overlapping observa-

tions. Column (8) controls for the lagged stock-bond covariance/correlation (computed between month

t − 12 and t − 1), while Column (9) uses yearly non-overlapping observations. In both cases, the es-

timated coefficients and R-squared values are similar in magnitude to those reported with the baseline

specification.
23In this analysis, the covariance and correlation are computed between individual bond’s returns and firm-level stock

returns.
24Results are similar when using 5-year CDS spreads.
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Forecast horizon Our analysis thus far focused on the one-year-ahead comovement. Table A.5

presents results when stock-bond comovement is computed over various horizons, ranging between 12

and 60 months. The predictive ability of default risk decreases with the forecast horizon, but remains

highly significant in all cases.

Overall, the role of default risk continues to be robust after controlling for a wide array of competing

explanations, exploiting alternative data and samples, as well as using different econometric specifica-

tions. Our empirical results therefore strongly support the idea that default risk is a primary predictor

of stock-bond comovement, both over time and in the cross-section.

1.5 Understanding the hedge ratio

An extant literature studies the stock-bond return relation using the hedge ratio, which measures the

sensitivity of corporate bond returns to changes in the value of equity.25 For instance, Schaefer and

Strebulaev (2008) and Bao and Hou (2017) find that the hedge ratio increases with default risk and

that this result is consistent with the Merton model. We complement and extend this literature with

two novel insights. First, we empirically document the first-order impact of stock-bond correlation on

the relation between the hedge ratio and default risk. Second, we show that the Merton model, which

assumes constant asset volatility, can only fit the data once we compute the model-implied hedge ratios

with time-varying asset volatility.

Building on Schaefer and Strebulaev (2008), we first regress firm-level excess corporate bond returns,

reB,i,t, on the associated excess stock returns, reS,i,t, and the 10-year constant maturity U.S. Treasury

bond returns, rf,t:

reB,i,t = α0 + αSr
e
S,i,t + αrf rf,t + εi,t, (3)

where αS is the sensitivity of corporate bond returns for firm i at time t to the corresponding stock

returns, or an empirical estimate of the hedge ratio, while αrf reflects the sensitivity of corporate bond

returns to interest rates.26 Panel A of Table 7 reports the regression results by rating categories. Con-
25See, for example, Kwan (1996), Schaefer and Strebulaev (2008), Bao and Hou (2017), Choi and Kim (2018), Augustin

et al. (2020), and Bali et al. (2022).
26Note that we use the 1-month T-bill to compute excess returns for both bonds and stocks.
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sistent with previous studies, the hedge ratio increases as the creditworthiness of the firm deteriorates.

Table 7 [about here]

We now investigate the relation between the empirical hedge ratio and default risk in more detail. By

definition, the hedge ratio hS is

hS ≡ COV (rS , rB) /σ2S = ρB,S × σB/σS , (4)

where ρB,S is the stock-bond correlation, while σB and σS denote bond and stock return volatility,

respectively. Recall that the Merton model features a unique source of risk (firm assets), which in turn

implies a perfect correlation (ρB,S = 1) and hS = σB/σS. Using equation (4) we can decompose the

empirical hedge ratio estimate αS into a correlation term (ρB,S) and the Merton component (σB/σS)

that is purely impacted by leverage. This allows then to explore the relative contribution of the two

components in determining fluctuations in the hedge ratio across ratings. From Panel B, we see that

the correlation increases by a factor of 6.45 from the safest to the riskiest ratings, whereas there is

virtually no cross-sectional variation in the Merton component. Thus, the variation in the hedge ratio

is almost uniquely driven by fluctuations in the stock-bond correlation.

To test whether the Merton model correctly estimates the sensitivity of corporate bond returns to

changes in the value of equity, Schaefer and Strebulaev (2008) run the following regression:

reB,i,t = α0 + βShS,i,t(σ̂A)reS,i,t + αrfrf,t + εi,t, (5)

where hS,i,t(σ̂A) is the hedge ratio calculated with the Merton model for which σA is re-estimated

every month based on conditional measures of stock-bond volatilities and correlation. Under the null

hypothesis of no model misspecification, the slope coefficient βS should be unity. We revisit their

empirical analysis and adopt a similar regression specification using our sample (see Appendix E for the

details). Panel A of Table 8 reports the results. In line with, e.g., Schaefer and Strebulaev (2008) and

Kelly et al. (2022), we find that βS is not statistically different from one.

Table 8 [about here]

However, as the Merton model assumes constant asset volatility, we reproduce the regression speci-
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fication (5) with a hedge ratio hS,i,t(σ̂A) computed with an asset volatility σA that remains constant

over time (rather than re-estimating every month). Panel B of Table 8 contains the results. Unlike

the estimates in Panel A, βS is now significantly different from unity. That is, when the assumption

of constant volatility is strictly imposed, the Merton model is not well suited to estimate the hedge

ratio. This is illustrated in Figure 4 where we plot the time variation in the hedge ratios with both

conditional as well as constant asset volatility.27 Shutting down the asset volatility channel substantially

reduces the time variation in the hedge ratio. The discrepancy between the two measures is particularly

pronounced during market downturns, when the dependence between bond and stock returns tends to

increase. Confirming this intuition, a variance decomposition reveals that fluctuations in asset volatility

explain about 90% of the time variation in the hedge ratio, while only 10% is attributed to fluctuations

in the Merton component (or leverage), on average.

Figure 4 [about here]

Thus, while the Merton model can generate hedge ratios increasing in default risk through the ratio of

stock-bond volatility, our results show fluctuations on stock-bond correlations largely drive the variation

in hedge ratios. Overall, the finding documented in this section highlight the importance of allowing for

stochastic asset volatility in credit risk models to break down the perfect link between stock and bond

returns. Developing such a model and studying its implications for stock-bond correlation is precisely

the subject of Section 3.

2 The economic value of stock-bond diversification

In this section, we show that our empirical findings have important implications for investors and man-

agers of funds with a joint exposure to stocks and bonds. Specifically, we assess the economic value

of an active asset allocation strategy that exploits the predictability of stock-bond comovement with

default risk. Our analysis thus far suggests that the diversification benefit of combining stocks and

bonds should be highest when investing in the most creditworthy firms. We quantify the gain investors

can attain using this information and find that sorting firms based on default risk strongly increases the

out-of-sample Sharpe ratio of a balanced investment strategy. We first describe the methodology and
27In the constant volatility case, time-variation in hedge ratios is purely induced by fluctuations in firm leverage.
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then discuss the results.

2.1 Portfolio construction and diversification

In each month t we sort firms in quintiles based on their level of default risk and form conditional

portfolios for stocks and corporate bonds separately.28 Then, we compute the value-weighted average

excess return over the following month, t + 1, for each stock (S) and bond (B) portfolio. We denote

the time series of the excess returns of security j = {S,B} and quintile q = {1, .., 5} by rj,q,t+1. For

each quintile we compute the portfolio variance of security j’s excess returns rj,q,t+1, denoted by σ2j,q.

For a given quintile, the portfolio variance of next month’s excess returns is then σ2S,q when investing in

stocks only, while it is σ2B,q when investing in bonds only.

We also construct another set of quintile portfolios that combine both stocks and bonds, and thus

account for potential diversification across the two asset classes. The variance of these portfolios now

depend on the covariance between stock and bond excess returns, σS,B,q. For simplicity, we focus on an

equal allocation of stocks and bonds, which we hereafter refer to as a ‘balanced’ portfolio, but consider

alternative allocations for robustness in the Online Appendix.

To assess the degree of stock-bond diversification, we compute Goetzmann et al. (2005)’s variance

ratio, V Rq, as follows:

V Rq =
var

(
1
2

∑
rj,q
)

1
2

∑
var (rj,q)

=
1
4σ

2
S,q + 1

4σ
2
B,q + 1

2σS,B,q
1
2σ

2
S,q + 1

2σ
2
B,q

(6)

=
1

2
+

σS,B,q
σ2S,q + σ2B,q

. (7)

The numerator of Equation (6) is the balanced portfolio variance, whereas the denominator equals

the average of the stock and bond portfolio variances, σ2S,q and σ2B,q. A lower stock-bond covariance

increases the diversification benefit of pooling stocks and bonds in a balanced portfolio, compared to

investing in bonds and stocks separately, and thus reduces the variance ratio.

Based on this insight, we label ‘diversification benefit’ the fraction of the average stock and bond
28We measure a firm’s default risk with its average bond yield (or credit spread) because it is directly available to investors

and does not require any estimation. The results are quantitatively similar when sorting firms based on alternative default
risk proxies, such as the composite default risk measure, credit rating, or leverage.
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variance that can be diversified away by combining stocks and bonds in a balanced portfolio. More

precisely, diversification benefit is defined as 1− V Rq and is expressed in percentage terms. We expect

higher diversification benefits for balanced portfolios invested in more creditworthy firms. We now turn

to an empirical assessment of this prediction and discuss the implications for the risk-return tradeoff.

2.2 Out-of-sample diversification and risk-return tradeoff

Panel A of Table 9 presents the average excess returns, volatilities, and Sharpe ratios of the default risk-

sorted balanced portfolios. While excess returns moderately decrease with default risk, the reduction in

return volatility is much more pronounced. The balanced portfolio with the least creditworthy firms (Q5)

displays a return volatility of 18.6%, which drops to 6.9% for the portfolio with the most creditworthy

firms (Q1).

As a direct consequence, the level of default risk strongly affects the risk-return tradeoff of the balanced

portfolios. The Sharpe ratio is monotonically increasing in firm creditworthiness, ranging from 0.49 for

the most default risky firms (Q5) to 0.95 for the least default risky firms. The difference (i.e., Q5-Q1)

is economically sizable and statistically significant at the 5% level, based on HAC standard errors (Ledoit

and Wolf, 2008). Panel A shows that portfolios of firms with less default risk also have a higher Sortino

ratio, lower kurtosis, and lower Value at Risk (VaR), indicating that the higher Sharpe ratio does not

come at the cost of higher left-tail risk. Hence, the risk-return trade-off of investing in stocks and bonds

issued by firms with lower default risk is substantially more attractive than for firms with higher default

risk.29 Note that all portfolio moments are out-of-sample as they are based on excess returns measured

at t+ 1 while the sorting is based on information available at time t.

Table 9 [about here]

To better grasp the implications of these results, Panel B of Table 9 reports the diversification benefits of

pooling stocks and bonds by default risk quintile. The diversification benefit for Q1 is 46.68% compared

to 25.57% for Q5, which means that a balanced portfolio can eliminate about 47% and 26% of the

average risk of stocks and bonds, respectively. A primary driver of this improvement in diversification

benefit is the correlation between stock and bond returns, which falls from 0.71 for Q5 to 0.11 for Q1.
29The results are similar using alternative allocations of corporate bonds and stocks (e.g., 60%/40% and 40%/60%),

as reported in Table A.7 in the Online Appendix.
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Lower default risk, therefore, implies weaker comovement between stocks and corporate bonds in the

following month, resulting in higher diversification benefits and Sharpe ratios.

These results are particularly relevant for investors and managers of balanced (or multi-asset) funds.

We find that investing exclusively in firms in the lowest default risk segment can substantially improve

the risk-return tradeoff, compared to spreading the bond part of the portfolio across various rating

categories. The reason is that reaching for yields by selecting bonds with higher default risk, a common

practice among portfolio managers, would substantially reduce the diversification benefits of combining

stocks and bonds in a balanced allocation strategy.

2.3 Mechanism

We now investigate the channels through which stock-bond diversification decreases with default risk.

To disentangle the impact of default risk on stocks vs. bonds, we explore two alternative portfolio

strategies. First, we consider an allocation in which one invests in a fixed bond market index and a

default risk-sorted stock portfolio, with equal allocation. Results reported in Panel C show that there is

no material difference in diversification benefits across portfolios with different default risk levels. For

the second strategy, we construct portfolios that invest in a fixed stock market index and a default risk-

sorted bond portfolio, with equal allocation. As shown in Panel D, we now recover the monotonically

decreasing diversification benefit from Q1 to Q5. These results indicate that the impact of default risk

on diversification is induced by a change in the behaviour of corporate bonds rather than stocks. This

analysis provides direct support to the main hypothesis studied in the paper, which is that corporate

bonds of firms with higher default risk start behaving more like their stocks.

Next, we analyze how the difference in diversification between portfolios of low and high default risk

varies over time. To this end, we construct balanced portfolios sorted on default risk as before and then

estimate our measure of diversification benefits using a 12-month rolling window. In Figure 5 we plot

the resulting series for portfolios Q1 and Q5. The difference in diversification benefit between portfolios

Q1 and Q5 is large on average and positive during 185 out of 193 months (i.e., more than 95% of the

time). This further demonstrates that the results reported in Table 9 are not simply driven by a few

specific subperiods and, thus, can be consistently exploited by managers of balanced funds.
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Figure 5 [about here]

In sum, we show that the future degree of diversification between stocks and corporate bonds depends

critically on the current creditworthiness of the invested firms. While default risk is typically associated

with reaching for yields, our analysis shows that investing primarily in the most creditworthy firms can

generate tangible economic value through enhanced diversification across stocks and bonds. The level

of default risk shapes the out-of-sample diversification gains of a balanced investment strategy and,

eventually, its risk-return tradeoff.

3 A stochastic volatility model of the firm

In this section, we develop a credit risk model embedded in a multiple-firm economy to understand

how stock-bond comovement varies with default risk. We first present our framework, which extends

Du et al. (2019) to allow for a factor structure in asset returns and a decomposition of stochastic

asset variance into a systematic and an idiosyncratic component. We show that this environment can

generate a rich cross-section of firms, thereby inducing substantial variation in the comovement between

corporate bond and stock returns. Also, accounting for stochastic asset variance is key to break down

the perfect stock-bond correlation implied in the Merton model, as equity and bond prices have a positive

exposure to asset return but an opposite exposure to asset variance (see Figure 6).

Figure 6 [about here]

We then estimate the model and discuss its ability to capture the empirical facts documented in Section

1, while matching key asset pricing and credit risk moments in the data. We find that a simulated

economy can replicate the positive predictability of the stock-bond covariance and correlation with

default risk, both over time and across firms. Finally, we use the model to better understand the

economic forces driving the level of stock-bond comovement and its relation with default risk.
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3.1 Environment and firm asset dynamics

We consider an economy with multiple firms whose assets are exposed to a common and an idiosyncratic

source of shocks, as well as to stochastic volatility.30 The common factor driving the level of firm assets,

Yt, which reflects changes in aggregate economic conditions, follows the dynamics

dYt
Yt

= µY,tdt+ σY,tdW
Y
t , (8)

where µY,t is the expected aggregate asset growth, dW Y
t is a Brownian motion capturing systematic

risk under the physical probability measure P, and σY,t denotes aggregate asset volatility. The latter

follows a square root process:

dσ2Y,t = κY (θY − σ2Y,t)dt+ δY σY,tdW
σY
t , (9)

where κY captures the speed of mean reversion of aggregate asset variance σ2Y,t toward its long-run

mean θY , δY is the volatility of aggregate asset variance, and dW σY
t captures the variance innovations.

To account for the dependence between aggregate assets Yt and its variance σ2Y,t, we assume that

dW Y
t = ρY dW

σY
t +

√
1− ρ2Y dW

Y⊥σY
t , where ρY captures the correlation between aggregate asset

shocks and aggregate asset variance shocks, while dW σY
t and dW Y⊥σY

t are two mutually independent

Brownian motions. When ρY < 0, aggregate asset variance is high when the level of aggregate assets

is low, that is, in bad economic times. This case implies a negative skewness in the distribution of

aggregate shocks, consistent with the evidence in Berger et al. (2020), among others.

The dynamics of firm i’s total assets, denoted by Xi,t, and its idiosyncratic asset variance, σ2X,i,t, jointly

follow

dXi,t

Xi,t
= (r − q) dt+ βi

(
dYt
Yt
− rdt

)
+ σX,i,tdW

X
i,t (10)

dσ2X,i,t = κX
(
θX − σ2X,i,t

)
dt+ δXσX,i,tdW

σX
i,t , (11)

30We assume that information is complete and that financial assets are continuously traded without frictions in arbitrage-
free markets.
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under the physical probability measure P, where r is the risk-free rate and q is the total payout rate to

security holders. Turning to the idiosyncratic asset variance dynamics, κX denotes the speed of mean

reversion, θX the unconditional mean, and δX the volatility of variance. These parameters are identical

across firms.31 For parsimony, we assume independence between idiosyncratic asset shocks and variance

shocks (i.e., dWX
i,tdW

σX
i,t = 0).

A specific feature of our model is that firms differ in their βi, which captures the exposure of firm i to

aggregate asset fluctuations, dYtYt . That is, Equation (10) implies a factor structure in firm i’s total asset

variance, which is given by σ2i,t = β2i σ
2
Y,t + σ2X,i,t. Cross-sectional variation in firms’ total variance thus

arises in this framework from cross-sectional variation in both firm betas and conditional idiosyncratic

variances.

We consider a stochastic discount factor (SDF), denoted by φt, that depends linearly on aggregate

asset and variance risk. Its dynamics is given by:

dφt
φt

= −rdt− σY,t
(
λY⊥σY dW

Y⊥σY
t + λσY dW

σY
t

)
, (12)

where σY,tλY⊥σY and σY,tλσY reflect the price of aggregate asset risk (dW Y⊥σY
t ) and aggregate variance

risk (dW σY
t ), respectively. Our SDF builds on the long-run risk and variance risk literature, which

provides theoretical and empirical support for priced variance risk.32 We use this SDF to derive the

model’s risk premia and the dynamics (8)-(11) under the risk-neutral measure (see Online Appendix F).

3.2 Bond and stock returns

We now turn to the pricing of bonds and stocks, which are contingent claims on a firm’s assets, and

express their return dynamics. Firms issue a perpetual consol bond with a coupon rate c per unit of

time. A firm defaults when its asset value hits an exogenously-specified default boundary XB.33 At
31Despite this simplification, it is worth noting that firms’ asset values and conditional idiosyncratic variances vary in the

cross-section due to firm-specific idiosyncratic return and variance shocks, dWX
i,t and dW

σX
i,t .

32See, for example, Bansal and Yaron (2004), Bollerslev et al. (2009), and Koijen et al. (2010). Closely related to our
study, Du et al. (2019) also show the importance of priced variance risk to help resolve the credit spread puzzle.

33Note that we explicitly depart from the case of endogenous financing and default policies. The reason is that we
estimate the debt coupon and default boundary, amongst other parameters, to match the level of default risk, leverage,
and various asset pricing moments empirically. Our goal is to explore stock-bond comovement in a model that closely fits
the data, rather than analyzing a firm’s capital structure decisions.
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default, debtholders recover a fraction of the after-tax unlevered asset value of the firm, whereas the

remaining fraction is lost due to liquidation costs. We denote the constant liquidation cost by α and

the tax rate by ζ. Shareholders are entitled to the firm’s assets net of debt servicing as long as the firm

does not default. When the firm is in default, shareholders recover nothing and lose their rights to any

future claim. We assume that c, α, XB, and ζ are identical across firms.

The bond price of firm i, denoted by Bi,t, equals the sum of the present value of the coupon payments

before default and the recovered value of the firm at default, which is given by

Bi,t =
c

r
+
[
(1− α)XB −

c

r

]
pD (Xi,t, σY,t, σX,i,t) , (13)

while the firm’s stock price is

Si,t = Xi,t −
(1− ζ)c

r
+
[
(1− ζ)

c

r
−XB

]
pD (Xi,t, σY,t, σX,i,t) , (14)

where pD is the price of an Arrow-Debreu default claim, which reflects the risk-neutral present value

of $1 at default. More precisely, the Arrow-Debreu default claim is defined by pD (Xi,t, σY,t, σX,i,t) ≡

EQ
t [e−r(τD,i−t)], where τD,i = inf{s > t | Xi,s ≤ XB} denotes firm i’s random default time and EQ the

expectation under the risk-neutral measure Q. In absence of arbitrage, the levered firm value is the sum

of Bi,t and Si,t.

Applying Itô’s lemma to Equations (13) and (14) allows us to express the dynamics of stock and bond

returns, which jointly satisfy

dSi,t
Si,t

= µS,i,tdt+ ∆S
X

[
βiσY,tdW

Y
t + σX,i,tdW

X
i,t

]
+ ∆S

σY
δY σY,tdW

σY
t + ∆S

σX
δXσX,i,tdW

σX
t (15)

dBi,t
Bi,t

= µB,i,tdt+ ∆B
X

[
βiσY,tdW

Y
t + σX,i,tdW

X
i,t

]
+ ∆B

σY
δY σY,tdW

σY
t + ∆B

σX
δXσX,i,tdW

σX
t ,(16)

where µS,i,t and µB,i,t are the instantaneous expected stock and bond returns, respectively. The sensi-

tivities of stock and bond prices to a change in firm assets satisfy ∆S
X =

Xi,t
Si,t

∂Si,t
∂Xi,t

and ∆B
X =

Xi,t
Bi,t

∂Bi,t
∂Xi,t

.

The sensitivities of stock and bond prices to a change in aggregate and idiosyncratic asset variance are
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∆S
σY

= 1
Si,t

∂Si,t
∂σ2
Y,t

, ∆S
σX

= 1
Si,t

∂Si,t
∂σ2
X,i,t

∆B
σY

= 1
Bi,t

∂Bi,t
∂σ2
Y,t

, and ∆B
σX

= 1
Bi,t

∂Bi,t
∂σ2
X,i,t

.34 We can then study the

comovement between bond and stock returns, which is the main focus of our theoretical analysis.

3.3 Stock-bond covariance

Given the joint dynamics of stock and bond returns, it is relatively straightforward to derive the stock-

bond covariance (Proposition 1) and correlation (Proposition 2) implied by our model.

Proposition 1: From the dynamics of stock and bond returns in Equations (15) and (16), the instan-

taneous stock-bond covariance for firm i at time t, denoted by σS,B,i,t ≡ cov
(
dSi,t
Si,t

,
dBi,t
Bi,t

)
, satisfies

σS,B,i,t = ∆S
X∆B

Xvar

(
dXi,t

Xi,t

)
︸ ︷︷ ︸

Asset risk

+ ∆S
σY

∆B
σY
var

(
dσ2Y,t

)
+ ∆S

σX
∆B
σX
var

(
dσ2X,i,t

)︸ ︷︷ ︸
V ariance risk

+
[
∆S
X∆B

σY
+ ∆B

X∆S
σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
︸ ︷︷ ︸

Co−skewness risk

(17)

= ∆S
X∆B

X

[
β2i σ

2
Y,t + σ2X,i,t

]︸ ︷︷ ︸ dt
Asset risk

+ ∆S
σY

∆B
σY
δ2Y σ

2
Y,tdt+ ∆S

σX
∆B
σX
δ2Xσ

2
X,i,t︸ ︷︷ ︸ dt

V ariance risk

+
[
∆S
X∆B

σY
+ ∆B

X∆S
σY

]
ρY βiδY σ

2
Y,t︸ ︷︷ ︸ dt

Co−skewness risk

. (18)

Proof. Multiplying Equations (15) and (16) gives the required result.

Proposition 1 is insightful to understand how the various sources of shocks drive the stock-bond covari-

ance, which can be decomposed into three components: asset risk (first term), variance risk (second

term), and co-skewness risk (third term). We now discuss each of these components.

The first component in Equation (17) and (18) reflects the role of asset risk, which is the product of

bond and stock return sensitivities to changes in firm assets, ∆S
X and ∆B

X , and total asset variance,

var
(
dXi,t
Xi,t

)
. Several key predictions arise from this component. First, since bond and stock prices

increase with the value of firm assets, stock and bond return sensitivities are positive, i.e., ∆S
X > 0 and

∆B
X > 0. Asset variance is also strictly positive, so the asset risk component of stock-bond covariance

is positive. Second, stock and bond returns become more sensitive to fluctuations in firm assets when
34We purposely omit the dependence of equity and bond sensitivities to firm i and time t for ease of exposition.
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leverage is high, which implies that ∆S
X and ∆B

X increase with a firm’s default risk and so does the

covariance between its stock and bond returns. Third, the strength of the link between the stock-

bond covariance and default risk is intrinsically determined by the level of a firm’s total asset variance,

var
(
dXi,t
Xi,t

)
= β2i σ

2
Y,t + σ2X,i,t.

35 Observe that stock-bond covariance is expected to vary in the cross-

section due to firm heterogeneity in asset risk, induced by different bond and stock return exposures

(∆S
X and ∆B

X), asset betas (βi), and idiosyncratic asset variances (σ2X,i,t) across firms.

Variance risk, the second term in Equations (17) and (18), captures the role of fluctuations in aggregate

and idiosyncratic asset variance on the stock-bond covariance. An increase in (aggregate or idiosyncratic)

asset variance decreases the stock-bond covariance, and the intuition for this result is as follows. Equity

can be interpreted as a call option on the firm’s assets, such that equity valuation increases with a firm’s

asset variance (i.e., ∆S
σY

> 0 and ∆S
σX

> 0). In contrast, an increase in asset variance increases the

firm’s default probability and reduces the value of its bonds, so ∆B
σY

< 0 and ∆B
σX

< 0. As a result, a

change in asset variance affects stock and bond valuation in opposite directions, as we have ∆S
σY

∆B
σY

< 0

and ∆S
σX

∆B
σX

< 0. The variance risk component of stock-bond covariance is thus negative.

The third term in Equations (17) and (18) corresponds to the impact of co-skewness risk on the stock-

bond covariance, which arises when aggregate variance co-moves with the level of aggregate assets (i.e.,

ρY 6= 0).36 Although the sign of this term is a priori unclear, we find it to be positive: Based on our

model calibration (see Section 3.5), we find that ∆S
X∆B

σY
< 0 quantitatively dominates ∆B

X∆S
σY

> 0

because of the negligible economic magnitude of ∆S
σY

, so
[
∆S
X∆B

σY
+ ∆B

X∆S
σY

]
< 0. In addition, we

have ρY < 0 in the data given the negative skewness in the aggregate risk distribution (i.e., asset

variance goes up as aggregate assets drop in value). Overall, the impact of co-skewness risk on the

stock-bond covariance is positive and strengthens when firms are closer to default, as both ∆S
X and

∆B
σY

increase in absolute value. By showing that co-skewness risk can amplify the positive comovement

between stock and bond returns, our model extends the existing literature, which has thus far primarily

focused on the pricing of co-skewness for stock returns.
35Note that the linear factor structure in asset return and variance translates into a non-linear factor structure in the

stock-bond covariance. This result arises from the non-linear exposures of bond and equity to asset value and stochastic
volatilities.

36Although the exact definition of co-skewness risk varies in the literature, the essence of co-skewness is to capture the
magnitude of the covariance of a financial asset return with squared-factor returns, or the factor variance.
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In summary, the stock-bond covariance can be decomposed into three distinct components. The first

term, which we call asset risk, generates a positive stock-bond covariance because bond and stock prices

jointly vary with changes in firm assets. The second and third terms account for additional impacts

of higher-order risk on the stock-bond covariance, which corresponds to the sum of variance risk and

co-skewness risk. Variance risk dampens the positive stock-bond comovement because fluctuations in

asset volatility affect bond and stock prices in opposite directions. In contrast, co-skewness risk increases

the stock-bond covariance because higher asset variance increases the level of the risk premium, which

jointly reduces stock and bond prices. This decomposition of the stock-bond covariance is useful to

understand the sources of the cross-sectional and time-series fluctuations, which are ultimately linked

to default risk.

3.4 Stock-bond correlation

Following our empirical analysis, we consider correlation as a second measure of comovement between

stock and bond returns. Proposition 2 presents the implications of the model for the stock-bond

correlation.

Proposition 2: Given the dynamics of firm i’s stock and bond returns in Equations (15) and (16) and

firm i’s covariance (17), stock and bond instantaneous variance and correlation are given by

σ2S,i,t =
(
∆S
X

)2
var

(
dXi,t

Xi,t

)
+
(
∆S
σY

)2
var

(
dσ2Y,t

)
+
(
∆S
σX

)2
var

(
dσ2X,i,t

)
(19)

+ 2
[
∆S
X∆S

σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
σ2B,i,t =

(
∆B
X

)2
var

(
dXi,t

Xi,t

)
+
(
∆B
σY

)2
var

(
dσ2Y,t

)
+
(
∆B
σX

)2
var

(
dσ2X,i,t

)
(20)

+ 2
[
∆B
X∆B

σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
ρS,B,i,t =

σS,B,i,t
σS,i,tσB,i,t

, (21)

where σ2S,i,t ≡ var
(
dSi,t
Si,t

)
is the stock return variance, σ2B,i,t ≡ var

(
dBi,t
Bi,t

)
is the bond return variance,

σS,B,i,t is the stock-bond covariance, and ρS,B,i,t denotes the stock-bond correlation.
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Proof. Taking the quadratic variation of Equations (15) and (16) gives Equations (19) and (20), while

Equation (21) directly follows from the definition of correlation.

Proposition 2 is particularly useful to understand the role of stochastic variance in shaping the comove-

ment between stock and bond returns. In traditional capital structure models based on Merton (1974),

Leland (1994), or Goldstein et al. (2001), which assume constant asset volatility, the stock-bond co-

variance boils down to the first term in Equations (17) and (18). That is, asset risk becomes the only

driver of the stock-bond covariance, as the second and third terms vanish when there is no uncertainty

about aggregate and idiosyncratic asset variance (i.e., δY = δX = 0). In such a case, stocks and bonds

perfectly comove together. To see this, Proposition 2 shows that stock and bond return volatilities are

equal to σS,i = ∆S
X

√
β2i σ

2
Y + σ2X,i and σB,i = ∆B

X

√
β2i σ

2
Y + σ2X,i in the case of constant asset volatil-

ity, while the stock-bond covariance becomes σS,B,i = ∆S
X∆B

X(β2i σ
2
Y + σ2X,i). Stock and bond returns

are then perfectly correlated, as we have ρS,B,i = σS,B,i/ (σS,iσB,i) = 1. This analysis highlights the

importance of introducing stochastic asset variance for breaking down the perfect correlation between

stocks and bonds implied by standard credit risk models.

Based on the model, we explore how default risk drives the stock-bond covariance and correlation,

both across firms and over time. We first present our estimation strategy and discuss the model fit.

We then show that the predictions of the model based on simulations replicate the empirical findings

documented in Section 1. Finally, we use the estimated model to quantify the relative importance of

the different covariance components, which will provide valuable insights on the economic forces driving

the comovement between stocks and bonds.

3.5 Simulation-based calibration

Here, we describe the calibration of the model, which features 17 structural parameters and 3 latent

variables. The starting point of our calibration strategy consists of reducing the dimensionality of the

problem by fixing the values of some parameters. To this end, we follow Du et al. (2019), Feldhütter

and Schaefer (2018), and Bai et al. (2020), among others, and set the parameters driving firm distress

costs, corporate taxes, and asset payout ratio to α = 40%, ζ = 20%, and q = 0%, respectively. We

normalize the initial asset value Xi,0 to $1 and set the risk-free rate r = 1.01%, which corresponds to

29



the long-run mean of a square-root process fitted to the 3-month Treasury Bill rate between August

2003 to August 2020. This leaves us with 11 structural parameters to estimate, Θ ≡ {ΨY ,ΨX , XB,

c} with ΨY ≡ {κY , θY , δY , ρY , λY⊥σY , λσY } and ΨX ≡ {κX , θX , δX}.

We estimate the parameter vector Θ using 9 moment conditions capturing various dimensions of a

firm’s credit, equity, and bond risk. More precisely, we consider market leverage (1 moment), stock

and bond total volatilities (2 moments), proportions of stock and bond systematic variance to total

variance (2 moments), volatilities of aggregate bond and stock indices (2 moments), credit default

swap (CDS) spread (1 moment), and physical default probability (1 moment). We purposely do not

consider moments related to the dependence between stocks and bonds, such as the covariance or

correlation. Our goal is to explore whether a rich credit risk model fitted to the 9 moments described

above is able to match the joint dynamics of stocks and bonds out-of-sample.

We compute the empirical target moments as pooled sample averages from the merged corporate bond

and equity dataset used in Section 1. There are two exceptions: i) the physical default probability,

which corresponds to the 10-year historical default rate of BB-rated firms for the 1981-2020 period

from Standard and Poor’s (2021); and ii) the 10-year CDS spread, which we extract from Markit for

BB-rated firms over the same period as the other variables.

For the model-implied moments, we rely on the following simulation strategy. We first create an

economy of firms that differ in their factor structure. For parsimony, we assume that firms can take on

5 values (0.6, 0.8, 1, 1.2, 1.4) of asset beta βi with equal probability. We then simulate an economy of

1,250 firms over 10 years, which results in 250 firms on average by asset beta. We repeat this exercise

10 times to reduce the impact of a particular simulated path of the aggregate asset dynamics on the

results. For each simulated path of the state variables, we compute firms’ leverage, CDS spread, stock

(bond) total volatility, proportion of stock (bond) systematic variance, and aggregate stock (bond) index

volatility implied by the model. We then calculate the pooled average of each model-implied moment

m across firms, time, and simulations. See the Online Appendix G for details about the simulation

procedure and the computation of model-implied moments.

Armed with the set of moment conditions, we estimate the vector of parameters Θ by solving the
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following optimization problem:

Θ̂ = arg min
9∑

m=1

(Datam −Model(Θ)m)2 , (22)

where Datam and Model(Θ)m denote the empirical and model-implied moment condition m, respec-

tively. Table 10 summarizes the estimated values of the model parameters Θ̂.

Table 10 [about here]

3.6 Assessment of the model fit

We now discuss the model’s goodness-of-fit. Table 11 compares the empirical and model-implied

moments and reports their descriptive statistics. Panel A presents the set of moments used in the

estimation, which are referred to as in-sample moments, while Panel B presents a set of out-of-sample

moments, which have not been used in the estimation. It is worth noting that the model parameters

are only estimated based on the moment conditions identified in bold in Panel A, i.e., not their standard

deviations which can be viewed as additional out-of-sample moments. Comparing the first and second

columns of Panel A in Table 11, we can see that the simulated economy provides a good fit to what

we observed for U.S. firms over the last two decades.

Table 11 [about here]

Specifically, the model generates leverage and default risk levels that closely match their empirical

counterparts. Leverage is 50.8% in the model while it is 49.9% in the data. The 10-year CDS spread is

251 bps in the simulated economy and 236 bps in the data. In terms of physical default risk, the 10-year

cumulative default rate is 14.1% in the data and 12.7% in the simulated economy. The model addresses

the well-known credit spread puzzle, which arises from the difficulty in generating high credit spreads

with reasonable levels of physical default probability and leverage. In addition, the model-implied total

volatilities, proportions of systematic variances, and index volatilities for bonds and stocks are also close

to their empirical counterparts. For example, the average stock and bond total volatility is 32.9% and

9.2% in the data while the simulation generates values of 32.6% and 9.1%, respectively. Historically,

the proportion of systematic variance is 28.5% for stocks and 38.1% for bonds, which is of the same
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order of magnitude as in the simulations (27.9% and 36.8%).

The last three columns of Table 11 provide further support for the model fit. Not only is the simulated

economy able to match the unconditional moments observed in the data, it is also able to generate

reasonable cross-sectional and time-series variation in these moments. Except for leverage and bond

return volatility, the (pooled) standard deviations of the simulated moments are generally close to those

of the data. Recall that these standard deviations are out-of-sample as they are not part of the model

calibration. The cross-sectional variation in idiosyncratic asset variance plays a key role in generating

the cross-sectional variability in the moments, whereas the aggregate (asset and variance) shocks help

generate sizable time-series variation.

Panel B of Table 11 reports the results for additional out-of-sample moments: asset volatility, distance-

to-default, and the measures of stock-bond comovement. Our choice to study asset volatility and

distance-to-default as additional moments is guided by the difficulty of standard credit risk and asset

pricing models in matching these dimensions, while predicting reasonable levels of equity volatility, firm

leverage, and CDS spread. The model calibration generates a level of asset volatility and distance-

to-default (14.9% and 5.9) that is similar to the data (15.5% and 6.5). These results confirm that

the high CDS spreads and stock and bond volatilities reported in Panel A do not come at the cost of

unreasonably high asset volatility or low distance-to-default.

Stock-bond correlation puzzle

There is one dimension, however, that the model fails in replicating: the level of comovement between

stock and bond returns. From Panel B of Table 11 we see that the level of stock-bond covariance and

correlation is much higher in the simulations (about 2.5 times higher) than in the data. The size of the

discrepancy is particularly striking given that the model is able to fit a large set of asset pricing moments

and firm-level characteristics. The difference in covariance estimates is likely due to the model’s difficulty

in generating a sufficiently low level of correlation between stock and bond returns, given its ability to

closely match empirical stock and bond volatilities. Confirming this intuition, the level of correlation is

0.20 in the data while it is 0.79 in the simulations. Surprisingly and despite this shortcoming, the model

can generate sizable fluctuations in stock-bond covariance and correlation, as indicated by the last three

columns of Panel B.
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One potential avenue to reduce the stock-bond correlation is to introduce stochastic interest rates in

the model. An increase in the risk-free rate reduces the discounted value of future coupons, which

decreases the value of the bond. This in turn increases the value of the firm’s stock for a given level of

assets.37 As a result, bond and stock valuations react in opposite directions to a change in the risk-free

rate. While economically intuitive, it remains an open question as to how much this mechanism can

help quantitatively reduce the level of correlation. To address this question, we augment the model

with stochastic interest rates. This alternative specification and its calibration are discussed in detail in

Online Appendix H. Panel A of Table A.6 shows that accounting for variation in interest rates reduces

the average stock-bond correlation from 0.79 to 0.64. Thus, even with stochastic interest rates, the

model-implied correlation remains much higher than in the data.

Overall, our model with stochastic systematic and idiosyncratic volatilities can generate substantial

variation in stock-bond comovement across firms and time, while addressing the credit spread puzzle

and matching a large set of empirical moments. However, it fails in fully breaking down the tight relation

between stocks and bonds. This result indicates a fundamental tension in the existing theory between

matching key dimensions of credit, equity, and bond risk and simultaneously generating a reasonable

level of stock-bond correlation. We refer to this finding as to the stock-bond correlation puzzle. Various

model extensions could be considered to reduce the strong link between stocks and bonds. For instance,

allowing for frictions that would introduce asset-specific shocks in the model may help decrease stock-

bond correlation.38 Given our focus on studying how stock-bond comovement varies with default risk,

solving the stock-bond correlation puzzle is beyond the scope of this paper.

3.7 Rationalizing the predictability of stock-bond comovement with default risk

We turn to the central part of our exercise, which is exploring the model’s ability to reproduce the

predictive positive relation between stock-bond comovement and default risk uncovered empirically in

Section 1. For a given simulation, we construct the model-implied composite default risk at the firm level

as the average of the following (standardized) variables: leverage, sign-corrected distance-to-default,

and CDS spread. Using simulated data, we then regress stock-bond covariance and correlation against
37We can abstract away from the negligible effect of risk-free rate on the discounted tax shield and bankruptcy costs.
38Additional extensions include incorporating bond- and equity-specific liquidity shocks, demand/supply effects, or mea-

surement error in returns through the modeling of bid-ask spreads.
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this composite default risk variable.39 The specifications we consider consist of the baseline panel

regression with firm fixed effects (2), which allows us to examine the time-series predictability, and the

Fama-MacBeth approach to analyze the cross-section. Panel B of Table 4 presents the results, which

can be easily compared with the empirical estimates (Panel A).

Various results emerge from our analysis. First, the predictive regression coefficients for default risk in

the simulations have the correct sign and are highly statistically significant. The predictability is robust

across specifications, as in Panel A. That is, the model can rationalize the main empirical finding that

the one-year-ahead stock-bond comovement increases with default risk, both over time and across firms.

In addition, the impact of default risk on the stock-bond comovement in the simulations is of the same

order of magnitude, albeit a bit lower than in the data. Note that the model exhibits more difficulty

in matching the relation between default risk and stock-bond comovement in the cross-section than in

the time-series.40 This is apparent from the regression coefficients and R2, which are both of smaller

magnitude in Columns (2) and (4) of Panel B compared to in Panel A. Unsurprisingly, this pattern is

more pronounced for the correlation than the covariance. Despite this shortcoming, we can conclude

that the model is successful in achieving one of the key objectives of our simulation exercise: to show

that default risk positively predicts stock-bond comovement, both in the cross-section and over time.

Furthermore, this result continues to hold when we account for stochastic interest rates in the model

simulations (see Panel B of Table A.6).

3.8 Understanding stock-bond comovement by default risk

Our model is also useful for studying how the different sources of risk drive the relation between stock-

bond comovement and default risk. To this end, we exploit the simulations to compute the model-

implied covariance and its components for each firm and month, using the covariance decomposition

in Proposition 1. We first sort firms into quintiles based on their (composite) default risk and then

calculate the value-weighted average covariance for each quintile.41 Quintile 1 (Q1) is the portfolio

39For the simulated economy, we compute statistics as the averages across 10 simulations. The composite default risk
variable is based on 10-year CDS spreads, matching the maturity of bond credit spreads which is about 10 years in our
sample.

40Extending the model to allow some of the idiosyncratic variance parameters or the default barrier, for example, to vary
across firms may help generating additional cross-sectional variation in default risk and stock-bond comovement.

41The results are qualitatively similar using any of the individual default risk variables.
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with the lowest default risk, while Quintile 5 (Q5) is the portfolio with the highest default risk. Panel

A of Table 12 presents results for the levels of covariance and its components, while Panel B presents

the percentage contributions of asset risk vs. higher-order risk (obtained by combining variance risk and

co-skewness risk).

Table 12 [about here]

First note that the level of comovement between corporate bond and stock returns monotonically

increases with default risk, consistent with the regression results. Also, the stock-bond covariance is

more sensitive to a change in default risk for firms closer to financial distress, as the increase in the

covariance is greater from Q4 to Q5 than from Q1 to Q2. These results illustrate the ability of our

model to capture the positive and asymmetric relation between stock-bond covariance and default risk

uncovered empirically (see Figure 2).

We now provide new insights on the economic forces shaping the link between stock-bond comovement

and default risk. We find that stock-bond covariance is primarily driven by asset risk across default

risk quintiles and explains at least 93.8% of the total level. Variance risk and co-skewness risk jointly

explain at most 6.2% of the covariance level. Recall that the variance risk component is negative,

given that a change in asset variance affects equity and bond valuation in opposite directions. The

positive contribution of higher-order risk is thus mainly driven by co-skewness risk, which captures how

firm assets comove with aggregate variance. The high level of stock-bond comovement implied by the

model is therefore driven primarily by asset risk and then by co-skewness risk. While the variance risk

component is critical for breaking the perfect correlation between stocks and bonds, its contribution to

the covariance remains modest, on average.

The role of the asset and higher-order risk in the stock-bond comovement displays pronounced variation

across default risk portfolios. In Panel A of Table 12, both components of the stock-bond covariance

increase in absolute terms with default risk. That is, both sources of risk help generating the positive

relation between stock-bond comovement and default risk. In relative terms, however, Panel B shows

that the percentage contributions of asset and higher-order risk behave in opposite directions: the

lower the default risk, the higher the relative contribution of higher-order risk in explaining the level of

35



stock-bond comovement.42

To summarize, introducing stochastic asset variance in a credit risk model allows for a rich decompo-

sition of the stock-bond comovement. We find that asset risk constitutes the central economic force

driving stock-bond covariance, although higher-order risk becomes a non-negligible contributor for highly

creditworthy firms. That is, the lower a firm’s default risk, the more it becomes relevant to depart from

a Merton (1974)-type model with constant asset variance for understanding stock-bond comovement.

This result echoes the finding that stochastic asset variance plays a critical role in resolving the credit

spread puzzle, which is predominant among investment-grade firms (Du et al., 2019).

4 Conclusion

The paper shows that default risk is a critical driver of the comovement between stock and corporate

bond returns, both empirically and theoretically. We start by documenting a series of new empirical styl-

ized facts. First, we show that default risk robustly predicts the one-year-ahead stock-bond covariance

as well as the correlation. The intuition is that corporate bonds issued by firms with a greater level of

default risk behave more like the issuing firms’ stock, thereby increasing their future comovement. The

predictive power of default risk is both statistically and economically meaningful, and survives an exten-

sive list of control variables informative about firm characteristics, economic and financial conditions,

intermediary capital risk, and liquidity. We then show that these results have important asset pricing

implications, as illustrated by a conditional portfolio analysis. When investing in a balanced portfolio

of stocks and corporate bonds, selecting the most creditworthy firms significantly enhances the out-of-

sample diversification gain and Sharpe ratio. This result is directly relevant to mutual and hedge funds

pursuing a multi-asset investment strategy.

We propose a model that helps rationalize these empirical findings. Specifically, we extend existing

Merton-type models to have the dynamics of firms’ assets impacted by a common factor and firm-

specific risk, both of which have stochastic variance. Simulating a large cross-section of firms, we

first show that the model is able to fit various stock and bond pricing moments, as well as financial
42To understand this result, recall that higher-order risk is almost entirely driven by co-skewness risk. The model predicts

that the negative skewness of systematic risk impacts firms that are further away from default than firms closer to their
default boundary.
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leverage, default risk, and CDS spreads. Moreover, the model reproduces the empirical predictability of

stock-bond comovement with default risk, both across firms and over time. We then use the model to

decompose the economic forces driving stock-bond comovement by isolating the roles of asset, variance,

and co-skewness risks. We find that asset risk is by far the primary driver of stock-bond comovement,

although the role of the variance and co-skewness risks increases with firm creditworthiness.

While the model matches key asset pricing moments and addresses the credit spread puzzle, it faces dif-

ficulty in generating the low level of unconditional stock-bond correlation observed in the data. We label

this model shortcoming the ‘stock-bond correlation puzzle’, which refers to the fact that a no-arbitrage

contingent claim model with multiple sources of risk is unable to produce a sufficiently low level of

stock-bond correlation. Potential extensions that could help address this puzzle include the introduction

of alternative asset-specific shocks, financial constraints, information asymmetry, or transaction costs.

Arguably, such extensions could help reduce the tight link between corporate bond and stock valuation

but they are beyond the scope of this paper. Exploring such mechanisms constitutes, however, a fruitful

avenue for future research.
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Table 1 : Definitions of variables and data sources This table defines the variables used in this study, describes their calculations,
and identifies their sources. Additional definitions of the variables and their data sources are presented in Section 1.1 and in Online
Appendix A and B.

Variable Definition Source

Panel A: Firm-level variables

Leverage Market leverage computed as the ratio between total book debt (LT) and the
market value of equity (monthly closing values of stock prices (PRC) multiplied
by the stocks shares outstanding (SHROUT)) plus total book debt (LT).

CRSP/COMPUSTAT

Distance-to-Default Log of the distance between firm assets and the default threshold (equal to one-
half of long-term debt value plus short-term debt value from COMPUSTAT)
divided by asset volatility, following Campbell and Thompson (2008). As in Choi
and Richardson (2016), asset volatility is the rolling 12-month standard deviation
of asset returns, given by rA,i,t = Li,t × rB,i,t + (1−Li,t)× rS,i,t, where rB,i,t
and rS,i,t are stock and bond returns for firm i in month t, while Li,t denotes
the firm’s leverage.

CRSP/COMPUSTAT

Default Risk Sign-corrected average of the three standardized individual default risk variables,
which are Leverage, Distance-to-Default (sign-corrected), and Credit Spread (de-
fined in Panel B).

CRSP/COMPUSTAT/Bond
databases

Amihud Ratio Amihud (2002)’s ratio computed as the the sum of the daily absolute returns
divided by the sum of dollar trading volume, averaged across all days in a month.

CRSP

Market Capitalization Stock price (PRC) multiplied by the amount of shares outstanding (SHROUT). CRSP/COMPUSTAT
Market-to-Book Ratio of Market Capitalization to Book Value of Equity. CRSP/COMPUSTAT
CDS Spread Spread of Credit Default Swap (CDS) contracts with 10-year maturity, expressed

in basis points.
Markit

Panel B: Bond-level variables

Bond Coupon Corporate bond coupon rate. Mergeant FISD
Bond Callability Dummy variable equal to 1 if a corporate bond has an embedded call option, zero

otherwise.
Time-to-Maturity Corporate bond time-to-maturity, expressed in months. Mergeant FISD
Amount Outstanding Initial offering amount of a corporate bond, adjusted for units of the offering

which have been called.
Mergeant FISD

Bond Liquidity Average corporate bond bid-ask spread. Bond databases
Bond Credit Ratings Standard & Poor’s corporate bond-level rating. Mergeant FISD

Credit Spread Difference between the yield of a corporate bond and the associated yield of the
Treasury curve at the same maturity. Using the Benchmark Treasury rates for
maturities of 3, 5, 7, 10, and 30 years, we use linear interpolation to estimate
the entire yield curve, following Duffee (1998) and Collin-Dufresne et al. (2001).
Expressed in basis points.

CRSP/Bond
databases, Datas-
tream

Panel C: Stock-bond comovement variables

Covariance/Correlation Rolling 12-month covariance/correlation computed between firm-level corporate
bond returns (a firm-level bond return is the equally-weighted average of all of the
firm’s outstanding corporate bond returns) and the corresponding issuing firm’s
stock returns, using monthly observations. Covariances are annualized, except in
the regression tables, and multiplied by 1,000.

Bond databases

aDCC Covariance/Correlation Covariance/correlation between corporate bond returns and the corresponding
issuing firm’s stock returns estimated with the asymmetric dynamic conditional
correlation (aDCC) model, using monthly observations. Covariances are annual-
ized, except in the regression tables, and multiplied by 1,000.

Bond databases

Panel D: Aggregate control variables

Liquidity Risk Factor Traded-version of the Pastor and Stambaugh (2003) liquidity risk factor. WRDS

Aggregate Liquidity Factor Aggregate liquidity factor of Hu et al. (2013). Jun Pan’s website

Intermediary Capital Risk Factor Intermediary capital risk factor of He et al. (2017). Asaf Manela’s website
Term Structure 10-year U.S. Treasury rate, 3-month U.S. Treasury Bill secondary market rate,

and their difference (slope).
WRDS

Macroeconomic Risk Macro Uncertainty Index of Jurado et al. (2015) and Business Conditions Index
of Aruoba et al. (2009).

Sydney Ludvigson’s
website, Philadelphia
FED

Expected Inflation One-quarter-ahead mean inflation forecast from the Survey of Professional Fore-
casters.

Philadelphia FED
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Table 2 : Descriptive statistics This table presents statistics for the stock-bond comovement and default risk variables.
Panel A reports their key descriptive statistics, while Panel B reports their pairwise correlations. The covariance (scaled
by 1,000) and correlation between corporate bond and stock returns are computed over the following 12 months. The
Fisher Correlation is given by ρFS,B,i,t+12 = 1

2
ln(

1+ρS,B,i,t+12

1−ρS,B,i,t+12
), where ρS,B,i,t+12 is the stock-bond correlation for firm i

computed over the period t+ 1 to t+ 12. Leverage is defined as the ratio between total book debt and the sum of total
book debt and the market value of equity. Distance-to-default (DD) is the log of the distance between a firm’s assets
and the default threshold (equal to one-half of long-term debt value plus short-term debt value) divided by asset volatility.
Bond credit spreads are computed as the difference between maturity-matched corporate bond yields and the associated
U.S. Treasury Bond yield. Default Risk is the sign-corrected average of the above three standardized default risk variables.
The sample period spans August 2003 - August 2020. All variables are annualized when applicable. The definitions of the
variables and their data sources are presented in Section 1.1 and in Online Appendix A and B.

Panel A: Descriptive statistics

Percentiles

Obs. Mean Median Std 1 5 25 75 95 99

Covariance 117,822 10.78 1.88 28.97 -11.02 -4.58 -0.37 7.84 60.60 162.05
Correlation 117,822 0.20 0.22 0.36 -0.64 -0.43 -0.05 0.49 0.76 0.87
Fisher Correlation 117,822 0.24 0.23 0.44 -0.76 -0.46 -0.05 0.53 1.00 1.33
Leverage 117,822 49.90 48.07 21.53 10.79 17.94 32.73 65.46 88.45 96.97
DD 117,822 14.75 12.57 10.29 0.89 2.69 7.70 19.09 34.64 54.00
Credit Spread [bps] 117,822 287.69 193.61 296.16 38.14 59.84 112.28 359.34 773.59 1625.59
Default Risk 117,822 0.00 -0.11 1.00 -1.90 -1.40 -0.66 0.53 1.74 3.16

Panel B: Pairwise correlations

Covariance Correlation Leverage DD Credit Spread Default Risk

Covariance 1 0.50 0.24 -0.27 0.46 0.43
Correlation 1 0.14 -0.26 0.24 0.27
Leverage 1 -0.18 0.43 0.50
DD 1 -0.47 -0.81
Credit Spread 1 0.82
Default Risk 1
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Table 3 : Predictability of stock-bond comovement with individual default
risk measures This table presents results on the predictive relation between stock-bond
comovement and various proxies of firm-level default risk, based on panel regressions. The
dependent variable is the one-year-ahead covariance (Panel A) and correlation (Panel B)
between stock and corporate bond returns. All regressors are mean-variance standardized.
We include firm fixed effects and report t-statistics in parentheses, using standard errors
(SE) double clustered at the month and firm levels. The sample period spans August
2003 - August 2020. The definitions of the variables and their data sources are presented
in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%, 1% level is
indicated by *, **, ***, respectively.

Panel A: Covariance Panel B: Correlation

(1) (2) (3) (4) (5) (6)

Leverage 0.96*** 0.07***
t-stat (10.03) (5.72)

Distance-to-default 0.31*** 0.03***
t-stat (7.12) (3.37)

Credit Spread 0.70*** 0.04***
t-stat (8.21) (4.88)

R2
Adj. 0.359 0.336 0.370 0.280 0.287 0.279

Obs. 117,822 117,822 117,822 117,822 117,822 117,822

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm

Controls None None None None None None
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Table 4 : Predictability of stock-bond comovement with default
risk – data vs. model This table presents results on the predictive
relation between stock-bond comovement and a composite measure of
default risk. Columns (1) and (3) report the baseline results with firm
fixed effects. Columns (2) and (4) present cross-sectional results using
the Fama-MacBeth approach. The dependent variable is the one-year-
ahead covariance (Columns 1 and 2) and correlation (Columns 3 and 4)
between stock and corporate bond returns. Panel A presents results for
the data. The ‘Default Risk’ variable is constructed as the sign-corrected
average of the three standardized default risk proxies, namely Leverage,
Distance-to-Default, and Credit Spread. Panel B presents results using
simulated economies based on the model. Model-based ‘Default Risk’
is constructed in a similar way to the empirical measure, but with the
CDS spread replacing the bond credit spread. Regressions are performed
on each simulated economy comprising 1,250 firms over a 10-year period.
The results correspond to the average of each statistic across 10 simulated
economies. We report t-statistics in parentheses, using standard errors
(SE) double clustered at the month and firm levels for the baseline panel
regressions. Newey-West corrected standard errors are used for the Fama-
MacBeth procedure with 12 lags. The sample period spans August 2003
- August 2020. The definitions of the variables and their data sources are
presented in Section 1.1 and in Online Appendix A and B. Significance at
the 10%, 5%, 1% level is indicated by *, **, ***, respectively.

Panel A: Data

Covariance Correlation

Baseline Fama-MacBeth Baseline Fama-MacBeth
(1) (2) (3) (4)

Default Risk 0.77*** 1.08*** 0.04*** 0.16***
t-stat (9.86) (8.44) (4.88) (10.64)

R2
Adj. 0.240 0.311 0.279 0.126

Obs. 117,822 117,822 117,822 117,822

SE
Month &
Firm

Newey- &
West

Month &
Firm

Newey- &
West

Fixed Effects Firm None Firm None

Controls None None None None

Panel B: Model

Covariance Correlation

Baseline Fama-MacBeth Baseline Fama-MacBeth
(1) (2) (3) (4)

Default Risk 0.30*** 0.58*** 0.03*** 0.05***
t-stat (8.90) (25.61) (6.55) (4.66)

R2
Adj. 0.311 0.087 0.363 0.029

Obs. 133,255 133,255 133,255 133,255

SE
Month &
Firm

Newey- &
West

Month &
Firm

Newey- &
West

Fixed Effects Firm None Firm None

Controls None None None None
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Table 5 : Predictability of stock-bond comovement with default risk – including controls This
table presents results on the predictive relation between stock-bond comovement and default risk, controlling
for alternative explanations. The dependent variable is the one-year-ahead covariance (Panel A) and correla-
tion (Panel B) of stock and corporate bond returns. Column (1) controls for corporate bond characteristics,
which include a Callability dummy, Coupon, Time-to-Maturity, Bond Size (log of amount outstanding), and
Bond Illiquidity (bid-ask spread). Column (2) controls for stock characteristics, which include Amihud (2002)’s
Illiquidity Ratio, Market-to-Book, and Equity Size (log of market capitalization). Column (3) controls for global
liquidity factors, which include the Pastor and Stambaugh (2003)’s Liquidity Risk Factor and Hu et al. (2013)’s
Aggregate Liquidity Factor. Column (4) controls for the Intermediary Capital Risk Factor of He et al. (2017).
Column (5) controls for risk-free interest rates, which include the 10-year U.S. Treasury rate, 3-month U.S.
Treasury Bill secondary market rate, and their difference (term structure slope). Column (6) controls for Ex-
pected Inflation, measured as the one-quarter-ahead mean inflation forecast from the Survey of Professional
Forecasters. Column (7) controls for the Macroeconomic Uncertainty Index of Jurado et al. (2015) and the
Business Conditions Index of Aruoba et al. (2009). Column (8) controls for all bond/stock features and global
variables from Columns (1)-(7). The ‘Default Risk’ variable is constructed as the sign-corrected average of the
three standardized default risk proxies, namely Leverage, Distance-to-Default, and Credit Spread. We include
firm fixed effects and report t-statistics in parentheses, using standard errors (SE) double clustered at the month
and firm levels. The sample period spans August 2003 - August 2020. The definitions of the variables and their
data sources are presented in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%, 1%
level is indicated by *, **, ***, respectively.

Panel A: Covariance

(1) (2) (3) (4) (5) (6) (7) (8)

Default Risk 0.77*** 0.80*** 0.68*** 0.79*** 0.94*** 0.72*** 0.60*** 0.67***
t-stat (9.74) (9.08) (7.76) (9.59) (11.61) (7.97) (7.23) (9.62)

R2
Adj. 0.373 0.367 0.371 0.366 0.379 0.367 0.380 0.414

Obs. 114,825 117,748 117,822 117,822 117,822 117,822 117,822 114,755

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm Firm Firm

Controls
Bond

Charact.
Stock

Charact.
Liquidity
Risk

Intermediary
Capital Risk

Interest
Rates

Expected
Inflation

Macro
Conditions All

Panel B: Correlation

(1) (2) (3) (4) (5) (6) (7) (8)

Default Risk 0.05*** 0.09*** 0.05*** 0.05*** 0.07*** 0.05*** 0.04*** 0.08***
t-stat (5.48) (6.93) (5.14) (5.84) (7.21) (4.88) (4.18) (6.52)

R2
Adj. 0.290 0.284 0.281 0.280 0.294 0.279 0.285 0.308

Obs. 114,825 117,748 117,822 117,822 117,822 117,822 117,822 114,755

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm Firm Firm

Controls
Bond

Charact.
Stock

Charact.
Liquidity
Risk

Intermediary
Capital Risk

Interest
Rates

Expected
Inflation

Macro
Conditions All
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Table 6 : Predictability of stock-bond comovement with default risk – robustness checks This table presents robustness
results on the predictive relation between stock-bond comovement and default risk. The dependent variable is the one-year-ahead
covariance (Panel A) and correlation (Panel B) of stock and corporate bond returns. Column (1) reproduces the specification with
all controls (Column 8 of Table 5). Column (2) presents results at the corporate bond level, where covariance and correlation are
computed between individual bond’s returns and firm-level stock returns. Column (3) replicates Column (2) whilst excluding bonds
with an embedded call option. Column (4) replicates Column (1) whilst excluding all financial and regulated utility firms (those
with a SIC code between 6000–6999 and 4900–4949, respectively). Column (5) uses an extended data sample, combining various
databases (Lehman Brothers/TRACE/Datastream), starting April 1987. Column (6) uses stock-bond covariance and correlation
computed with an asymmetric DCC-GARCH model at the firm level. Column (7) uses the 10-year CDS spread (mean-variance
standardized) as the proxy for default risk, using Markit CDS data. Column (8) controls for persistence in stock-bond comovement
by introducing lagged stock-bond covariance/correlation (computed over the previous 12 months). Finally, Column (9) uses yearly
non-overlapping observations. The ‘Default Risk’ variable is constructed, in all columns except Column (7), as the sign-corrected
average of the three standardized default risk proxies, namely Leverage, Distance-to-Default, and Credit Spread. Regressions include
all control variables and firm fixed effects. We report t-statistics in parentheses, using standard errors (SE) double clustered at the
month and firm levels for Columns (1)-(8). In Column (9), we cluster the standard errors at the year and firm level. The sample
period spans August 2003 - August 2020 for all columns except Column (5), which spans April 1987 - August 2020. The definitions
of the variables and their data sources are presented in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%,
1% level is indicated by *, **, ***, respectively.

Panel A: Covariance

Baseline Bond level
Exclude

call options
Exclude
fin./util.

Extended
sample

Alternative
comovement

CDS
spread

Control for
persistence

No
overlapping

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Default Risk 0.67*** 1.25*** 1.19*** 0.79*** 0.49*** 0.35*** 0.62*** 0.79*** 0.71***
t-stat (9.62) (9.14) (5.23) (8.73) (10.38) (7.44) (7.15) (10.49) (3.52)

R2
Adj. 0.414 0.322 0.336 0.423 0.410 0.336 0.388 0.418 0.460

Obs. 114,755 514,017 104,743 81,619 188,111 91,863 63,778 114,432 7,427

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Year &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm Firm Firm Firm

Controls All All All All All All All All All

Panel B: Correlation

Baseline Bond level
Exclude

call options
Exclude
fin./util.

Extended
sample

Alternative
comovement

CDS
spread

Control for
persistence

No
overlapping

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Default Risk 0.08*** 0.09*** 0.08*** 0.07*** 0.06*** 0.02*** 0.04*** 0.09*** 0.09***
t-stat (6.52) (8.07) (4.04) (5.02) (5.57) (5.87) (3.25) (7.23) (3.10)

R2
Adj. 0.308 0.225 0.192 0.321 0.274 0.746 0.287 0.309 0.399

Obs. 114,755 514,017 104,743 81,619 188,111 91,863 63,778 114,432 7,427

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Year &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm Firm Firm Firm

Controls All All All All All All All All All
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Table 7 : Hedge ratio decomposition by default risk This table presents results on the hedge ratio, extending the analysis of Schaefer
and Strebulaev (2008). Panel A reports the results of regressing firm-level excess corporate bond returns, reB,i,t, on the associated excess stock
returns, reS,i,t, and the 10-year constant maturity U.S. Treasury bond returns, rf,t. For each firm i, we estimate the following regression model:
reB,i,t = α0 + αSr

e
S,i,t + αrfrf,t + εi,t, where αS is the hedge ratio, while αrf reflects the corporate bond sensitivity to the risk-free bond. Panel A

replicates Table 4 (p.6) of Schaefer and Strebulaev (2008), using our updated sample. The hedge ratio is the regression coefficient of excess corporate
bond returns on excess stock returns, which is equal to COV (rS , rB) /σ2

S = ρB,S × σB/σS , where ρB,S is the stock-bond correlation while σB and σS
denote the bond and stock volatility, respectively. In Panel B, we report the hedge ratio obtained in Panel A and the unconditional stock-bond correlation
ρB,S calculated by rating. The ratio between the two gives the Merton component (σB/σS), as ρB,S = 1 in the Merton model. Column (2) contains
the most creditworthy firms whilst Column (8) contains the least creditworthy (speculative grade) firms. We report t-statistics in parentheses, using
standard errors (SE) double clustered at the month and firm levels. The sample period spans August 2003 - December 2020. The definitions of the
variables and their data sources are presented in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%, 1% level is indicated by *,
**, ***, respectively.

Panel A: Estimated Hedge Ratio

All AAA AA A BBB BB B CCC to C
(1) (2) (3) (4) (5) (6) (7) (8)

βS 15.27*** 3.45*** 8.35*** 9.27*** 10.33*** 13.49*** 16.57*** 24.43***
t-stat (9.31) (3.04) (4.34) (5.44) (4.97) (6.86) (9.88) (11.30)

αrf 30.78*** 62.31*** 45.96*** 52.27*** 37.37*** 7.66 -4.33 -68.35***
t-stat (4.43) (9.00) (8.02) (9.49) (5.50) (0.91) (-0.35) (-2.63)

R2
Adj. 0.206 0.521 0.304 0.264 0.191 0.252 0.279 0.329

Obs. 106,338 913 5,384 26,956 39,066 17,833 12,901 3,240

Panel B: Hedge Ratio Decomposition

All AAA AA A BBB BB B CCC to C
(1) (2) (3) (4) (5) (6) (7) (8) (8)/(2)

(A) Hedge Ratio (ρB,S × σB/σS) 15.27 3.45 8.35 9.27 10.33 13.49 16.57 24.43 7.081
(B) Stock-bond Correlation (ρB,S) 0.44 0.11 0.24 0.27 0.30 0.39 0.48 0.71 6.455
(A)/(B) Merton Component (σB/σS) 34.70 31.36 34.79 34.33 34.43 34.59 34.52 34.41 1.097
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Table 8 : Hedge ratio regressions – conditional vs. constant asset volatility This
table presents results from pooled OLS regressions of excess bond returns on hedged equity
returns computed with conditional asset volatility in Panel A and constant asset volatility
in Panel B. Columns (1) and (4) reports the results using a sample that is representative
of that used by Schaefer and Strebulaev (2008) which uses the Intercontinental Exchange
(ICE) corporate bond data. Columns (2) and (5) report the results using all bonds in the
TRACE sample. Columns (3) and (6) report the results for all bonds from the extended
sample which includes TRACE, Datastream and the Lehman Brothers database. The details
of the computation of the hedge ratio and it’s inputs are detailed in Online Appendix E. We
include firm fixed effects and report t-statistics in parentheses, using standard errors (SE)
double clustered at the month and firm levels. The t-statistics for βS are with respect to
the difference from unity, while the t-statistics for αrf are with respect to zero. The αrf
coefficient is reported in basis points. The sample period spans December 1996 - December
2003 for the Schaefer and Strebulaev (2008) matched sample, August 2003 - December
2020 for the TRACE data, and April 1987 - December 2020 for the extended sample. The
definitions of the variables and their data sources are presented in Section 1.1 and in Online
Appendix A and B. Significance at the 10%, 5%, 1% level is indicated by *, **, ***,
respectively.

Panel A: Conditional asset volatility Panel B: Constant asset volatility

SS 2008
Sample

TRACE
Sample

Extended
Sample

SS 2008
Sample

TRACE
Sample

Extended
Sample

(1) (2) (3) (4) (5) (6)

βS 1.120 1.084 1.026 1.735*** 1.794*** 1.721***
t-stat (0.932) (0.671) (0.264) (3.777) (4.836) (4.49)

αrf 55.41*** 34.55*** 49.69*** 57.25*** 37.02*** 49.82***
t-stat (10.66) (4.91) (12.87) (12.08) (5.16) (12.35)

R2
Adj. 0.354 0.226 0.214 0.345 0.214 0.1922

Obs. 41,982 534,459 1,189,856 41,982 534,459 1,189,856
Firm FE YES YES YES YES YES YES

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Sample start 1996-12 2003-07 1987-04 1996-12 2003-07 1987-04
Sample end 2003-12 2020-12 2020-12 2003-12 2020-12 2020-12
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Table 9 : Stock-bond diversification by default risk and out-of-sample performance
This table presents results on the diversification between stocks and bonds by default risk and the
implications for the performance of a balanced allocation strategy. Panel A reports performance
statistics for default-risk-sorted portfolios with equal allocation in stocks and corporate bonds. Panel B
reports, for each portfolio, the corresponding ’Diversification Benefit’ and the correlation between each
stock and bond portfolio. Diversification Benefit represents the percentage of the average stock/bond
variance that can be diversified away by combining stocks and bonds in a single portfolio. Panels C
and D report the results for two special cases: i) an investment in a bond market index and default
risk-sorted stocks; ii) an investment in a stock market index and default risk-sorted corporate bonds.
Portfolios are presented by default risk quintile and are value-weighted based on market capitalization.
Quintile portfolios are formed every month by sorting firms based on their default risk, measured with
the Credit Spread. Quintile 1 (Q1) is the portfolio with lowest default risk, while Quintile 5 (Q5) is the
portfolio with highest default risk. The Sortino ratio is computed as a portfolio’s excess return divided
by downside volatility, defined as the standard deviation of negative returns. The one-month value-
at-risk (VaR) is the historical 95% quantile of each portfolio. The t-statistics for the individual joint
portfolio Sharpe ratios are computed using heteroskedasticity and autocorrelation consistent (HAC)
errors, as in Lo (2002). The t-statistic for the difference in the portfolio Sharpe Ratio between Q5 and
Q1 is computed using HAC standard errors, as in Ledoit and Wolf (2008). The stock (bond) market
index returns are the value-weighted (using market capitalization) firm-level stock (bond) returns. The
data sample contains stocks and bonds spanning August 2003 - August 2020. The definitions of the
variables and their data sources are presented in Section 1.1 and in Online Appendix A and B.

Panel A: Characteristics of balanced stock-bond portfolios

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Excess Return (%) 6.568 6.813 6.772 8.056 9.162 2.594
Volatility (%) 6.884 8.191 10.607 13.783 18.634 11.75
Sharpe Ratio 0.954*** 0.832*** 0.638*** 0.584*** 0.492*** -0.462**
t-stat [3.871] [3.406] [2.629] [2.409] [2.031] [-2.478]

Sortino Ratio 1.172 0.974 0.688 0.661 0.664 -0.506
Skew -0.607 -0.831 -1.019 -0.522 0.235 0.842
Kurtosis 3.094 4.472 6.171 7.887 5.418 2.324
VaR-95 (%) -8.044 -11.09 -14.86 -17.48 -21.39 -13.35

Panel B: Portfolio diversification between the bond and stock portfolios

Diversification Benefit (%) 46.68 40.49 36.65 30.52 25.57 -21.11
Correlation 0.109 0.299 0.486 0.692 0.706 0.597

Panel C: Portfolio diversification between a bond index and individual stocks

Diversification Benefit (%) 41.93 41.92 42.81 43.66 45.57 3.638
Correlation 0.254 0.278 0.305 0.325 0.284 0.031

Panel D: Portfolio diversification between a stock index and individual bonds

Diversification Benefit (%) 46.78 40.33 34.96 26.90 21.55 -25.22
Correlation 0.114 0.312 0.445 0.580 0.585 0.471
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Table 10 : Model parameters This table presents the estimates of the model
parameters. Panel A reports the set of calibrated parameters, including distress
costs, corporate tax rate, and asset payout ratio which are set exogenously. The
risk-free rate is equal to the long-run mean of a square-root process fitted to the
3-month Treasury Bill rate. Panel B reports the parameter values obtained from
a structural estimation over the period August 2003 - August 2020. Panel C
presents the goodness-of-fit of the estimation, measured with the sum of squared
errors. The estimation methodology and the set of target moments are described
in Section 3.5 and in Online Appendix G. All variables are annualized.

Variable Symbol Value

Panel A: Exogenous parameters

Distress costs α 0.4
Corporate tax rate ζ 0.2
Asset payout ratio q 0
Risk-free rate r 0.0101

Panel B: Structurally-estimated parameters

Speed of mean reversion of aggregate asset variance κY 0.9703
Unconditional mean of aggregate asset variance ΘY 0.0060
Volatility of aggregate asset variance δY 0.1076
Correlation between the Brownian motions dWY

t and dWσY
t ρY -0.2698

Price of variance risk λσY -7.7231
Price of asset risk λY⊥σY 1.6261
Speed of mean reversion of idiosyncratic asset variance κX 0.8245
Unconditional mean of idiosyncratic asset variance ΘX 0.0211
Volatility of idiosyncratic asset variance δX 0.1861
Debt coupon c 0.0097
Exogenous barrier XB 0.5596

Panel C: Goodness of fit

Sum of squared errors 0.0011
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Table 11 : Empirical vs. model-implied moments This table compares empirical moments
to those obtained in the simulated economy. Panel A presents the moments that are used in
the structural estimation of the model, where the mean values highlighted in bold are the target
empirical moments. The remaining values (standard deviations) are out-of-sample. Panel B
presents a set of additional out-of-sample moments. The empirical moments are constructed as
follows: Leverage is the ratio of total book debt to the sum of total book debt and market value of
equity; Credit Default Swap (CDS) Spread is the 10-year spread for BB-rated firms from Markit.
Default Probability is the 10-year historical default rate for BB-rated firms over the 1981 - 2020
period from Standard and Poor’s (2021); Stock (Bond) Return Volatility is the standard deviation
of stock (bond) returns estimated with a 12-month rolling window; Stock (Bond) Systematic
Variance Ratio is the ratio of stock (bond) systematic variance to total variance. This ratio is
estimated as the R-squared of a regression of stock (bond) returns on the returns of a stock (bond)
value-weighted index estimated with a 12-month rolling window; Aggregate Stock (Bond) Return
Volatility is equal to sample standard deviation of value-weighted stock (bond) index returns;
Asset volatility is computed as the 12-month rolling standard deviation of asset returns, given by
rA,i,t = Li,t× rB,i,t+(1−Li,t)× rS,i,t, where rB,i,t and rS,i,t are stock and bond returns for firm
i in month t, while Li,t denotes the firm’s leverage; Distance-to-default is the log of the distance
between firm assets and the default threshold (equal to total debt value) divided by asset volatility;
Stock-Bond Correlation/Covariance are computed using stock and bond returns with a 12-month
rolling window. The model-implied moments are obtained as averages of spot moments across
firms and months, using a simulated economy of 1,250 firms over 10 years. The empirical data
sample period spans August 2003 - August 2020. The moments are annualized when applicable.
The definitions of the variables/moments and their data sources are presented in Section 1.1 and
Online Appendix A and B. The simulation procedure and the calculation of model-implied and
empirical moments are detailed in Section 3.5 and in Online Appendix G.

Mean Standard Deviation

Data Model Ratio Data Model Ratio
(A) (B) (A/B) (C) (D) (C/D)

Panel A: In-sample moments

Leverage [%] 49.90 50.78 0.98 21.53 9.95 2.16
CDS Spread [10y, %bps] 236.22 250.78 0.94 181.17 164.40 1.10
Physical Default Probability [10y, %] 14.13 12.70 0.90 - - -

Stock Return Volatility [%] 32.87 32.59 1.01 21.57 16.05 1.34
Bond Return Volatility [%] 9.19 9.11 1.01 8.84 3.25 2.72
Stock Systematic Variance Ratio [%] 28.51 27.94 1.02 18.76 25.62 0.73
Bond Systematic Variance Ratio [%] 38.12 36.80 1.04 22.30 29.09 0.77
Aggregate Stock Return Volatility [%] 13.05 14.02 0.93 6.08 7.29 0.83
Aggregate Bond Return Volatility [%] 4.71 4.88 0.96 2.51 2.38 1.05

Panel B: Out-of-sample moments

Asset Volatility [%] 15.50 14.94 1.04 8.48 5.94 1.43
Distance-to-default 6.52 5.92 1.09 4.02 4.17 0.97

Stock-Bond Covariance 10.78 27.16 0.40 28.97 22.69 1.28
Stock-Bond Correlation 0.20 0.79 0.25 0.36 0.16 2.28
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Table 12 : Decomposition of stock-bond comovement by default
risk This table presents a decomposition of the model-implied stock-bond
covariance by default risk, following Proposition 1 of Section 3.3. The
stock-bond covariance has three components: Asset Risk reflects the im-
pact of a firm’s asset variance and leverage; Variance Risk is the impact
of the variance of aggregate and idiosyncratic asset variances; Co-skewness
Risk corresponds to the comovement between aggregate asset variance and
the level of aggregate assets. Higher-order risk corresponds to the sum of
Variance Risk and Co-skewness Risk. Quintile portfolios are formed every
month by sorting firms based on the Default Risk composite variable, de-
fined as the sign-corrected average of the three standardized default risk
proxies, namely Leverage, Distance-to-Default, and CDS spread. Quintile
1 (Q1) is the portfolio with the lowest default risk and Quintile 5 (Q5) is
the portfolio with the highest default risk. The quintiles are value-weighted
by model implied equity value computed over the previous month. Panel
A reports the annualized total stock-bond covariance and its components
for each default risk portfolio. Panel B reports the percentage contribution
of these components to the total stock-bond covariance. The results are
based on a simulated economy of 1,250 firms over 10 years. Results re-
ported are averaged over the 10 economies. The simulation procedure is
detailed in Section 3.5 and in Online Appendix G.

Panel A: Stock-bond covariance and its components

Q1 Q2 Q3 Q4 Q5

Stock-bond covariance 9.744 17.97 25.58 34.94 52.33
Asset Risk 9.144 17.36 25.02 34.45 51.89
Higher-Order Risk (i+ii) 0.600 0.615 0.568 0.490 0.440
(i) Variance Risk -0.395 -0.689 -0.940 -1.180 -1.390
(ii) Co-skewness Risk 0.995 1.304 1.508 1.670 1.830

Panel B: Stock-bond covariance decomposition

Asset Risk (%) 0.938 0.966 0.978 0.986 0.992
Higher-Order Risk (%) 0.062 0.034 0.022 0.014 0.008
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(B) CORRELATION

Figure 1: Conditional comovement between stock and corporate bond returns. This figure plots the monthly
(annualized) covariance in Panel A and the correlation in Panel B between stock returns of U.S. firms and their
respective corporate bond returns. The stock-bond covariance and correlation are computed at the firm level
using 12-month rolling windows and then averaged across firms. Firms are split into two classes based on their
rating: investment grade firms (rated AAA to BBB-) and junk firms (rated BB+ and below). The Shaded area
represents the NBER recession period. The sample spans August 2003 - August 2020.
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(C) COVARIANCE BY DEFAULT RISK
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(D) CORRELATION BY DEFAULT RISK

Figure 2: Portfolio sorts of stock-bond comovement This figure plots the average stock-bond covariance
and correlation by default risk. Each month, we separate firms into five portfolios based on either their S&P
credit ratings (Panels A and B) or the aggregate default risk variable (Panels C and D). We then compute the
covariance (Panels A and C) and the correlation (Panels B and D) between stock and corporate bond returns
over the following year with monthly observations. Within each portfolio, firms are value weighted based on their
market capitalization. The reported standard error intervals correspond to the 90% confidence level. The sample
period spans August 2003 - August 2020. The definitions of the variables and their data sources are presented in
Section 1.1 and in Online Appendix A and B.
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Figure 3: Predictive power of default risk vs. alternative channels This figure plots the relative contribution
of default risk in predicting variation in stock-bond covariance (Panel A) and correlation (Panel B). The blue bars
capture the fraction of the total variation (R-squared) in the one-year-ahead stock-bond comovement explained
by default risk, in a pooled OLS regression, while the red bars capture the fraction of the total variation attributed
to a specific group of controls. In each panel, the first bar accounts for corporate bond characteristics, which
include a Callability dummy, Coupon, Time-to-Maturity, Bond Size (log of amount outstanding), and Bond
Illiquidity (bid-ask spread). Bar (2) accounts for stock characteristics, which include Amihud (2002)’s Illiquidity
Ratio, Market-to-Book, and Equity Size (log of market capitalization). Bar (3) accounts for global liquidity
factors, which include the Pastor and Stambaugh (2003)’s Liquidity Risk Factor and Hu et al. (2013)’s Aggregate
Liquidity Factor. Bar (4) accounts for the Intermediary Capital Risk Factor of He et al. (2017). Bar (5) accounts
for the risk-free term structure, which includes the 10-year U.S. Treasury rate, 3-month U.S. Treasury Bill
secondary market rate, and their difference (slope). Bar (6) accounts for Expected Inflation, measured as the
one-quarter-ahead mean inflation forecast from the Survey of Professional Forecasters. Bar (7) accounts for the
Macroeconomic Uncertainty Index of Jurado et al. (2015) and the Business Conditions Index of Aruoba et al.
(2009). The Shapley-Owen marginal R-squared decomposition follows the methodology outlined in Shorrocks
(1982). The sample period spans August 2003 - August 2020. The definitions of the variables and their data
sources are presented in Section 1.1 and in Online Appendix A and B.
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Figure 4: Aggregate hedge ratios This figure plots the monthly aggregate hedge ratios computed with condi-
tional asset volatility in Panel A and constant asset volatility in Panel B. The details of the computation of the
hedge ratio and it’s inputs are detailed in Online Appendix E. The Shaded area represents the NBER recession
period. The sample spans April 1987 - December 2020.
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Figure 5: Conditional out-of-sample diversification benefit by default risk This figure plots the conditional
out-of-sample diversification benefit of an equal allocation between corporate bonds and stocks by default risk.
Diversification Benefit represents the percentage of the average stock/bond variance that can be diversified away
of the following year by combining stocks and bonds in a single portfolio. The two time-series show the results for
portfolios of firms sorted in the lowest (Q1) and highest (Q5) default risk quantiles. Shaded areas represent NBER
recession periods. We estimate the conditional series of Diversification Benefit with a 12-month rolling window.
The sample period spans August 2004 - August 2020. The definition of Diversification Benefit is presented in
Section 2.
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Figure 6: Stock and bond exposures to asset return and asset variance This figure illustrates the exposure
of stock and corporate bond returns to asset return and asset variance. The exposures are estimated jointly
as the slope coefficients (beta) from a pooled regression of contemporaneous stock and bond excess returns on
aggregate asset return (Panel A) and aggregate asset variance (Panel B), with and without controls. The control
variables include bond characteristics (Callability dummy, Coupon, Time-to-Maturity, Bond Size, Bond Illiquidity),
stock characteristics (Amihud (2002)’s Illiquidity Ratio, Market-to-Book, and Equity Size), and global market
conditions (the Intermediary Capital Risk Factor of He et al. (2017), Slope and Term Structure of interest rates,
Expected Inflation, the Macroeconomic Uncertainty Index of Jurado et al. (2015), and the Business Conditions
Index of Aruoba et al. (2009)). Aggregate asset return is a leverage-weighted average of the aggregate excess
stock market return and aggregate excess bond market return. Aggregate asset variance is the factor mimicking
portfolio for aggregate asset variance, following Choi and Richardson (2016). Full details of the construction of
these measures are detailed in Section D of the Online Appendix. All variables are mean-variance standardized.
The error bar denotes 95% confidence intervals. The sample period spans August 2003 - August 2020. The
definitions of the variables and their data sources are presented in Section 1.1 and in Online Appendix A and B.
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“Understanding the Comovement between Corporate Bonds and Stocks:
The Role of Default Risk”

(not for publication)

Abstract

This Online Appendix presents supplementary material and results not included in the main body of
the paper.



A Corporate bond data

This Appendix describes the procedure related to sourcing, cleaning, and preparing the corporate bond

database. The main results of the paper rely on the cleaned version of the TRACE dataset which

spans the period August 2002 - August 2020 made available from WRDS. In a robustness analysis (see

Online Appendix C), we consider an extended dataset that we obtain by merging various corporate bond

databases. For completeness, we present all sources below as well as the details for constructing the

comprehensive dataset. We largely follow Chordia et al. (2017), Bai et al. (2019) and Elkamhi et al.

(2022) in cleaning and merging the respective corporate bond databases.

A.1 Bond databases

The following describes the filtering rules we apply to each corporate bond database:

1. The Lehman Brothers Fixed Income (LB) database contains monthly corporate bond price quotes,

yields, ratings, amount outstanding, accrued interest and returns. The sample spans the period

January 1973 to March 1998. The bond prices are quote based, but are considered to be reliable

according to Warga (1992), among others. In some cases, the price observations are based off

matrix pricing. Matrix pricing infers a bond price which lacks its own quote based on quoted prices

of similar bonds. We follow Feldhütter and Schaefer (2018) and Avramov et al. (2013) and start

the sample in April 1987, because there are very few non-callable or junk bonds before this date.

Furthermore, Standard & Poor’s (S&P) firm ratings do not exist before 1986.

2. The cleaned Enhanced TRACE database, which is provided by the WRDS Bond Database, provides

cleaned monthly transactions data. The processed data sample spans the period July 2002 to

August 2020 and we use end-of-the-month prices to compute monthly returns.

3. The Datastream (DS) database includes quote based price data, yields, and returns. The sample

spans the period January 1990 to December 2019.

A.2 Data cleaning

We only retain bonds from all aforementioned databases if they link to the Mergent FISD bond char-

acteristics database. We use the following static Mergent FISD variables to filter all bonds in the

sample:

1. Bond Type: We only include corporate bonds which are classified as US Corporate Debentures

(‘CDEB’), US Corporate MTN (‘CMTN’) or US Corporate MTN Zero (‘CMTZ’).

2. Public Firm: We exclude bonds that are not listed, or traded in the US public market. This

includes bonds issued via private placement, bonds issued under the 144A rule, and bond issuers

not in the jurisdiction of the United States.
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3. Bond Coupon: We exclude bonds with a variable coupon (‘V’), i.e., we only include bonds with a

fixed (‘F’) or zero coupon (‘Z’).

4. Convertible: We exclude all convertible bonds.

5. Asset-Backed: We exclude all asset-backed bonds.

6. Yankee Bonds: We exclude all Yankee bonds (a debt obligation issued by a foreign entity which is

traded in the United States and denominated in US dollars).

7. Foreign Currency: We only include US denominated bonds

8. Embedded options: We exclude putable bonds, but include callable bonds.

9. Security Level: We exclude all junior bonds, that is the ‘Junior’, ‘Junior Subordinate’, and ‘Sub-

ordinate’ bonds.

10. Rating: We exclude bonds which are ‘Unrated’.

In quote-based databases, corporate bonds may trade infrequently. To address the issue of stale prices,

we follow Chordia et al. (2017) and apply these additional filters:

1. Prices that bounce back in an extreme manner relative to preceding days (bid-ask bounce) are

excluded. Specifically, denoting by rB,i,j,t the month-t return for bond j of firm i, we delete a

month-t observation if rB,i,j,t × rB,i,j,t−k < −0.02 for k = 1, . . . , 12.

2. Prices that do not change for more than 3 months are excluded.

Finally, we remove observations if a corporate bond’s monthly price is less than $1 or above $1000 and

if the bonds time to maturity is less than 12 months, as in Bai et al. (2019).

A.3 Final dataset

The individual corporate bond datasets are combined with the following order of precedence when

overlaps are present: i) Lehman Brothers Fixed Income Database, ii) the cleaned Enhanced TRACE

data, and iii) Datastream.

We then merge with stock price and accounting data from CRSP and COMPUSTAT. We follow the

literature and only include stocks listed on one of the NYSE, AMEX, or NASDAQ stock exchanges. We

exclude stocks with share prices below $5 and only include stocks with a share code of 10 or 11.

Once a bond is in ’default’, the bond is removed from the sample - we do not not use an imputed return

as a proxy. This is to align the empirical results with the model. In the simulation, upon breaching the

default threshold, the respective simulated firm ceases to exist. However, we verify that all reported

empirical results are practically unchanged when including defaulted firms and their respective proxied

returns upon default. We define ‘default’ as the firm having a numerical S&P Bond credit rating of 22

(D) or ‘In Default’ - the lowest possible rating.
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We use the WRDS Bond CRSP Link to merge all corporate bonds from the TRACE dataset to their

respective CRSP permanent company number (PERMNO). The remaining two databases are merged

to their respective PERMNOs using the Committee on Uniform Securities Identification Procedures

(CUSIP) identifiers at both the firm and issue levels. Due to CUSIP identifiers changing over time, we

also use the historical CUSIP (NCUSIP) from CRSP. Remaining unmatched bonds are merged using

Capital IQ from Compustat and manually matched using the ticker information provided by Bloomberg’s

data point (BDP) function.

The final ’full’ sample consists of 12,756 corporate bonds issued by 1,652 firms spanning the period

April 1987 to August 2020. Our main analysis uses TRACE data only, which yields a sample of 1,290

firms and 9,103 bonds over the period August 2002 to August 2020. Our regressions effectively use

the period starting in August 2003 because one year of bond return data is required to compute some

of the default risk measures.

B Description of default risk variables

This Appendix describes the firm-level variables used to measure default risk in our empirical analysis.

Market leverage

Market leverage is the ratio between total book debt (LT) and the market value of equity (monthly

closing values of stock prices (PRC) multiplied by the number of shares outstanding (SHROUT)) plus

total book debt (LT). We denote market leverage by Li,t.

Distance-to-default

We compute a firm’s distance-to-default (DDi,t) as follows:

DDi,t =
−log(

Di,t
Xi,t

) + (0.06 + rf,t − 1
2σ

2
X,i,t)(T − t)

σX,i,t
√
T − t

, (A.1)

where Xi,t is the level of firm i’s total assets at time t, defined as the value of market equity plus

short-term book debt plus one half long-term book debt, Di,t is short-term book debt plus one half

long-term book debt. 6% is the proxy for the equity premium used by Campbell et al. (2008) and rf,t is

the one-month US Treasury-Bill rate. Finally, σX,i,t is the firm’s asset volatility, computed as the rolling

12-month standard deviation of asset returns, given by rA,i,t = Li,t × rB,i,t + (1 − Li,t) × rS,i,t, as in
Choi and Richardson (2016), where rB,i,t and rS,i,t are stock and bond returns for firm i in month t.

We follow Campbell and Thompson (2008) and set T − t = 1.

The distance-to-default can be interpreted as the number of standard deviations of asset growth by
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which a firm’s market value of assets exceeds a given debt (liability) threshold.

Credit spread

We first compute the credit spread of an individual bond as the difference between the yield of the bond

and the associated yield of the Treasury curve at the same maturity. We use the Benchmark Treasury

rates from Datastream for maturities of 3, 5, 7, 10, and 30 years, and then use a linear interpolation

scheme to estimate the entire yield curve, following Duffee (1998) and Collin-Dufresne et al. (2001),

among others. We then compute the credit spread at the firm level by equal-weighting each bond’s

credit spread for a given firm (at each time t).

Ratings

We use bond level ratings as a measure of default risk. Bond-level ratings are obtained from S&P (S&P

Global Ratings). When an S&P rating is unavailable, we use the one provided by Moody’s.

CDS spread

Credit Default Swap (CDS) spread data is obtained from Markit over the period January 2002 to

December 2020. We follow the cleaning methodology of Kelly et al. (2019). We keep a firm only if it

has a valid CDS spread with maturities of 1, 3, 5, 7, and 10 years. We only retain USD-denominated

contracts written on senior debt with the modified restructuring credit event clause. We exclude firms

with a Markit implied rating of ‘D’ and trim extreme values of CDS spreads by imposing a cap on

any spread value at 2%. We construct monthly observations based on the last available daily data

each month for each company for each maturity of CDS. We then merge the Markit CDS data to

CRSP/COMPUSTAT by manually matching the Markit REDCODE/CUSIP pairs to the NCUSIP codes

from CRSP. Thereafter, we sample the data between August 2003 and August 2020 to align the CDS

data to the main sample used in the paper. To compute the statistics for the empirical CDS spreads

used in Table 11 we use firms with a Markit implied rating of ‘BB’ and a CDS maturity of 10-years. This

results in a pooled mean and standard deviation of 236.22 bps and 181.17 bps with 23,249 observations.

Once merged with the main dataset (which includes the TRACE data), the pooled mean and standard

deviation is 231.26 bps and 172.36 bps with 12,854 observations.43

C Additional empirical results

This Appendix reports various robustness checks on the predictive relation between stock-bond co-

movement and default risk. The results are reported in Table 6, where the first column reproduces
43The number of total observations for the merged Markit/CRSP/COMPUSTAT database is 117,865. This drops to

68,693 when merged to the full data panel used in the main results of the paper.
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the specification with all controls (Column 8 of Table 5) for comparison purposes. All results use the

TRACE sample, except Column (5) that uses the extended sample comprising all databases.

Analysis at the corporate bond level

The results in the main body of the paper use aggregated corporate bond returns (using equal weights)

to create a ‘firm-level’ corporate bond return. We verify that the results also hold at the corporate

bond level. To do so, we now estimate, for each firm, the rolling 12-month covariance and correlation

between a firm’s stock return and the return on its individual corporate bonds. We then estimate a

pooled panel regression in the form of Equation (2) using corporate bond observations. Column (2)

presents the results using all controls. The impact of default risk on the 12-month ahead stock-bond

covariance and correlation remains of the same economic magnitude and statistical significance as in

the baseline results with firm-level observations (Column 1). This analysis confirms that our findings

do not arise because of the way we aggregate individual bond returns at the firm level.

Excluding bonds with embedded call options

To address concerns that the results are driven by corporate bonds with embedded call options, we

estimate the baseline panel regression excluding embedded call options. Column (2) presents the re-

sults, which indicate that the impact of default risk on the 12-month ahead stock-bond covariance and

correlation is similar using bonds with and without call features.

Excluding financial and regulated firms

Most empirical studies in the corporate finance literature exclude financial and regulated firms. Firms

operating in these sectors are subject to specific regulations that influence their leverage policies and

thus their default risk. We now test whether the relationship between stock-bond comovement and

default risk is sensitive to the inclusion/exclusion of financial institutions and regulated utilities. To do

so, we replicate Column (1) whilst excluding all financial and regulated utility firms (those with a SIC

codes between 6000–6999 and 4900–4949, respectively). This exclusion removes about 20% of the

observations. As evidenced in Column (4), the exclusion of financial institutions and regulated utilities

in our sample has no discernible impact on the magnitude, or the statistical significance, of our baseline

results.

Extended dataset

We replicate our baseline specification using a comprehensive dataset that combines TRACE data with

the Lehman and Datastream databases. Column (5) presents the results. When using data spanning the

period April 1987 to August 2020, the results are similar to those with the TRACE sample (August 2003

to August 2020), in terms of the magnitude of the predictability coefficients and explanatory power,
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as measured with the R-squared.44 In particular, the impact of default risk on the 12-month ahead

stock-bond covariance and correlation remains statistically significant at the 1% level. Our findings are

thus not limited to the last two decades.

Alternative measure of stock-bond comovement

We verify here that the results are robust the computation of stock-bond comovement. To do so

we estimate stock-bond covariance and correlation estimated from an asymmetric dynamic conditional

correlation (DCC) GARCH model as an alternative proxy of comovement to the rolling 12-month

estimates. Column (6) confirms that the impact of default risk on the 12-month ahead stock-bond

covariance and correlation is not specific to the the way we measure stock-bond comovement.

Alternative measure of default risk

As an alternative measure of default risk, we consider credit default swap (CDS) spreads using Markit

data. We use the (standardized) 10-year CDS spread at the firm level instead of the ‘Default Risk’

variable. Column (7) shows that predictability of stock-bond comovement with the CDS spread is of

similar economic magnitude and statistical significance as for the baseline default risk measure. Note

that, after merging the main sample to Markit, we recover only about 50% of the observations. This

robustness analysis thus also verifies that our results are not driven by relatively small firms without

traded CDS contracts.

Controlling for persistence in stock-bond comovement

We also verify that our predictability results do not arise from the persistence in stock-bond comovement.

To do so, we augment our predictive regression model (2) as follows:

Comovementi,t+12 = a+ δDRi,t + Y′i,tδC + δLComovementi,t + bi + εi,t+12, (A.2)

where Comovementi,t+12 is the one-year-ahead stock-bond comovement measure of firm i computed

between months t + 1 and t + 12, DRi,t is a firm-level default risk measure observable in month t,

Yi,t is the vector of controls, and Comovementi,t accounts for the lagged stock-bond comovement,

computed between months t− 11 and t. Column (7) confirms that our results are not driven by some

persistence in the dependent variable.

Non-overlapping observations

In our core analysis, we consider predictive regressions with overlapping stock-bond covariance/correlation,

which may be a source of concern. Here we provide an additional exercise that complements the baseline
44All control variables are the same as in the main results except for bond bid-ask spread which is replaced with the Bao

et al. (2011) illiquidity proxy because bond bid-ask spreads are not available for the quote based databases.
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specification by running predictive regressions with non-overlapping covariance/correlation. Specifically,

we convert monthly data into yearly observations by sampling every July and predict stock-bond co-

movement between August and July of the following year. Default risk and the set of controls are all

observed in July of each year. We report our empirical evidence in Column (8) and find that the slope

coefficient estimates associated with default risk continue to be statistically significant. This exercise

provides evidence that our findings on the stock-bond comovement predictability with default risk cannot

be attributed to the use of overlapping observations.

Different panel specifications

Our final robustness check involves considering various panel specifications. Table A.2 presents the

results using bond-level data. Columns (1)-(3) report results from panel regressions including firm

fixed effects with different combinations of standard error clustering (bond, firm, industry, and month).

Columns (4)-(6) report results from panel regressions including firm and time (month) fixed effects

standard errors clustered at the month and firm level for various fixed effect models. In all cases, the

impact of default risk on the stock-bond covariance and correlation is statistically significant at the

1% level. We can conclude that our results are robust to the consideration of different standard error

corrections and fixed effect dimensions.

Table A.2 [about here]

D Construction of aggregate asset return and asset variance

This Appendix describes the construction of our empirical proxies for aggregate asset return and asset

variance, used to generate Figure 6.

Aggregate asset return We compute aggregate asset return as the weighted average of stock and

bond market returns. For stocks, we use the excess return market risk factor denoted as MKTSt from

Kenneth French’s data library. For bonds, we use the ICE Bank of America (BofA) US Corporate Bond

Total Return Index in excess of the one-month U.S. T-Bill rate of return, which we denote MKTBt .

Then, using the merged CRSP/COMPUSTAT database, we first compute market leverage for each

firm i in each month t as D
(D+E) , where D is total book debt from COMPUSTAT and E is market

equity. The aggregate market leverage (Lt) is the value-weighted average of firm-level market leverage

using total firm value (Vi,t = Di,t + Ei,t) as weights. Finally, we compute aggregate asset return as

ARt = MKTBt ×Lt +MKTSt × (1−Lt). We thus obtain, by construction, a ‘traded’ risk-factor since

it is a time-series of excess aggregate asset returns.

Aggregate asset variance To estimate aggregate asset variance, we follow Choi and Richardson

(2016) and fit an exponential-GARCH(1,1) model to aggregate asset return, as described above. We
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then compute the conditional asset variance using the estimated parameters from the fitted exponential-

GARCH model. We use the first difference in the conditional asset variance as the proxy for the ‘non-

traded’ version of aggregate variance risk, which we denote VR∗. To compute the ‘traded’ version of

aggregate asset variance, we form a factor mimicking portfolio (FMP). To generate a set of basis assets

for the FMP, we sort firms into 20 portfolios based on their firm-level credit spread for each month in the

sample. Thereafter, in the following month, we compute the value-weighted (using firm-level weights as

defined above) average excess stock and bond returns. This yields a total of 40 portfolios of stock and

bond excess portfolio returns. The aggregate asset variance risk FMP is constructed from a time-series

regression of the VR∗ factor onto the set of stock and bond excess portfolio returns constructed above

such that the resultant mimicking portfolio is maximally correlated with the VR∗ factor. To do this,

VR∗ is projected onto the space of excess asset (stock and bond) excess returns to obtain a vector

of portfolios weights (ωt) which are normalized to sum to one (100% invested). The VR∗ mimicking

portfolio weights are given by,

wT = − β̂T

|β̂′T ι|
, [α̂T , β̂

′
T ] = arg min

α̂T ,β̂T

1

T

T∑
t=1

(V RT − αT − βTRet )2,

where ι is a vector of conformable ones, wT is the vector of normalized factor mimicking portfolio

weights, β̂T is the vector of estimated stock and bond loadings on the VR∗ factor and Ret are the 40

stock and bond portfolios of excess returns. The traded version of aggregate asset variance is then

obtained as VR = w
′
TR

e
t .
45

E Hedge ratios

This Appendix describes the methodology which underlies the construction of the firm-level hedge ratios.

F Asset risk premium and risk-neutral dynamics

This Appendix describes additional parts of the model that are unreported in the body of the paper.

Specifically, we here discuss the asset risk premium and risk-neutral dynamics of a firm’s assets, which

are used to evaluate stocks and bonds.

We first present and discuss the asset risk premium in the economy. Combining the dynamics of
45The correlation between the non-traded (VR∗) and the traded (VR) versions is 81%, which is in-line with the equity

VIX factor mimicking portfolio constructed in Ang et al. (2006).
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aggregate assets (8) and the SDF (12), the level of asset risk premium is given by:

µY,t − r = σ2Y,t

(√
1− ρ2Y λY⊥σY + ρY λσY

)
= σ2Y,tλY , (A.3)

where ρY is the correlation between aggregate asset shocks and aggregate asset variance shocks, and

λY ≡
√

1− ρ2Y λY⊥σY + ρY λσY .

The intuition is as follows. When the level and the variance of aggregate assets co-move with each

other (i.e., ρY 6= 0), the asset risk premium reflects the representative investor’s aversion to fluctuations

in aggregate asset and its variance.46 Note that the risk premium increases with aggregate variance

when λY > 0. The factor structure in firm asset returns in Equation (10), combined with Equation

(A.3), implies that firm i’s asset risk premium is the product of βi and the asset risk premium, i.e.,

µX,i,t − r = βi (µY,t − r).47

From the physical dynamics (8)-(11) and the SDF (12), we can determine the risk-neutral dynamics,

which are given by:

dYt
Yt

= rdt+ σY,tdW̃
Y
t (A.4)

dσ2Y,t = κ̃Y (θ̃Y − σ2Y,t)dt+ δY σY,tdW̃
σY
t (A.5)

dXi,t

Xi,t
= (r − q) dt+ βi

(
dYt
Yt
− rdt

)
+ σX,i,tdW̃

X
i,t (A.6)

dσ2X,i,t = κX
(
θX − σ2X,i,t

)
dt+ δXσX,i,tdW̃

σX
i,t , (A.7)

where κ̃Y = (κY + δY λσY ) and θ̃Y = κY
κ̃Y
θY are the risk-adjusted speed of mean reversion and un-

conditional aggregate variance. The Brownian motions under the risk-neutral measure Q are de-

fined by dW̃ Y
t = ρY dW̃

σY
t +

√
1− ρ2Y dW̃

Y⊥σY
t with dW̃ σY

t = dW σY
t + σY,tλσY dt, dW̃

Y⊥σY
t =

dW Y⊥σY
t + σY,tλY⊥σY dt, , and dW̃

X
i,t = dWX

i,t and dW̃
σX
i,t = dW σX

i,t , respectively.48

Observe that a negative price of variance risk, λσY < 0, implies a higher persistence in the volatility

process under the risk-neutral measure than under the physical measure (κ̃Y < κY ) and, therefore, a

higher unconditional systematic variance (θY < θ̃Y ). The unconditional total asset variance under the

risk-neutral measure, which is given by θ̃i = β2i θ̃Y + θX , also increases, i.e., θi < θ̃i. The model thus

features a negative variance risk premium, which plays a critical role in generating reasonable levels of

46Instantaneously, the asset risk premium, EP
t [dYt/Yt] − EQ

t [dYt/Yt], solves −cov (dφt/φt, dYt/Yt).
47Similarly to aggregate asset risk, the risk premium of firm i’s asset risk is EP

t [dXi,t/Xi,t]−EQ
t [dXi,t/Xi,t] and solves

−cov (dφt/φt, dXi,t/Xi,t) in absence of arbitrage opportunities.
48Note that absence of arbitrage opportunities implies EQ

t [dYt/Yt] = rdt given that, without frictions, aggregate asset
risk can be replicated by large diversified portfolios of bonds and/or stocks which also must earn the risk-free rate under
the risk-neutral measure.
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risk premia and asset pricing moments.49

G Model calibration and simulation

This Appendix provides details about the calibration of the model and the simulation methodology. We

first present our simulation strategy. We then describe the estimation of model-implied measures that

are used to compute moment conditions. Finally, we discuss the estimated parameters and provide

some insights about their economic implications.

G.1 Simulation methodology

We estimate model-implied moments using simulation methods. Firms in the economy can take on

5 values of asset beta (0.6, 0.8, 1, 1.2, 1.4) with equal probability. We denote by Πk ≡ {Θ, βk} the
vector of parameters used to simulate a firm with a given asset beta βk, where k = {1, .., 5}. From

Equations (13) and (14), we can see that knowledge of the functional form of pD, which is the price of

an Arrow-Debreu default claim, is key for computing model-implied stock and bond prices, Si,t and Bi,t
respectively. We also compute the model-implied spread of a credit default swap (CDS) contract, which

is a critical moment condition we consider. We estimate the Arrow-Debreu default price p̂D(·, ·, ·,Πk)

and the spread of a CDS with 10-year maturity, denoted by ĈS(·, ·, ·, 10,Πk), as a function of the state

variables
{
Xi,t, σ

2
Y,t, σ

2
X,i,t

}
using non-parametric methods (see Section G.2 and Section G.3). Once

we know p̂D(·, ·, ·,Πk) and ĈS(·, ·, ·, 10,Πk) for all k, we can generate an entire cross-section of firm-

level variables, as it only requires simulating
{
Xi,t, σ

2
Y,t, σ

2
X,i,t

}
and computing p̂D(Xi,t, σ

2
Y,t, σ

2
X,i,t,Πk),

ĈS(Xi,t, σ
2
Y,t, σ

2
X,i,t, 10,Πk), and the remaining measures such as bond and stock total volatility. It

is important to note that all remaining moments we consider only depend on p̂D(Xi,t, σ
2
Y,t, σ

2
X,i,t,Πk)

and its partial derivatives. We postpone specific discussions about the estimation of pD, CS, and

other relevant firm-level measures for now, but provide details about their computation in Section G.2,

Section G.3, and Section G.4.

To initialize the economy, we start with a cross-section of 250 firms for each asset beta. Each firm

starts with the same initial unlevered asset value Xi,0 = 1 and with σ2X,i,0 = θX . Initial aggregate spot

variance is set to σ2Y,0 = θY . Using these initial values, we then simulate firms and aggregate asset risk

under the physical probability measure over 10 years. Our simulation of the state variables exploits a

Euler discretization of the dynamics (8)-(11) with daily time steps. Although all firms have Xi,0 = 1

and σ2X,i,0 = θX initially, the levels of their assets and their conditional idiosyncratic variances diverge

over time due to different idiosyncratic asset and variance shocks. We thus obtain a cross-section of
49A large literature suggests that the variance risk premium has important pricing implications. For example, Du et al.

(2019) find that the asset variance risk premium helps address the credit spread puzzle. For discussions about the equity
variance risk premium, see Bollerslev et al. (2009), Carr and Wu (2009), and Todorov (2010), among others.
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about 1,250 firms, with one bond and one stock each.

In the simulations, we replace a firm by a new one in any of the following cases: (i) when its market

leverage (computed as Bi,t/ (Bi,t + Si,t)) is below 0.20 or above 0.80 (i.e., the upper bound implicitly

filters out firms close to default); (ii) when its 10-year CDS spread is below 0.20% or above 25%; (iii)

when its annualized total equity volatility is above 150%; or (iv) when its annualized total bond volatility

is above 50%. In any of these cases, we replace a firm by a new firm with the same beta, whose

simulated path starts one year prior to the one exiting the sample. When initializing the simulation of

a new firm on day t, we set Xi,t = 1, σ2X,i,t = θX , and aggregate variance to σ2Y,t. This simulation

procedure helps generate a stationary economy, where firm leverage does not vanish over time, and

prevents that the economy becomes dominated by a few very large or extremely risky firms.

We then adopt the following strategy to estimate the model-implied moments from the simulations. For

all measures, except the physical default probability, we use the spot values implied by our model, which

we compute based on the simulated state variables (see the following sections for details). Every month,

we sample these values for each firm and thus obtain monthly firm-level measures of market leverage,

credit spread, stock and bond return volatilities, and asset volatility. The physical default probability

corresponds to the proportion of firms defaulting during the 10-year simulation horizon among the initial

set of 1,250 firms (i.e., that is before replacing any firm given the aforementioned filters). For a given

simulation path of the state variables, we repeat the steps above for each firm and every month to get

the monthly estimates of all moments. We repeat this entire exercise 10 times to have 10 different

paths of aggregate asset and variance risk. We then setModel(Θ)m to the (pooled) average of moment

m across all firms, months, and simulations.

G.2 Estimating the price of an Arrow-Debreu default claim and its partial derivatives

We now describe the methodology to estimate p̂D(·, ·, ·,Πk) and its partial derivatives for a given set

of structural parameters Πk. First, we discretize the state space of the three state variables, Xi,t, σ2Y,t,

and σ2X,i,t.
50 A given combination of the discretized state variables is then used as initial values for our

simulation exercise. Specifically, we adopt a daily discretization of the risk-neutral dynamics (A.4)-(A.7)

using an Euler approximation scheme.51 Using the discretized dynamics, the vector of parameters Πk,

and a given combination of the initial state variables
{
Xi,0, σ

2
Y,0, σ

2
X,i,0

}
, we simulate firm assets under

the risk-neutral measure over 10 years. Using the simulated paths of firm assets, we then estimate

p̂D(Xi,0, σ
2
Y,0, σ

2
X,i,0,Πk) as ÊQ

0 [e−rτD,i ] = 1
MC

∑MC
n=1 e

−rτnD,i , where τnD,i = inf
{
s ≥ 0 : Xn

i,s ≤ XB

}
50More precisely, we adopt a grid composed of 5 nodes for asset value and 4 nodes for spot variances. The lower

and upper bounds for asset values are 1.1 · XB and 2, respectively. The lower and upper bounds for spot systematic
(idiosyncratic) variances correspond to θY /100 (θX/100) and θY · 8 (θX · 8), respectively. These bounds combined with
our Chebychev polynomial approach define the nodes.

51Unlike the simulation of the economy, which is done under the physical probability measure, the estimation of the
Arrow-Debreu price of default and asset prices requires simulating the state variables

{
Xi,0, σ

2
Y,0, σ

2
X,i,0

}
under the risk-

neutral measure.
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and Xn
i,s denotes the firm i’s asset value at time s for the simulated path n, XB represents the default

boundary, and MC is the number of Monte-Carlo simulations.52

We repeat this simulation exercise for each combination of the initial values of the state variables. This

gives us an entire cross-section of pD as a function of the initial states (i.e., the initial combination of

state variables used to simulate the firm forward). Using the cross-section of pD and the combination of

states, we then estimate the loadings of Chebychev polynomials for a given vector of parameters Πk by

projecting the pD on the state variables. The estimated Chebychev loadings provide us with the required

(smooth) mapping between pD and the state variables for a given Πk, that is, p̂D(·, ·, ·,Πk). Because

Chebychev polynomials guarantee a smooth mapping between p̂D(·, ·, ·,Πk) and
{
Xi,t, σ

2
Y,t, σ

2
X,i,t

}
, the

estimates of the partial derivatives of p̂D(·, ·, ·,Πk) with respect toXi,t, σ2Y,t, and σ
2
X,i,t are then relatively

straightforward to compute.

G.3 Estimating the CDS spread

We begin this section by presenting the pricing of the CDS contract. We then explain the way we

estimate the CDS spread implied by our model for a given set of state variables and vector of parameters.

A CDS contract involves two parties: the protection buyer and the protection seller. The protection

buyer makes quarterly premium payments to the protection seller until the maturity of the contract or

until the firm’s default. When the running spread paid by the buyer is 1 basis point (bp) per annum,

the present value of future premiums (or premium leg) is given by:

LEGprem,t = 0.0001×
4T∑
u=1

e−r(tu−t)
[
1− Ĝ(Xi,t, σ

2
Y,t, σ

2
X,i,t, tu,Πk)

]
/4, (A.8)

where T is the maturity of the given CDS contract which we set to 10, {t1, t2, · · · t4T } denote quarterly
premium payment dates, and Ĝ(Xi,t, σ

2
Y,t, σ

2
X,i,t, T,Πk) captures the cumulative risk-neutral default

probability, which is estimated as ÊQ
0

[
1(τD,i≤T)

]
= 1

MC

∑MC
n=1 1(τnD,i≤T).

In exchange for paying insurance premiums, the protection buyer acquires a contingent claim. In the

event of the firm’s default, the protection seller has an obligation to buy the defaulted bond at par from

the protection buyer, making up the loss from the default. The present value of a contingent protection

payment (or protection leg) is computed as:

LEGprot,t = (1−R)
4T∑
u=1

e−r(tu−t)
[
Ĝ(Xi,t, σ

2
Y,t, σ

2
X,i,t, tu,Πk)− Ĝ(Xi,t, σ

2
Y,t, σ

2
X,i,t, tu−1,Πk)

]
, (A.9)

52We exploit both antithetic and control variable techniques in the simulation of the model. We use MC = 2000 for
computational efficiency.

A–12



where R represents the recovery rate which we set to 40%, measured as a fraction of the CDS notional

value. In the case of zero upfront fee, the CDS spread refers to the fair market spread that equates

the premium leg (LEGprem) with the protection leg (LEGprot). That is, the CDS spread for a contract

with 10-year maturity is given by

CS(Xi,t, σ
2
Y,t, σ

2
X,i,t, 10,Πk) =

LEGprot,t(Xi,t, σ
2
Y,t, σ

2
X,i,t, 10,Πk)

LEGprem,t(Xi,t, σ2Y,t, σ
2
X,i,t, 10,Πk)

. (A.10)

We now describe the methodology to estimate ĈS(·, ·, ·, 10,Πk) for a given set of structural parameters

Πk, closely following the estimation of pD.53 First, we discretize the state space of Xi,t, σ2Y,t, and σ
2
X,i,t

and use a given combination of the discretized state variables as initial values for a subsequent simulation.

Using the discretized dynamics of (A.4)-(A.7), the vector of parameters Πk, and a given combination

of the initial state variables
{
Xi,0, σ

2
Y,0, σ

2
X,i,0

}
, we simulate firm assets under the risk-neutral measure

Q over 10 years. Using these simulated paths, we then estimate CS(Xi,0, σ
2
Y,0, σ

2
X,i,0, 10,Πk) given the

term-structure of risk-neutral default probability implied by the simulations.

We repeat this procedure for each combination of initial values of the state variables. This gives us

an entire cross-section of CS as a function of the initial states. Using the cross-section of CS and

the combination of initial states, we then estimate the loadings of Chebychev polynomials for a given

vector of parameters Πk by projecting the CS on the state variables. The estimated Chebychev loadings

provide us with the required (smooth) mapping between CS and the state variables for a given Πk, that

is, ĈS(·, ·, ·, 10,Πk).

G.4 Estimating stock and bond moments

Model-implied moments We now present the construction of other measures that are relevant

to compute model-implied stock and bond moments. For a given set of simulated state variables{
Xi,t, σ

2
Y,t, σ

2
X,i,t

}
at time t and a given set of parameters (e.g., firm beta), we obtain p̂D. The esti-

mate of p̂D combined with the semi-closed form formulae for stock and bond prices allows us to obtain

Si,t and Bi,t, from which firm leverage can also be inferred as follows: Bi,t/ (Bi,t + Si,t). Using the

partial derivatives of p̂D and the stock and bond price semi-closed form formulae, we can then esti-

mate ∆S
X =

Xi,t
Si,t

∂Si,t
∂Xi,t

, ∆B
X =

Xi,t
Bi,t

∂Bi,t
∂Xi,t

, ∆S
σY

= 1
Si,t

∂Si,t
∂σ2
Y,t

, ∆S
σX

= 1
Si,t

∂Si,t
∂σ2
X,i,t

, ∆B
σY

= 1
Bi,t

∂Bi,t
∂σ2
Y,t

, and

∆B
σX

= 1
Bi,t

∂Bi,t
∂σ2
X,i,t

at any point of time. Finally, using the results in Propositions 1 and 2 allows us

to compute model-implied stock-bond spot covariance and correlation, as well as stock and bond spot

volatilities.
53Although we present the estimation of pD and CS separately in this Appendix, it is worth noting that their estimation

is done simultaneously and relies on the same simulations.

A–13



Because idiosyncratic risk can be diversified away, it can be shown that the returns of an equally-weighted

portfolio of stocks and bonds follow54

1

N

N∑
i=1

dSi,t
Si,t

=
1

N

N∑
i=1

[
µS,i,tdt+ ∆S

XβiσY,tdW
Y
t + ∆S

σY
δY σY,tdW

σY
t

]
(A.11)

1

N

N∑
i=1

dBi,t
Bi,t

=
1

N

N∑
i=1

[
µB,i,tdt+ ∆B

XβiσY,tdW
Y
t + ∆B

σY
δY σY,tdW

σY
t

]
. (A.12)

Building on these equations, we approximate aggregate stock and bond return variance, denoted by σ2S,t
and σ2B,t, as

σ2S,t =
1

N

N∑
i=1

[(
∆S
X

)2
β2i +

(
∆S
σY

)2
δ2Y + 2

[
∆S
X∆S

σY

]
(ρY βiδY )

]
σ2Y,t (A.13)

σ2B,t =
1

N

N∑
i=1

[(
∆B
X

)2
β2i +

(
∆B
σY

)2
δ2Y + 2

[
∆B
X∆B

σY

]
(ρY βiδY )

]
σ2Y,t. (A.14)

Finally, we estimate the stock and bond systematic variance ratios, denoted by SystS,i,t and SystB,i,t,

as

SystS,i,t =

[(
∆S
X

)2
β2i +

(
∆S
σY

)2
δ2Y + 2

[
∆S
X∆S

σY

]
(ρY βiδY )

]
σ2Y,t

σ2S,i,t
(A.15)

SystB,i,t =

[(
∆B
X

)2
β2i +

(
∆B
σY

)2
δ2Y + 2

[
∆B
X∆B

σY

]
(ρY βiδY )

]
σ2Y,t

σ2B,i,t
, (A.16)

where σ2S,i,t and σ
2
B,i,t are the stock and bond total variances, and which are presented in Proposition 2.

Empirical moments The following describes the construction of the empirical moments, used in the

calibration and reported in Table 11. The empirical data sample period spans August 2003 - August

2020.

1. The construction/collection of Leverage and the CDS spread (from Markit) is detailed in Table

1 and Appendix B.

2. Default Probability is the 10-year historical default rate for BB-rated firms over the 1981-2020

period from Standard and Poor’s (2021).

54Note that in Equations (A.11), (A.12), (A.13), (A.14), (A.15), and (A.16), the dependence of bond and stock
sensitivities to i (and t) is omitted for ease of notation.
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3. Stock (Bond) Return Volatility is the standard deviation of stock (bond) returns estimated with

a rolling window, whereby we require a minimum of 12 monthly observations.55

4. Stock (Bond) Systematic Variance Ratio is the ratio of stock (bond) systematic variance to total

variance. This ratio is estimated as the R-squared of a regression of stock (bond) returns on a

stock (bond) value-weighted index estimated with a 12-month rolling window.

5. Aggregate Stock (Bond) Return Volatility is equal to the 12-month rolling standard deviation of a

value-weighted stock (bond) index’s returns. The index is constructed using market capitalisation

as weights and uses stock and bond returns from firms that are contained within our sample.

6. Asset Volatility is computed as the 12-month rolling window standard deviation of asset returns,

given by rA,i,t = Li,t× rB,i,t + (1−Li,t)× rS,i,t, where rB,i,t and rS,i,t are stock and bond returns

for firm i in month t, while Li,t denotes the firm’s leverage.

7. Stock-bond Correlation/Covariance are computed using firm-level stock and bond returns with a

12-month rolling window.

G.5 Parameter estimates

Using the set of moment conditions described above, we estimate the vector of parameters Θ by solving

the optimization problem (22). We obtain the following parameter estimates. The debt coupon is

c = 0.0097 and the default barrier is XB = 0.5596, which generates leverage and default probability

that closely match their empirical counterparts. Regarding the aggregate asset dynamics and the

corresponding price of risk, we have κY = 0.9703, θY = 0.60%, δY = 0.1076, ρY = −0.2698, and an

unconditional growth of asset of µY,∞ = λY · θY = 2.1959%, where λY =
√

1− ρ2Y λY⊥σY + ρY λσY =

3.6495 (see Equation A.3). We discuss these parameter values in light of the literature below.

Because the pricing of stocks and bonds is obtained under the risk-neutral measure Q, it is important

to study the implications of the parameter estimated for risk-neutral aggregate variance dynamics. The

calibrated risk-neutral unconditional variance of aggregate risk is θ∗Y = 4.19%. Thus, the level of risk-

neutral variance increases substantially from P to Q. This negative variance risk premium is important

to generate reasonable levels of risk premia and, thus, CDS spreads. This is consistent with Du et al.

(2019) who also find that CDS spread data requires a large and negative asset variance risk premia.

Regarding the firm idiosyncratic variance parameters, we have κX = 0.8245, θX = 2.11%, and δX =

0.1861. Note that idiosyncratic asset variance is more persistent than aggregate asset variance, since

κX 6 κY . This parametrization is broadly consistent with existing evidence indicating that idiosyncratic

variance for the average stock is more persistent than for the stock market index variance (see, e.g.,

Christoffersen et al., 2018). Furthermore, a level of idiosyncratic variance of 2.11% implies that a firm

with unit exposure to aggregate risk has an unconditional proportion of asset systemic risk equal to
55The rolling-window expands up from 12 to 36-months to align the window with the rolling period used in Bai et al.

(2021).
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22.22%, i.e., θY /(θY + θX). Finally, a firm with unit exposure to aggregate risk has an unconditional

asset Sharpe ratio, λY θY /
√

(θY + θX), of 0.1335. The estimated parameters imply the model-implied

moment conditions presented in Table 11. Overall the model fit is good, as indicated by the fact that

the data and model in-sample moment conditions are close to each other, on average.

These parameter values are comparable to those reported in the equity and credit risk literature. For

instance, the parameter estimated implies that the total variance of assets of a unit-beta firm is estimated

to be about 2.76% (i.e., θY + θX). This estimate is comparable to the median total asset variance

estimate of 3% reported in Du et al. (2019). The authors calibrate an asset Sharpe ratio of 22% which

is somewhat close to the 13% implied by our calibration.56

H Model extension – stochastic interest rates

This Appendix presents an extended version of the model with stochastic interest rates. First, we present

the dynamics of the short rate and of the modified stochastic discount factor (SDF). We then highlight

the impact of stochastic interest rates on equity and corporate bond pricing. Finally, we describe the

simulation methodology.

H.1 Dynamics of the short rate and the SDF

We assume that the instantaneous risk-free rate (also called the short rate) is stochastic and can be

described by the following square-root process:

drt = κr(θr − rt)dt+ δr
√
rtdW

r
t , (A.17)

where κr is the mean reversion speed of the short rate, θr its long-run mean, and δr its volatility param-

eter. The new Brownian dW r
t is the source of interest rate risk, which we assume to be independent

of dW σY
t and dW Y⊥σY

t for parsimony. We replace the constant interest rate with rt in individual asset

and aggregate risk dynamics.

Consistent with our previous specification, the SDF depends linearly on systematic risks as follows:

dφt
φt

= −rtdt− σY,tλY⊥σY dW
Y⊥σY
t − σY,tλσ2

Y
dW σY

t −
√
rtλrdW

r
t , (A.18)

where λY⊥σY , λσ2
Y
, and λr denote the risk premium parameters on the three Brownian motions driving

systematic unlevered asset value and variance risk, as well as interest rate risk. Note that firm specific

risk, dBX
i,t and dB

σX
i,t , are deliberately assumed not to be priced, as in our baseline model.

56Note that the cross-section of firms we consider is much larger than the one studied in Du et al. (2019) and is
composed of riskier firms, which may explain our slightly lower Sharpe ratio.
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H.2 Pricing of corporate bond and equity

We now discuss the valuation of corporate bond and equity. We follow the same debt structure as our

benchmark model with constant interest rate. Similarly to Leland (1994), the firm issues a consol bond

and equity. Default happens when the firm’s asset value reaches the exogenous default boundary. The

value of the firm’s bond can then be written as

Bi,t = cEQ
t

[∫ ∞
t

e−
∫ s
t rsds · 1(τ>s)ds

]
+ (1− α)XBE

Q
t

[∫ ∞
t

e−
∫ s
t rsds · 1(τ=s)ds

]
, (A.19)

where τ is the date at which default occurs and 1(τ>s) is an indicator function that equals 1 if the

borrower survives beyond date s, and zero otherwise; 1(τ=s) takes the value 1 if the default time occurs

at time s.

Given that interest rate shocks are independent from other sources of risk, we can rewrite (A.19) as

Bi,t = c

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ>s)

]
ds+ (1− α)XB

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ=s)

]
ds, (A.20)

where pt(rt; s) ≡ EQ
t

[
e−

∫ s
t rsds

]
denotes the time-t price of a default-free discount bond with maturity

s, which is known in closed form. Similarly, the discounted values of the tax shield (TS) and distress

costs (DC) can be written as

TSi,t = ζc

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ>s)

]
ds (A.21)

DCi,t = α

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ=s)

]
ds, (A.22)

where ζ and α denote the effective corporate tax rate and proportional distress costs, respectively.

Finally, the value of equity is the difference between the levered firm value vLi,t and the bond Bi,t:

Ei,t = vLi,t −Bi,t = Xi,t + TSi,t −DCi,t −Bi,t. (A.23)

H.3 Simulation methodology

In this section we briefly elaborate on the simulation methodology, which closely follows Section G.1 and

Section G.2. The key difference is that we now need to simulate 4 state variables
{
Xi,t, σ

2
Y,t, σ

2
X,i,t, rt

}
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instead of 3. Additionally, we must determine the following functional forms:

z1
(
Xi,t, σ

2
Y,t, σ

2
X,i,t, rt,Πk

)
=

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ>s)

]
ds

z2
(
Xi,t, σ

2
Y,t, σ

2
X,i,t, rt,Πk

)
=

∫ ∞
t

pt(rt; s) · EQ
t

[
1(τ=s)

]
ds,

as well as CS
(
Xi,t, σ

2
Y,t, σ

2
X,i,t, rt, 10,Πk

)
for a given set of structural parameters Πk ≡ {Θ, βk} where

k = {1, .., 5}. To this end, we follow closely the steps outlined in Section G.2 and Section G.3. The only

difference between this framework and our benchmark set-up with constant interest rate is that we need

to estimate the functional form of 3 functions z1 (·, ·, ·, ·,Πk), z2 (·, ·, ·, ·,Πk), and CS (·, ·, ·, ·, 10,Πk)

instead of 2 (i.e., pD and CS). As before, we estimate these functions using non-parametric methods

following the method outlined in Section G.2 and Section G.3.57

Similarly to our benchmark model, we obtain model-implied moments using simulation methods. Again,

firms in the economy can take on 5 values of asset beta (0.6, 0.8, 1, 1.2, 1.4) with equal probability.

To initialize the economy, we start with a cross-section of 250 firms for each asset beta. Each firm

starts with the same initial unlevered asset value Xi,0 = 1 and with σ2X,i,0 = θX . Initial aggregate spot

variance is set to σ2Y,0 = θY and the short rate to r0 = θr. Using these initial values, we then simulate

firms and aggregate asset risk under the physical probability measure over 10 years. Our simulation

of the state variables exploits a Euler discretization of the state dynamics with daily time steps. Note

that we impose the same filters as for our benchmark approach in Section G.1 to replace firms in the

simulations.

We then adopt the same strategy to estimate the model-implied moments from the simulations. For

all measures, except the physical default probability, we use the spot values implied by our model, which

we compute based on the simulated state variables.

H.4 Covariance, correlation, and other model implications

Given the joint dynamics of stock and bond returns, it is relatively straightforward to extend the bench-

mark results for the stock-bond covariance (Proposition F.1) and correlation (Proposition F.2) implied

by the model in the presence of interest risk. We have:
57Relative to the constant interest rate set-up, we adopt here the following grid to estimate the Chebychev polynomial

loadings of each function. We consider a grid composed of 5 nodes for asset value and 4 nodes for the short rate and spot
variances. The lower and upper bounds for asset values are 1.1 ·XB and 2, respectively. The lower and upper bounds for
spot systematic (idiosyncratic) variances correspond to θY /100 (θX/100) and θY ·8 (θX ·8), respectively. Finally, the lower
and upper bounds for short rate are θr/10 and θr · 4, respectively. These bounds combined with our Chebychev polynomial
approach define the nodes.
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Proposition F.1: From the dynamics of stock and bond returns, the stock-bond covariance for firm i

at date t, denoted by σS,B,i,t, satisfies

σS,B,i,t = ∆S
X∆B

Xvar

(
dXi,t

Xi,t

)
︸ ︷︷ ︸

Asset risk

+ ∆S
σY

∆B
σY
var

(
dσ2Y,t

)
+ ∆S

σX
∆B
σX
var

(
dσ2X,i,t

)︸ ︷︷ ︸
V ariance risk

+
[
∆S
X∆B

σY
+ ∆B

X∆S
σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
︸ ︷︷ ︸

Co−skewness risk

+ ∆S
r ∆B

r var (drt)︸ ︷︷ ︸
Interest rate risk

(A.24)

= ∆S
X∆B

X

[
β2i σ

2
Y,t + σ2X,i,t

]︸ ︷︷ ︸ dt
Asset risk

+ ∆S
σY

∆B
σY
δ2Y σ

2
Y,tdt+ ∆S

σX
∆B
σX
δ2Xσ

2
X,i,t︸ ︷︷ ︸ dt

V ariance risk

+
[
∆S
X∆B

σY
+ ∆B

X∆S
σY

]
ρY βiδY σ

2
Y,t︸ ︷︷ ︸ dt

Co−skewness risk

+ ∆S
r ∆B

r δ
2
rrtdt︸ ︷︷ ︸

Interest rate risk

. (A.25)

in the presence of interest risk where ∆S
r = 1

Si,t

∂Si,t
∂rt

and ∆B
r = 1

Bi,t

∂Bi,t
∂rt

are the sensitivities of stock

and bond to interest rate risk.

Proposition F.2: With stochastic interest rates, stock and bond instantaneous variance and correlation

are given by

σ2S,i,t =
(
∆S
X

)2
var

(
dXi,t

Xi,t

)
+
(
∆S
σY

)2
var

(
dσ2Y,t

)
+
(
∆S
σX

)2
var

(
dσ2X,i,t

)
(A.26)

+ 2
[
∆S
X∆S

σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
+
(
∆S
r

)2
var (drt)

σ2B,i,t =
(
∆B
X

)2
var

(
dXi,t

Xi,t

)
+
(
∆B
σY

)2
var

(
dσ2Y,t

)
+
(
∆B
σX

)2
var

(
dσ2X,i,t

)
(A.27)

+ 2
[
∆B
X∆B

σY

]
cov

(
dXi,t

Xi,t
, dσ2Y,t

)
+
(
∆B
r

)2
var (drt)

ρS,B,i,t =
σS,B,i,t

σS,i,tσB,i,t
, (A.28)

respectively.

Because idiosyncratic risk can be diversified away, it can be shown that the returns of an equally-weighted
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portfolio of stocks and bonds follow
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Building on these equations, we can approximate aggregate stock and bond return variance, denoted by

σ2S,t and σ
2
B,t, as

58
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Finally, we can estimate the stock and bond systematic variance ratios, denoted by SystS,i,t and

SystB,i,t, as

SystS,i,t =

[(
∆S
X

)2
β2i +
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∆S
σY

)2
δ2Y + 2

[
∆S
X∆S
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∆S
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)2
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σ2S,i,t
(A.33)

SystB,i,t =
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)2
rt

σ2B,i,t
, (A.34)

where σ2S,i,t and σ
2
B,i,t are the total stock and bond variances, and presented in Proposition F.2.

Using the above results, we can estimate model-implied moments following closely the methodology

outlined in Section G.4.

H.5 Parameter estimates

Our first objective is to obtain the structural parameters driving the dynamics of the short rate. To this

end, we obtain monthly data on the 3-month T-bill between August 1, 2003 and July 1, 2020. Setting

rt to the observed rate, we estimate the physical parameters of the short rate by Maximum Likelihood.

At this stage, the conditional likelihood of the square-root process, when rt is assumed to be observed

without measurement errors, is given by the Bessel function. We get κr = 0.1896, θr = 0.0101, and

δr = 0.0619. We then estimate the λr in a second step by maximum likelihood where we assume that
58Note that in Equations (A.31), (A.32), (A.33), and (A.34), the dependence of bond and stock sensitivities to i (and

t) is omitted for ease of notation.
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the errors between the observed yield of the 10-year T-Bond and the model prediction are normally

distributed. We get λr = −2.2534 which implies that the risk-neutral unconditional level of the short

rate is higher than its physical counterpart. This is consistent with an upward-sloping term structure of

interest rates during normal market conditions.

To make the results as comparable as possible between the stochastic interest rate model and the bench-

mark constant interest rate model without performing a formal optimization, we adopt the following

strategy. First, we set the remaining parameters to that of the benchmark model estimates, except the

default barrier XB and the debt coupon c. The reason is that the constraints that need to be imposed

to ensure the right signs of equity/debt exposures to the state variables are not the same between

the two versions of the models, simply because the pricing formulas are different. To ensure the right

economic responses of equity/debt to changes in the state values, while matching the other moments

relatively well, we construct a grid of XB and c. We then estimate for each value the model-implied

moments using 10 simulations of 10 years, as in the baseline case. We then select the default barrier

and coupon values that imply the smallest errors when using the same target moments as the ones used

to estimate the parameters of the benchmark model. We get XB = 0.4920 and c = 0.0248. Finally, we

conduct simulations based on these values and the remaining structural parameters.
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Table A.1 : Studies on the determinants of the relation between stock and bonds In this table, we summarize the key literature on the determinants of the relation between stock and corporate bonds.
The literature is characterized by four broad areas which we break down as ‘Focus’, ’Explanation’, ‘Econometrics’ and ’Theory’. Within each subject area there is a further sub-category unique to each area.
The final column of the table emphasizes the scope of this research paper relative to the other papers in the literature with bold tick marks.

Kwan
(1996)

Collin-Dufresne
et al. (2001)

Schaefer &
Strebulaev (2008)

Kapadia &
Pu (2012)

Friewald &
et al. (2014)

Bao &
Hou (2017)

Chordia
et al.(2017)

Choi &
Kim (2018)

Augustin
et al. (2020)

Collin-Dufresne
et al. (2020)

Du et al.
(2020)

Bali et al.
(2021)

Present
study

Focus
Stock-bond relation X X X X X X X X X X

Individual moments X X X X X

Explanation

Expected inflation
Aggregate risk premia X X X

Market segmentation/integration X X X X

Firm/bond characteristics X X X

Default risk X X X X X X X

Econometrics

Cross section X X X X X X X

Time series X X X X X X

Hedge ratio X X X X X X

Covariance/correlation X X X

Predictability X X X X

Investment strategy X

Theory

Complete markets X X X X X X X

Default risk X X X X X X X

Jumps X

Stochastic variance X X X

Idiosyncratic variance risk X
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Table A.2 : Predictability of stock-bond comovement with default risk – alternative
specifications This table presents results on the predictive relation between stock-bond comove-
ment and default risk under alternative econometric specifications. Columns (1)-(3) report results
from panel regressions with firm fixed effects and different combinations of standard error (SE)
clustering (bond, firm, industry, and month), including all control variables. Columns (4)-(6) report
results from panel regressions with firm and time (month) fixed effects and different combinations
of standard error clustering (bond, firm, industry, and month). Due to the inclusion of the time
fixed effect, Columns (4)-(6) only include controls that vary in the cross-section. The ‘Default
Risk’ variable is constructed as the sign-corrected average of the three standardized default risk
proxies, namely Leverage, Distance-to-Default, and Credit spread. The dependent variable is the
12-month ahead rolling covariance (Panel A) and correlation (Panel B) of stock and corporate
bond returns. Clustering at the industry level uses the Fama and French 17 industry classification.
Observations are at the corporate bond level. The sample period spans August 2003 - August
2020. The definitions of the variables and their data sources are presented in Section 1.1 and
in Online Appendix A and B. Significance at the 10%, 5%, 1% level is indicated by *, **, ***,
respectively.

Panel A: Covariance

Firm Fixed Effects Firm & Time Fixed Effects

(1) (2) (3) (4) (5) (6)

Default Risk 1.25*** 1.25*** 1.25*** 1.24*** 1.24*** 1.24***
t-stat (9.14) (6.22) (12.78) (8.59) (6.50) (12.37)

R2
Adj. 0.322 0.322 0.322 0.382 0.382 0.382

Obs. 514,017 514,017 514,017 514,017 514,017 514,017

SE
Month &
Firm

Month &
Industry

Month &
Bond

Month &
Firm

Month &
Industry

Month &
Bond

Fixed Effects Firm Firm Firm
Month &
Firm

Month &
Firm

Month &
Firm

Controls All All All
Stock & Bond
Characteristics

Stock & Bond
Characteristics

Stock & Bond
Characteristics

Panel B: Correlation

Firm Fixed Effects Firm & Time Fixed Effects

(1) (2) (3) (4) (5) (6)

Default Risk 0.09*** 0.09*** 0.09*** 0.07*** 0.07*** 0.07***
t-stat (8.07) (7.01) (10.74) (7.27) (7.08) (10.22)

R2
Adj. 0.225 0.225 0.225 0.281 0.281 0.281

Obs. 514,017 514,017 514,017 514,017 514,017 514,017

SE
Month &
Firm

Month &
Industry

Month &
Bond

Month &
Firm

Month &
Industry

Month &
Bond

Fixed Effects Firm Firm Firm
Month &
Firm

Month &
Firm

Month &
Firm

Controls All All All
Stock & Bond
Characteristics

Stock & Bond
Characteristics

Stock & Bond
Characteristics
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Table A.3 : Predictability of stock-bond comovement with default risk – Raw vs. excess
returns This table presents results on the predictive relation between stock-bond comovement and default
risk across different return specifications. Columns (1) and (3) use raw stock and bond returns. Columns (2)
and (4) consider stock and bond returns computed in excess of the one-month U.S. T-Bill return. Columns
(3) and (6) consider stock and bond returns computed in excess of the maturity-matched Treasury bond
return. Corporate bond excess returns are computed at the bond level and then aggregated (using equal-
weights) at the firm level. Columns (1)-(3) in Panels A and B report results from panel regressions with firm
fixed effects. Columns (4)-(6) in Panel A and B report results using the Fama-MacBeth approach. The
sample period spans August 2003 - August 2020. The definitions of the variables and their data sources
are presented in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%, 1% level is
indicated by *, **, ***, respectively.

Panel A: Covariance

Baseline Fama-MacBeth

(1) (2) (3) (4) (5) (6)

Raw Excess of Excess of Raw Excess of Excess of maturity
returns 1M T-Bill maturity-matched return 1M T-Bill maturity-matched

return Treasury return return Treasury return

Default Risk 0.772*** 0.769*** 0.896*** 1.078*** 1.075*** 1.195***
t-stat (9.857) (9.828) (10.240) (8.418) (8.398) (8.441)

R2
Adj. 0.366 0.365 0.365 0.240 0.239 0.241

Obs. 117,822 117,822 117,822 117,822 117,822 117,822

SE
Month &
Firm

Month &
Firm

Month &
Firm

Newey- &
West

Newey- &
West

Newey- &
West

Fixed Effects Firm Firm Firm None None None

Controls None None None None None None

Panel B: Correlation

Baseline Fama-MacBeth

(1) (2) (3) (4) (5) (6)

Raw Excess of Excess of Raw Excess of Excess of maturity
returns 1M T-Bill maturity-matched return 1M T-Bill maturity-matched

return Treasury return return Treasury return

Default Risk 0.043*** 0.043*** 0.038*** 0.160*** 0.160*** 0.073***
t-stat (4.879) (4.850) (3.144) (10.614) (10.588) (11.019)

R2
Adj. 0.279 0.279 0.210 0.126 0.126 0.035

Obs. 117,822 117,822 117,822 117,822 117,822 117,822

SE
Month &
Firm

Month &
Firm

Month &
Firm

Newey- &
West

Newey- &
West

Newey- &
West

Fixed Effects Firm Firm Firm None None None

Controls None None None None None None
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Table A.4 : Predictability of stock-bond comovement with default risk – role of the control
variables This table presents results on the predictive relation between stock-bond comovement and default
risk after controlling for alternative explanations. The dependent variable is the one-year-ahead covariance and
correlation at the firm level in Panel A and at the bond level in Panel B. All specifications include firm fixed
effects. We report t-statistics in parentheses, using standard errors (SE) double clustered at the month and firm
levels. The sample period spans August 2003 - August 2020. The definitions of the variables and their data
sources are presented in Section 1.1 and in Online Appendix A and B. Significance at the 10%, 5%, 1% level is
indicated by *, **, ***, respectively.

Panel A: Firm Level Panel B: Bond Level

Covariance Correlation Covariance Correlation

(1) (2) (3) (4)

Default Risk 0.67*** 0.08*** 1.25*** 0.09***
t-stat (9.62) (6.52) (9.14) (8.07)

Bond Coupon -0.21*** -0.01 -0.18*** -0.01***
t-stat (-3.88) (-1.02) (-3.75) (-3.30)

Bond Maturity 0.01 0.00 0.10*** 0.01**
t-stat (0.61) (0.05) (4.57) (2.11)

Bond Size (Amount Outstanding) 0.39*** 0.07*** 0.13*** 0.03***
t-stat (5.14) (4.91) (3.10) (4.60)

Callable Dummy -0.31*** -0.05** -0.15* -0.02**
t-stat (-2.86) (-2.04) (-1.73) (-2.10)

Bond Liquidity (Bid-Ask Spread) 0.03 0.00 0.11*** -0.00
t-stat (1.33) (0.29) (2.69) (-0.85)

Equity Size (Market Capitalization) -0.28*** 0.03** -0.29* 0.04**
t-stat (-3.64) (2.09) (-1.89) (2.56)

Equity Illiquidity (Amihud, 2002) -0.11*** -0.00 -0.17** -0.01**
t-stat (-2.98) (-0.55) (-2.45) (-2.23)

Market-to-Book -0.01 0.01 -0.00 0.01*
t-stat (-0.70) (1.43) (-0.09) (1.73)

Aggregate Illiquidity (Hu et al., 2013) -0.14 -0.02 0.03 -0.03**
t-stat (-0.89) (-1.41) (0.17) (-2.07)

Aggregate Illiquidity (Pastor and Stambaugh, 2003) -0.13 -0.02 -0.10 -0.01
t-stat (-1.49) (-1.49) (-1.05) (-1.35)

Intermediary Capital Risk Factor -0.08 0.02 -0.14 0.01
t-stat (-0.87) (1.57) (-1.19) (0.91)

3m T-Bill Rate 1.47*** 0.14** 2.03*** 0.08
t-stat (3.42) (2.25) (4.30) (1.42)

10y T-Bond Rate -0.68** -0.10** -1.07*** -0.07
t-stat (-2.11) (-2.11) (-2.99) (-1.60)

Slope (10Y-3m Rate) 0.60** 0.04 0.78** 0.01
t-stat (2.25) (1.05) (2.60) (0.20)

Expected Inflation -0.38** -0.04** -0.46** -0.03**
t-stat (-2.13) (-2.26) (-2.08) (-2.05)

Macro Uncertainty Index -0.14 -0.01 -0.23 0.01
t-stat (-1.16) (-0.72) (-1.59) (1.05)

Business Conditions Index -0.32*** -0.03** -0.35*** -0.02**
t-stat (-3.25) (-2.57) (-3.06) (-2.27)

R2
Adj. 0.414 0.308 0.322 0.225

Obs. 114,755 114,755 514,017 514,017

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Fixed Effects Firm Firm Firm Firm

Controls All All All All
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Table A.5 : Predictability of stock-bond comovement with default risk – different horizons This table presents
results on the predictive ability of default risk for stock-bond comovement computed over different horizons. The dependent
variable is the covariance (Panel A) and correlation (Panel B) between stock and corporate bond returns over the following 12
to 60 months. The ’Default Risk’ variable is constructed as the sign-corrected average of the three standardized default risk
proxies, namely Leverage, Distance-to-Default, and Credit Spread. Regressions include all controls and firm fixed effects. We
report t-statistics in parentheses, using standard errors (SE) double clustered at the month and firm levels. The sample period
spans August 2003 - August 2020. The definitions of the variables and their data sources are presented in Section 1.1 and in
Online Appendix A and B. Significance at the 10%, 5%, 1% level is indicated by *, **, ***, respectively.

Panel A: Covariance Panel B: Correlation

12m 24m 36m 48m 60m 12m 24m 36m 48m 60m
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Default Risk 0.67*** 0.45*** 0.34*** 0.26*** 0.13*** 0.08*** 0.08*** 0.07*** 0.06*** 0.03***
t-stat (9.62) (7.92) (6.54) (5.29) (2.98) (6.52) (7.80) (7.20) (6.49) (3.18)

R2
Adj. 0.414 0.538 0.637 0.712 0.752 0.308 0.467 0.560 0.632 0.677

Obs. 114,755 96,024 81,267 68,641 58,125 114,755 96,024 81,267 68,641 58,125

SE
Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Month &
Firm

Fixed Effects Firm Firm Firm Firm Firm Firm Firm Firm Firm Firm

Controls All All All All All All All All All All
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Table A.6 : Additional model results – Constant vs. stochastic interest rates This table compares results from
a model with constant vs. stochastic interest rates. Panel A presents descriptive statistics for covariance and correlation,
while Panel B presents results on the predictive relation between stock-bond comovement and a composite measure of
default risk. Columns (1) and (3) report the baseline results with firm fixed effects. Columns (2) and (4) present cross-
sectional results using the Fama-MacBeth approach. The dependent variable is the one-year-ahead covariance (Columns
1 and 2) and correlation (Columns 3 and 4) between stock and corporate bond returns. The ‘Default Risk’ variable is
constructed as the sign-corrected average of the three standardized default risk proxies, namely leverage, distance-to-
default, and credit (CDS) spread. Both panels present results using simulated economies based on each version of the
model. Regressions are performed on each simulated economy comprising 1,250 firms over a 10-year period - reported
results are the average over 10 economies. We report t-statistics in parentheses, using standard errors (SE) double clustered
at the month and firm levels for the baseline panel regressions. Newey-West corrected standard errors are used for the
Fama-MacBeth procedure with 12 lags. The definitions of the variables and their data sources are presented in Section 1.1
and in Online Appendix A and B. The simulation procedure and the calculation of model-implied and empirical moments
are detailed in Section 3.5 and in Online Appendix G. The model extension with stochastic interest rates is described in
Online Appendix H. Significance at the 10%, 5%, 1% level is indicated by *, **, ***, respectively.

Panel A: Comovement descriptive statistics

Mean StdDev 25% 50% 75%

Covariance
Constant interest rate 27.16 22.69 11.32 21.86 37.17
Stochastic interest rates 27.30 27.15 9.08 20.06 36.97

Correlation
Constant interest rate 0.787 0.160 0.758 0.814 0.854
Stochastic interest rates 0.638 0.231 0.559 0.709 0.790

Panel B: Regressions with simulated data

Covariance Correlation

Baseline Fama-MacBeth Baseline Fama-MacBeth
(1) (2) (3) (4)

Constant interest rate

Default Risk 0.30*** 0.58*** 0.03*** 0.05***
t-stat (8.90) (25.61) (6.55) (4.66)

R2
Adj. 0.311 0.087 0.363 0.029

Stochastic interest rates

Default Risk 0.28*** 0.80*** 0.08*** 0.10***
t-stat (7.04) (10.63) (5.369) (7.681)

R2
Adj. 0.403 0.103 0.396 0.088

SE Month & Firm Newey & West Month & Firm Newey & West
Fixed Effects Firm None Firm None
Controls None None None None
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Table A.7 : Out-of-sample performance by default risk for alternative stock-
bond allocations This table presents the out-of-sample performance of portfolios combining
stocks and bonds by default risk using different allocations. Panel A reports performance
statistics for default-risk-sorted portfolios with a 60% allocation in corporate bonds and 40%
in stocks. Panel B reports performance statistics for default-risk-sorted portfolios with a
40% allocation in corporate bonds and 60% in stocks. Portfolios are presented by default
risk quintile and are value-weighted based on market capitalization. Quintile portfolios are
formed every month by sorting firms based on their default risk, measured with the Credit
Spread. Quintile 1 (Q1) is the portfolio with lowest default risk, while Quintile 5 (Q5) is the
portfolio with highest default risk. The Sortino ratio is computed as a portfolio’s excess return
divided by downside volatility, defined as the standard deviation of negative returns. The one-
month value-at-risk (VaR) is the historical 95% quantile of each portfolio. The t-statistics
for the individual joint portfolio Sharpe ratios are computed using heteroskedasticity and
autocorrelation consistent (HAC) errors, as in Lo (2002). The t-statistic for the difference
in the portfolio Sharpe Ratio between Q5 and Q1 is computed using HAC standard errors,
as in Ledoit and Wolf (2008). The data sample contains stocks and bonds spanning August
2003 - August 2020. The definitions of the variables and their data sources are presented in
Section 1.1 and in Online Appendix A and B.

Panel A: Characteristics of portfolios with 60% in bonds and 40% in stocks

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Excess Return (%) 6.023 6.457 6.604 7.986 9.66 3.637
Volatility (%) 5.913 7.178 9.243 12.17 16.87 10.957
Sharpe Ratio 1.019*** 0.900*** 0.714*** 0.656*** 0.573** -0.446**
t-stat [4.119] [3.677] [2.938] [2.702] [2.362] [-2.240]

Sortino Ratio 1.242 1.027 0.749 0.725 0.774 -0.468
Skew -0.574 -0.881 -1.166 -0.558 0.335 0.909
Kurtosis 3.568 5.332 7.117 8.494 5.731 2.163
VaR-95 (%) -7.191 -10.083 -13.46 -15.896 -19.26 -12.069

Panel B: Characteristics of portfolios with 40% in bonds and 60% in stocks

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Excess Return (%) 7.113 7.169 6.94 8.125 8.664 1.551
Volatility (%) 7.946 9.291 12.033 15.443 20.478 12.532
Sharpe Ratio 0.895*** 0.772*** 0.577** 0.526** 0.423* -0.472**
t-stat [3.648] [3.157] [2.373] [2.167] [1.746] [-2.636]

Sortino Ratio 1.114 0.923 0.64 0.605 0.572 -0.542
Skew -0.612 -0.777 -0.908 -0.494 0.159 0.771
Kurtosis 2.687 3.741 5.446 7.369 5.135 2.448
VaR-95 (%) -8.897 -12.095 -16.267 -19.657 -23.537 -14.64
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