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ABSTRACT

In a continuous-time game, a risk-neutral decision-maker chooses the volatility of a
state variable, and a stopper terminates the game. I provide conditions under which
the decision-maker becomes risk averse endogenously and minimizes volatility near
termination, even if he faces myopic incentives to gamble for resurrection. The con-
ditions introduce forward-looking incentives to preserve economic rents. I study two
applications: a levered corporation and a mutual fund with uncertain productivity.
When investors are about to default or withdraw their capital, managers attempt to
preserve their rents by minimizing risk. Rents originate from current payoffs, growth
opportunities, or managerial overconfidence.
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1 INTRODUCTION

Researchers in finance widely use Jensen and Meckling (1976)’s framework to study risk-
taking in levered and distressed firms. In this framework, distressed firms gamble for
resurrection: when close to default, a firm has little to lose from a risky investment, but
potentially a lot to gain. Therefore, according to this theory, distressed firms should en-
gage in risk-shifting and increase risk exposure. However, evidence from the behavior
of financial and non-financial institutions exposes the empirical gaps of this theory: in
several cases, distressed firms reduce risk-taking.
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Several empirical studies document an increase in risk aversion in distressed firms.
For example, Rauh (2009) shows pension funds reduce risk-taking when poorly funded,
Gormley and Matsa (2011) document managers diversify into unrelated businesses when
liabilities increase, and Gilje (2016) provides evidence that firms reduce investment risk
when financially distressed. These findings cannot be reconciled with the static model of
Jensen and Meckling (1976).

In a dynamic model, I provide conditions under which a risk-neutral corporate man-
ager becomes risk averse endogenously when the firm is distressed. The model differs
from the static framework of Jensen and Meckling (1976), because I explicitly focus on
the dynamic incentives of a manager facing the possibility of corporate default. In fact,
Jensen and Meckling (1976) observe that, in a dynamic model, risk-shifting incentives
may disappear.

Even when the risk-neutral manager experiences a locally convex flow payoff near
default, in a dynamic model, he faces a trade-off. On the one hand, the manager could
increase risk and myopically take advantage of the convex flow-payoff structure. On the
other hand, the manager could reduce risk and preserve his long-run rents. In a dynamic
setting, I provide conditions under which these forward-looking incentives dominate.

To establish a general theory, I develop a parsimonious continuous-time model with a
state variable. In the model, a decision-maker controls the volatility of the state variable.
By controlling volatility, the decision-maker influences also his flow payoff and the drift
of the state variable. If the state variable falls below a threshold, a stopper terminates the
game and the decision-maker receives his outside option.

I then provide sufficient conditions for the decision-maker to become risk averse and
minimize volatility near the termination threshold. To become risk averse endogenously,
the decision-maker needs to enjoy current or future rents from control near termination,
as reflected in positive flow payoffs or growth opportunities. Moreover, if the marginal
effects of volatility on the flow payoffs and on the drift of the state variable are suitably
bounded, the decision-maker minimizes risk near termination.

Starting from this general theory, I consider two applications in finance. In the first
application, I study a levered firm similar to Leland (1994) and Leland (1998), in which
equity holders choose the default time optimally. Compared with previous models, I in-
troduce a risk-neutral manager who allocates assets between risky and safe investments.
Although default is optimal for equity holders, it is not for the manager. Near the de-
fault threshold, the risk-neutral manager becomes risk averse and chooses an investment
strategy that minimizes risk.

In a variation of the model, I let equity holders choose the risk exposure of the firm, but
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I introduce a regulator who takes control of the firm when asset values fall below a thresh-
old. With this variation, I study regulated firms, such as banks and insurance companies,
which are subject to regulatory intervention when they violate their capital requirements.
When the regulator intervenes too early from the equity holders’ perspective, the latter
become risk averse and minimize risk near the intervention threshold. Hence, regulated
institutions reduce risk exposure before capital requirements are binding.1

In the second application, I study a continuous-time version of the Berk and Green
(2004) model of a mutual fund with uncertain productivity. Compared with Berk and
Green (2004), I allow the fund to choose its allocation to an uncertain investment. In-
vestors learn about the investment’s productivity by observing performance. When the
manager allocates more capital to the uncertain investment, investors’ posterior beliefs
become more sensitive to realized returns. If the funds’ perceived productivity deteri-
orates and the fund is near termination, the fund manager becomes risk averse if the
investment is productive in the long run. Moreover, the manager chooses to minimize
the fund allocation to the uncertain asset, thus minimizing the volatility of investors’ pos-
terior beliefs.2

I also consider a variation of this model in which the manager is compensated for per-
formance and the investment’s long-term productivity is uncertain. The manager could
be either unbiased or overconfident. An unbiased manager learns about the investment’s
productivity together with investors. An overconfident manager is convinced his invest-
ment is productive. Because the overconfident manager subjectively believes he possesses
long-term rents, he becomes risk averse and minimizes his allocation to the uncertain in-
vestment near termination. The unbiased manager always maximizes the allocation to
the uncertain investment.

Finally, I extend the general model to allow for slow adjustment in the volatility of the
state variable. With this extension, I study situations in which managers cannot modify
their investments instantaneously. Here, I show the decision-maker reduces (increases)
volatility near termination if, by doing so, he is able to distance himself from the termina-
tion threshold.

1In their empirical papers, Ben-David et al. (2020) and Kirti (2020) argue regulated institutions, when
distressed, reduce risk for reasons beyond their need to meet capital requirements.

2The result is different from the model in Kuvalekar and Lipnowski (2020). In Kuvalekar and Lipnowski
(2020), an agent reduces the volatility of his principal’s beliefs when his perceived productivity is high, not
when it is low.
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2 RELATED LITERATURE

RELATED THEORETICAL LITERATURE. My paper provides a general theory that ex-
plains why decision-makers reduce risk rather than gamble for resurrection. Moreover,
it highlights the common factor that drives results in previous literature: the existence
of long-term rents. Previous literature showed managers are deterred from taking risks,
because of banks’ franchise value (Hellmann et al., 2000; Keeley, 1990; Repullo, 2004),3

funds’ fee revenue (Drechsler, 2014; Panageas and Westerfield, 2009), and concerns about
reputation (Diamond, 1989; Hirshleifer and Thakor, 1992). Within the framework of my
model, franchise value, fee revenues, and reputation represent specific forms of long-term
rents for decision-makers.

Among continuous-time models, this paper generalizes a model by the same author
showing distressed intermediaries shift to safe portfolios instead of gambling for resur-
rection (Pegoraro, 2017). Li and Mayer (2022) and Dai et al. (2021) show stablecoin issuers
and multi-division firms also prefer safe investments when close to termination or short
on cash. However, none of these three papers provides general conditions under which
endogenous risk aversion emerges, thus limiting the scope of their application to their
own specific framework.

I provide applied models related to the literature on continuous-time corporate fi-
nance (DeMarzo and He, 2021; Goldstein et al., 2001; Leland, 1994, 1998; Malenko and
Tsoy, 2020) and asset management with learning (Berk and Green, 2004; Pástor and Stam-
baugh, 2012). Compared with previous literature, I introduce a manager who controls
the volatility of the relevant state variable, and I obtain empirical predictions on the risk-
taking behavior of managers near termination.

To mathematically characterize the model, I rely heavily on existing results from the
theory of stochastic control and differential equations. Strulovici and Szydlowski (2015)
provide important and useful results on the properties of value functions. Textbooks by
Fleming and Soner (2006) and Pham (2009) also represent crucial references.

EMPIRICAL EVIDENCE. Empirical evidence on risk-shifting is currently mixed. My
model sheds some light as to why. In fact, according the the model, decision-makers
behave differently based on their forward-looking incentives to maintain their rents.

On the one hand, several researchers document that highly leveraged firms do not
engage in risk-shifting, but instead reduce risk exposures. Besides Gilje (2016), Gormley
and Matsa (2011), and Rauh (2009), whom I mentioned in the introduction, Andrade and

3Empirically, Gan (2004) shows banks take more risk when their franchise value declines.
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Kaplan (1998) find no evidence that distressed firms make riskier investments than other
firms. Ben-David et al. (2020), Bidder et al. (2021), Di Patti and Kashyap (2017), and
Peydró et al. (2020) show banks reduce risk when distressed or after large losses. Kirti
(2020) documents similar patterns for insurance companies.

Focusing on corporate decision-makers, researchers have found little to no evidence
of risk-shifting in surveys of CFOs (De Jong and Van Dijk, 2007; Graham and Harvey,
2001), in CEOs of firms with high default risk (Milidonis and Stathopoulos, 2014), or in
experimental settings with dynamic incentives (Hernández-Lagos et al., 2016).

On the other hand, some studies provide evidence suggesting risk-shifting. Eisdorfer
(2008) shows distressed firms invest more when aggregate volatility is higher, whereas
Dell’Ariccia et al. (2017) and Drechsler et al. (2016) show less capitalized banks take more
risks after monetary policy interventions. Becker and Ivashina (2015) document poorly
capitalized insurance companies reach for yield.

In my applied models, managers sacrifice shareholders’ profits and firm growth by
minimizing risk. My model thus predicts firms take less risk when managers have more
discretionary power. The empirical evidence generally agrees with this prediction: firms
take fewer risks when managers enjoy stronger protection or control rights (Gormley and
Matsa, 2016; John et al., 2008; Laeven and Levine, 2009; Saunders et al., 1990), even at the
expense of profitability and growth (Giroud et al., 2012; Gormley and Matsa, 2016; John
et al., 2008; Kalcheva and Lins, 2007).

3 GENERAL MODEL

I consider a parsimonious but general model. A risk-neutral decision-maker chooses the
volatility of a payoff-relevant state variable, and a stopper decides when to terminate the
game. In this section, I do not directly model the stopper’s termination decision; rather,
I assume the stopper interrupts the game when the state variable falls below a thresh-
old.4 I then establish sufficient conditions under which the decision-maker develops risk
aversion endogenously and minimizes risk near the termination threshold.

Let (Ω,F∗, P ) be a probability space and let (Zt)t≥0 be a Brownian motion on (Ω,F∗).
Consider a one-dimensional state variable yt taking values in an interval Y ⊆ R and solv-
ing the forward stochastic differential equation

dyt = µ(yt, ηt)dt+ ηtσ(yt)dZt, y0 = Y0, (1)

4In sections 4 and 5, I provide applied models in which investors endogenously stop the game.
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where ηt ∈ [
¯
η, η̄], with 0 <

¯
η < η̄ < ∞. The interval Y may be unbounded. I say the

process (ηt)t≥0 is admissible if it is adapted to the filtration (Ft)t≥0 and it implies a unique
strong solution of (1).

The decision-maker receives a flow payoff π(yt, ηt) as long as yt > ŷ, where ŷ belongs
to the interior of Y. When yt hits the threshold ŷ, a stopper terminates the game. At that
point, the decision-maker receives his outside option, which I normalize to zero.5 The
decision-maker is risk neutral and discounts the future at rate ρ > 0.

The decision-maker optimally chooses an admissible process (ηt)t≥0 to maximize his
lifetime utility

u(y0) = max
(ηt)t≥0

E

[∫ τ

0

e−ρtπ(yt, ηt) dt

]
s.t. ηt ∈ [

¯
η, η̄] ∀t ≥ 0,

(2)

where τ = inf{t ≥ 0 : yt ≤ ŷ} is the stopping time at which the stopper terminates the
game.

I impose the following regularity conditions throughout.

ASSUMPTIONS. (Regularity Conditions)

(R1) The functions µ(y, η), σ(y), and π(y, η) are Lipschitz-continuous6 in y for all η ∈ [
¯
η, η̄] and

differentiable in η for all y ∈ Y.

(R2) The discount rate ρ is large enough that ρ > Cµ
1 , where Cµ

1 is such that, for all y ∈ Y,
|µ(y, η)| < Cµ

0 + Cµ
1 |y| for some Cµ

0 .7

(R3)
¯
σ > 0 exists such that σ(y) ≥

¯
σ for all y ∈ Y such that y ≥ ŷ.

Conditions (R1) and (R2) ensure the value function u(·) satisfies linear growth; that is,
Cu

0 and Cu
1 exist such that u(y) < Cu

0 +Cu
1 |y|. For a proof, see Lemma 1 and the subsequent

discussion in Strulovici and Szydlowski (2015). Condition (R3) imposes a uniform posi-
tive lower bound on the volatility of y, which prevents volatility to be arbitrarily close to
zero.

Thanks to these assumptions, I characterize the decision-maker’s problem (2) recur-
sively. Because of assumptions (R1) and (R2), classical results (Pham, 2009, Chapter 4)

5This normalization is without loss of generality. In fact, one could assume the decision-maker’s outside
option is O 6= 0 and define πO(y, η) := π(y, η)− ρO to obtain an equivalent game with flow payoff equal to
πO and zero outside option.

6A function h(x) is Lipschitz-continuous in x over X ⊆ R if C > 0 exists, such that |h(x1) − h(x2)| <
C|x1 − x2| for all x1, x2 ∈ X.

7Such Cµ1 exists because of assumption (R1).
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establish u is the unique solution of the following Hamilton-Jacobi-Bellman (HJB) equa-
tion

ρu(y) = max
η∈[

¯
η,η̄]

{
π(y, η) + u′(y)µ(y, η) +

1

2
u′′(y)η2σ(y)2

}
(3)

on the domain y ≥ ŷ, satisfying the boundary condition u(ŷ) = 0 and linear growth.
Moreover, with assumption (R3), I impose a uniform ellipticity condition, and hence,
by Strulovici and Szydlowski (2015), the function u is twice continuously differentiable
for y > ŷ. Let η(y) denote the maximizer of (3). With Lemma A.1 and Remark 1 in
Appendix A.2, I verify that if the process (η(yt))t≥0 is admissible, (η(yt))t≥0 is optimal for
the decision-maker.

In this paper, I focus on the decision-maker’s behavior near the termination threshold,
and I show we cannot directly extend Jensen and Meckling (1976)’s intuition to a dynamic
model with Brownian risk. Under certain conditions, the risk-neutral decision-maker
minimizes risk near the termination threshold. These conditions allow for the decision-
maker to have nothing to lose near termination, that is, π(ŷ, ·) = 0. Moreover, these
conditions also allow for the decision-maker to have locally convex flow payoffs near
termination, that is, limy→ŷ+ πyy(y, ·) > 0.

The following assumptions are key to obtaining endogenous risk aversion.

ASSUMPTIONS. (Economic Assumptions)

(A1) For all y > ŷ, an admissible process (ηt)t≥0 exists with ηt ∈ [
¯
η, η̄] for all t ≥ 0 such that

E
[∫ τ

0
e−ρtπ(yt, ηt) dt

]
> 0.8

(A2) µ(ŷ, η) ≥ 0 and π(ŷ, η) ≥ 0 for at least one η ∈ [
¯
η, η̄], with at least one strict inequality.

(A3) µ(ŷ, η) ≥ 1
2
ηµη(ŷ, η) and π(ŷ, η) ≥ 1

2
ηπη(ŷ, η) for any η ∈ [

¯
η, η̄], with at least one strict

inequality.

According to Assumption (A1), the decision-maker enjoys a strictly positive lifetime
utility as long as the game is not terminated. Hence, the decision-maker dislikes being
terminated. According to Assumption (A2), the decision-maker earns current or future
rents near termination. Finally, Assumption (A3) prevents the marginal benefit of volatil-
ity η from being excessive. Assumption (A3) is satisfied if µ and π are linear or linear-
quadratic functions of volatility η. Such functions represent natural modeling choices in
a variety of economic contexts, such as those in sections 4 and 5.

I state the main theoretical results of the paper in the next theorem.

8A stronger sufficient conditions is that π(y, η) > 0 for all y ≥ ŷ and all η ∈ [
¯
η, η̄].
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THEOREM 1. The following hold.

(I) If Assumptions (A1) and (A2) hold, an ε > 0 exists such that, for any y ∈ (ŷ, ŷ + ε),
u′(y) > 0 and u′′(y) < 0;

(II) If also (A3) holds, an ε > 0 exists such that, for any y ∈ (ŷ, ŷ + ε), η(y) =
¯
η.

Part (I) of Theorem 1 states that the decision-maker’s value function is strictly increas-
ing and concave near termination. This result differs from models of optimal stopping,
where the value function is locally flat and convex near the stopping threshold. Here,
the decision-maker does not optimally select when to terminate the game. In fact, he
strictly prefers not to terminate the game in order to enjoy his rents. As a result, the
decision-maker’s value function is strictly increasing in a neighborhood of the termina-
tion threshold, indicating the decision-maker dislikes termination.

Moreover, near termination, a risk-neutral decision-maker endogenously becomes risk
averse, as suggested by the concavity of the value function. Because the decision-maker
enjoys current or future rents by assumption (A2), he develops endogenous aversion to
the risk of forfeiting those rents.

Finally, according to part (II) of Theorem 1, the decision-maker chooses the lowest
risk exposure

¯
η near termination. Because of his endogenous risk aversion, the decision-

maker wants to limit risks near termination, as one would expect from Assumption (A3).
However, the result in part (II) of Theorem 1 is much stronger. The decision-maker does
not want to simply limit risk exposure. He wants to minimize risk exposure. That is, no
matter how low

¯
η is, the decision-maker will always choose η(y) =

¯
η in a neighborhood

of ŷ.
The regularity conditions (R1), (R2), and (R3) are required to apply classical results

and establish the value function is the unique solution of equation (3) and that the solution
is continuous and twice differentiable. These conditions are not strictly necessary for
Theorem 1. Theorem 1 holds for any twice-differentiable solution u to (3) when µ(y, η),
σ(y), and π(y, η) are continuous in y and differentiable in η, at least locally in a right
neighborhood of ŷ. Moreover, as long as one finds a twice-differentiable solution u to
(3) satisfying u(ŷ) = 0 and limt→∞ E[e−ρtu(yt)|F0] = 0, Lemma A.1 shows u is the value
function and that the policy function η(yt) is optimal, provided it is admissible.

3.1 DISCUSSION AND EMPIRICAL IMPLICATIONS

According to the model, one could empirically observe a decision-maker minimize risk
near termination even if he has no flow payoff to lose, that is, π(ŷ, ·) = 0, and his payoff
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scheme is convex, that is, πyy(y, ·) > 0. To obtain this result, the dynamic structure of the
model is crucial. On the one hand, the decision-maker faces a myopic incentive to gamble
for resurrection because of the convexity of his flow payoff. On the other hand, Assump-
tions (A1) and (A2) introduce forward-looking incentives to minimize risk, generating
endogenous risk aversion. Because of assumption (A3), these forward-looking incentives
dominate the myopic ones and the decision-maker minimizes risk near termination.

Importantly, Theorem 1 holds even if social welfare increases with risk. In fact, in my
framework, a decision-maker could reduce social welfare by selecting projects that are
too safe. For example, consider a manager of a distressed firm deciding between a safe
project of low net present value and a risky project of high net present value. In Jensen
and Meckling (1976)’s framework, because the decision-maker prefers to take risks, the
socially optimal (risky) project will be implemented. In my model, the decision-maker
chooses differently. As long as assumptions (A1), (A2), and (A3) hold, the decision-
maker selects the safe project near termination instead of the risky one, even if the risky
project is more socially valuable.

Finally, the model highlights sufficient, but not necessary, conditions under which a
risk-neutral decision-maker minimizes risk exposure near termination. Conditions (A1),
(A2), and (A3) guarantee the results of proposition (1), but one may obtain analogous
outcomes even when the conditions partially fail. In this case, the shape of the value
function and the optimal choice of the decision-maker depend on parameter. I provide
an example in section 4.2. In come situations, however, one can prove the value function
is convex and that the decision-maker increases risk exposure near termination. For ex-
ample, when µ(ŷ, η) ≤ 0 and π(ŷ, η) ≤ 0, with at least one strict inequality, one can show
the decision-maker is risk loving. That is, his value function is convex near termination.

Therefore, my model suggests a series of tests for empirical researchers investigat-
ing what drives risk-shifting or risk-avoiding behavior. One could empirically inves-
tigate whether risk-shifting (risk-avoiding) decision-makers are experiencing negative
(positive) flow payoffs π(yt, ηt) near termination, or if they are facing negative (posi-
tive) growth opportunities µ(yt, ηt). Furthermore, one could relate risk-shifting and risk-
avoiding behavior to managers’ control benefits. In fact, the model predicts managers
with larger control benefits are less likely to take risks near termination, because they
enjoy larger rents as long as they are not terminated.
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4 LEVERED FIRM

In the first example, I consider a model of a levered firm, analogous to that in Leland
(1994). Whereas Leland (1994) assumes the firm’s risk exposure is constant, I introduce a
manager who controls the volatility of the firm’s asset growth. Equity holders optimally
determine when to default. By defaulting, equity holders force a suboptimal termination
for the manager.

As a variation of the model, I then assume equity holders choose the risk exposure of
the firm, but they face early termination because of regulatory intervention. For example,
banks may be forced into a Prompt Corrective Action (PCA) by US regulators if they are
poorly capitalized. PCA could even lead to the institution’s liquidation under regulatory
supervision.

4.1 BASELINE MODEL

In the baseline model, I introduce a separation between equity holders and management.
Equity holders decide when to default, whereas a manager controls the investment strat-
egy of the firm, which can be adjusted instantaneously.9 Hence, the model best reflects
the situation of financial firms investing in liquid assets, including banks, insurance com-
panies, and defined-benefit pension plans. However, the key insight of the model may
also be applied to non-financial firms.

The total assets of the firm evolve as

dVt = µηtVtdt+ ηtσVtdZt, (4)

where µ > 0 and σ > 0 are parameters, and where firm growth depends on the risk
exposure of the firm, ηt, representing the fraction of risky investments in the firm’s port-
folio. The process (Zt)t≥0 is a Brownian motion over the probability space (Ω,F∗, P ). Let
F = (Ft)t≥0 be the filtration generated by the process (Vt)t≥0, possibly augmented by the
collection of P -null sets.

The total cash flow of the firm depends on the firm’s asset value:

dCt = δVtdt, (5)

where δ > 0.
9In section 6, I consider a general model in which the firm’s investment strategy is subject to slow ad-

justment.
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The manager is risk neutral and chooses the firm’s risk exposure ηt, subject to the
condition that ηt ∈ [

¯
η, η̄], with 0 <

¯
η < η̄ < ∞. Hence, the manager and equity holders

interact in a framework with incomplete contracting: as long as the manager chooses
the fraction of risky assets within the interval [

¯
η, η̄], equity holders cannot influence the

manager’s investment decision.
The manager is compensated with a fraction θ > 0 of the firm’s cash flow. One could

model more complex compensation schemes, but the results hold as long as the manager
has limited liability or, more generally, as long as he does not receive a negative expected
compensation.

The firm has a fixed amount of outstanding liabilities and owes payments c to debt
holders each period. We can interpret these liabilities as debt in financial and non-financial
corporations or as pension liabilities in a pension fund. Therefore, the firm generates free
cash flow at rate δVt − c.

Equity holders receive the free cash flow of the firm after paying the manager. As a
result, equity holders receive a flow payoff of (1 − θ)δVt − c every period. When Vt is
small enough, equity holders experience losses. They cover these losses by injecting new
equity.

Because equity holders have limited liability, they optimally choose to default when
losses become excessive. Risk-neutral equity holders discount future cash flows at rate
r > µη̄ and select an optimal default time τ to maximize the value of equity, that is,

max
τ≥0

E

[∫ τ

0

e−rt[(1− θ)δVt − c] dt
∣∣∣F0

]
s.t. (4).

(6)

Because the manager chooses the control process (ηt)t≥0, equity holders take the invest-
ment in risky assets as given.

The risk-neutral manager chooses the investment allocation between risky and safe
assets, as long as the firm remains solvent. The manager discounts future cash flows at
rate ρ > µη̄. The manager therefore solves

max
(ηt)t≥0

E

[∫ τ

0

e−ρtθδVt dt
∣∣∣F0

]
s.t. (4) and ηt ∈ [

¯
η, η̄], ∀t ≥ 0,

(7)

where τ is the time of default. When the firm defaults, the manager is fired and obtains a
continuation value that is normalized to zero.

11



4.1.1 MARKOV-PERFECT EQUILIBRIA

As a solution concept of this game between the manager and the equity holder, I consider
a Markov-perfect equilibrium, which is defined as follows.

DEFINITION 1 (Markov-Perfect Equilibrium). A Markov-perfect equilibrium consists of a F-
measurable process (η∗t )t≥0 for the share of risky assets and an F-measurable stopping time τ ∗ ≥ 0

for equity default such that

(I) The stopping time τ ∗ solves (6) given (η∗t )t≥0;

(II) (η∗t )t≥0 solves (7) given τ ∗;

(III) A set D ⊆ R+ exists such that τ ∗ = inf{t ≥ 0: Vt /∈ D};

(IV) A function η : D→ [
¯
η, η̄] exists such that η(Vt) = η∗t .

The first two conditions define an equilibrium in public strategies, in which the man-
ager and the equity holders base their decisions on the history of asset values (Vt)t≥0. The
remaining two conditions restrict equilibria to Markov-perfect ones, in which the man-
ager’s and equity holders’ choices depend solely on the current value of the firm’s asset,
Vt, rather than its entire history.10

In Lemma A.2 of Appendix A.2, I show that in a Markov-perfect equilibrium, the
optimal stopping rule is a threshold strategy. That is, equity holders strategically default
when the firm’s assets drop below a threshold V̂ .

Because strategies are functions of the firm’s asset, in a Markov-perfect equilibrium,
the manager’s and equity holders’ continuation values are also functions of current firm
assets. I denote them by u(V ) and E(V ), respectively, when V0 = V . I then characterize a
Markov-perfect equilibrium recursively. The HJB equation associated with the manager’s
decision problem is

ρu(V ) = max
η∈[

¯
η,η̄]

{
θδV + u′(V )µηV +

1

2
u′′(V )η2V 2

}
, (8)

for V > V̂ ; otherwise u(V ) = 0. I define the default threshold V̂ := sup{V ≥ 0: E(V ) = 0},
where E solves the variational inequality associated with the shareholders’ problem:

min{rE(V )−H(V,E ′(V ), E ′′(V )), E(V )} = 0, (9)
10I focus on Markov-perfect equilibria because such equilibria do not require commitment. Other equi-

libria exist in which, for example, equity holders commit to default as soon as the manager chooses risky
investments below the maximum level η̄. By doing so, equity holders would enforce an equilibrium in
which the manager always maximizes risky investments. However, this equilibrium is based on an unreal-
istic assumption about equity holders’ commitment.
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with

H(V,E ′(V ), E ′′(V )) = (1− θ)δV − c+ E ′(V )µη(V )V +
1

2
E ′′(V )η(V )2V 2,

and where η(V ) is the maximizer in (8).
For any given V̂ , results in Pham (2009) and Strulovici and Szydlowski (2015) imply

the manager’s value function is the unique twice-differentiable solution of (8) for V ≥ V̂ .
In Lemma A.3 of Appendix A.2, I show the optimal policy η(V ) is continuous in V for
V ≥ V̂ . I impose η(V ) = limV ′→V̂ η(V ′) for V ≤ V̂ , so that η(V ) is continuous for all V > 0.
Hence, the equity value is the unique continuous solution of (9) satisfying linear growth
(Pham, 2009, Theorem 5.2.1 and Remark 5.2.1).

A Markov-perfect equilibrium therefore solves a fixed-point problem. Given the man-
ager’s policy function η(·), the stopping time τ = inf{t ≥ 0: V ≤ V̂ }must be optimal for
the equity holders. At the same time, given the stopping time τ and its associated default
threshold V̂ , the policy function η(·) must be optimal for the manager.

In particular, let the functions u and E solve the system given by (8) and (9) with
V̂ := sup{V ≥ 0: E(V ) = 0} and where η(V ) is the maximizer in (8). Let η∗t = η(Vt) for
all t ≥ 0 and τ ∗ := inf{t ≥ : Vt ≤ V̂ }. If (η∗t )t≥0 is admissible, (η∗t )t≥0 and τ ∗ constitute
a Markov-perfect equilibrium. By Lemma A.1 and Remark 1 in Appendix A.2, (η∗t )t≥0 is
optimal for the manager. Moreover, τ ∗ is optimal for equity holders because

E

[∫ τ∗

0

e−ρt{(1− θ)δVt − c} dt
∣∣∣F0

]
= E(V0) = max

τ
E

[∫ τ

0

e−ρt{(1− θ)δVt − c} dt
∣∣∣F0

]
,

where the first equality follows from the dynamic programming principle andE(Vτ∗) = 0,
and the second follows because E(V0) is the equity holders’ value function. Therefore, τ ∗

is optimal for equity holders.
Important for my argument, the manager’s value function is characterized by the HJB

equation (8), and the manager is subject to termination when Vt ≤ V̂ . Next, I use the
results from 3 to characterize the manager’s strategy near default.

4.1.2 RISK AVOIDANCE IN DISTRESSED FIRMS

In its basic structure, the Markov-perfect equilibrium of this model is analogous to the
abstract model of section 3. In both cases, a decision-maker (the manager) controls the
volatility of a state variable (the firm assets) and faces termination when the state variable
falls below a threshold (V̂ ). Moreover, Assumptions (A1), (A2), and (A3) are satisfied in
this model. Therefore, I characterize the risk preferences of the manager near the default
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(a) Continuation values E(V ) and u(V ) (b) Risk exposure η(V )

Figure 1: Continuation values and risk exposure when equity holders optimally default and a corporate
manager chooses the firm’s risk exposure. The vertical green line marks the termination threshold. The
parameter values are µ = 2%, δ = 4%, c = 10%, σ = 10%, η̄ = 100%,

¯
η = 75%, r = ρ = 3%, θ = 30%.

threshold. The next corollary is a direct application of Theorem 1, and its proof is omitted.

COROLLARY 1. An ε > 0 exists such that, for any V ∈ (V̂, V̂ + ε), u′′(V ) < 0 and η(V ) =
¯
η.

Moreover, in Lemma A.4 of Appendix A.2, I show E ′′(V ) > 0 in a right neighbor-
hood of V̂ . That is, equity holders are risk-loving near the termination threshold and
they would like to manager to gamble for resurrection. Intuitively, because equity hold-
ers optimally default when assets fall below V̂ , they have no future rents they are willing
to preserve at V̂ . However, the default threshold V̂ is not optimal for the manager. At
that asset value, the manager possesses current and future rents, which make him averse
to risk. He thus implements an unprofitable investment strategy by making safe invest-
ments.

In Figure 1, I numerically illustrate the results of the model. The numerical solutions
are obtained using a finite-difference method. Figure 1(a) shows the value functions for
the manager and for the equity holders. The value function of the manager is concave
near the default threshold, whereas the value function of equity holders is convex. Figure
1(b) shows the manager minimizes risky investments near the default threshold.

5 ACTIVE PORTFOLIO MANAGEMENT

I now consider a fund manager who invests in a strategy with uncertain profitability, and
investors learn about profitability by observing performance. Investors’ posterior beliefs
represent the manager’s reputation. Investors refuse to provide any capital to the fund
when the manager’s reputation falls below a threshold. At that threshold, the fund is
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terminated. The manager controls the activeness of the fund. By choosing a more active
strategy, the manager increases the sensitivity of reputation to performance and hence its
volatility.

In the baseline model, a manager maximizes the lifetime fee revenues earned by the
fund, and the investment is profitable in the long run. Near the termination threshold, the
manager chooses to minimize activeness to minimize the informativeness of the return
signal and hence the volatility of his reputation.

Then, I consider a model in which the manager is compensated linearly in returns, re-
flecting the empirical observation that portfolio managers are mainly compensated based
on performance (Ibert et al., 2018; Ma et al., 2019). I also assume the long-term profitabil-
ity of the manager is uncertain in the long run. Here, I show an overconfident manager is
more likely than an unbiased manager to reduce activeness near the termination thresh-
old.

5.1 BASELINE MODEL

A population of competitive investors, whose measure is normalized to 1, supply capital
Kt ≥ 0 to a fund manager and pay proportional fees ft ≥ 0 on the assets under manage-
ment. The manager invests in a portfolio of risky assets and decides on the allocation to
a strategy with uncertain profitability. I denote with ηt the fraction of the portfolio that is
allocated to the uncertain strategy and call this fraction activeness.

I denote the strategy’s profitability at time t by ht ∈ {0, 1}. When ht = 1, the strategy
is profitable; when ht = 0, the strategy is unprofitable. When implementing a profitable
(unprofitable) strategy, the manager produces higher (lower) returns by choosing higher
activeness. In particular, the gross cash flow generated by a portfolio manager with prof-
itability ht, assets under management Kt > 0, and activeness ηt is

dCt = Kt(σηt(ht − φ̂))dt− c(Kt)dt+KtσdZt. (10)

Here, (Zt)t≥0 is a Brownian motion on the probability space (Ω,F∗, P ), and (ht)t≥0 is a
continuous-time, finite-state Markov chain on (Ω,F∗), and it is independent of (Zt)t≥0.
Let F = (Ft)t≥0 be the filtration generated by the process (Ct)t≥0, possibly augmented
by the collection of P -null sets. Then, the processes (Kt)t≥0 and (ηt)t≥0 are real-valued
F-adapted processes.

The parameter φ̂ ∈ (0, 1) introduces a performance cost for an unprofitable strategy.
The function c(Kt) represents an increasing and convex cost of active fund management,
as in Berk and Green (2004). I assume c(x) is quadratic; that is, c(x) = qx2/2 for some
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q > 0. The return volatility σ > 0 is a known parameter.
Crucially, by increasing activeness, the manager increases the informativeness of re-

turns. In fact, ηt coincides with the signal-to-noise ratio of returns. I impose ηt = 0 when
investors delegate no capital to the manager and Kt = 0. That is, a manager cannot be ac-
tive with no capital. Thus, no new information is acquired by investors when they cease
to finance the manager.

The profitability process (ht)t≥0 evolves as a continuous-time Markov chain with gen-
erator

Λ(ηt) =

(
−λ0 λ0

λ1 −λ1

)
, (11)

where λ0 > 0 and λ1 > 0, and where the state vector is (0, 1)′. I assume

p :=
λ0

λ0 + λ1

> φ̂,

so that, in the long run, the manager is profitable on average.
Both the investors and the manager observe total cash flows and the activeness ηt and

update their assessment of the manager’s productivity. In particular, the cash flow (10)
represents a public signal of a game of symmetric learning, and players form their assess-
ment of the manager’s current productivity, φt, using Bayes’ rule, that is, φt = E[ht|Ft].
I refer to φt as the manager’s reputation, because it represents the posterior probability
that the manager’s strategy is profitable at time t.

Each competitive investor i chooses her supply of capital kit ≥ 0 to the fund to maxi-
mize her lifetime net cash flows:

E

[∫ ∞
s

e−r(t−s)kit(dRt − ftdt)
∣∣∣Fs] ∀s ≥ 0, (12)

where dRt := dCt
Kt

.
When φt ≤ φ̂, investors expect non-positive gross returns from the manager and, thus,

do not provide any capital to the fund; that is, kit = 0 for all i. To streamline the model, I
assume the fund is permanently closed when investors withdraw their capital. In section
XXX of the online appendix, I show the results of this section survive even if the manger
is allowed to open a new fund after the first one is liquidated as long as the manager
incurs some positive cost in opening a new fund.

As compensation, the manager receives the fund’s profit ftKt.11 He chooses fund

11Here, I abstract from agency issues between the manager and the fund management company, and I
assume the portfolio manager acts in the best interest of the fund management company. In section ??, I
consider an overconfident manager who is paid linearly in performance.
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activeness and fund fees to maximize his lifetime utility:

max
(ηt)t≥s,(ft)t≥s

E

[∫ τ

s

e−ρ(t−s)ftKt dt
∣∣∣Fs] ∀s ≥ 0,

s.t. ηt ∈ [
¯
η, η̄] ∀t ≥ s

ft ≥ 0 ∀t ≥ s,

(13)

where τ = inft≥s{t : Kt ≤ 0}. At t = τ , the fund is terminated and no more signals are
generated, so that the manager’s reputation will be φs = φτ for all s ≥ τ .

5.1.1 EQUILIBRIUM

I solve for a sequential equilibrium of this game. In a sequential equilibrium, individual
investors optimally supply capital and take total fund size as given. The manager sets
fees and activeness after accounting for investors’ willingness to supply capital given the
fees and activeness of the fund.

DEFINITION 2 (Public Sequential Equilibrium). A public sequential equilibrium consists of
a set of the following progressively measurable processes with respect to F: a fee process (f ∗t )t≥0,
a process for the assets under management (K∗t )t≥0, a process for fund activeness (η∗t )t≥0, and a
reputation process (φt)t≥0. These processes are such that the following conditions hold:

(I) Assets under management coincide with the aggregate supply of capital to the fund, that is,

K∗t =

∫ 1

0

k∗it di, ∀t ≥ 0;

(II) (k∗it)t≥s maximizes (12) for all investors i ∈ [0, 1] and for all s ≥ 0;

(III) Given the public strategy profile (η∗t )t≥0 and an initial prior φ0 ∈ [0, 1], managerial reputa-
tion (φt)t≥0 is updated using Bayes’ rule and is consistent with the public strategy profile.

(IV) (η∗t )t≥s and (f ∗t )t≥s maximize the manager’s lifetime utility (19) for any s ≥ 0, given (I),
(II) and (III).

In any public sequential equilibrium, investors act myopically because an individual
investor cannot influence the aggregate size of the fund or its net performance. Thus,
each investor i chooses capital as

k∗it ∈ arg max
k≥0

k

[
ση∗t (φt − φ̂)− c(K∗t )

K∗t
− f ∗t

]
.
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Therefore, in any equilibrium, we must have ση∗t (φt − φ̂)− c(K∗t )

K∗t
− f ∗t ≤ 0. Because K∗t =∫ 1

0
k∗it di and f ∗t ≥ 0, when φt > φ̂, we must have

ση∗t (φt − φ̂)− c(K∗t )

K∗t
− f ∗t = 0. (14)

When φt ≤ φ̂, investors do not provide any capital, and K∗t = 0. Therefore, φ̂ represents
the termination threshold in equilibrium.

Moreover, the fund sets its fees myopically to maximize revenues ftKt, because fees
do not affect the evolution of the public signal, which is the gross cash flow. When φt > φ̂,
a one-to-one relation exists between fees and size given by (14). In this case, the fund sets
fees in order to reach a target size K∗t that satisfies

K∗t ∈ arg max
K≥0

Kση∗t (φt − φ̂)− c(K). (15)

When φt ≤ φ̂, the fund is indifferent between any fee choice, because investors will supply
zero capital.

Focusing on the case φt > φ̂, size must satisfy c′(K∗t ) = σηt(φt − φ̂) to solve (15) be-
cause c(·) is quadratic. With a quadratic cost function c(x) = q

2
x2, optimal profits are a

quadratic function of reputation and activeness. In particular, equilibrium profits at time
t are f ∗tK∗t = π(η∗t , φt) :=

(ση∗t (φt−φ̂))2

2q
.

Because managers with different productivity induce different probability distribu-
tions over returns, investors exploit the history of returns to learn the type of the manager.
According to standard filtering results (Liptser and Shiryaev, 2001, Chapter 9), the belief
process (φt)t≥0 is consistent with the strategy (ηt)t≥0 if, when Kt > 0,

dφt = (λ0 + λ1)(p− φt)dt+ ηtφt(1− φt)
(
dR̃t − ηtφtdt

)
, (16)

where

dR̃t =
dCt + (σηtφ̂Kt + c(Kt))dt

σKt

;

whereas when Kt = 0, dφt = 0.
By changing activeness ηt, the manager also controls the signal-to-noise ratio of re-

turns, which determines the volatility of the manager’s reputation and its drift toward
the long-run mean p. When activeness is high, cash flow is very informative of the skill
of the manager. Investors therefore reevaluate their assessment of the manager’s skill by
a larger extent for any given performance realization.
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When reputation falls below the threshold φ̂, the expected cash flow of the manager is
negative for any possible value of K. At that value of reputation, investors do not supply
capital to the manager, the fund is terminated, and the manager earns zero profits going
forward.

Hence, in equilibrium, fund profits are a function of reputation and activeness only,
and the termination threshold is determined by reputation only. Therefore, similar to
section 3, in a public sequential equilibrium, the manager’s continuation value at time
t is equal to u(φt), where u is the unique bounded and continuous solutions of the HJB
equation

ρu(φ) = max
η∈[

¯
η,η̄]

π(ηφ) + u′(φ)(λ0 + λ1)(p− φ) +
1

2
u′′(φ)η2φ2(1− φ)2 (17)

in the interval φ ∈ [φ̂, 1], with boundary condition u(φ̂) = 0. Moreover, the function u is
twice continuously differentiable in (φ̂, 1). Let η∗t = η(φt), where η(φ) is the maximizer of
(17). If (η∗t )t is admissible, the verification result in Lemma A.1 of Appendix A.2 applies
because u is bounded and (η∗t )t is an optimal control.

Hence, I can represent the problem in a recursive form and apply the results of section
3 to show that, near termination, the fund minimizes activeness.

5.1.2 RISK AVERSION IN POORLY PERFORMING FUNDS

Given the result in section 5.1.1, this model represents a special case of the general model
in section 3. In particular, the model satisfies assumptions (A1), (A2), and (A3). I there-
fore apply Theorem 1 and obtain the following corollary, whose proof I omit.

COROLLARY 2. An ε > 0 exists such that, for all φ ∈ (φ̂, φ̂ + ε), we have that u′(φ) > 0,
u′′(φ) < 0 and η(φ) =

¯
η.

Although the manager’s payoff is globally convex, a risk-neutral manager acts as a
risk-averse decision-maker. When terminated, the manager has to forego future rents.
These future rents are reflected in the positive drift of the manager’s reputation in the
neighborhood of the termination threshold, suggesting the manager is profitable in the
long run. When confronted with termination risk, the manager prefers to give up current
profits, rather than risk forfeiting his future rents.

Figure 3 plots the value function of the manager and his choice of activeness as func-
tions of the manager’s reputation for certain parameters. The manager maximizes ac-
tiveness for most values of φ. However, when φ is close to the termination threshold φ̂,
the manager minimizes his activeness. Moreover, the value function of the manager is
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(a) Manager’s continuation value u(φ) (b) Activeness η(φ)

Figure 2: Continuation value and activeness as functions of the manager’s reputation. The vertical green
line marks the threshold at which the manager is terminated. The parameter values are r = ρ = 5%,
σ = 10%, φ̂ = 0.5,

¯
η = 0.03, η̄ = 0.6, q = 1, λ0 = 1.5, λ1 = 1

concave in a right neighborhood of the threshold φ̂, but it is convex for higher levels of
reputation.

6 SLOW RISK ADJUSTMENT

In the models I have considered so far, the decision-maker could instantaneously adjust
his risk exposure. However, in several situations, a decision-maker may be able to change
risk exposure only at a slow rate.

In this section, I consider an extension of the model with slow adjustment in the risk
exposure. To preserve tractability, I consider a specific form of slow adjustment, namely,
a bounded rate of change in risk exposure. Thanks to this modeling choice, I characterize
the solution of the model in terms of a partial differential equation (PDE) whose key
properties I establish analytically.

6.1 A GENERAL MODEL WITH SLOW RISK ADJUSTMENT

Like in section 3, I consider a state variable evolving according to (1). Now, however, ηt
follows the process

dηt = itdt, η0 = e0,

where it ∈ [−I, I] for all t ≥ 0 with 0 < I < ∞. Therefore, the decision-maker can now
change ηt only continuously over time, thus preventing discrete changes.

The decision-maker optimally chooses the process (it)t≥0 to maximize his lifetime util-
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ity:

u(y0, η0) = max
(it)t≥0

E

[∫ θ

0

e−ρtπ(yt, ηt) dt

]
s.t. it ∈ [−I, I] ∀t ≥ 0,

where θ = inf{t ≥ 0 : yt ≤ T (ηt)} is the stopping time at which the stopper terminates the
game. I allow for a general stopping rule T (·), which could depend on the current risk
exposure. I impose the restriction that T (·) is continuous and differentiable. By letting the
stopping rule depend on the current risk exposure, I allow for cases in which the game
stops when yt falls below a fixed threshold, as in section 3, which correspond to a constant
T (·). However, I also allow for cases in which the threshold increases or declines with the
current risk exposure. Consider, for example, the model in Section 4.2. In this case, the
regulator may take regulatory action earlier if the firm is exposed to more risk and the
function T (·) would thus be increasing.

By the results in Pham (2009), the value function u is the unique continuous solution
of the following HJB equation:

ρu(y, η) = π(y, η) + uy(y, η)µ(y, η) +
1

2
uyy(y, η)η2σ(y)2 + max

i∈[−I,I]
{iuη(y, η)} , (18)

with boundary condition u(T (η), η) = 0 and state constraints
¯
η ≤ η ≤ η̄. Although one

cannot establish the differentiability of u because (18) is no longer elliptic, if a differen-
tiable solution exists, the following theorem characterizes the behavior of the decision-
maker.

THEOREM 2. If u(y, η) is twice differentiable in y and once differentiable in η, then:

(I) If Assumptions (A1) and (A2) hold, for any η ∈ [
¯
η, η̄] an ε > 0 exists such that uy(y, η) >

0 and uyy(y, η) < 0 for all y ∈ (T (η), T (η) + ε);

(II) If T ′(η̂) > 0 for a given η̂, an ε > 0 exists such that, for any η ∈ (η̂−ε, η̂), i(T (η̂), η) = −I .

(III) If T ′(η̂) < 0 for a given η̂,an ε > 0 exists such that, for any η ∈ (η̂, η̂ + ε), i(T (η̂), η) = I .

Theorem 2 is the counterpart of Theorem 1 when volatility can be modified only
slowly. Under identical conditions, the decision-maker displays endogenous risk aver-
sion. However, the decision-maker’s choice is primarily driven by the shape of the termi-
nation threshold T (·).

When T ′(η̂) > 0, the decision-maker approaches the termination threshold when η

marginally increases from η̂ while keeping y constant. According to Part (II), the decision-
maker chooses to reduce risk exposure close to T (η̂) to distance himself from the termi-
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nation threshold. Conversely, according to part (III), the decision-maker increases risk
exposure if T ′(η̂) < 0 because, by doing so, he moves away from the termination thresh-
old.

When T ′(η̂) = 0, the decision-maker’s behavior cannot be unambiguously character-
ized. Next, I solve an example where T is a constant function, and hence, T ′(η) = 0 for
all η. In this case, one can find a set of parameters for which numerical solutions may or
may not display risk reduction near the termination threshold.

6.2 FUND MANAGEMENT WITH SLOW PORTFOLIO REALLOCATION

As an illustration of the case of a constant T (η), consider the model in section 5.1 and
assume the fund’s activeness can be adjusted only at a bounded rate. A slow adjustment
in activeness represents portfolio adjustment costs that prevent the manager from real-
locating money across strategies instantaneously. The objective of the fund manager is

max
(it)t≥s,(ft)t≥s

E

[∫ τ

s

e−ρ(t−s)ftKt dt

]
∀s ≥ 0,

s.t. it ∈ [−I, I] ∀t ≥ s

ft ≥ 0 ∀t ≥ s,

(19)

where τ = inft≥s{t : Kt ≤ 0}. The definition of a public sequential equilibrium is analo-
gous to Definition 2 but with the portfolio adjustment process (it)t≥0 replacing the active-
ness process (ηt)t≥0. In particular, fees and fund size are still characterized by (14) and
(15), and the evolution of beliefs is still characterized by equation (16) as long as φt > φ̂,
with dφt = 0 when φt ≤ φ̂.

Therefore, the equilibrium value function is still Markovian in beliefs φ and activeness
η, and characterized by the following HJB equation:

ρu(φ, η) = π(ηφ) +uφ(φ, η)η(−λ1φ+λ0(1−φ)) +
1

2
uφφ(φ, η)η2φ2(1−φ)2 + max

i∈[−I,I]
{iuη(φ, η)},

(20)
with boundary condition u(T (η), η) = 0 and state constraints

¯
η ≤ η ≤ η̄.

If a solution to this equation ecists that is twice differentiable in y and once differen-
tiable in η, standard arguments similar to those in Lemma A.1 imply a control (it)t≥0 such
that it = i(φt, ηt) = arg maxi∈[−I,I]{iuη(φt, ηt)} is an optimal control for the manager.

Instead of plotting the three-dimensional function u(φ, η), in Figure 4(a), I show the
manager’s continuation value as a function of his reputation for five values of activeness.
For this figure, I used the same parameters as in Figure 3 and I = 1. Figure 4(b) shows
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(a) Manager’s continuation value u(φ, η) (b) Change in activeness i(φ, η)

Figure 3: Continuation value and change in activeness as functions of reputation and current activeness.
The continuation value is provided as a function of reputation for five distinct levels of activeness. The
change in activeness is represented by different colors over the entire state space. The parameter values are
r = ρ = 5%, σ = 10%, φ̂ = 0.5,

¯
η = 0.03, η̄ = 0.6, q = 1, λ0 = 1.5, λ1 = 1, and I = 1.

the associated optimal control over the entire state space.
As expected from part (I) of Proposition 2, the value function is increasing and con-

cave in reputation near the termination threshold. Moreover, the numerical results also
show the manager reduces risk exposure in the vicinity of the termination threshold. In-
terestingly, the manager begins reducing risk exposure at larger values of reputation φ

when the current risk exposure η is higher.
However, the result in Figure 4(b) is not always guaranteed. Figures 5(a) and 5(b)

show optimal controls when η̄ = 6, instead of 0.6. In Figure 5(a), the parameter I is set
equal to 1, like in Figure 4. All other parameters are unchanged. Although the value func-
tion continues to be increasing and concave near termination by Theorem 2(I), for large
enough values of η, the manager now does not reduce risk exposure near the termination
threshold.

In Figure 5(a), I increase the parameter I to 100 and keep η̄ = 6. In this case, we observe
again a reduction in activeness as reputation approaches the termination threshold even
if η̄ is large. Intuitively, if η is very large and adjustment is very slow, the decision may
fail to reduce a large risk exposure quickly enough near the termination threshold. As
a result, the decision-maker may prefer to enjoy large current payoffs and gamble for
resurrection.
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(a) Change in activeness i(φ, η) with I = 1 (b) Change in activeness i(φ, η) with I = 10

Figure 4: Change in activeness as function of reputation and current activeness when η̄ is large. The change
in activeness is represented by different colors over the entire state space. The parameter values are r =

ρ = 5%, σ = 10%, φ̂ = 0.5,
¯
η = 0.03, η̄ = 6, q = 1, λ0 = 1.5, λ1 = 1. The parameter I changes between the

two figures.

7 CONCLUSION

In this paper, I provided general conditions under which decision-makers reduce risk
exposure when close to termination. I then developed two applied models. In the first
model, I considered a leveraged corporation whose equity investors may strategically
default. In the second model, I considered a mutual fund manager with unknown pro-
ductivity and who experiences outflows of funds when his reputation deteriorates.

Because of the separation between managers and investors, investors’ termination
decisions are not optimal for the manager. To preserve his long-term rents, the man-
ager minimizes risk-taking near the termination threshold. My theory highlights that,
in a dynamic model, forward-looking incentives to avoid termination may offset the my-
opic risk-shifting incentives identified by Jensen and Meckling (1976), thus explaining the
mixed empirical evidence on risk-shifting in distressed firms.

A.1 PROOFS OF THE MAIN THEOREMS

A.1.1 PROOF OF THEOREM 1

PROOF OF THEOREM 1(I) To begin, note

u(y) = max
ηt∈[

¯
η,η̄],∀t≥0

E

[∫ τ

0

e−ρtπ(yt, ηt) dt

]
> 0 = u(ŷ),

where the first inequality follows from Assumption (A1).
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Next, I want to show lim infy→ŷ u
′(y) ≥ 0. Suppose, toward a contradiction, lim infy→ŷ u

′(y) <

0. Therefore, in any interval (ŷ, ŷ+ε), there exists a sequence (yn)∞n=0 converging to ŷ such
that limn→∞ u

′(yn) < 0. For each n, define εn := yn − ŷ > 0. By a first-order Taylor
expansion,

u(yn) = u(ŷ) + u′(yn)εn + o(εn) =

(
u′(yn) +

o(εn)

εn

)
εn.

Then, there exists an n̄ > 0 large enough that
(
u′(yn̄) + o(εn̄)

εn̄

)
εn̄ < 0, which contradicts

the fact that u(yn̄) must be non-negative.
I then show lim supy→ŷ u

′′(y) ≤ 0. Using the HJB equation (3),

(ρu(y)− π(y, η)− u′(y)µ(y, η) ≥ 1

2
u′′(y)σ(y)2η2, ∀η ∈ [

¯
η, η̄]. (A.1)

Because lim infy→ŷ u
′(y) ≥ 0, limy→ŷ u(y) = 0 by continuity, and limy→ŷ π(y, η) ≥ 0 by

assumption (A2), equation (A.1) implies lim supy→ŷ u
′′(y) ≤ 0.

Next, I show limits exist for the first and second derivatives of u. That is, I show
lim infy→ŷ u

′(y) = lim supy→ŷ u
′(y) and lim supy→ŷ u

′′(y) = lim infy→ŷ u
′′(y). Suppose, by

way of contradiction, lim supy→ŷ u
′(y) > lim infy→ŷ u

′(y). Because of the continuity of u′,
there exist H ′ and H , with H ′ > H , such that u′(y) = H for infinitely many points y in
any neighborhood of ŷ, and such that u′(y′) = H ′ for infinitely many points y′ in any
neighborhood of ŷ. In particular, a sequence (yn, y

′
n)∞n=0 exists with yn < y′n, u′(yn) = H ,

u′(y′n) = H ′, y′n − yn → 0, and yn → ŷ. Hence, for any M , nM > 0 exists such that

u′(y′n)− u′(yn)

y′n − yn
> M

for all n > nM . By the mean-value theorem, for every n > nM , an yMn ∈ (yn, y
′
n) exists

such that u′′(yMn ) > M > 0. Because yMn → ŷ as n → ∞, this conclusion contradicts
lim supy→ŷ u

′′(y) ≤ 0. We therefore conclude lim infy→ŷ u
′(y) = lim supy→ŷ u

′(y). This find-
ing, together with equation (A.1), implies also that lim supy→ŷ u

′′(y) = lim infy→ŷ u
′′(y).

I now prove limu′(y) > 0 and limu′′(y) > 0. With some abuse of notation, I define
u′(ŷ) := limy→ŷ+ u′(y) and u′′(ŷ) := limy→ŷ+ u′′(y).

Case 1. I first consider the case in which π(ŷ, η) > 0 and µ(ŷ, η) ≥ 0 for some η.
By (A.1), we immediately have limy→ŷ u

′′(y) < 0. Hence, an ε > 0 exists such that
u′′(y) < 0 for all y ∈ (ŷ, ŷ + ε). Then,

u(ŷ + ε) =

∫ ŷ+ε

ŷ

u′(x)dx =

∫ ŷ+ε

ŷ

(
u′(ŷ) +

∫ x

ŷ

u′′(z) dz

)
dx.
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If u′(ŷ) = 0, u(ŷ + ε) < 0, which is a contradiction. Hence, u′(ŷ) > 0.

Case 2. I now consider the case in which π(ŷ, η) ≥ 0 and µ(ŷ, η) > 0. By (A.1), limy→ŷ u
′(y) =

0 ⇐⇒ limy→ŷ u
′′(y) = 0. I proceed by contradiction and assume limy→ŷ u

′(y) = 0.
Let ω > 0 be such that ρ(y − ŷ) < µ(y, η) for all y ∈ (ŷ, ŷ + ω). Such ω exists because

limy→ŷ µ(y, η) = µ(ŷ, η) > 0. Define the set C = {y ∈ (ŷ, ŷ + ω) : u′(y) > 0, u′′(y) ≥ 0}.
Because u(y) > 0 for all y > ŷ, u(ŷ) = 0, and limy→ŷ u

′(y) = 0, C is not empty and, for any
ε > 0, an y ∈ (ŷ, ŷ + ε) exists such that y ∈ C.

First, assume a yC ∈ C exists such that u′(yC) ≥ u(yC)
yC−ŷ . Then,

ρu(yC) ≥ µ(yC , η)u′(yC) =⇒ ρ(yC − ŷ) ≥ µ(yC , η),

which contradicts ρ(y − ŷ) < µ(y, η) for all y ∈ (ŷ, yω).
Otherwise, assume that for all yC ∈ C, u′(yC) < u(yC)

yC−ŷ . Consider y0 ∈ C. By the mean-
value theorem, there exists y′0 ∈ [ŷ, y0] such that u′(y0) < u′(y′0). Because limy→ŷ u

′(y) =

limy→ŷ u
′′(y) = 0, by the continuity of u′(y) and u′′(y), there exists y′′0 ∈ C such that u′(y′′0) ≥

u′(y0), and y′′0 < y0. Let

y1 := inf{y′′ ≤ y0 : y′′ ∈ C, u′(y′′) ≥ u′(y0)}. (A.2)

I now show y1 = ŷ. I proceed by contradiction and assume y1 > ŷ. I want to show
y1 ∈ C. By definition of y1, either y1 ∈ C and u′(y1) ≥ y′(y0) > 0, or there exists a
sequence (y′′n)∞n=0 with y′′n ∈ C and u′(y′′n) ≥ u′(y0) for all n with y′′n → y1 as n → ∞. In the
latter case, because u is twice continuously differentiable, u′(y1) = limn→∞ u

′(yn), u′′(y1) =

limn→∞ u
′′(yn). Because u′(yn) ≥ u′(y0) > 0 and u′′(yn) ≥ 0 for all n, then u′(y1) > 0

and u′′(y1) ≥ 0; hence, y1 ∈ C necessarily. However, because y1 ∈ C and u′(y1) < u(y1)
y1−ŷ

by assumption, by the previous argument there exists y′1 < y1 with y′1 ∈ C such that
u′(y′1) > u′(y1) ≥ u′(y0), contraddicting the definition of y1 in (A.2). Hence, we must have
y1 = ŷ.

Because y1 = ŷ, by definition of y1, a sequence (yn)∞n=0 → ŷ exists with limn→∞ u
′(yn) ≥

u′(y0) > 0. This result, however, contradicts limy→ŷ u
′(y) = 0. Therefore, limy→ŷ u

′(y) > 0

and limy→ŷ u
′′(y) < 0.

PROOF OF THEOREM 1(II) Consider the first derivative of the right-hand side of (3)
with respect to η evaluated at an arbitrary η ∈ [

¯
η, η̄]:

D(y, η) ≡ πη(y, η) + u′(y)µη(y, η) + u′′(y)σ(y)2η. (A.3)
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Suppose, by way of contradiction, that D(y, η) ≥ 0 in a neighborhood of ŷ. Because of
(A.3), we have

u′′(y)σ(y)2η ≥ −πη(y, η)− u′(y)µη(y, η).

Substituting this inequality in (3), we obtain

ρu(y) ≥
(
π(y, η)− 1

2
ηπη(y, η)

)
+ u′(y)

(
µ(y, η)− 1

2
ηµη(y, η)

)
.

Because of Assumption (A3), and because u(y) → 0 as y → ŷ, we would conclude
limy→ŷ u

′(y) ≤ 0, contradicting part (I) of this theorem. Therefore, for y close enough to ŷ,
D(y, η) < 0 for all η ∈ [

¯
η, η̄], and η =

¯
η maximizes (3).

A.1.2 PROOF OF THEOREM 2

PROOF OF THEOREM 2(I). Let i(y, η) := arg maxi∈[−I,I] iuη(y, η). Then, i(y, η)uη(y, η) ≥ 0

and the proof of part (I) is identical to the proof Theorem 1(I) with π(y, η) + i(y, η)uη(y, η)

replacing π(y, η).

PROOF OF THEOREM 2(II). First, note i(y, η) = I if uη(y, η) > 0, and i(y, η) = −I if
uη(y, η) < 0. To prove part (II) of the Theorem, it is therefore sufficient to prove that if
T ′(η̂) > 0 for a given η̂, an ε > 0 exists such that, for any η ∈ (η̂ − ε, η̂), uη(T (η̂), η) < 0.

Consider η̂ ∈ [
¯
η, η̄] with T ′(η̂) > 0, and a sequence (ηn)∞n=0 with ηn < η̂ for all n and

ηn → η̂ as n→∞. Note

u(T (η̂), η̂)− u(T (η̂), ηn)

η̂ − ηn
= −u(T (η̂), ηn)− u(T (ηn), ηn)

T (η̂)− T (ηn)

T (η̂)− T (ηn)

η̂ − ηn
.

Using a first-order Taylor expansion, we have

u(T (η̂), η̂)− u(T (η̂), ηn)

η̂ − ηn
= uη(T (η̂), ηn) +

o(|η̂ − ηn|)
η̂ − ηn

and
u(T (η̂), ηn)− u(T (ηn), ηn)

T (η̂)− T (ηn)
= uy(T (ηn), ηn) +

o(|T (η̂)− T (ηn)|)
T (η̂)− T (ηn)

.

Substituting the latter two expressions and taking the limit, I obtain

lim sup
n→∞

uη(T (η̂), ηn) = −T ′(η̂) lim sup
n→∞

uy(T (ηn), ηn).
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I then show lim supn→∞ uy(T (ηn), ηn) = uy(T (η̂), η̂). Suppose, by way of contradiction,
that

lim sup
n→∞

|uy(T (ηn), ηn)− uy(T (η̂), η̂)| > D

for some D > 0. Then, there exists a δ > 0 such that, for all δ′ ∈ (0, δ),

lim sup
n→∞

∣∣∣∣u(T (ηn) + δ′, ηn)− u(T (η̂) + δ′, η̂)

δ′

∣∣∣∣ > D,

which implies
lim sup

n→∞
|u(T (ηn) + δ′, ηn)− u(T (η̂) + δ′, η̂)| > Dδ′,

contradicting that u(y, η) is a continuous function.
Hence, we have

lim sup
n→∞

uη(T (η̂), ηn) = −T ′(η̂)uy(T (η̂), η̂) < 0,

where the inequality follows from the assumption that T ′(η) > 0 and from part (I) of the
theorem.

Because the sequence (ηn)∞n=0 is arbitrary, we conclude an ε > 0 exists such that, for all
η ∈ (η̂ − ε, η̂), uη(T (η̂), η) < 0.

PROOF OF THEOREM 2(III). The proof of this part of the Theorem is analogous to part
(II). In this case, one must show lim infn→∞ uη(T (η̂), ηn) > 0. To do so, consider a sequence
(ηn)∞n=0 with ηn > η̂ for all n and ηn → η̂ as n → ∞ and note T ′(η) < 0. The remaining
steps of the proof are identical.

A.2 AUXILIARY RESULTS

LEMMA A.1. Let (η(Vt))t≥0 be admissible and let u(·) be a twice-differentiable solution of (3). If
limt→∞ E[u(yt)e

−ρt|F0] = 0, u(·) is the decision-maker’s value function and (η(yt))t≥0 is optimal
for the decision-maker.

Proof. Consider a localizing sequence of stopping times (τn)∞n=0 such that τn →∞ as n→
∞. Then, for any arbitrary admissible strategy (ηt)t≥0 such that ηt ∈ [

¯
η, η̄], by the Dynkin’s

formula (Øksendal, 2003, Chapter 7.4),

E[e−ρτnu(yτn)|F0]− u(y0) = E

[∫ τn

0

e−ρt
{
u′(yt)µ(yt, ηt) +

1

2
u′′(yt)η

2
t σ(yt)

2 − ρu(yt)

}
dt
∣∣∣F0

]

28



≤ −E

[∫ τn

0

e−ρtπ(yt, ηt) dt
∣∣∣F0

]
,

with equality if ηt = η(yt).
By assumption E[e−ρτnu(yτn)|F0] → 0 as n → 0. Taking the limit and using the dom-

inated convergence theorem, I obtain u(y0) ≥ E
[∫∞

0
e−ρtπ(yt, ηt) dt

∣∣F0

]
, with equality if

ηt = η(yt). Hence, (η(yt))t≥0 must be an optimal control and

u(y0) = E

[∫ ∞
0

e−ρtπ(yt, η(yt)) dt
∣∣∣F0

]
.

REMARK 1. If a function u(·) satisfies linear growth, it also satisfies
limt→∞ E[u(yt)e

−ρt|F0] = 0. In fact,

0 ≤
∣∣∣ lim
t→∞

E[u(yt)e
−ρt|F0]

∣∣∣ ≤ lim
t→∞

E[|u(yt)|e−ρt|F0] ≤ lim
t→∞

E[e−ρt(C0µ+ Cµ
1 |yt|)|F0] = 0,

where the last equality follows from Cµ
0 and Cµ

1 being constants and from Lemma 1 in
Strulovici and Szydlowski (2015), which applies because of Assumption (R2).

LEMMA A.2. Consider the model of section 4.1. In any Markov-perfect equilibrium, a V̂ > 0

exists such that D = {V ∈ R+ : V > V̂ }, and hence, τ ∗ = inf{t ≥ 0: Vt ≤ V̂ }.

Proof. It is sufficient to prove the complement of D, which I denote as DC , is a non-empty,
bounded, and closed interval in the form [0, V̂ ].

First, I prove DC is non-empty. I proceed by contradiction. Suppose DC is empty;
then, E coincides with the equity value when τ =∞, which I denote by Ẽ(V ). Note

Ẽ(V ) ≤ max
(ηt)t≥0

E

[∫ ∞
0

e−rt[(1− θ)δVt − c] dt
∣∣∣F0

]
=

(1− θ)δ
r − η̄µ

V − c

r
,

and therefore, there exists a Ṽ > 0 such that Ẽ(V ) < 0 for all V ∈ [0, Ṽ ). But this finding
contradicts that τ =∞ is optimal for the equity holders. Therefore, DC is not empty.

Next, I show DC is bounded. In particular, I show DC is a subset of the bounded
interval N := {V ∈ R+ : (1 − θ)δV − c ≤ 0} =

[
0, c

(1−θ)δ

]
. To show DC ⊆ N, I proceed

by contradiction. In particular, suppose there exists V ∈ DC such that (1 − θ)δV − c > 0.
Because V ∈ DC , E(V ) = 0. Given V0 = V , consider a stopping time τ̄ = inf{t ≥
0: (1 − θ)δVt − c ≤ 0}. Then, E

[∫ τ̄
s
e−rt−s[(1− θ)δVt − c] dt

]
> 0 = E(V ). But this result

contradicts τ = 0 being optimal when V0 = V .12 Therefore, DC must be a subset of N.
12Note that, by definition of a Markov equilibrium, τ = 0 is optimal for equity holders when V0 ∈ DC .
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Then, I show DC is an interval. By way of contradiction, assume there exist two sets
D1 and D2, subsets of DC , with D1 ∩ D2 = ∅, V 1 = supD1 < inf D2 = V 2 and such that
[V 1, V 2] ∩D 6= ∅. Then, for any V ∈ [V 1, V 2] ∩D, we must have E(V ) > 0. With V0 = V ,
define τ ′ := inf{t ≥ 0: Vt ∈ D1 ∪D2}. By the dynamic programming principle,

E(V ) = E

[∫ τ ′

0

e−rt((1− θ)δVt − c) dt+ e−rτ̃E(Vτ̃ )
∣∣∣F0

]
.

By the definition of τ ′, we have thatE(Vτ ′) = 0. Moreover, because DC ⊆ N, (1−θ)δV −c ≤
0 for all V ≤ V 2, and the integral in the previous expression is (weakly) negative. This
result would imply E(V ) ≤ 0, thus contradicting that V ∈ D. Therefore, we conclude DC

is an interval.
Finally, I show DC is closed. First, notice 0 ∈ DC . I then need to show V̂ := supDC ∈

DC . Let τ 0
V := inf{t ≥ 0 : Vt ∈ DC , V0 = V }. By the Blumenthal zero-one law (Karatzas

and Shreve, 1998, Chapter 2.7.C), either P (τ 0
Ṽ

= 0|V0 = Ṽ ) = 0 or P (τ 0
Ṽ

= 0|V0 = Ṽ ) = 1.
By symmetry, the first case is impossible. Therefore, P (τ 0

Ṽ
= 0|V0 = Ṽ ) = 1 and E(Ṽ ) = 0.

LEMMA A.3. Consider the model of section 4.1. Let η(V ) be the maximizer in (8). Then, η(·) is
a continuous function for V > V̂ .

Proof. By the maximum theorem, the set of maximizers of (8) is an upper-hemicontinuous
correspondence in V . I therefore need to show it is single-valued. For V > V̂ , there are
two cases in which (8) has multiple maximizers: (i) u′′(V ) = 0 and u′(V )µ = 0, or (ii)
u′′(V ) > 0 and u′(V )µ(η̄ −

¯
η) + 1

2
u′′(V )s2V (η̄2 −

¯
η2) = 0.

I rule out these two cases by showing u is strictly increasing for V ≥ V̂ and that, if
µ = 0, u is strictly concave for V ≥ V̂ . If u is strictly increasing, the we can rule out both
cases when µ > 0. When µ = 0, the strict concavity of u rules out both cases as well.

To show that u is strictly increasing, consider V 1
0 > V 0

0 ≥ V̂ . For i ∈ {0, 1}, let

lnV i,η
t = lnV i

0 +

∫ t

0

(
µηt −

1

2
η2
t

)
dt+

∫ t

0

ηt dZt, (A.4)

where I set ηt = η
(
elnV 0,η

t

)
= η

(
elnV 1,η

t +lnV 0
0 −lnV 1

0

)
= η

(
V 1,η
t

V 0
0

V 1
0

)
, which is a Markovian

control also for V0 = V 1
0 . In particular, it coincides with the manager’s optimal control

when V0 = V 0
0 for any given realized path (Zu)0≤u≤t of the Brownian motion.
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Let τ 0 = inf{t ≥ 0 : V 0,η
t ≤ V̂ }. Note V 1,η

τ0 > V̂ . Then,

u(V 1
0 ) ≥ E

[∫ τ0

0

e−ρtθδV 1,η
t dt+ e−ρτ

0

u(V 1,η
τ0 )

]
≥ u(V 0

0 ) + E
[
e−ρτ

0

u(V 1
τ0)
]
> u(V 0

0 ). (A.5)

Hence, u is strictly increasing for V ≥ V̂ .
Next, I prove strict concavity when µ = 0. First, note that, from (8), we have ρu(V ) −

θδV ≥ 1
2
u′′(V )V 2η2 for any η ∈ [

¯
η, η̄]. Next, note

u(V ) < ũ(V ) = max
(ηt)t≥s

E

[∫ ∞
s

e−ρ(t−s)θδVt dt

]
=
θδV

ρ
,

where the first inequality follows because θδVt > 0 and τ := inf{t ≥ 0: Vt ≤ V̂ } <∞. The
equality follows because θδV/ρ is a solution of (8) with V̂ = 0 and, by Pham (2009) and
Strulovici and Szydlowski (2015), it is the unique solution of (8). We therefore conclude
ρu(V )− θδV < 0, and hence, u′′(V ) < 0 for any V ≥ V̂ .

In conclusion, the maximizer of (8) is a continuous function of V .

LEMMA A.4. Consider the model of section 4.1. An ε > 0 exists such that E is twice differen-
tiable in (V̂, V̂ + ε) with E ′′(V ) < 0.

Proof. I begin by showing E is twice differentiable in a right neighborhood of V̂ . By
corollary 1 and by the restriction that η(V ′) = limV→V + η(V ) for V ′ ≤ V̂ , there exists ε′ > 0

such that η(V ) =
¯
η for V < V̂ + ε′. For a 0 < ε0 < ε1 < ε′, consider the following

variational inequality for V ∈ (V̂ + ε0, V̂ + ε1):

re(V )−H(V, e′(V ), e′′(V )) = 0,

with boundary conditions e(V̂ + ε0) = E(V̂ + ε0) and e(V̂ + ε1) = E(V̂ + ε1). It can be
immediately verified that e = E is a solution of this variational inequality and that, by
the usual arguments in Pham (2009), it is the unique continuous solution.

Because η(V ) =
¯
η for V ≤ V1, the functions (1 − θ)δV − c, µη(V )V , and η(V )σV are

all twice differentiable in V and bounded in the interval (V̂ + ε0, V̂ + ε1). Classical results
(Fleming and Soner, 2006, Ch. IV.4) imply e is twice differentiable in (V̂ + ε0, V̂ + ε1).
Because ε0 > 0 can be arbitrarily small, we conclude e, and henceE, is twice differentiable
in (V̂, V̂ + ε1).

Next, I show E ′′(V ) > 0 in a right neighborhood of V̂ . By the smooth-fit principle
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(Pham, 2009), E(V ) = E ′(Ṽ ) = 0 and E(V )→ 0 and E ′(V )→ 0 as V → Ṽ +. By (9),

rE(V )− [(1− θ)δV − c]− E ′(V )µη(V )V = +
1

2
E ′′(V )η(V )2V 2,

and hence,
lim

V→V̂ +

1

2
E ′′(V )η(V )2V 2 = lim

V→V̂ +
−[(1− θ)δV − c].

It therefore suffices to show [(1− θ)δV̂ − c] < 0. To show this, note

E(V ) > min
(ηt)t≥0

E

[∫ ∞
0

e−rt[(1− θ)δVt − c] dt
]

s.t. ηt ∈ [
¯
η, η̄], ∀t ≥ 0,

where the strict inequality follows because DC is non-empty, and hence, τ ∗ < ∞, and
where the right-hand side of this expression is equal to (1−θ)δ

r−µ
¯
η
V − c

r
. For V = V̂ , it follows

that 0 > (1−θ)δ
r−µ

¯
η
V̂ − c

r
, and hence, (1 − θ)δṼ − c < −cµ

¯
η/r ≤ 0. We therefore conclude

E ′′(V ) > 0 in a right neighborhood of V̂ .

LEMMA A.5. Consider the model of section ??. The value function of an unbiased manager is
uu(φ) = βση̄(φ−φ̂)

2ρ
. Moreover, ηt = η̄ for all t maximizes (??) for an unbiased manager.

Proof. By Pham (2009) and Strulovici and Szydlowski (2015), uu is the unique bounded
(classical) solution of the following HJB equation:

ρuu(φ) = max
η∈[

¯
η,η̄]

β
ση(φ− φ̂)

2
+

1

2
u′′u(φ)η2φ2(1− φ)2. (A.6)

One can verify βση̄(φ−φ̂)
2ρ

is a solution of the HJB equation. By uniqueness, uu(φ) = βση̄(φ−φ̂)
2ρ

.
Therefore, the maximizer in (A.6) is constant in φ and ηu(φ) = η̄. Because the process

(ηu(φt))t≥0 is constant, (ηu(φt))t≥0 is admissible. By Lemma A.1, ηt = η̄ for all t maximizes
(??) for the unbiased manager.
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