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1 Introduction

In many financial markets, there are dominant players with outsize influence on equilib-

rium outcomes. Because large investors can exploit this influence for private gain, there

is concern that financial market concentration might distort asset prices, reduce efficiency

and lower welfare, much like market power does in other industries. We are interested in

the nature of these effects in financial markets and their persistence over time.

Evaluating the impact of financial market concentration poses several conceptual

difficulties that differ from those in other industries. In particular, the extent of finan-

cial market power depends on the prevailing distribution of wealth and trading needs,

and these evolve over time given asset prices and portfolio choices. Because prices are

forward-looking and cash flows are risky, this leads to a stochastic feedback mechanism

between current and future market power that transmits through the wealth distribution.

We study this mechanism using a strategic variant of the Lucas (1978) economy

in which investors are endowed with heterogeneous real assets whose dividends may

be exposed to idiosyncratic and aggregate risk. There is a mass of competitive traders,

but also a finite number of strategic agents who have market power because they control

discrete shares of real wealth.1 Depending on prevailing risk exposures and wealth differ-

ences, there are gains from trade across states and time. However, these may not be fully

realized because large investors take into account their impact on equilibrium prices.

As in the Lucas (1978) model, asset prices can be recovered from the marginal

utility process of competitive traders. This allows us to recover the set of price impact

functions in closed form as well, leading to a tractable no-arbitrage equilibrium in which

prices and allocations are invariant to the introduction of redundant assets.

The key object of our analysis is the portfolio choice problem of strategic investors.

Because these agents face dividend risk in addition to having price impact, they must

weigh standard risk-return considerations against a desire to exploit market power to ex-

tract rents for private gain. In general, there is a trade-off between these two objectives.

If prices can be pushed up by rationing the supply of certain assets, doing so requires the

investor to retain more risk than she otherwise would. Which objective is more important

1Such an ownership structure could arise if there are large financial institutions, or private fortunes with
large stakes interests in businesses. The baseline model takes the ownership structure of real assets as given,
but we later provide an entry game that gives rise to such concentrated ownership.
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depends on equilibrium forces, such as prices and price impact, and investor characteris-

tics, such as wealth and dividend risk.

Since equilibrium is invariant in the introduction of redundant securities, it is con-

venient to work with the set Arrow securities. For competitive traders, it is known that

optimal portfolios are pinned down by a condition equalizing the marginal value of con-

sumption in a given state (the investor’s state price) with the associated security price.

Optimal portfolios under price impact follow a distorted version of the rule, whereby

state prices differ from asset prices by an optimally chosen state-specific wedge. This

wedge turns to be the product of price impact in the Arrow security (i.e. the price change

in response to a marginal quantity adjustment) and the quantity traded by the investor.

These wedges have intuitive properties that can be linked to economic primitives.

Naturally, sellers reduce supply to raise prices, while buyers lower demand to raise price.

Since investors buy a security if and only if they have relatively low income in the as-

sociated state, this has the implication that market power begets imperfect risk sharing.

Second, wedges depend on the quantity traded. Hence wealthy investors will optimally

choose to distort their portfolios more than poorer investors, and remain more exposed

to idiosyncratic risk. This is in sharp contrast to other financial frictions, such as limited

commitment or imperfect market access, that are more likely to bind at low wealth levels.

More broadly, any shock to primitives that raise fundamental gains from trade engenders

bigger distortions because they raise trading needs, and therefore quantities.

Although the impact of market concentration on trading volumes and risk sharing

is relatively unequivocal, implications for asset prices are more nuanced. A “monopolist”

would like to induce price increases for assets she sells, and price decreases prices on asset

she buys. But in general equilibrium with many traders, such strategic distortions may be

mutually offsetting. Because price impact is nonlinear, there is an illiquidity externality

in which the strategic distortions of one large investor impact the incentives to distort

of all other large investors. Despite this complication, we show if the top of the wealth

distribution is sufficiently symmetric, strategic trading raises prices of all traded and non-

traded assets if and only if marginal utility is convex. The reason for this uniform increase

is investors sell if and only if they have high income, which means that supply curves

are necessarily more elastic than demand curves.Away from this symmetric benchmark,

strategic trading leads to endogenous risk premia even in the absence of aggregate shocks.
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This is because imperfect risk sharing leads to uncertainty about which agents will exert

most strategic influence in the future.

Dynamically, the link between market concentration and imperfect risk sharing

generates path dependence in market power. In particular, voluntary overexposure to di-

versifiable risk leads the wealth of some strategic agents grows faster than others ex post.

This leads to changes in the distribution of gains from trade that beget worse distortions

from market power over time. But inequality is not persistent: because the wealthiest

investors are least diversified, there is churn at the top of the wealth distribution. In-

deed, precisely because the wealthy have larger trading needs, temporarily poor agents

can extract more rents that allow them to grow wealthy again over time. That is, market

concentration reduces persistence in the wealth distribution and market power acts as a

hedge against future declines in wealth.

Although our model is intentionally abstract, it can be applied to a number of set-

tings. The first relates to financial industry dynamics and intermediary asset pricing. Ex-

isting work relating intermediaries to asset prices is built on the idea that shocks to equity

capital in the intermediary sector, but this literature typically focus on either a represen-

tative intermediary, or competitive markets without price impact. Our work that risk

sharing may be impaired even when intermediaries are well-capitalized, and we show

that imperfect competition may distort asset prices.

The second application is top wealth inequality. There is empirical evidence the

wealthiest investors do not appear to follow fundamental tenets of optimal portfolio the-

ory: their portfolios are highly exposed to idiosyncratic risk, and they often hold concen-

trated positions in a small number of assets. Fagereng, Guiso, Malacrino, and Pistaferri

(2022) and Bach, Calvet, and Sodini (2022) show households’ average returns and expo-

sure to idiosyncratic risks are increasing in household wealth, while Hubmer, Krusell,

and Smith (2021) argue it is difficult to account for the dynamics of wealth inequality

absent such skewed return processes. This is the case although standard financial fric-

tions, such as limited market access or borrowing constraints, are weaker at high wealth

levels. Our model can account for these portfolio choice patterns if the wealthy trade in

relatively concentrated financial markets, which is the case because a large share of top

financial wealth is invested in private businesses, real estate, and illiquid securities. The

literature has argued that differences in preferences and portfolio returns (e.g., Gomez
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(2017)) or secular declines in long-term real interest rates (e.g., Greenwald, Leombroni,

Lustig, and Van Nieuwerburgh (2021)) or capital gains (e.g., Fagereng, Holm, Moll, and

Natvik (2021)) are needed to explain how wealth inequality has risen over time. We com-

plement these approaches by exploring the notion that market concentration eventually

leads to deviations from price-taking behavior, which can exacerbate wealth inequality

via portfolio under-diversification and distorted asset returns.

Conceptually, our paper is related to the literature on endogenous market incom-

pleteness. Kehoe and Levine (1993), Alvarez and Jermann (2000), Hellwig and Lorenzoni

(2009), and Ai and Bhandari (2021), for instance, explore how limited commitment im-

pairs risk sharing by imposing endogenous participation constraints. Biais, Hombert,

and Weill (2021) illustrate how such constraints give rise to a basis in which the price

of a security is below its replicating portfolio of long positions in Arrow securities. In

contrast, we examine trading distortions from market power. This not only leads to a vol-

untary misalignment of state prices, a hallmark of exogenously incomplete markets, but

can also inflate the prices of all securities when there is sufficient symmetry among strate-

gic agents.2 Furthermore, such constraints bind for poorer agents because they cannot

commit to repay their debts when they have high income, while market power distorts

the behavior of wealthy agents because their larger trades move asset prices more. Bo-

cola and Lorenzoni (2020) shows how financial institutions bear too much aggregate risk

because complete markets are inefficient at sharing it. In our setting, distortions arise in

the sharing of diversifiable risk, which complete markets otherwise effectively facilitate.

Our equilibrium concept is a Cournot-Walras equilibrium (e.g., Gabszewicz and

Vial (1972)) with a competitive fringe (e.g., Shitovitz (1973)).3 In this paradigm, Sahi and

Yao (1989) and Amir, Sahi, Shubik, and Yao (1990) focus on the primitive properties of
2Roussanov (2007) shows that social status concerns modeled by “keeping up with the Joneses” prefer-

ences can also lead to voluntary under-insurance to idiosyncratic risk and higher consumption volatility. In
that setting, however, agents earn lower returns, on average, because they are less averse to idiosyncratic
risk, whereas in our setting they are compensated with trading rents.

3A related approach is the equilibrium-in-demand-schedules concept based on Kyle (1989). Although
this concept allows for a richer analysis of strategic interactions among large traders, it often requires strong
assumptions on preferences and payoffs (such as the canonical CARA-normal setting) for tractability. In
this tradition, Carvajal and Weretka (2012) consider a complete markets model with general preferences but
focus on the role of redundant assets in which perceived and actual price impact are linear in asset demands.
Similar to us, Malamud and Rostek (2017) emphasize that buyers and sellers shade demand and supply,
respectively, but instead examine how decentralized markets can improve welfare relative to centralized
exchanges by altering price impact. In Appendix B, we show although how prices are determined differs
across the two concepts, the basic strategic forces governing how large agents distort their portfolios are
similar. For a more detailed comparison of the two concepts, see also Neuhann and Sockin (2021).
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Cournot-Walras equilibria in complete markets endowment economies, such as the com-

petitive limit and whether there is consistent pricing with differentiated goods both with

and without money. Basak (1997) examines asset pricing with a monopolistic non-price-

taking agent in an Arrow-Debreu economy. Rahi and Zigrand (2009) examines the in-

centives of large agents to arbitrage across segmented markets. Our focus is instead on

the portfolio and asset pricing implications of Cournot-Walras equilibria in the context of

wealth accumulation and risk concentration based on the size of agents’ trading needs.

Our no arbitrage framework has the advantages that prices are uniquely determined by

the demands of strategic agents and equilibria are invariant to the introduction of redun-

dant securities, both of which are desirable properties for a general equilibrium analysis

of financial market power.

2 Model

We conduct our analysis in two steps. First, we study a two-period model in which the

wealth distribution is taken as given. This allows us cleanly derive the key implications

of market concentration and wealth inequality for portfolio choice and asset prices. In

Section 4, we then extend the model to a fully dynamic framework to study the dynamics

of the wealth distribution.

Demographics. There are two classes of agents: a continuum of competitive agents

with mass m f called the competitive fringe who takes prices as given, and a discrete num-

ber of strategic agents who are large relative to the economy and internalize their impact

on prices in financial markets. The presence of a competitive fringe is a realistic feature of

financial markets given the presence of retail investors. As in many models of oligopolis-

tic competition, it also allows us to recover a unique residual demand curve for each

strategic agents in every financial market.

There are N types of strategic agents, indexed by i ∈ {1, 2 . . . , N}. Each type re-

ceives a stream of state-contingent endowments of the consumption good. To tractably

vary market concentration, we assume that, within each type, there exist 1/µ symmetric

agents who each have mass µ. Hence µ determines the share of a type’s total endowment

that is controlled by an individual agent. By measuring the relative size of an agent, µ

therefore also determines the extent to which a strategic agent internalizes her market
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power. This allows us to vary the degree of competition without affecting the aggregate

feasibility set. To nest perfect competition as a benchmark, we say that µ = 0 corresponds

to a continuum of infinitesimal agents. In the main model, we take µ to be exogenously

fixed. Later on, we use an entry game with a fixed cost to determine µ endogenously.

Preferences. Strategic agents share common preferences over consumption at both

dates. These are represented by the utility index u(c) that is C2, strictly increasing, strictly

concave, homothetic, and satisfies the Inada condition. Marginal utility u′(c) is further

assumed to be strictly convex. Among other preferences, constant relative risk aversion

(CRRA) satisfies these restrictions. Homothetic preferences are useful because equilib-

rium would be invariant to market concentration µ if agents were to trade competitively.

The fringe has quasi-linear preferences: linear in consumption at date 1 and risk-

averse at date 2. Its date-2 utility function, u f (c), satisfies the same properties as that of

strategic agents. Although a price-taking fringe is essential for our results, quasi-linearity

of its preferences is not. Relaxing this assumption would lead to a more complicated price

impact function (the q′ (z) in what follows), but would not fundamentally alter the role

of market power in distorting agents’ portfolios and state prices.4

Income and Consumption. Uncertainty is represented by a set of states of the

world Z ≡ {1, 2, . . . Z}, one of which realizes at date 2. Agents share common beliefs.

The probability of generic state z ∈ Z is π(z) ∈ (0, 1). The fringe receives initial wealth

w f and state-contingent endowment y f (z) > 0. A strategic agent j of type i receives initial

endowment wj at date 1 per unit of mass, and state-contingent endowment yi(z) > 0 in

state z per unit of mass. Let wi be the total initial endowment of agents of type i, i.e.,

wi = ∑j wj,i. The total endowment of type i in state z is yi(z) = ∑
1/µ
j=1 µyi(z) and the

aggregate endowment of all strategic agents is

Y(z) = ∑
i

yi(z).

Let c1,j,i and c2,j,i(z) denote consumption of agent j of type i at date 1 and in

state z, respectively. Aggregating within types gives c1,i = ∑
1/µ
j=1 µc1,j,i and c2,i(z) =

4We show in the proof of Proposition 2, for instance, that quasi-linearity is not necessary for our result.
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∑
1/µ
j=1 µc2,j,i(z). The aggregate resource constraints are

N

∑
i=1

c1,i + m f c2 f =
N

∑
i=1

wi + w f ,

N

∑
i=1

c2,i (z) + m f c2 f (z) = Y (z) + m f y f (z).

We restrict all consumption to be nonnegative.

Financial Markets. Financial markets open at date 1. The set of assets is the com-

plete set of Arrow securities. That is, there are Z securities, and security z pays one unit

of the numeraire in state z but zero otherwise.

Let aj,i(z) denote the position of agent j of type i in claim z, where aj,i(z) < 0

denotes a sale. Aggregating within and across types yields ai(z) ≡ ∑
1/µ
j=1 µaj,i(z) and

A(z) ≡ ∑N
i=1 ai(z). The fringe’s position in security z is a f (z). Now define A to be the

(N + 1)× Z matrix summarizing all agents’ portfolios. The equilibrium price function of

asset z is denoted Q(A, z). Market clearing in the market for claim z requires:

A(z) + m f a f (z) = 0 for all z. (1)

We later show that the equilibrium is invariant in the introduction of redundant securities.

Decision Problems and Equilibrium Concept. We search for a Cournot-Walras

equilibrium in which the competitive fringe takes asset prices as given while strategic

agents place limit orders taking into account the demands of other strategic agents and

the residual demand curve of the competitive fringe. A strategy σj,i for strategic agent j

of type i consists of asset positions and consumption, σj,i = {{aj,i(z)}z∈Z , c1,j,i, c2,j,i}. The

perceived pricing functional used by agent j of type i to forecast her influence on the price

of security z is Q̃i,j(A, z). The decision problem is

Uj,i = max
σj,i

u
(
c1,j,i

)
+ ∑

z∈Z
π (z) u

(
c2,j,i (z)

)
(2)

s.t. µc1,j,i = µwi − ∑
z∈Z

Q̃i,j(A, z)µaj,i (z) ,

µc2,j,i (z) = µyi (z) + µaj,i (z) .

We define preferences and controls in this manner recognizing the consumption of strate-
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gic agent j of type i is actually µc1,j,i and µc2,j,i (z) at dates 1 and 2, respectively, and sim-

ilarly with optimal asset holdings, µaj,i (z). Given homothetic utility, however, optimal

policies are invariant to defining strategic agent preferences over µct,j,i.

A strategy σf for the competitive fringe consists of asset positions and consumption,

σf = {{a f (z)}z∈Z , c1, f , c2, f }. Because the competitive fringe takes prices as given, its

perceived pricing functionals depends only on the state, Q̃ f (A, z) = Q̃ f (z). The fringe’s

decision problem is

U f = max
σf

c1 f + ∑
z

π(z)u(c2 f (z)) (3)

s.t. c1 f = w−∑
z

Q̃ f (z)a f (z),

c2 f (z) = y f (z) + a f (z).

We can now define our equilibrium concept.5

Definition 1 A Cournot-Walras equilibrium consists of a strategy σj,i for each strategic agent, a

strategy σf for the competitive fringe, and pricing functions Q(A, z) for all z ∈ Z such that:

1. Fringe optimization: σf solves decision problem (3) given {Q̃ f (z)}z∈Z

2. Strategic agent optimization: For each agent j of type i, σj,i solves decision problem (2) given

(i) other agents’ strategies {σ−j,i, σf } and perceived pricing functions {Q̃j,i(A, z)}z∈Z .

3. Market-clearing: Each market clears with zero excess demand according to (1).

4. Consistency: all agents have rational expectations, which requires for strategic agents that

Q̃j,i(A, z) = Q(A, z) for all i, j and z.

We will often contrast Cournot-Walras equilibrium with the competitive benchmark.

Definition 2 (Competitive Equilibrium) The competitive equilibrium is the Cournot-Walras

equilibrium in the special case when µ = 0.

One may notice that our model of Cournot competition in complete financial mar-

kets has technical similarities to one of multi-product Cournot competition in spot ex-

change markets. This is because Arrow securities enable agents to trade exposures against

5The Walras part of the concept stems from the assumption that there is a Walrasian auctioneer in the
background who takes the demands of all agents and sets the price vector that clears all asset markets.
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specific states, with each state akin to a differentiated product. This analogy, however,

quickly breaks down once we consider the pricing of redundant securities and in our

dynamic extension where the realization of income shocks introduces path dependence

in wealth. In addition, agents sort in financial markets into buyers and sellers based on

equilibrium asset prices, whereas product markets have natural consumers and produc-

ers. We consider a complete markets setting so that market power is the only friction that

impedes risk sharing to make transparent its impact on portfolio choices and asset prices.

In the context of financial markets, our Cournot approach also provides an equi-

librium selection mechanism that avoids the typical coordination issues that arise when

strategic agents must coordinate on price impact functionals. This is because the com-

petitive fringe’s marginal utility pins down asset prices so that large agents face a unique

residual demand curve from which to forecast its price impact.6 This mutes the source

of strategic uncertainty that could lead to multiple self-fulfilling price impact functionals

(which may not be anonymous) that are consistent with rational expectations. Even if the

fringe is infinitesimal in size, its presence selects among all equilibria the rational expec-

tations equilibria that impose no arbitrage and invariance to redundant assets. We view

these features as an advantage for a general equilibrium model of many markets.

An alternative equilibrium concept is the Equilibrium-in-Demand-Schedules ap-

proach of Kyle (1989). Without a competitive fringe, asset prices solve a system of dif-

ferential equations that can admit many solutions corresponding to different rational ex-

pectations prices that satisfy the Euler Equations of strategic agents and market clearing.7

These asset prices can admit arbitrage because there is a wedge between asset prices and

the state prices of every agent. In Appendix B, we solve an Equilibrium-in-Demand-

Schedules version of our model with liquidity traders who take fixed positions in each

asset instead of a competitive fringe. This analysis offers two insights. First, conditional

on asset prices, how a strategic agent distorts her portfolio because of market power

is the same as under Cournot-Walras. Consequently, our analysis is also applicable to

Equilibrium-in-Demand-Schedules settings. What differs is how prices are determined.

Second, we provide a method for computing such an equilibrium if we restrict our atten-

tion to pricing functions in which price impact is the same across all agents. Our method

6Models of product markets of oligopolistic Cournot competition often assume price-taking consumers
to be able to back out a residual demand curve for strategic agents.

7A key insight of Kyle (1989) is in a CARA-normal setting the unique residual demand curve is affine.

9



reduces characterization to a system of |Z| first-order differential equations (one for each

asset market), with boundary conditions that can be determined by our Cournot-Walras

equilibrium in the special case the competitive fringe is infinitesimally small.

3 Equilibrium Characterization

We now characterize equilibrium price impact and explore how market power impacts

the portfolio choice. The first step is to derive the equilibrium pricing functional using the

decision problem of the competitive fringe. First-order conditions for portfolio optimality

require that asset prices are equal to the fringe’s marginal utility. By market-clearing, each

strategic agent can then infer how much the fringe’s consumption will move when the

agent demands more or less of a given security, holding other agents’ portfolios fixed.

Price impact is therefore determined by the change in marginal utility of the competitive

fringe. Because each agent’s influence on the market-clearing condition scales with her

mass, µ, her price impact does as well. Finally, price impact is anonymous because only

net risk exposures matter for equilibrium prices.

Proposition 1 (Demand System for Arrow Securities) The price of the claim on state z is

Q(A, z) = q(z) ≡ π(z)u′f
(
c2 f (z)

)
. (4)

The price impact of strategic agent i is independent of i and satisfies

∂Q̃j,i(A, z)
∂ai(z)

=
µ

m f
q′(z) where q′(z) ≡ ∂q(z)

∂A(z)
= −π(z)u′′f

(
c2 f (z)

)
> 0, (5)

and q′ (z) is increasing and convex in strategic agent demand.

Focusing on Arrow securities is without loss of generality. We define redundant securities

as follows.

Definition 3 (Redundant securities) Let security φ is a promise a set of state-contingent pay-

offs {φ(z)}z∈Z . The security is redundant if its payoffs can be replicated using Arrow securities.

Proposition 2 then establishes that prices and allocations in the Cournot-Walras equilib-

rium are invariant to the introduction of redundant securities
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Proposition 2 (Law of One Price) The Law of One Price holds: the price of any redundant

security is equal to the price of its replicating portfolio of Arrow securities. The consumption

allocation and all Arrow security prices are invariant to the introduction of redundant securities.

The invariance to redundant assets is a direct consequence of the Law of One Price that

ensures no arbitrage. These properties are not generically guaranteed in models of strate-

gic interaction. They hold in ours because there is a competitive fringe.8 We view this is

a useful feature when studying asset prices because strict arbitrage opportunities do not

appear to be pervasive across financial markets.

3.1 Optimal Strategic Portfolios

We now characterize optimal strategic portfolios and discuss how they map into risk

sharing arrangements. A state price Λj,i(z) for agent j of type i is the marginal rate of

substitution between consumption in state z and date 1, that is

Λj,i (z) ≡
π (z) u′

(
c2,j,i (z)

)
u′1
(
c1,j,i

) . (6)

The key comparison is the competitive equilibrium benchmark.

Lemma 1 The competitive benchmark is obtained when µ = 0 In this equilibrium, there is perfect

risk sharing across all states and investors. That is,

Λj,i(z) = ΛCE(z) = qCE(z) for all z and j, i,

where ΛCE(z) is the unique state price in the competitive equilibrium.

The next proposition proves the existence of a Cournot-Walras equilibrium and

states necessary conditions for each agent’s optimal trading positions. It is straightfor-

ward to show that agents must behave symmetrically within types. Hence we suppress

all j subscripts going forward.

8Carvajal (2018) shows that no arbitrage generically need not hold when strategic agents trade with
price impact in financial markets, and that a competitive fringe is one means of enforcing no arbitrage.
With complete markets, this enforcement is “off-equilibrium” in our setting in the sense that we do need
to impose cross-equation no arbitrage restrictions on Arrow-Debreu assets because they have orthogonal
payoffs. Rather, the fringe lets us generalize our model to price any redundant asset.

11



Proposition 3 There exists an equilibrium in which the optimal policies for aj,i (z) satisfy the

optimality conditions

Λi (z) = q (z) +
µ

m f
q′(z)ai (z) . (7)

The optimality condition (7) reveals the key mechanism of our model. Even though

markets are complete, agents choose to misalign marginal valuations (state prices) with

marginal prices to extract rents. Sellers reduce their supply and have lower state prices

than in the competitive equilibrium, while buyers reduce their demand and have higher

state prices than in the competitive equilibrium. The extent of these distortions is increas-

ing in gross asset positions and price impact. If the fringe has convex marginal utility,

price impact in turn is increasing in prices itself. Since high prices and large asset po-

sitions are increasing in the underlying gains of trade (i.e. average marginal valuations

of state-contingent consumption), distortions from market power are most severe when

gains from trade are large. Note also that we recover the standard Euler equation if µ→ 0.

Wealth and portfolio choice. How do changes in initial wealth affect portfolio

choice? Under homothetic preferences, we can express agent i′s optimal consumption and

investment polices as c2,i (z) = ĉ2,i (z)wi and a2,i (z) = â2,i (z)wi for z ∈ Z , respectively.

This allows us to rewrite the portfolio optimality condition (7) as

π (z) u′
(

yi (z) /wi + âi (z)
1−∑z′∈Z q (z′) âi (z′)

)
= q (z) +

µ

m f
q̄′(z)âi (z) , (8)

Wealth impacts portfolio choice through two channels. First, an increase in wealth is akin

to reducing the effective endowment, which raises her state price. This makes the agent

less of a seller and more of a buyer in each asset market. Second, an increase in wealth

increases the agent’s trading needs, and raises how much she moves the price for the

same relative position âi (z). This erodes her market power by forcing her to trade more

for the same share of wealth allocated to asset z. Importantly, these effects are non-linear.

Hence, wealth inequality affects the severity of risk-sharing distortions. In the dynamic

model, imperfect risk sharing will generate endogenous variation in wealth inequality.

Risk-rent trade-off. How do agents employ market power? To better understand

strategic considerations, we derive two objects. First, we consider a thought experiment

in which we increase one strategic agent’s size from µ to µ + ∆µ. Taking a first-order

approximation of this agent’s portfolio holdings around the original equilibrium, we can
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express her optimal portfolio in terms of a sharp trade-off between rent extraction and risk

management. We then also examine how the trade-off between risks and rents impacts

the expected return on agent i’s total wealth RW
i

RW
i =

∑z π(z)c2,i(z)
wi + ∑z q(z)yi(z)− c1,i

, (9)

where total wealth is the sum of initial wealth and the present value of future income less

initial consumption, i.e., Wi = wi + ∑z q(z)yi(z)− c1,i, and consumption at date 2 is the

dividend on total wealth. We then have the following proposition.

Proposition 4 Agent i ’s: 1) optimal holding of the security for state z can be approximated as

âi (z) ≈ ai (z) +−
∆µ
m f

q′(z)
q(z) âi (z)

µ
m f

q′(z)
q(z) + E

γ (gi (z′)) u′ (gi (z′))
1/ci(z′)−∑Z

z̃=1

q(z̃)+ µ
m f

q′(z̃)

cn,1

∆ai(z̃)
∆ai(z)

q(z) δ (z)


︸ ︷︷ ︸

Risk-Rent Ratio

,

where gi (z) =
c2,i(z)

c1,i
is the consumption growth rate in state z; and 2) expected return on her

wealth portfolio Ri
W can be decomposed as

RW
i = E

[
π (z)
q (z)

]
︸ ︷︷ ︸

Risk Premium

+Cov
(

π (z)
q (z)

,
vs (z)

E [vs (z)]

)
︸ ︷︷ ︸

Risk-Rent Premium

, (10)

where vs (z) =
q(z)
π(z)u′−1

(
q(z)

π(z)αs(z)

)
and αs (z) =

(
1 + q′(z)

q(z) ai (z)
)−1
≥ 0.

The first part of the proposition reveals that an incremental increase in size enables an

agent of type i to extract more rents by reducing its asset position and increasing the

gap between her state price (her marginal valuation) and the market price. That is the

numerator. Such rent extraction, however, comes at the expense of exposing the agent to

additional consumption risk. That along with the shading term because of price impact

is the denominator. This is the risk-rent trade-off.

The second part of the proposition illustrates that, in addition to the typical risk

premium that each agent (including competitive agents) earn by trading in financial mar-

kets E
[

π(z)
q(z)

]
, a strategic agent earns a risk-rent premium. This premium is related to how
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her state-by-state distortions to her financial market trading correlate with the inverse

of asset prices. Interestingly, this premium can be negative (i.e., a discount) depending

on how the market power distortions to her asset trading correlate with asset prices in

financial markets.

This risk-rent premium is most transparent in the case of log utility, and the return

on the wealth portfolio simplifies to

RW
i = E

[
π (z)
q (z)

]
+ Cov

(
π (z)
q (z)

,
αs (z)

E [αs (z)]

)
. (11)

When income and substitution effects cancel, a strategic agent earns a higher expected re-

turn on her wealth if she is a seller of Arrow securities against states with low state prices

(i.e., aggregate low marginal utility states) and a buyer of Arrow securities referencing

high marginal utility states. In contrast, she earns a lower expected return if she is a seller

of Arrow securities referencing high and a buyer of those referencing low marginal utility

states, in which case Cov
(

π(z)
q(z) , αs(z)

E[αs(z)]

)
< 0.

Alternatively, we can measure the surplus strategic agents extract by maintaining

a wedge between public (or market-based) and private valuations of their wealth. We

measure this “private” surplus as the investor’s Excess Wealth W̃i, which we define as

W̃i︸︷︷︸
Excess Wealth

= c1,i − w︸ ︷︷ ︸
Excess Expenditure

+∑
z

Λi(z)(c2,i(z)− yi(z))︸ ︷︷ ︸
NPV of consumption stream

= ∑
z

q′ (z) ai (z)
2 . (12)

For a competitive agent, W̃i = 0, but for a strategic agent, it is strictly positive. The

more she sells (higher ai (z) in markets with higher price impact (higher q′ (z)), the more

surplus she extracts, and the more valuable a consumption portfolio she can finance given

her private valuation of her wealth.

Interestingly, there can be a disconnect between a strategic agent’s excess wealth

and the return on her wealth portfolio. This is because she misaligns her marginal valua-

tion of a state (her private state price) with the Arrow asset price to extract inframarginal

rents on her trades. As a result, she earns a lower return on her wealth portfolio when she

strategically retains exposure to what the market values as high marginal utility states to

raise her excess wealth.

Rents versus trading costs. There are two ways to interpret the equilibrium trad-
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ing behavior of strategic traders. The first might be called an industrial organization per-

spective. According to this view, state prices represent the marginal cost (or willingness to

pay) for state-contingent consumption, and wedges between state prices represent rents

earned via markdowns or markups. The second is a finance perspective according to

which price impact is a friction that prevents agents from trading towards their preferred

portfolio.

It is immediate both views are formally equivalent: agents do not pick efficiently

diversified portfolios, but they do pick optimal portfolios. That is, they choose portfolios to

optimally trade off rents and risks. We now show market power is privately valuable if

µ is relatively small, but that excessively large µ can be counterproductive. To do so, we

measure the rents earned by some agent n in state z as

Πn (z) = (Λn(z)− q(z))an(z) =
µ

m f
q′(z)an(z)2, (13)

The total rents earned by agent n are Πn = ∑z∈Z Πn (z) and the total consumption risk as

the variance of consumption Var(cn(z)). The following corollary derives their compara-

tive statics with respect to the µ of one agent type, µn.

Corollary 1 Var(cn(z)) is increasing in µn. Πn is either increasing or hump-shaped in µn.

An increase in size increases trading rents because the agent can exert more market power

when trading. This does not, however, imply she is unambiguously better-off for being

larger. Although internalizing her price impact given her size is beneficial, having price

impact from being relatively larger than other agents impairs her ability to share risk in

financial markets. Because the competitive fringe has limited risk-bearing capacity (its

size is fixed at m f ), prices scale by more than one-for-one as a strategic agent’s trading

needs become larger from a higher µ. Consequently, there may be an interior optimal

size for large agents that balances the ability to manipulate prices with the hampered

risk sharing. This differentiates imperfect competition in financial markets from standard

Cournot competition in product markets, which does not have endogenous costs of size.

We further explore the implications of market power for how large agents would choose

their size µ in Section 3.4 when we allow for ex-ante free-entry into each agent type.
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3.2 Equilibrium Prices and Returns

We now investigate the asset pricing implications of market concentration. Because wealthy

investors own a sizable share of financial assets, their trading moves asset prices so that

prices now reflect rents in addition to risk. In turn, the distortions to asset prices from

market power feed back into the portfolio choices of wealthy investors.

Whether and how market concentration affects prices is not obvious. Buyers in a

given asset market reduce their demand to lower asset prices while sellers reduce their

supply to raise prices. As such, asset prices go up only when sellers distort more. Our

central insight is when strategic agents are relatively symmetric in their risk exposures

and initial wealth, strategic interactions inflate all asset prices and lower the risk-free rate

(which is the inverse of the sum of all Arrow security prices). This is because sellers are

better able than buyers to distort their trading behavior to manipulate prices. If wealth is

unequal, however, wealthier agents demand more of every asset, which strengthens their

strategic motives to push down prices.

To focus on the strategic interaction among large agents, we specialize our model

to the case in which the market impact of the competitive fringe is marginal. We refer to

this limit as a Strategic Equilibrium.

Definition 4 (Strategic Equilibrium) A strategic equilibrium is a Cournot-Walras equilibrium

where m f is arbitrarily close to zero, holding µ/m f fixed.

To develop intuition, we first focus on a setting in which all agents are type-

symmetric in that they have symmetric initial wealth w and income risk.

Definition 5 (Type-Symmetric) Two agent types are type-symmetric if they have the same ini-

tial wealth, i.e., wi = wj, and symmetric income risks so that they face identical decision problems.

Our key result, summarized in Proposition 5, in this setting, market concentration

raises all asset prices, q (z), (state-by-state) and depresses the risk-free rate, r f , relative

to the competitive equilibrium.9 Incrementally breaking this symmetry by making one

agent type wealthier, in contrast, exerts downward pressure on the distortion to asset

prices from market power. This is because wealthier agents now are able to push prices

in their favor.
9This result also holds for CARA utility, which satisfies convex marginal utility but not homotheticity.
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Proposition 5 In a Strategic Equilibrium with type-symmetric agents, asset prices q(z) are

higher than in the competitive equilibrium for all z, and the risk-free rate, r f , is strictly lower.

An increase in the initial wealth of one agent type from the type-symmetric case lowers prices in

markets in which that type is a buyer and reduces the price inflation from market power in markets

in which that type is a seller.

We briefly sketch the proof for intuition. Summing over the first-order condition for opti-

mal portfolios (7), and imposing market-clearing at m f ≈ 0 yields:

q(z) = E∗[Λi(z)],

where E∗[Λi(z)] = 1
N ∑i Λi(z) is the cross-sectional average of large agents’ state prices.

The intuition is as follows. In the competitive equilibrium, marginal rates of substi-

tution are aligned with prices for all agents, qCE(z) = ΛCE(z). With market concentration,

however, inefficient risk sharing leads to state price dispersion. Under convex marginal

utility and symmetry in initial consumption, Jensen’s inequality implies that the average

state price must rise.10 As a result, distortions to risk sharing immediately map into pric-

ing consequences, irrespective of the particular market structure. Since all q (z) are higher

with market power, the riskfree rate is lower.11 Through this channel, the asset pricing

predictions of our model are consistent with the empirical patterns over the 5 decades. In

particular, rising wealth concentration leads to a secular decline in risk-free rates and the

observed increase in valuations.

An increase in one agent type’s initial wealth impacts asset prices through the two

channels discussed in the context of equation (8). The first is that having more wealth

raises the state prices of agents of that type, all else equal, which raises their demand /

lowers their supply in all markets. The second is that having more wealth raises their

effective price impact compared to poorer agents, reducing their demand and supply. On

net, the wealthier agent type buys more and sells less, which reduces asset prices away

from their inflated values in the type-symmetric equilibrium.

10This is reminiscent of Weretka (2011) who shows that prices increase relative to a Walras equilibrium
in a spot exchange economy without uncertainty when agents have quasi-linear preferences and convex
marginal utility. His result obtains when buyers and sellers have fixed types (i.e., producer or consumer).

11Such a mechanism for inflating prices and depressing risk-free rates is distinct from that in complete
markets models with limited commitment. In those models, state prices are aligned state-by-state and equal
to the marginal rate of substitution of unconstrained agents. Because such agents have higher growth rates
in consumption than (short-sale) constrained agents, asset prices are higher.
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Expected Excess Returns. We now investigate how market concentration impacts

expected excess returns. Expected excess returns are determined by a risk premium that

is based on the covariance between the asset’s payoff and the marginal utility of a rep-

resentative agent with “average” preferences. As a result of market power, however,

state prices are dispersed and “average” preferences reflect disparate marginal valua-

tions of consumption. The distribution of aggregate risk in the type-symmetric case de-

termines the overall impact of market concentration on expected excess returns.12 Let

γ (x) = − xu′′(x)
u′(x) and P (z) = − xu′′′(x)

u′′(x) be the coefficients of relative risk aversion and pru-

dence associated with utility index u (x), respectively, and zL and zH be the states with

the smallest and largest aggregate endowments, respectively.

Proposition 6 The expected excess return of the Arrow-Debreu security for state z is

E
[
r (z)− r f

]
= −Cov

(
E∗ [Λi (z)]

E [E∗ [Λi (z)]]
, δ (z)

)
,

and can be approximated to second-order around the competitive equilibrium as

E
[
r (z)− r f

]
≈ E

[
rCE (z)− rCE

f

]
+−

(
rCE

f

)2
∑

z′∈Z
qCE (z′) γ

(
z′
)

P
(
z′
)

E∗
[(

∆c2,i (z′)
Y (z) /N

)2
]

︸ ︷︷ ︸
Risk-free Rate Distortion

+
γ (z) P (z)

qCE (z)
E∗
[(

∆c2,i (z)
Y (z) /N

)2
]

︸ ︷︷ ︸
State Price Distortion

.

Suppose agents are type-symmetric and x2u′′′ (x) /u′ (x) is increasing in x,13 then if Y (zH) is

sufficiently larger than Y (zL), market concentration raises expected excess returns more for states

with low than for high aggregate endowments.

The first part of the proposition shows that risk premia are indeed driven by the

covariance of payoffs with the average SDF. The second part of Proposition 6 illustrates

that expected excess returns are distorted away from the competitive equilibrium through

two channels: 1) a risk-free rate distortion that impacts all expected returns; and 2) a state

price distortion that impacts expected excess returns in state z. In the type symmetric case,

12More generally, outside of the type-symmetric case, states with higher income dispersion will also have
higher expected excess returns because of the impaired risk sharing from market concentration.

13This assumption is satisfied, for instance, for CRRA preferences.
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all prices rise and the risk-free rate falls (Proposition 5), the risk-free rate distortion raises

all asset’s expected returns while the state price distortion lowers all expected returns.

If there is sufficient aggregate risk (i.e., high dispersion in aggregate incomes), then

market concentration in the type-symmetric case raises expected excess returns more for

states with low than for high aggregate endowments. This can lead to risk compression

in that risk premia, including the market risk premium, can actually fall although there

is poorer risk sharing with market power. Away from the type-symmetric case, expected

excess returns can rise if asymmetry in the wealth distribution lowers asset prices. This

is because market power then has the reverse effect on expected excess returns because

buyers now distort more than sellers.

Feedback through Market Illiquidity. Distortions to asset prices from market

power feed back to the portfolio choice of wealthy investors through market illiquidity.

When wealthy agents have convex marginal utility and are relatively symmetric, asset

prices q (z) (and consequently price impact q′ (z)) are inflated. From the first-order condi-

tions for a strategic agent’s optimal portfolio choice (equation (7)), an increase in market

illiquidity forces a larger wedge between asset prices and a wealthy investor’s state prices.

This reduces both her asset positions and her realized gains from trade. Such a reduction

in trade further under-diversifies a wealthy investor by exacerbating her exposure to the

idiosyncratic risk of her endowment. As a consequently, the wealth distribution becomes

more sensitive to idiosyncratic shocks.

3.3 An Illustration

We now illustrate our theoretical findings using a transparent example in which there are

two types and pure idiosyncratic risk. This setting is instructive because it is has a clear

competitive benchmark in which there is perfect risk sharing, constant consumption, and

all asset returns are the risk-free rate.

In this example, all agents have log preferences, i.e., u (x) = u f (x) = log (x).

There are two agent types, i ∈ {1, 2}. At date 2 are two equally likely states, z ∈ {1, 2}
with π(z) = 1

2 . Strategic agents face pure idiosyncratic risk: yi(i) = ȳ + ∆ and yi(−i) =

ȳ − ∆. That is, in either state one type has a high and the other has a low return. The

fringe receives ȳ in every state. The fringe receives a fixed endowment ȳ at time 1 and in

every state at date 2. Strategic agents receive some initial endowments w1 and w2 such
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that w1 + w2 = 2ȳ.

We first provide a conceptual understanding of the case of a monopolistic type,

i.e., when one agent type is strategic and the other is price-taking. This setting is similar

to that in Basak (1997), and will highlight how a strategic agent manipulates price in their

favor. We then provide a conceptual analysis when both agents are strategic in the special

case when w1 = w2 = w. This setting provides two possible sources of gains from trade:

across states (insurance), and across time (savings). In the sequel where we explore a

dynamic version of our model, these motives will evolve endogenously over time. We

then consider the special case when ∆ = 0 and to focus on gains from trade across time,

and not from risk sharing, when agents differ only in initial wealth. Finally, we explore

the role of wealth and income heterogeneity using numerical plots.

The case of a monopolistic type. Suppose agents of Type 1 are the monopolist type.

In this special case, an agent of type 2 chooses her optimal portfolios until the Arrow

price equals her state price state-by-state, i.e., q (z) = Λ2 (z) for z ∈ {1, 2}. With some

manipulation of these two conditions, her state-contingent consumption is

c2,2(1) =
1
2

w2 + ∑z q(z)y2(z)
2q(1)

and c2,2(2) =
1
2

wC + ∑z q(z)y2(z)
2q(2)

, (14)

and her initial consumption is

c1,2 =
w2 + ∑z q(z)y2(z)

2
. (15)

These two equations imply a return on the wealth of competitive agents of Type 2

RW
2 =

1
4

(
1

q(1)
+

1
q(2)

)
. (16)

in the competitive equilibrium, q(1) = q(2) = q, and the return on her wealth portfolio

is the risk-free rate RW
2 = 1

2q = r f . With market power, however, q(1) > q(2) because

Type 1 agents restrict supply of state 1 Arrow assets. By Jensen’s Inequality for 1/x, then,

RW
2 > 1

q(1)+q(2) = r f , and consequently Type 2 agents earn a risk premium because they

are under-insured against state 1 and over-consume in state 2.

A strategic agent of Type 1, in contrast, puts a wedge between her state price and

the Arrow price, i.e., Λ1(z) = q(z) + q′(z)a1(z). With some manipulation of these two
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conditions, her state-contingent consumption is

c2,1 (1) =
w1 + ∑z q(z)y1 (z) +

µ
m f

(q′(2)a1(2)c2,1(2)− 3q′(1)a1(1)c2,1(1))

4q(1)
, (17)

c2,1 (2) =
w1 + ∑z q(z)y1 (z) +

µ
m f

(q′(1)a1(1)c2,1(1)− 3q′(2)a1(2)c2,1(2))

4q(2)
, (18)

and her initial consumption is

c1,1 =
w1 + ∑z q(z)y1 (z) +

µ
m f

q′(z)a1 (z) c1,1 (z)

2
. (19)

The return on her wealth is then

RW
1 = RW

2 +
1
4

µ

m f

q′(2)a1(2)c2,1(2)− q′(1)a1(1)c2,1(1)
w1 + ∑z q(z)y1 (z)− µ

m f
q′(z)a1 (z) c2,1 (z)

(
1

q(1)
− 1

q(2)

)
. (20)

The monopolistic agent earns not only the competitive risk premium she creates

by retaining risk 1
2

(
1
q1
+ 1

q2

)
, but also an addition expected excess return on her wealth

portfolio. If her wealth share is not too high, then the coefficient on the 1
q(1) −

1
q(2) term

is positive, this additional piece in RW
1 is negative because q1 > q2, and therefore 1

q(1) −
1

q(2) < 0.14 Consequently, a Type 1 agent earns a lower return on her wealth portfolio than

a Type 2 competitive agent, or RW
1 ≤ RW

2 .

We can further take a first-order approximation of a Type 2 agent’s welfare around

the competitive equilibrium, in which Λ1(z) = q(z) = q and c2,1(2) = c2,1(1) = c2, to find

U1− ≈ Ucompetitive
1 +

µ

m f

q′

4q
(a1(1) + a1(2)) ,

In the competitive equilibrium, a1(1) + a1(2) = 0. Suppose a Type 1 agent puts a wedge

δ such that a1(1) + a1(2) = δ, then U1 > Ucompetitive
1 . Because such an improvement

14Notice when the wealth share is close to symmetric a1(2) > 0 > a1(1), i.e., Type 1 agents are buyers
of state 2 claims and sellers of state 1. In this case, q′(2)a1(2)c2,1(2) − q′(1)a1(1)c2,1(1) is positive. If the
wealth share of a Type 1 agent becomes sufficiently small, then both as(1) and as(2) are negative because
she becomes a seller of both claims to agent 2. In this case, her consumption in state 1 c2,1(1) is still higher
than that in state 2, and the price (impact) of the state 1 Arrow asset price is higher than that of state 2.
Again, this implies q′(2)a1(2)c2,1(2)− q′(1)a1(1)c2,1(1) is positive. Finally, if agent 1’s wealth share becomes
sufficiently large, she may become a buyer of both assets. In this case, by continuity q′(2)a1(2)c2,1(2) −
q′(1)a1(1)c2,1(1) will fall and still be positive when a1(1) is in the neighborhood of 0. Consequently, if the
wealth share of Type 1 agents is not sufficiently high, q′(2)a1(2)c2,1(2)− q′(1)a1(1)c2,1(1) is positive.
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is feasible, welfare is weakly higher for the monopolistic type than in the competitive

equilibrium.

Our example with a monopolistic type highlights two insights. First, in the ab-

sence of strategic externalities, a monopolistic agent type has higher welfare than in the

competitive equilibrium. This will be in sharp contract to our findings in the oligopolistic

case. Second, the return on wealth of a strategic agent type does not necessarily corre-

spond to her welfare. A monopolistic agent type actually earns a lower return on her

wealth because the competitive Type 2 agent determines asset prices, and the strategic

Type 1 agents voluntarily remains over-exposed to what Type 2 agents view as the high

marginal utility state. This reflects that a Type 1 agent’s wealth portfolio is a hedge for a

Type 2 agent. Consequently, returns on wealth need not correspond to the value of wealth

for large agents.

The case when w1 = w2. If strategic agents are ex-ante symmetric, then risk shar-

ing is the only motive for trade, and we can search for an equilibrium in which each agent

sells aS units of the claim on the state in which she has high income, and buys aB units

of the claim on the state in which she has low income. Perfect risk sharing would require

that aS = −∆ and aB = ∆. To highlight the deviation from perfect risk sharing with

market power, we write the optimal security positions as aS = −∆ + δS and aB = ∆− δB,

where δS and δB are optimally chosen shading terms for agents in their state-contingent

roles as buyers and sellers. As a result, optimal distortions satisfy

Seller distortion:

∣∣∣∣∣ 1
2 u′(ȳ + δS)

u′(w + q∗ · (δS − δB))
− q∗

∣∣∣∣∣ = µ

m f
q∗′
(

∆− δS

)
Buyer distortion:

∣∣∣∣∣ 1
2 u′(ȳ− δB)

u′(w− q∗ · (δS − δB))
− q∗

∣∣∣∣∣ = µ

m f
q∗′
(

∆− δB

)
,

Agents find it optimal to distort portfolio holdings as both a buyer and a seller. Because

each agent is a seller in one state and a buyer in the other, both agents are forced to

imperfectly insure across both states. If agents also have asymmetric initial wealth, there

are further distortions in trade across time.

The case when ∆ = 0. In strategic agents differ only in their initial wealth, then
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there is only a market for a risk-free asset, in which case if w1 > w2

Seller distortion:

∣∣∣∣∣ u′(ȳ− a2)

u′(w2 + q∗a2)
− q∗

∣∣∣∣∣ = − µ

m f
q∗′a2

Buyer distortion:

∣∣∣∣∣ u′(ȳ + a1)

u′(w1 − q∗a1)
− q∗

∣∣∣∣∣ = µ

m f
q∗′a1.

It is immediate the efficient trading quantity is increasing in dispersion in initial wealth,

w1−w2, because the only gains from trade are from Type 2 agents selling risk-free bonds

to Type 1 agents to lower Type 1’s intertemporal marginal rate of substitution. To the

extent that market power hinders this reallocation of resources, the wealthier Type 1

agents consume less at date 1 and more at date 2. Consequently, market power raises

the marginal propensity to consume for agents who are wealthier today.

Interestingly, if instead we considered the case where both agents have the same

initial wealth w but Type 1 has higher income ȳ + ε at date 2, then Type 1 agents would

be sellers of risk-free bonds and sell too little. Consequently, market power lowers the

marginal propensity to consume for agents who are wealthier in the future. To the extent

the wealthy have long duration wealth, our model predicts wealthier households should

have lower marginal propensities to consume, as is observed in the data.

Numerical Example. To illustrate the portfolio and asset pricing implications of

market power, we further specialize our example to a Strategic Equilibrium where the

competitive fringe’s mass goes to zero, holding µ/m f fixed. Market-clearing then forces

strategic types to hold essentially offsetting positions, aS = −aB = −a∗ for some a∗.

In the Strategic Equilibrium, all states then have the same prices q∗ and price im-

pact q′∗. In addition, strategic agents net expenditures at date 1 are zero so that c1 = ȳ for

both strategic types. Summing up first-order conditions yields

q∗ =
1
2 u′(ȳ + ∆− a∗) + 1

2 u′(ȳ− ∆ + a∗)
u′(ȳ)

.

By the convexity of marginal utility, prices are increasing in the distortion to risk sharing.

This is reflected in Figure 1, which shows that prices are elevated when wealth is sym-

metric. However, distortions are asymmetric when some agents are richer than others.

Figure 2 shows the equilibrium consumption allocation in the Cournot-Walras
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Figure 1: Asset prices (Left) and price impact (Right) as a function of the wealth share w1/2ȳ of
Type 1.

equilibrium (CW) and the competitive equilibrium (CE) as a function of Type 1’s initial

wealth share w1/2ȳ. There is noticeably excess volatility in Type 1’s consumption at date

2, consistent with strategic agents extracting trading rents at the cost of more consump-

tion volatility. At date 1, because the richer strategic agent internalizes her larger trading

needs, she does not save enough, and the poorer agent saves too much.

An advantage of the allocation invariance of our complete markets setting (Propo-

sition 2) is that we can express the Arrow asset exposures of strategic agents in terms of

positions in more interpretable assets. Figure 3 clarifies the underlying distortions from

market power by decomposing strategic agent portfolios into positions in a risk-free bond

with payoffs [1, 1] and in a swap with payoffs [−1, 1]. The plot reveals how both margins

are distorted away from efficiency in the Cournot-Walras equilibrium. Strategic agents

trade two little of both assets, the bond price is inflated for most wealth levels, and the

swap price positively correlates with Type 1 agent’s wealth share.

Finally, we plot the returns on the total wealth Wi of both agent types. We define

total wealth as the sum of initial wealth and the present value of future income less initial

consumption, Wi = wi + ∑z q(z)yi(z)− c1,i, and the expected return on total wealth RW
i
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Figure 2: Consumption as a function of the wealth share w1/2ȳ of Type 1.

as in equation . Figure 4 plots the expected return on total wealth for both agent types

in both the Cournot-Walras (CW) and the competitive (CE) equilibria, as well as the risk-

free rate, for different wealth shares of Type 1 agents. Market power introduces excess

volatility into the returns on the total wealth portfolios of both agents, which are constant

in the competitive equilibrium. Interestingly, the wealthier agent type earns an expected

return in excess of the risk-free rate even though there is no aggregate risk in the economy.

In contrast, the poorer agent type earns a lower expected return below the risk-free rate.

This reflects that the wealthier agent type under-diversifies more than the poorer agent

type, and as a consequence bears more priced idiosyncratic risk in equilibrium.

Finally, we return to the finance versus industrial organization perspectives of mar-

ket power. Under the finance view, size represents an impediment to risk sharing, and

large investors are worse off than small investors because their trades have outsized price

impact. We can measure this efficiency loss as the difference in welfare, or ex ante ex-

pected utility, for both agents between the Cournot-Walras and Competitive Equilibrium,

respectively. Under the industrial organization view, size represents a source of rents, and

large investors can extract surplus by maintaining a wedge between public (or market-
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Figure 3: Portfolio of Arrow securities mapped into a risk-free bond with payoffs [1, 1] and a swap
with payoffs [−1, 1] as a function of the wealth share w1/2ȳ of Type 1.

based) and private valuations of their wealth. We measure this “private” surplus as the

investor’s Excess Wealth W̃i, which we define as

W̃i︸︷︷︸
Excess Wealth

= c1,i − w︸ ︷︷ ︸
Excess Expenditure

+∑
z

Λ(z)(c2,i(z)− y(iz))︸ ︷︷ ︸
NPV of consumption stream

.

For competitive agents, W̃i = 0, but for strategic agents it is strictly positive.

We plot the efficiency loss and excess wealth of both types of strategic agents in

Figure 5. Interestingly, we can harmonize the financial and industrial organization views

of market power by recognizing that the two concepts are connected. From the left panel,

there are efficiency losses when large agents behave strategically because expected utility

is always lower in the Cournot-Walras Equilibrium, with the poorer agent type always

being worse off. From the right panel, both agents earn rents as measured by excess
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Figure 4: Return on total wealth as a function of the wealth share w1/2ȳ of Type 1.

wealth, which is the same for both types because of symmetry, and these rents are pos-

itively related to the efficiency losses in the left panel. Consequently, although privately

strategic agents benefit from market power (the industrial organization view), socially

they are worse off because of the distortions of price impact (the finance view).

3.4 Endogenizing Real Concentration µ via an Entry Game

In this section, we examine the implications of market power for the size of agents, µi,

which we now determine and allow to be heterogeneous across types. Notice this size

divides up the initial wealth and endowment of agents of type i, wi and yi (z), respec-

tively, among 1/µ agents. A larger size corresponds to fewer of agents of that type, and

we consider types with fewer agents to be more concentrated industries. Our key insight

is financial market power gives rise to returns-to-scale to size that incentives entry into a

type, and these returns are endogenous to the risk exposures of other types. Through this

channel, there are externalities in the choice of size because financial market concentration
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Figure 5: Utility Difference between Cournot-Walras and Competitive Equilibria (Left) and Excess
Wealth (Right) as a function of the wealth share w1/2ȳ of Type 1.

within types worsens risk sharing across types, which feeds back into the endogenous

benefits of scale.

We now assume there is an initial date 0 before financial market trading occurs. At

date 0, an agent can pay a fixed cost µi f in certainty equivalent utility to become an agent

of type i with size µi, and this cost is the same for all types. As such, there is free-entry

into becoming a large agent. Because agent j of type i earns indirect utility h (µi)Uj,i at

date 1 from decision problem (2), where the h (µi) term arises from the homotheticity of

agent utility u (·), 1/µi agents will enter until

µi = arg min
µi′∈[0,1]

h (µi′)Uj,i (21)

s.t. u
(
Uj,i
)−1 ≥ f , (22)

taking as given the sizes of all other types µk for k 6= i.

We illustrate the behavior of the entry game in Figure 6 for parameters listed in Sec-

tion 4.1 when there are two types that are symmetric and have log utility. The left panel

plots the utility of agents of type 1 Uj,1 (normalized by h (µ1)) across different sizes µ1 for

different sizes of agents of type 2 µ2.15 As one can see, the utility of type one agents is

15We focus on Uj,1 to mute the mechanical benefit to agent utility from being larger.
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increasing in their size when µ2 is sufficiently large, but is hump-shaped when µ2 is suffi-

ciently small (small µ2). This reflects the trade-off between extracting rents, which may be

hump-shaped in size, and consumption volatility, which is increasing in size (Corollary

1). When the other type is large, the impact of increasing rents for a larger size dominates

type 1 agents’ utility, while when the other type is small, for large enough size, the cost

of higher consumption volatility drags down type 1 agents’ utility. Importantly, there

are strategic complementarities in size across agent types and market power incentivizes

agents to imperfectly share risks and become large.

The right panel of Figure 6 plots the equilibrium size of both agent types for dif-

ferent fixed costs of entry f . Interestingly, and perhaps surprisingly, the equilibrium size

is decreasing in barriers to entry. This is because the size of one agent type imposes an

externality on the other type through impaired risk sharing. When agents of one type be-

come larger (i.e., a larger µi), this worsens risk sharing for agents of the other type, raising

the volatility of their consumption through induced under-diversification. Through this

risk-sharing channel, there is complementarity across agent types in entry size, and equi-

librium (certainty equivalent) utility for both is actually lower when they are both large

compared to when they are both small. This gives rise to a negative relation between
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fixed costs of entry and the size of agents that enter.

4 Dynamic Model

In this section, we consider a dynamic version of our model to explore the implications

of market power for wealth accumulation and inequality. Time is discrete, the horizon

infinite, and strategic agents and the competitive fringe now receive income at each date.

Specifically, strategic agents of type i receive an income yi (zt) and the fringe an income

y f (zt) that are drawn from bounded and discrete sets. We assume that income processes

are time-homogeneous and all income processes can again jointly be summarized by Z

possible realizations. Markets are dynamically complete such that there is a full set of

Arrow securities at each time t over all possible state realizations at time t + 1.

Strategic agent of type i has wealth wt,i and subjective discount rate β, and now

solves the decision problem

U0,j,i = sup
σj,i

∞

∑
t=0

∑
zt∈Z

π (zt) βtu
(
ct,j,i (zt)

)
(23)

s.t. µwt,i ≥ µct,j,i + ∑
zt+1∈Z

Q̃t,i,j(A, zt+1)µat,j,i (zt+1) ,

µwt+1,i (zt+1) = µyi (zt+1) + µat,j,i (zt+1) ,

where the two constraints are the budget constraint of agent j of type i and the law of

motion of her wealth, respectively. We assume that strategic agents lack commitment and

focus on a Markov Perfect Cournot-Walras Equilibrium to avoid issues of reputation.

For simplicity, we assume an overlapping generations structure for the competitive

fringe, such that each generation continues to solve (3). As such, the price system at each

date is still characterized by (1), with prices at date t given by qt (z). As in the static model,

pricing by the fringe guarantees that there is no arbitrage at each date, and also resolves

any strategic uncertainty for strategic agents about equilibrium price impact.

To characterize optimal strategic portfolios in this dynamic setting, we now define

the state price Λt,j,i(zt+1) for agent j of type i at date t as the marginal rate of substitution
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between consumption in state zt+1 at date t + 1 and date t, that is

Λt,j,i (z) ≡
π (z) βu′

(
ct+1,j,i (zt+1)

)
u′1
(
ct,j,i

) . (24)

We then have the following proposition.

Proposition 7 There exists an equilibrium in which the optimal policies for at,j,i (zt+1) satisfy

Λt,j,i (zt+1) = qt (zt+1) +
µ

m f
q′t (zt+1) at,j,i (zt+1) . (25)

From Proposition 7, the optimal portfolio choice of agent j of type i balances similar trade-

offs as in (7) in our static setting. The right hand side reflects the marginal cost of buying

security zt+1, which is the cost of the security, qt (zt+1), plus the marginal impact that the

agent has on the price, µ
m f

q′t (zt+1) at,j,i (zt+1). The left-hand side is the marginal benefit

of buying the security, her state price Λt,j,i (zt+1). This marginal benefit, however, now

has a dynamic dimension because the strategic agent is forward-looking and chooses

consumption at each date to maximize her expected discounted continuation utility.

To gain further insight into the dynamic impact of market power, we iterate for-

ward on strategic agent i’s budget constraint from (23) to arrive at16

wt,j,i +
∞

∑
s=t

Λt,j,i (zs)Πs,j,i = ct,j,i +
∞

∑
s=t+1

∑
zs∈Z

Λt,j,i (zs)
(
cs,j,i (zs)− yi (zs)

)
, (26)

with the understanding that Λt,j,i (zt) = 1. In the above, Πs,j,i = ∑zs+1∈Z Πs,j,i (zs+1) is

i’s period s total rents and the rent in market zs+1 given by (13). Strategic agent i trades

such that the present-value of their net expenditures (consumption minus her income),

the right-hand side of (26), exceeds the value of her type’s current wealth wti, compared

to competitive agents who trade such that the present-value equals their wealth. Intu-

itively, strategic agent i manipulates prices to earn a surplus on all her trades in financial

markets, the present value of which is the second term on the left-hand side of (26). As

16Implicitly, we impose the transversality condition:

lim
T−→∞

∑
zT∈Z

Λit,T (zT)wT (zT) = 0.

This is satisfied with bounded aggregate income, Y (z) + m f y f (z), because, by market clearing in asset
markets, it is equal to total agent wealth.
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a result, there is a gap between a strategic agents’ private valuation of her wealth and

the public valuation of it using market prices. This is because state prices are dispersed

across strategic agents with market power even though markets are complete.17 As the

wealth distribution evolves over time, the present value of these rents changes with rela-

tive market power.

A key insight from the static model is that there is more upward pressure on asset

prices when agents are more symmetric. This result also holds in our dynamic setting.

Corollary 2 Suppose strategic agents are type-symmetric and have the same wealth at date t. In

a Strategic Equilibrium, all asset prices qt (zt+1) are higher, and the risk-free rate is lower, than in

the competitive equilibrium.

Symmetry, however, is not a stable outcome in the dynamic model. Since there is imper-

fect risk sharing, some agents must be wealthier than others ex-post. Their increased size

then raises their market power, leading to a transition to a more monopolistic structure.

Market concentration consequently gives rise to a rich set of predictions for asset prices

based on the dispersion in the wealth distribution among strategic agents. We illustrate

these effects using the following setting.

4.1 Numerical Illustration

We now illustrate the dynamic impact of market power through a numerical example. To

emphasize the role of the wealth distribution, we shut down all sources of heterogeneity

except for wealth. There are two equally likely states of the world at each date and two

type-symmetric strategic agent types that receive i.i.d. income shocks. Agents of type

1 receive ȳ + ∆ while type 2 receive ȳ − ∆ in state 1, and the reverse in state 2. Each

generation of the competitive fringe receives ȳ at every date. We set ȳ = 1 and ∆ = 0.25.

Strategic agents and the fringe at date t + 1 have log utility, u (x) = u f (x) = log (x).

To ensure that the fringe has no effect on wealth dynamics, we focus on the strategic

limit where m f → 0, holding µ/mu f constant. In this limit, the fringe determines the

residual demand curve, but markets essentially clear among strategic agents. The state

variable then is the distribution of wealth (w1, w2), which we initialize at (w10, w20) =

(1, 1). This means that agents are ex-ante symmetric at time 0, and symmetric conditional

17A similar phenomenon occurs with competitive agents in incomplete markets, but there differences in
valuations arise because certain risks cannot (rather than will not) be traded.
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on the state in all other periods. We can consequently write a single value function given

an agent’s own wealth w and the other agent type’s wealth w̄. This value function satisfies

V(w, w̄) = max
a(h),a(l)

u(c) + β ∑
z

π(z)V(w′(z), w̄′(z)) (27)

s.t. c = w1 −∑
z

q(z)a(z). (28)

w′(z) = y′(z) + a(z) and w̄′(z) = ȳ′(z) + ā(z). (29)

This setting features a stark competitive benchmark: because of perfect risk shar-

ing, the wealth distribution is constant after any sequence of shocks.

Proposition 8 (Wealth Dynamics under Perfect Competition) If markets are perfectly com-

petitive, there is perfect risk sharing among agents in every period. The wealth distribution there-

fore remains constant in all periods and after any sequence of shocks, and there is no variation over

time in prices, consumption, or portfolios.

This provides a clear contrast to the wealth dynamics that obtain in imperfectly

competitive markets. To illustrate these dynamics, we simulate the model for 20 periods.

The first 19 shocks are favorable to Type 1 (i.e. state 1 is realized), while the last shock

is favorable to Type 2 (i.e. state 2 is realized). The left panel in Figure 7 shows the re-

sulting realized wealth levels. The other panels show the degree of risk management by

plotting state-contingent possible future realizations of wealth for Type 1 agents (middle

panel) and Type 2 agent (right panel). Blue lines show wealth after a good shock; red lines

after a bad shock, and black lines the expectation. The dashed line depict the counterfac-

tual of perfect competition. We construct this counterfactual taking as given the wealth

distribution at the beginning of the period.

The left panel reveals that even after a long series of positive shocks, Type 1’s

wealth remains vulnerable to a negative shock. In fact, equilibrium risk sharing is such

that the wealth distribution reverses after a single negative shock, with Type 1 having

less wealth in period 20 than in period 1. This is because of the risk-rent trade-off: as

investors become wealthier, market power makes it more difficult for agents to manage

risk. As a result, agents trade less over time, particularly relative to their wealth. Since

agents with high income also become wealthier, market power consequently amplifies

underlying income inequality.
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Figure 7: Simulated wealth distribution and exposure to risk over time. The market equilibrium is
displayed with solid lines, while the competitive benchmark is displayed with dashed lines.

The comparison to the competitive benchmark further reveals that asymmetries in

the wealth distribution also lower agents’ savings rates. This reflects that part of agents’

returns to their wealth portfolios are accrued in trading rents.18 It also reflects that agents

save less and consume more in the present because price impact acts as a tax on financial

assets. The difference from the competitive benchmark increases as the wealth distribu-

tion becomes more asymmetric. Market concentration consequently presents a mecha-

18From equation (26), the present discounted value of an agent’s net consumption (consumption minus
income) stream is equal to her wealth plus the present value of her trading rents. Intuitively, a large agent
can afford a more expensive wealth portfolio than her wealth supports because of trading rents.
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nism that also raises the marginal propensity to consume for those at the very top of the

wealth distribution.
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Figure 8: Portfolio choice over time by Type 1 agents (Left Panel) and Type 2 agents (Right Panel).
The market equilibrium is displayed with solid lines, while the competitive benchmark is dis-
played with dashed lines.

Figure 8 shows the portfolios chosen by both agent types.19 As is apparent, market

power leads to quantity shading in both securities. Type 1 agents consequently buy much

less insurance against state 2 than they would under perfect competition. Indeed, this gap

grows as the agent becomes wealthier because larger positions have higher price impact.

Figure 9 depicts how asset prices evolve over time. At time 0, agents are symmetric

and all prices are above the competitive benchmark, consistent with Corollary 2. This no

longer holds, however, as the wealth distribution becomes more asymmetric. The price

of asset 1 falls as Type 1 becomes relatively wealthier, while the price of asset 2 initially

rises. The latter effect is driven purely by market power because prices in the competitive

equilibrium are the same in both states and have different behavior over time. Market

power, in addition, leads to much sharper reactions of prices to the wealth distribution;

19Type 2’s portfolio is pinned down By market clearing, i.e., a2(z) = −a1(z).
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Figure 9: Asset prices of the claim to state 1 (Left Panel) and state 2 (Right Panel) over time. The
market equilibrium is displayed with solid lines, while the competitive benchmark is displayed
with dashed lines.

that is, prices display more volatility.

The dynamics of asset returns are shown in Figure 10. The left panel reveals that,

because risk sharing is impaired, the risk-free rate us lower than in the competitive equi-

librium. The risk-free rate rises as the wealth distribution becomes more unequal because

wealthier agents have a lower willingness to pay for insurance. Because wealthier Type 1

agents also have a disproportionate impact on the equilibrium, this effect dominates the

higher willingness to pay for insurance of the poorer Type 2 agents.

The right panel of Figure 10 shows that the excess returns to claims 1 and 2 have

opposite dynamics. As Type 1 agents become wealthier, asset prices reflect more their

marginal willingness to pay for both assets. Since Type 1 agents become more highly

exposed to their own income state (state 1) as they accumulate wealth, the excess return

of claim 1 rises to reflect this amplified risk exposure. In contrast, since Type 1 agents are

under-exposed to state 2, the excess return to claim 2 falls to reflect its role as insurance

for those agents.

Our analysis can consequently help rationalize several empirical facts about wealth
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Figure 10: The risk-free rate (Left Panel) and asset excess returns (Right Panel) over time. The
market equilibrium is displayed with solid lines, while the competitive benchmark is displayed
with dashed lines.

inequality. First, market power gives rise to endogenous illiquidity in financial markets

that induces wealthier individuals to remain under-diversified and maintain a large share

of their holdings in illiquid paper wealth. Second, because of market power, wealth-

ier earn higher returns on their wealth portfolios than poorer investors, perpetuating in-

equality. Third, that low risk-free rates may be a symptom rather than a cause of wealth

inequality (e.g., Greenwald, Leombroni, Lustig, and Van Nieuwerburgh (2021), ). Ulti-

mately, our analysis emphasizes that exposure to idiosyncratic risk is important for un-

derstanding the right tail of the wealth distribution, and that even wealth individuals are

endogenously highly exposed to idiosyncratic risk.

4.2 Empirical Implications

In this subsection, we discuss the implications of our dynamic model for measuring the

distortions from market power in financial markets. Our key insight is that empirical

exercises that analyze the behavior of wealthy agents need to take into account the (en-

dogenous) illiquidity of their portfolios.
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Our dynamic model emphasizes the rich feedback between market power, asset

valuations, and inequality. When strategic agents are relatively symmetric, market power

inflates all asset prices relative to perfect competition. As agents become more unequal in

wealth, however, market power lowers prices from these elevated values and may even

push prices below their competitive benchmark values. Market power consequently dis-

torts the wealth of large agents and their incentives to trade in relatively illiquid markets.

It is therefore essential to account for market power when assessing empirically how the

wealthy, who disproportionately hold their wealth in illiquid assets, allocate their port-

folios. Fagereng, Gomez, Gouin-Bonenfant, Holm, Moll, and Natvik (2022), for instance,

measure the benefits of rising asset valuations for the wealthy as the present-discounted

value of the relative price gains realized from asset sales. Our analysis suggests such cal-

culations may understate the true value of rising asset prices because of rents wealthy

agents garner through strategic trading. This is, in part, because wealthy agents’ private

valuations differ from public valuations of their wealth using market prices.

Our analysis also provides guidance on how to modify measurement of the wealth

of the ultra-wealthy to account for private valuations. Because strategic agents trade until

the gap between an asset price q (z) and her state price Λi (z) is q′ (z) ai (z), this implies we

can recover her private value according to q (z) + q′ (z) ai (z). Consequently, her private

valuation of her wealth W̃t,i is

W̃t,i = wt,i + ∑
zt+1

Λt,i(zt+1)yi(zt+1) = wt,i + ∑
zt+1

(
1 +

q′ (zt+1)

q (zt+1)
ai (zt+1)

)
q(zt+1)yi(zt+1).

(30)

Consequently, observing how ultra-wealthy investors trade, and the price impact in the fi-

nancial markets they trade, is sufficient to recover their private valuations of their wealth.

5 Conclusion

We construct a dynamic model of concentrated financial markets in which large, risk-

averse agents internalize their price impact when trading state-contingent claims. We

show that large agents must accept more consumption risk to distort asset prices in their

favor. This imperfect risk sharing gives rise to ex-post wealth inequality that worsens

market liquidity, reducing trade and further amplifying portfolio under-diversification.
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As a result, even wealthy individuals remain highly exposed to idiosyncratic risk and

vulnerable to negative income shocks. The distribution of wealth further determines

how market power impacts asset prices: valuations are higher than in the competitive

equilibrium when the wealth distribution is symmetric, but tilted in favor of wealthier

agents when it is asymmetric. Our analysis can consequently explain why wealthy indi-

viduals are under-diversified, earn higher returns on their wealth than poorer households

because of market power, and have substantial paper wealth that is difficult to trade.
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A Proofs of Propositions

A.1 Proof of Proposition 1:

Step 1: The Problem of the Fringe:

From the first-order condition for a f (z) from the competitive fringe’s problem (3),

we can recover the pricing equation of the Arrow-Debreu claim to security z

q̃ (z) = π(z)u′f
(
c2 f (z)

)
= Λ f (z) ,

where Λ f (z) is the competitive fringe’s state price. Since c2 f (z) = y f (z) + a f (z), impos-

ing the market-clearing condition, (1), reveals that

q̃ (z) = π(z)u′f
(
y f (z)− A(z)

)
.

In equilibrium, this must be the realized price of the claim, Q(A, z). Consequently, the

competitive fringe’s Euler Equation pins down asset prices in the economy. As this price

is a function of state variables from the perspective of the fringe, we designate the realized

price more concisely as:

q (z) = Q(A, z).

Step 2: Equilibrium Price Impact:

We next impose a consequence of our Cournot-Walras equilibrium concept. Since

agents of type i take the demands of other agents (even within their type) as given. As a

consequence, because u f (z) is twice continuously differentiable and each agent’s position

size scales by its mass µ, we can derive each agent’s perceived price impact:

∂Q̃j,i(A, z)
∂ai (z)

= − µ

m f
π(z)u′′f

(
c2 f (z)

)
= − µ

m f

∂q(z)
∂A (z)

,

which also implies that price impact is symmetric across all strategic agents. Defining

q′ (z) = ∂q(z)
∂A(z) yields the expression in the statement of the proposition.

Finally, we recognize that price impact q′ (z) is convex as a consequence of the
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convex marginal utility of the fringe. It is straightforward to see that:

q′′ (z) =
µ

m f
π(z)u′′′f

(
c2 f (z)

)
> 0,

q′′′ (z) = −
(

µ

m f

)2

π(z)u′′′′f
(
c2 f (z)

)
> 0.

As such, price impact is convex in the net demand of strategic agents.

A.2 Proof of Proposition 2:

As a preliminary, suppose that we have some arbitrary asset span indexed by the |Z| ×
|Z| matrix X that is of full rank. In the special case of Arrow-Debreu assets, X = I|Z|,

i.e., the identity matrix of rank |Z|. Let xk index the kth row vector of X, and xk (z) be the

dividend asset k pays in state z.

If the competitive fringe trades assets with asset span X, then it is immediate from

the first-order conditions of the competitive fringe’s optimization problem that the vector

of asset prices~qX satisfies:

~qX = X ~Λ f = X~q, (31)

where ~Λ f is the vector of the fringe’s state prices and~q the vector of Arrow asset prices.

Since the quasi-linear competitive fringe now maximizes u f

(
y f (z)−∑|Z|k=1 x (z) xk (z) Axk (z)

)
+∑|Z|k=1 x (z) qxk Axk (z), where Axk (z) is the total demand for asset k of the strategic agents,

it follows that the price impact function can be summarized by the matrix Γ:

Γ = XUX′, (32)

where U is the diagonal matrix with diagonal entries − µ
m f

π(z)u′′f
(
c2 f (z)

)
.

Step 1: The Law of One Price:

That the Law of One Price holds for redundant assets in our complete markets

economy with Arrow-Debreu securities follows immediately from equation (31). Arrow-

Debreu prices in the economy therefore satisfy martingale pricing with Λ f (z) as the ap-

propriate state price deflator.
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Consequently, what is essential is that the competitive fringe takes prices as given,

which ensures no arbitrage across traded assets by the Law of One Price.

Step 2: Trade in Redundant Assets:

We next show that, if a redundant asset xk (z) is introduced into the Arrow-Debreu

complete markets economy, there must trade in that asset. Notice that the first-order

condition for strategic agent i’s optimal asset position ai,xk in the redundant asset is:

∑
z∈Z

xk (z)Λi (z) = qxk +
∂qxk

∂ai,xk

ai,xk (33)

Similarly, aggregating the first-order conditions of strategic agent i (see Proposition 3), we

also have that:

∑
z∈Z

xk (z)Λi (z) = ∑
z∈Z

xk (z) q (z) + ∑
z∈Z

∂q′ (z)
∂ai (z)

ai (z) . (34)

Equation (33) and (34), and invoking that qxk = ∑z∈Z xk (z) q (z) by no arbitrage, it follows

that

∑
z∈Z

∂q′ (z)
∂ai (z)

ai (z) =
∂qxk

∂ai,xk

ai,xk . (35)

Since the left-hand side of equation (35) is nonzero, it follows that the right-hand side

must be as well. Consequently, there must be trade in the redundant asset if there is trade

in the replicating assets.

Step 3: Market Structure Invariance:

We now establish that whether the complete markets span is I|Z| or X has no real

effects on allocations when X has full rank. Our arguments are similar in spirit to those in

(Carvajal (2018)), but applied to our setting and do not impose quasi-linearity of strategic

agents. If there are no real effects, then the consumption allocations of the fringe, c f 1 and

c2 f (z), and its state prices, Λ f (z), must be the same in both economies.

Notice that we can stack the first-order conditions for strategic agent i with asset
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span I|Z| from equation (39) as:
~Λi = ~Λ f + U~ai, (36)

where ~Λi are the stacked state prices of agent i, ~ai is the vector of her asset positions, and

we have substituted for Arrow-Debreu prices~q with ~Λ f .

Let ~ai,x be the vector of asset positions of agent i when she instead trades with

the asset span X. Imposing invariance of the consumption allocations of strategic agent i

requires that:

~ai = X′ ~ai,x. (37)

Substituting with equation (37), we can manipulate equation (36) to arrive at:

X~Λi = X~Λ f + XUX′ ~ai,x = X~Λ f + Γ ~ai,x, (38)

where we have also substituted with equation (32). This is the identical stacked first-order

conditions if strategic agent instead traded asset span X.

Consequently, if the competitive fringe’s consumption allocations are unchanged

between asset spans, then so are the optimal portfolios of each strategic agent. If all

strategic agents have the same asset demands, then their aggregate demand for asset

exposures in each state z are the same. By market clearing, then, the state-specific asset

exposures of the competitive fringe are the same in both asset spans, and consequently so

are their consumption allocations, confirming our conjecture.

What remains to show is that the budget sets of strategic agents are unchanged

across asset spans. This, however, is trivial because no arbitrage makes invariant the

cost of state-specific asset exposures. Consequently, financing the same portfolio of state-

specific asset exposures costs the same with asset span I|Z| as with asset span X.

As such, real allocations in our complete markets economy are invariant to the

span of assets that can be traded. As such, studying Arrow-Debreu security markets

is without loss of generality. It is straightforward to extend our analysis to allow for a

I|Z| + n× I|Z| matrix X of rank |Z| with n redundant assets.

A.3 Proof of Proposition 3

Step 1: The Problem of Strategic Agents:
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We first consider the optimization problem of strategic agent j of type i, (2). In

what follows, we attach the Lagrange multiplier ϕi to the budget constraint. The FONCs

for ci,j,1 and {ai,j (z)}z∈Z are then given by:

c1,j,i : u′
(
c1,j,i

)
− ϕj,i ≤ 0

(
= i f c1,j,i > 0

)
,

aj,i (z) : −π (z) ui′
2
(
c2,j,i (z)

)
+ ϕj,i

(
Q̃j,i(A, z) +

∂Q̃j,i(A, z)
∂aj,i(z)

ai,j (z)

)
= 0.

The above represents the FONCs for agent i′s problem. Because u (·) satisfies the Inada

condition, c1,j,i > 0 and the first FOC binds with equality.

Now that we have derived the FONCs for agent i’s optimal asset demands, we can

impose the consistency required of a Cournot-Walras equilibrium with the competitive

fringe. Because strategic agent i has rational expectations, her perceived price impact

must coincide with her actual price impact from (5) in Proposition (1). Consequently,

these FONCs reduce to:

aj,i (z) : Λj,i (z) = q (z) +
µ

m f
q′(z)aj,i (z) ∀ z ∈ Z . (39)

We next establish that the correspondence for admissible controls from the con-

straint set of strategic agent j of type i is compact-valued. This must be true because all

strategic agents will have nonnegative consumption at both dates, c1,j′,i′ , c2,j′,i′ (z) ∀i′, j′, z.

Because endowments are bounded, all strategic agents will have a maximum amount of

each security they will sell. Similarly, because the fringe has nonnegative consumption at

date 2, it is similarly limited in its asset sales. Since every asset is in finite supply, all agent

consumptions are bounded at both dates and A is bounded element-by-element.

Consequently, we can bound all controls of strategic agent j, i’s problem, {c1,j,i,

{aj,i (z)}z∈Z}, in a closed and bounded set. By the Heine-Borel Theorem, this set is com-

pact.

We now recall from Proposition (1) that the pricing functional Qj,i(A, z) is contin-

uously differentiable in A because it is the marginal utility of the competitive fringe in

state z, π (z) u′f
(
c f 2 (z)

)
. Since the state prices of the strategic agents and the price impact

functional are continuous because all utility functions are C2, strategic agent j, i’s choice

correspondence set is also continuous in the optimization problem’s primitives (i.e., in-

come processes and initial endowments). As such, the choice correspondence of strategic
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agent j, i’s problem is continuous and compact-valued.

It then follows because the objective function of strategic agent j, i is continuous (in

fact, differentiable), and the choice correspondence is continuous and compact-valued,

that by Berges’ Theory of the Maximum a solution to the decision problem of strategic

agent j, i exists. As the choice of j, i was arbitrary, this holds for all agents j of type i and

all types i ∈ {1, ..., N}.

Step 2: Existence:

As a result of Berge’s Theory of the Maximum, the optimal policies of each strate-

gic agent are upper-hemicontinuous correspondences. We can then construct a mapping

from a conjectured set of initial consumption and asset decisions for all strategic agents

to an optimal set of initial consumption and asset decisions using the market-clearing

conditions (1) and the optimal policy correspondences as an equilibrium correspondence

whose image is a compact space. Since the budget constraints of strategic agents are not

necessarily convex because of market power, we allow for randomization of consumption

bundles to ensure that the compact space is also convex. We can then apply Kakutani’s

Fixed Point Theorem to conclude that an equilibrium exists.

A.4 Proof of Proposition 4

Step 1: Approximating Agent i’s Trading Portfolio:

Suppose all strategic agents have size µ and we increase the size of agent n to

µn = µ + ∆µ close to µ. Then we can rewrite the FOC for the optimal position in the

Arrow-Debreu security in state z from Proposition 3 as:

E

[
u′ (ĉn (z′))

u′ (ĉn,1)
δ (z)

]
− q (z)− µn

m f
q′ (z) ân (z) = 0.

Let gn (z) =
c2,n(z)

c1,n
be the consumption growth of agent n in the equilibrium where all

strategic agents have size µ. We can take a first-order approximation around this equilib-
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rium to find that:

E
[
u′
(

gn
(
z′
))

δ (z)
]
− q (z)+E

[
gn
(
z′
)

u′′
(

gn
(
z′
)) (∆cn (z′)

cn (z)
− ∆cn,1

cn,1

)
δ (z)

]
− µn

m f
q′ (z) ân (z) ≈ 0.

where cn,1 and cn (z) are consumption at dates 1 and 2 in the original equilibrium. Substi-
tuting for the consumption growth around the original equilibrium:

0 ≈ E

[
gn
(
z′
)

u′′
(

gn
(
z′
)) (

(ân (z)− an (z))
δ (z)

cn (z′)
−

Z

∑̃
z=1

q (z̃) + µ
m f

q′ (z̃)

cn,1
∆an (z̃)

)
δ (z)

]

+E
[
u′
(

gn
(
z′
))

δ (z)
]
− q (z)− µn

m f
q′ (z) ân (z) ,

where ∆an (z′) = ân (z′)− an (z′), which reduces since δ (z) is the indicator for state z to:

0 ≈ E

[
u′
(

gn
(
z′
)) δ (z)

q (z)

]
− 1− µn

m f

q′ (z)
q (z)

ân (z)

+E

gn
(
z′
)

u′′
(

gn
(
z′
)) 1/cn (z′)−∑Z

z̃=1

q(z̃)+ µ
m f

q′(z̃)

cn,1

∆an(z̃)
∆an(z)

q (z)
δ (z)

 (ân (z)− an (z)) .

Define γ (x) = −xu′′ (x) /u′ (x) to be the agent’s coefficient of absolute risk aversion.

Then, the above reduces to:

ân (z) ≈ an (z) +
E
[
u′ (gn (z′))

δ(z)
q(z)

]
− 1− µn

m f

q′(z)
q(z) ân (z)

E

γ (gn (z′)) u′ (gn (z′))
1/cn(z′)−∑Z

z̃=1

q(z̃)+ µ
m f

q′(z̃)

cn,1
∆an(z̃)
∆an(z)

q(z) δ (z)


.

Finally, substituting the first term of the numerator with the FOC from Proposition 3:

ân (z) ≈ an (z) +

q′(z)
q(z)

(
− µ

m f
(ân (z)− an (z)) +

(
µ

m f
− µn

m f

)
ân (z)

)
E

γ (gn (z′)) u′ (gn (z′))
1/cn(z′)−∑Z

z̃=1

q(z̃)+ µ
m f

q′(z̃)

cn,1
∆an(z̃)
∆an(z)

q(z) δ (z)


,
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which we can rewrite as:

ân (z) ≈ an (z)−
∆µ
m f

q′(z)
q(z) ân (z)

µ
m f

q′(z)
q(z) + E

γ (gn (z′)) u′ (gn (z′))
1/cn(z′)−∑Z

z̃=1

q(z̃)+ µ
m f

q′(z̃)

cn,1
∆an(z̃)
∆an(z)

q(z) δ (z)


.

Step 1: Return on Agent i’s Wealth Portfolio:

We define on return on the wealth portfolio

RW
i =

∑z∈Z π (z) c2,i (z)
wi + ∑z∈Z q (z) yi (z)− c1,i

=
∑z∈Z π (z) c2,i (z)
∑z∈Z q (z) c2,i (z)

, (40)

where we substitute for wi with strategic agent i’s budget constraint.

We begin by rewriting the first-order condition for agent i’s optimal asset demand

in state z

Λi (z) = π (z) u′
(

c2,i (z)
c1,i

)
= q (z)

(
1 +

q′ (z)
q (z)

ai (z)
)

. (41)

Define αs (z) =
(

1 + q′(z)
q(z) ai (z)

)−1
≥ 0, it then follows

c2,i (z) = u′−1
(

q (z)
π (z) αs (z)

)
c1,i (42)

In addition, define vs (z) =
q(z)
π(z)u′−1

(
q(z)

π(z)αs(z)

)
. We can then write the return on strategic

agent i’s wealth portfolio

RW
i =

E
[

π(z)
q(z) vs (z)

]
E [vs (z)]

= E
[

π (z)
q (z)

]
+ Cov

(
π (z)
q (z)

,
vs (z)

E [vs (z)]

)
. (43)

A.5 Proof of Corollary 1

Step 1: Comparative static for Var [cn (z)]:

Suppose all strategic agents have size µ and we increase the size of agent n to

µn = µ + ∆µ close to µ. It is immediate that:

Var [ĉn (z)] = Var [cn (z)] + Var [∆ân (z)] + 2Cov [cn (z) , ∆ân (z)] .
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With incremental market power (i.e., µ → µ + ∆µ), strategic agent n shades down its

purchases (∆ân (z) < 0) to lower prices in states where its consumption cn (z) is low (i.e.,

agent n is a buyer because its consumption in that state is low). Similarly, it reduces its

sales (∆ân (z) > 0) to raise prices for states in which its consumption is high. As a result,

Cov [cn (z) , ∆ân (z)] ≥ 0 because the agent is raising consumption in states in which it is

already high and lowering it in states in which it is already low.

As a result:

Var [ĉn (z)] ≥ Var [cn (z)] + Var [∆ân (z)] > Var [cn (z)] ,

Step 2: Comparative static for Πn:

Notice next that the return on agent n’s tradable wealth portfolio from substituting

with the FOC for agent n’s optimal holdings:

Πâ
n = E

[
Λ̂n (z) ân (z)

]
−

Z

∑
z=1

q (z) ân (z) =
µn

m f

Z

∑
z=1

q′ (z) â2
n (z) .

The return on the tradeable wealth portfolio is the total rents that agent n extracts from fi-

nancial markets. Two forces drive the comparative static, dΠâ
n

dµn
: 1) ∑Z

z=1
d

dµn

(
µn
m f

q′ (z)
)

â2
n (z) >

0, as an increase in market power increases price impact and therefore rent extraction

from market illiquidity; and 2) ∑Z
z=1

µn
m f

q′ (z) dâ2
n(z)

dµn
< 0 because trading positions become

smaller as the agent exerts market power.

When µn = 0, the agent behaves competitively and Πâ
n = 0. Locally around µn =

0, the first force dominates as an infinitesimal amount of market power raises profits. As

a thought experiment, at the other extreme µn arbitrarily large (i.e., µn → ∞), profits are

also zero because the trading needs of the agent are so large that it is forced into autarky.

Locally around µn = ∞, the second force dominates and the burden of size dominates

as the large agent is forced into autarky because it moves prices too much to trade even

small quantities. As such, dΠâ
n

dµn
> 0 around µn = 0 and dΠâ

n
dµn

< 0 near µn = ∞, and trading

rents are strictly positive, or Πâ
n > 0, on the interior for µn.

As these are the only two trade-offs for the agent, and µn in actually bounded

between 0 and 1, it follows that trading rents are either increasing or hump-shaped in µn.
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A.6 Proof of Proposition 5

Step 1: Type-Symmetric Case:

Summing over condition (7) and imposing market-clearing in the Strategic Equi-

librium (in which m f ≈ 0) yields:

q(z) = E∗[Λi(z)]. (44)

In the competitive equilibrium, in contrast, qCE(z) = E∗ [Λi(z)] = ΛCE(z).

The following Lemma characterizes state prices in the competitive equilibrium

when all agents have the same initial wealth w.

Lemma 1: State prices in the competitive equilibrium, ΛCE (z) satisfy:

ΛCE (z) = π (z) u′

 Y (z) + ACE (z)

∑N
i=1 wi + m f

(
w f − cCE

f 1

)
 . (45)

In the Strategic Equilibrium in which all strategic agents are type-symmetric and

m f ≈ 0, and consequently ACE (z) ≈ 0, (45) from Lemma 1 reduces to:

ΛCE (z) = π (z) u′
(

1
N Y (z)

w

)
.

In the special case in which all agents are type-symmetric, then ∑z∈Z q (z) ai (z) =

0 and c1,i = w for all i. We can then apply Jensen’s Inequality to (44) and invoke Lemma

1 to conclude that:

E∗[Λi(z)] ≥ u′
(

1
N ∑N

n=1 c2,i (z)
w

)
= u′

(
1
N Y (z)

w

)
= ΛCE(z),

by market-clearing (1). This holds for all µ > 0.

Since all q (z) are higher with market power, it follows r f (the inverse of the sum

of state prices) is also lower.

Step 1: Asymmetric Wealth Case:

We start from the type-symmetric case in which all strategic agents have the same
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initial wealth w. In this case, from Proposition (5), asset prices are inflated state-by-state.

We first establish that, conditional on the asset price q (z) and an agent’s effective

income ỹi (z) = yi (z) /wi (i.e., holding the effect of wealth on the normalized income

process constant), her asset demands are linear in her wealth (i.e., ai (z) = âi (z)).20

Step a: Conditional homogeneity of optimal policies in wealth:

Suppose that the optimal policies of a strategic agent of type i are linear in wealth.

We then rewrite the FONCs (7) for the strategic agent of type i, given the homotheticity

of strategic agent preferences as:

âi (z) : π (z)
u′ (ĉ2,i (z))

u′ (ĉ1,i)
− q (z)− µq̂′(z)âi (z) = 0, (46)

where we recognize that q̂′(z) = 1
wi

q′(z), where q̂′(z) = ∂Q̃i(A,z)
∂âi(z)

. It then follows that,

conditional on prices q (z) and ỹi (z), the optimal policies of the strategic agent of type i

are indeed homogeneous of degree 1 in wi.

Step b: A perturbation in a strategic agent’s wealth:

Now suppose agents of type i have total initial wealth w′ > w compared to other

agents. There are two relevant forces based on equation (8).

The first force is that an increase in wealth reduces her effective income to yi (z) /w′i.

This raises her state price because she wants to consume more at date 2 because of her

higher wealth but is limited to the same income that she has to trade. As a result of the

increase in state price, she sells less and buys more, potentially becoming buyers of all

securities for large enough w′.

The second force is an indirect effect also explored in Neuhann and Sockin (2021).

An increase in her initial wealth raises how much the same normalized asset position,

âi (z), moves the asset price q (z). As such, it raises prices when she is a buyer and lowers

them when she is a seller for the same âi (z).

20If this is the case, then so are her consumption processes by definition (i.e., c1,i = ĉ1,iwi and c2,j,i (z) =
ĉ2,j,i (z)wi).
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It is unambiguous that both forces reduce the upward pressure on prices from

market power from the symmetric case in markets in which type i is a seller. This is

because she extracts less rents from each unit of asset traded and is forced to trade more.

In markets in which she is a buyer, she extracts more rent per unit of asset traded but is

also forced to trade more.

On net, because she overall buys more and not less when trading needs go up,

increasing her distortion from market power that lowers asset prices.

A.7 Proof of Proposition 6:

Step 1: Approximating Expected Returns:

Define the expected return E [r (z)] = π(z)
q(z) . Notice in the Strategic Equilibrium

that:

q (z) = E [E∗ [Λi (z)] δ (z)] =
π (z)

r f
+ Cov (E∗ [Λi (z)] , δ (z)) ,

where δ (z) is the indicator that state z realizes. Standard manipulation establishes that

the expected excess return, E
[
r (z)− r f

]
, satisfies:

E
[
r (z)− r f

]
= −Cov

(
E∗ [Λi (z)]

E [E∗ [Λi (z)]]
, δ (z)

)
We now consider a small perturbation in market concentration around the competitive

equilibrium. Notice the gross return on the Arrow security referencing state z, E [r (z)] =
π(z)
q(z) , to first-order because ∆q (z) > 0 from Proposition 5:

E [r (z)]−E
[
rCE (z)

]
≈ − π (z)

qCE (z)
∆q (z)
qCE (z)

< 0.

In addition, because all state prices rise:

r f − rCE
f ≈ −

(
rCE

f

)2
∑

z′∈Z
∆q
(
z′
)
< 0,

It then follows that:

E
[
r (z)− r f

]
−E

[
rCE (z)− rCE

f

]
≈
(

rCE
f

)2
∑

z′∈Z
∆q
(
z′
)
− π (z)

qCE (z)
∆q (z)
qCE (z)

. (47)
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Step 2: Risk Premia in the Type-Symmetric Case:

In a type-symmetric equilibrium, we recognize:

q (z) = E∗ [Λi (z)] = π (z)E∗
[

u′
(

c2,i (z)
w

)]
,

qCE (z) = Λ∗ (z) = π (z) u′
(

Y (z)
Nw

)
,

because all agents have common beliefs and homothetic preferences. Furthermore, under

a second-order approximation:

∆q (z) = π (z) u′′
(

Y (z)
Nw

)
E∗
[

∆c2,i (z)
w

]
+ π (z) u′′′

(
Y (z)
Nw

)
E∗
[
(∆c2,i (z))

2

w2

]

= π (z) u′′′
(

Y (z)
Nw

)
E∗
[
(∆c2,i (z))

2

w2

]
,

because in a type-symmetric equilibrium all strategic agents consume w, regardless of µ,

and by market-clearing in consumption markets (57):

E∗
[

∆c2,i (z)
w

]
= 0.

Define P (z) = −Y(z)
Nw u′′′

(
Y(z)
Nw

)
/u′′

(
Y(z)
Nw

)
to be the coefficient of relative prudence and

γ (z) = −Y(z)
Nw u′′

(
Y(z)
Nw

)
/u′

(
Y(z)
Nw

)
to be the coefficient of relative risk aversion. It then

follows from (47) that

E
[
r (z)− r f

]
≈ E

[
rCE (z)− rCE

f

]
−
(

rCE
f

)2
∑

z′∈Z
qCE (z′) γ

(
z′
)

P
(
z′
)

E∗
[(

∆c2,i (z′)
Y (z) /N

)2
]

+
γ (z) P (z)

qCE (z)
E∗
[(

∆c2,i (z)
Y (z) /N

)2
]

. (48)

Since strategic agent utility is concave and marginal utility is convex (u′′′ (·) > 0),

P (z) > 0, and therefore the second term on the right-hand side of (48) is negative (i.e.,

∆q (z) > 0 for every state z). The third term on the right-hand side is the state-specific fall

in expected returns because market power inflates each state price.

In a type-symmetric setting, market concentration raises all asset prices and lowers
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the risk-free rate from Proposition 5. The first effect lowers expected excess returns state-

by-state while the second raises expected excess returns for all states.

Notice that the last term on the right-hand side of (48) can be expressed as:

γ (z) P (z)
qCE (z)

E∗
[(

∆c2,i (z)
Y (z) /N

)2
]
=

(
Y(z)
Nw

)2
u′′′
(

Y(z)
Nw

)
π (z) u′

(
Y(z)
Nw

) E∗
[(

∆c2,i (z)
Y (z) /N

)2
]

.

Suppose x2u′′′ (x) /u′ (x) is increasing in x, which is satisfied, for instance, with

CRRA preferences. Notice that the ratio E∗
[(

∆c2,i(z)
Y(z)/N

)2
]

mutes differences in aggregate

endowment growth across states, although it does not mute how aggregate growth inter-

acts with the dispersion in endowments.

It follows that if there is a sufficiently large difference in aggregate endowments at

date 2, Y (z), in the high versus low aggregate endowment states, then the x2u′′′ (x) /u′ (x)

force dominates that of differences in E∗
[(

∆c2,i(z)
Y(z)/N

)2
]

across states. In this case, expected

excess returns increase more for high than low aggregate endowment growth (Y (z) /Nw)

states, and there is then risk compression in state prices.

A.8 Proof of Proposition 7:

Step 1: Primal to Dynamic Problem:

We write the primal problem (23) as the dynamic programming problem:

Vt,j,i
(
wt,j,i

)
= sup

ct,j,i,at,j,i(zt+1)

u
(
ct,j,i

)
+ β ∑

zt+1∈Z
π (zt+1)Vt+1,j,i

(
wt+1,j,i (zt+1)

)
, (49)

with associated transversality condition:

lim
T→∞

∑
zT∈Z

π (zT)VT,j,i
(
wT,j,i (zT)

)
= 0.

This transversality condition is satisfied because aggregate consumption, ∑j,i ct,j,i, is bounded

by the aggregate incomes of all strategic agents and the fringe, Y (z) + m f y f (z), which is

also bounded.

Standard arguments then establish that a solution to the dynamic problem is also

a solution to the primal problem. For instance, iterating forward and imposing transver-

55



sality, we find that:

V0,j,i = sup
cj,i,aj,i

∞

∑
t=0

∑
zt∈Z

βtπ (zt) u
(
ct,j,i (z)

)
.

If a solution to the primal problem exists, then a solution to the dynamic problem also

exists.

Notice that because Arrow securities reference the state only one period ahead,

there is no scope for strategic agents to violate the expectations of other agents ex post,

which would give rise to dynamic inconsistency. Since strategic agents lack commitment

and we focus on Markov Perfect Equilibrium, we do not need to keep track of promise-

keeping auxiliary state variables for strategic agents’ policies to be time-consistent.

Step 2: Optimal Policies:

Let λt,j,i be the Lagrange multiplier on the budget constraint from (23). Assuming

the value function Vt,j,i
(
wt,j,i

)
is C1, the first-order condition for the optimal consumption

and portfolio choices are:

ct,j,i : u′
(
ct,j,i

)
≤ λt,j,i, (= i f ct,j,i > 0), (50)

at,j,i (zt+1) : βπ (zt+1)V′t+1,j,i
(
wt+1,j,i (zt+1)

)
= λt,j,i

(
qt (zt) +

µ

m f
q′t (zt+1) at,j,i (zt+1)

)
.(51)

In addition, the Envelope Condition further imposes:

V′t,j,i
(
wt,j,i

)
= λt,j,i. (52)

Since u (·) satisfies the Inada condition, (51) holds with equality. Substituting (51) and the

(52) into (51), the optimal portfolio condition for security zt+1 can be written as:

Λt,j,i (zt+1) = qt (zt+1) +
µ

m f
q′t (zt+1) at,j,i (zt+1) , (53)

where Λt,j,i (zt+1) is the state price of agent j of type i at date t for state zt+1 given by (24).

Step 3: Existence:
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We establish existence in two steps. In the first step, fix some arbitrary final date

T. The total value of all endowments across all dates is then bounded. By feasibility,

the consumption (which must be nonnegative) and asset positions of all agents must also

be bounded (and consequently lie in a compact set). Allowing for randomization, this

strategy space for all agents can be made convex.

It then follows because the objective function of strategic agent j, i in the primal

problem (23) is continuous (in fact, differentiable), and the choice correspondence is again

continuous and compact-valued (maps to a compact set), that by Berges’ Theory of the

Maximum a solution to the decision problem of strategic agent j, i exists. As the choice

of j, i was arbitrary, this holds for all agents j of type i and all types i ∈ {1, ..., N}. The

optimal policies of strategic agents are also upper hemicontinuous.

We can then apply Kakutani’s Fixed Point Theorem to the market clearing condi-

tions for asset positions to conclude an equilibrium exists for finite T.

In the second step, we take the limit as T → ∞. Since agent consumption and asset

positions continue to remain bounded at each date, and strategic agent transversality

conditions are satisfied, we can pass through the limit to conclude an equilibrium exists

in the infinite horizon economy.

A.9 Proof of Corollary 2:

We can aggregate (25) across strategic agents and impose the strategic equilibrium to

arrive at:

qt (zt+1) = E∗
[
Λt,j,i (zt+1)

]
.

Given the definition of state prices from (24), we can apply similar arguments in the type-

symmetric case to establish that

qt (zt+1) ≥ qCE
t (zt+1) . (54)

Consequently, Arrow prices are higher state-by-state at date t. Since the risk-free rate is

the inverse the sum of Arrow prices, the risk-free rate is depressed.
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A.10 Proof of Proposition 8:

Consider the limit µ → 0 in which all large agents behave competitively. Since markets

are competitive, all agents align their state prices in equilibrium state-by-state. This can

only happen if they each consumed a fixed fraction of the aggregate endowment, i.e.,

perfect risk sharing, with this fraction increasing in an agent’s wealth.

If agents’ consumption shares are fixed, then so are the ratios of their wealth. This

is because each agent’s wealth is equal to the present discounted value of her future con-

sumption stream. Since all agents have the same state prices state-by-state and consump-

tion is a constant fraction of the aggregate endowment, their wealths are their consump-

tion shares multiplied by the present value of the aggregate endowment.

A.11 Proof of Lemma 1:

In this lemma, we characterize the competitive equilibrium without market power. The

standard first-order conditions for optimal consumption and asset holdings align state

prices for all agents state-by-state:

q (z) =
π (z) u′ (c2,i (z))

u′ (c1,i)
= π (z) u′f

(
c f (z)

)
= ΛCE (z) , (55)

which implies for the N types of agents with homothetic preferences:

c2,i (z)
c1,i

=
c2,j (z)

c1,j
= η (z) , (56)

and for the competitive fringe:

c f (z) = η f (z) = u−1
f
(
u′ (η (z))

)
.

Notice that equation (56) implies:

∑N
i=1 c2,i (z)

∑N
i=1 c1,i

= η (z) . (57)

Substituting the market-clearing conditions at both dates into (57), and equating

η (z) with consumption growth in equation (56) and state prices in equation (55), we
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arrive at:

ΛCE (z) = π (z) u′

 Y (z) + ACE (z)

∑N
i=1 wi + m f

(
w f − cCE

f 1

)
 .

B Comparing Cournot-Walras and Equilibrium-in-Demand-

Schedules

Our model of strategic trading in financial markets uses Cournot-Walras equilibrium as

our equilibrium concept. This equilibrium concept differs from a long tradition following

Kyle (1989), which focuses on Equilibrium-in-Demand-Schedules (also known as double

auctions). Although both equilibrium concepts allow strategic traders to submit price-

contingent demand schedules taking into account their impact on equilibrium prices, they

have subtle differences that render each particularly suitable for some applications but

not for others.

An important observation, however, is the basic forces governing how a strategic

agent distorts her portfolio are independent of the equilibrium concept in that, condi-

tional on price impact, her partial equilibrium asset demands are the same. What differs

is how this price impact function is determined, which in equilibrium leads to nuanced

strategic interactions among the strategic agents. Neuhann and Sockin (2021) formalizes

this comparison in the special case in which strategic traders have Constant Absolute Risk

Aversion preferences and uncertainty is normally distributed (i.e., the CARA-Normal set-

ting), which is the canonical setting for the Equilibrium-in-Demand-Schedules concept.

Our contribution in this appendix is to extend this comparison to a more general com-

plete markets setting, and characterize an Equilibrium-in-Demand-Schedules version of

our model.

B.1 Liquidity Traders instead of a Competitive Fringe

As in our static model, suppose there are again two dates 1 and 2 and z ∈ Z finite poten-

tial states of the world. There N types of strategic agents, each consisting of 1/µ agents

of size µ, who choose their asset positions to maximize decision problem 2. However,

instead of a competitive fringe there are liquidity traders who take a random position ξz
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in asset z at date 1. Market clearing for each asset now requires

N

∑
i=1

ai (z) + ξ (z) = 0, ∀ z ∈ Z . (58)

An advantage of the Equilibrium-in-Demand Schedules approach is that strategic inter-

action can be studied in this setting in which only strategic agents make portfolio choices.

If we attempted to impose a Cournot-Walras equilibrium, in contrast, we would recover

the competitive equilibrium because by taking each other strategic agent’s asset demand

as given, every strategic agent believes she cannot influence prices.

B.2 Strategic Forces with Equilibrium-in-Demand Schedules

Under the Equilibrium-in-Demand-Schedules equilibrium concept, each strategic agent

internalizes she can influence the asset price Q (A, z), where A is the vector of all gents’

demands across all assets, by shifting each other strategic agents’ demand curves (i.e., she

internalizes
∂aj(z)
∂ai(z)
∀ (j, z)). Assuming a C1 price function Q (A, z), the first-order necessary

condition for a strategic agent of type i’s demand for asset z is the analogue of equation 7

from Proposition 3

Λi (z) = Q (A, z) + µ
∂Q (A, z)

∂ai (z)
ai (z) , (59)

where Λi (z) is the state price of strategic agent i given in equation 6.

We first analyze the partial equilibrium behavior of a strategic agent of type i, tak-

ing as given the equilibrium pricing function Q (A, z) (and consequently the agent’s price

impact). Similar to the decomposition in equation 8, we can rewrite the asset demand of

a strategic agent of type i as ai (z) = âi (z)wi and the first-order condition 59 as

π (z) u′
(

yi (z) /wi + âi (z)
1−∑z′∈Z Q

(
Â, z′

)
âi (z′)

)
= Q (A, z) + µ

∂Q
(

Â, z
)

∂âi (z)
âi (z) , (60)

where by the chain rule
∂Q(Â,z)

∂ai(z)
= 1

wi

∂Q(Â,z)
∂âi(z)

and Â is now the vector of wealth-normalized

asset demands.

It is immediate a strategic agent of type i’s asset demand responds to changes in

initial wealth wi, normalized endowment yi (z) /wi, and prices Q (A, z) as in the Cournot-

Walras equilibrium characterized in Section 3.1. Consequently, our analysis for a Cournot-
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Walras equilibrium also characterizes wealth and endowment effects in a complete mar-

kets Equilibrium-in-Demand-Schedules setting.

As discussed in the introduction to this appendix, what differs is the general equi-

librium forces that act through asset prices and price impact. In Cournot-Walras, we se-

lect among all pricing functions Q (A, z) that are consistent with rational expectations the

unique price function consistent with the competitive fringe’s optimization, q (z). This is

because strategic agents place a wedge between their state prices Λi (z) and Arrow asset

prices Q (A, z). The competitive fringe, however, does not. As a result, the Arrow as-

set price is always equal to the competitive fringe’s state price. There is no other choice

consistent with a Cournot-Walras equilibrium.

Under the Equilibrium-in-Demand-Schedules concept, in contrast, there is no price-

taking agent whose state price must, in equilibrium, equal the Arrow asset price. As a

result, there are potentially many ways to specify asset prices that provide the appropri-

ate wedges such that all strategic agents’ Euler Equations and market-clearing conditions

are satisfied. As such, small changes in strategic agents’ wealth or endowment processes

can lead to vastly different equilibria when multiple exist, and it is unclear how to select

a principal equilibrium.

B.3 Solving for an Equilibrium-in-Demand Schedules

To solve for an Equilibrium-in-Demand-Schedules, we recognize in addition to the N ×
|Z| first-order conditions for strategic agents’ demands from equation 59, we have the

Z market-clearing conditions 58. Notice there may be many equilibrium consistent with

rational expectations, strategic agents’ Euler Equations, and market clearing. To make

progress, previous research has focused on settings in which all agents are symmetric

to reduce the number of Euler Equations to |Z| instead of N × |Z| or on one asset to

reduce the number to N × |1|. We will instead consider this general setting but restrict

our attention to equilibria with pricing functions that satisfy anonymity in which price

impact is the same for all strategic agent types, i.e.,
∂Q(Â,z)

∂âi(z)
=

∂Q(Â,z)
∂âj(z)

= Q′ (A, z) ∀ (j, z).

Such equilibria are not only sensible given the symmetry of strategic agents’ demands in

the market clearing conditions 58, but also are most comparable to our Cournot-Walras

equilibrium in which anonymity is an equilibrium outcome.

Imposing anonymity on the equilibrium pricing function, the first-order conditions
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for strategic agents’ demands from equation 59 reduce to

Λi (z) = Q (A, z) + µQ′ (A, z) ai (z) , (61)

and we can aggregate equations 61 state-by-state and impose the market clearing condi-

tions 58 to arrive at

Q (A, z) =
1
N

N

∑
i=1

Λi (z) +
µ

N
Q′ (A, z) ξ (z) . (62)

These (N + 1)× |Z| necessary (although not necessarily sufficient) equations identify the

Equilibrium-in-Demand-Schedules.

Case 1: All liquidity trader demands are nonzero (ξ (z) 6= 0 ∀ z )

In this case, we can substitute equation 62 into equation 61 to arrive at

Λi (z) = Q (A, z) + N
Q (A, z)− 1

N ∑N
i=1 Λi (z)

ξ (z)
ai (z) , (63)

Intuitively, price impact introduces a wedge between strategic agents’ state prices and Ar-

row asset prices, and we can substitute for price impact with the average wedge implied

by asset prices.

We now express asset prices in terms of the |Z| × 1 vector of liquidity trader de-

mands ξ. Let Q be the |Z| × 1 vector of asset prices, and define λ (Q, ξ, ) to be the map

from 2|Z| × 1 vectors ξ and Q to 1
N ∑N

i=1 Λi (z) using the N × |Z| equations 63. We then

can express the |Z| × 1 equations 62 as functions of ξ

Q = λ (Q, ξ) +
µ

N
Q′ � ξ, (64)

where � is the Hadamard product and Q′ measures the change in prices from an in-

finitesimal change in ξ (z) that, by market clearing, is the same as the total price impact

of a strategic agent type.

We then have a system of first-order differential equations 64 to solve for prices.

Case 2: Some liquidity trader demands are zero (ξ (z) = 0 for some z)
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In this case, we cannot rely on equation 62 to substitute for price impact. Instead,

we recognize that equation 62 reduces to

Q (A, z) =
1
N

N

∑
i=1

Λi (z) . (65)

Notice, however, this expression resembles the strategic limit of our Cournot-Walras

model in which the competitive fringe is arbitrarily small. This observation yields two

insights. First, we can solve for states in which ξ (z) = 0 numerically assuming an arbi-

trarily small competitive fringe. Second, the strategic limit of our Cournot-Walras equilib-

rium recovers an Equilibrium-in-Demand-schedules in which there the pricing function

is anonymous and there are no liquidity traders, i.e., ξ (z) ≡ 0. This is because the key dif-

ference between the Cournot-Walras and Equilibrium-in-Demand-schedules is the price

function, and in the strategic equilibrium the price function coincides with equation 65.

In addition to solving for the case in which ξ (z) = 0, we can use Case 2 to provide

boundary conditions for the first-order ODEs 64 characterized in Case 1.

Consequently, we have shown the strategic forces in the Equilibrium-in-Demand-

Schedules are the same as in the Cournot-Walras equilibrium conditional on the price

function. Second, we characterize an Equilibrium-in-Demand-Schedules in complete mar-

kets in which the pricing function is anonymous.
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