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Abstract

Robust difference-in-differences analysis when there is a term structure

It is common practice in finance to use difference-in-differences analysis to examine fixed-

income pricing data. This paper uses simulations to show that this method applied to

pricing variables that exhibit a term structure, such as yields or credit spreads, system-

atically produces false and mismeasured treatment effects. This holds true even if the

treatment is randomly assigned. False and mismeasured treatment effects result from het-

erogeneous effects in different parts of the term structure in combination with unequal

distributions of residual maturities in the treated and control bond samples. Neither bond

fixed effects nor explicit yield-curve control in the specification resolve the issues. By com-

bining difference-in-differences analysis with yield-curve modeling this paper provides new

methodology to overcome these issues.

JEL classification: C20, G12, E43, E47

Keywords: Fixed-income pricing, yield curve, term structure of interest rates, yields, credit

spreads, difference-in-differences analysis, false and mismeasured treatment effects



1. Introduction

Difference-in-differences (DiD) methodology is widely used in finance to analyze fixed-

income pricing data. Often a security’s price is expressed inversely in terms of the interest

it pays, i.e. its yield (or credit spread), and DiD analysis is applied by running a classical

DiD regression of the form

yieldit = αi + δt + βDiD 1Treated,i × 1Post,t + εit, (1)

where yieldit is security i’s yield-to-maturity at time t and the right-hand side of the equa-

tion is represented by the typical DiD structure: αi and δt correspond to security- and

time-fixed effects, respectively, 1Treated,i and 1Post,t to treatment and post-event date indi-

cator variables, βDiD is the treatment effect, and εit is an error term. DiD methodology

is designed to deal with endogeneity, namely to measure the causal impact of a treatment

on an outcome variable (yield in this case) by comparing treated to non-treated control

units (in this case fixed-income securities) over the treatment event. However, fixed-income

securities data have two ever-present features that severely inhibit the ability of the clas-

sical DiD specification in Equation (1) and variations thereof to accurately measure true

treatment effects. As we will show, this specification is even so problematic that it is prone

to leading researchers to conclude that there are treatment effects when there are, in fact,

none. When there are true treatment effects, these are invariably mismeasured, leading

to garbled inference. In this paper, we explain these problems and propose methods for

overcoming them.

The first regular, but problematic, feature in fixed-income data is that pricing vari-

ables, such as yields or credit spreads, are time-varying issuer-specific functions of residual

maturity. Fixed-income securities are priced against the term structure of interest rates,

typically of the issuer and using its individual maturities, and pricing terms vary over time

and heterogeneously over the maturity spectrum. For example, in a sample of twelve se-

lected countries (details below), the standard deviation of the weekly change in the ten-year

minus three-month term spread is 57.5 basis points, and it is rare for the term spread not

to move from one date to another. Second, residual maturity is a continuous variable. In

practice, it is hardly ever possible to match two same-issuer securities on maturity because
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individual issuers have relatively few outstanding securities over a wide range of maturities.

For example, in January 2023, seven of said twelve countries have less than 100 securities

issued, with residual maturities covering a range from zero to more than thirty years.

In this paper, we use simulations to show that, because of these two ubiquitous features

of fixed-income pricing data, the classical DiD specification in Equation (1) applied to

pricing variables that exhibit time-varying term structures systematically produces false

and mismeasured treatment effects. This holds even if the treatment is assigned randomly.

One may erroneously conclude that there is a statistically significant treatment effect when,

in fact, a true treatment effect is nonexistent; or, conversely, one finds no treatment effect

when in reality there is one. It is even possible to measure a significant negative treatment

effect while the true impact is positive, or vice versa. The reason for false and mismeasured

treatment effects is Specification (1)’s inability to properly control for term effects, which

we elaborate on below. This is particularly unfortunate since the DiD approach is designed

precisely for the purpose of dealing with endogeneity to quantify causal effects.

To show false and mismeasured treatment effects, we run Specification (1) under two

types of true yield-curve effects, namely, treatment-unrelated idiosyncratic effects and true,

systematic treatment effects. Idiosyncratic yield-curve effects are unrelated to hypothesized

treatment; they move yields of all bonds, independent of assignment, but heterogeneously

over the term structure. The analysis shows that, even in absence of a true underlying

treatment effect, the classical DiD specification in Equation (1) measures a false treatment

effect – “false” because, in fact, there is no treatment effect. Specification (1) gives wrong

inference because it is misspecified. It assumes there is a fixed bond effect, when the bond

effect, in fact, is variable as a function of its time to maturity and coupon structure and

depends on treatment-unrelated idiosyncratic shifts in the underlying spot curve.

In contrast, systematic treatment effects only impact yields of treated bonds. We also

allow these to be heterogeneous over the term structure. When there actually is a true

treatment effect, Specification (1) remains problematic. First, there can still be treatment-

unrelated idiosyncratic effects. Second, samples of treated and control bonds are highly

unlikely to be matched on maturity and coupon structure. If there is a treatment effect

only, Specification (1) generates a mismeasured treatment effect – “mismeasured” because it

produces an average treatment effect that ignores maturity while the true treatment effect

is maturity-dependent. As we show, this can confound inference and lead to incorrect
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conclusions. If there are both systematic and treatment-unrelated idiosyncratic effects,

Specification (1) produces a combination of false and mismeasured treatment effects.

The limitation of the classical DiD specification arises from its inability to control for

idiosyncratic and systematic effects that vary over the maturity spectrum. It is misspecified

because it ignores a key feature of fixed-income data, namely, time varying term spreads.

Instead, it essentially assumes that idiosyncratic and systematic effects are homogeneous

across maturity. False and mismeasured treatment effects, as we show, result from het-

erogeneous true effects in different parts of the term structure combined with unequal

distributions of residual maturity in the treated- and control-bond samples. This induces

nonzero correlation between duration and the treatment indicator variable, confounding

inference when treated and control bonds have different residual maturities and coupon

structures.

Nonzero correlation between duration and the treatment indicator variable arises nat-

urally in fixed-income settings because treated and control bonds are highly unlikely to be

perfectly matched on residual maturity and coupon structure. In the context of zero-coupon

bonds, even if residual maturities of treated and control bonds are drawn from the same

distribution, a paucity of bonds in practice means that regular, idiosyncratic movements

in the yield curve induces spurious correlation. In this case, the estimated treatment effect

using Specification (1) is measured with imprecision, although not unconditionally biased.

Because standard errors calculated the usual way do not control for the spurious correla-

tion, however, t-statistics are overestimated in absolute value and inference is, accordingly,

garbled. If the residual maturities of the two bond groups are drawn from different distribu-

tions, spurious correlation between residual maturity and the treatment indicator variable is

compounded by systematic correlation. Combined with maturity-dependent idiosyncratic

and treatment effects, this leads to a combination of bias and imprecision in the estimated

treatment effect. The error can go either way. When there are only idiosyncratic effects,

the null hypothesis of no treatment effect is systematically over-rejected.

Thus, it is important to control for term effects when using DiD analysis in fixed-

income settings. However, a simple adjustment to Specification (1) that replaces the bond

fixed effects (the misspecification element) with maturity or functions of it, does not solve

the problem. As an illustration, we analyze a specification that substitutes the bond fixed

effects with a model of the yield curve that is consistent with that used to simulate the true
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underlying curves. It turns out that the DiD estimator in this case is essentially identical

to what is produced by Specification (1). The problem with these two specifications is that

they impose, either explicitly through the parametric term structure or implicitly through

the bond fixed effects, parallel yield-curve shifts between control and treated bonds, pre-

and post-treatment. In contrast, the true underlying effects are heterogeneous over the

term structure.

To deal with heterogeneous treatment effects the literature typically either estimates

heterogeneous treatment effects over the distribution of the dependent variable or uses

fixed effects on the discrete right-hand side units present in the data.1 The former does not

work well with yield as the dependent variable because the shape and location of the yield

curve fluctuate over time. The latter is sometimes applied in fixed-income settings by using

maturity buckets (e.g., Bao, O’Hara, and Zhou, 2018; Todorov, 2020). However, running

Specification (1) on individual maturity buckets simply pushes the problems discussed

above to the maturity-bucket level. Moreover, the paucity of bonds in practice limits the

fineness of the feasible grid over which maturity buckets can be formed. Residual maturity

in a fixed-income setting is a continuous habitat variable and, as such, requires a different

approach.

The perfect solution would be to match each treated bond with a control bond having

the same residual maturity and coupon structure. However, this is rarely feasible in prac-

tice. We provide two alternative approaches that are more practical. First, we replace the

bond and time fixed effects in Specification (1) with separate parameterized yield curves for

control and treated bonds both pre- and post-treatment. The treatment effect is now esti-

mated as a “Delta curve,” namely, as the incremental difference between the yield curves

of treated bonds and controls over the event. With spot rates as the dependent variable,

treatment effects at selected maturities can be estimated by running one single regression

using standard software. We show that this “fully flexible yield-curve DiD specification”

resolves the problems of both false and mismeasured treatment effects. If there are true,

maturity-dependent treatment effects, these are identified and separated from maturity-

dependent treatment-unrelated idiosyncratic yield-curve effects. Furthermore, since the

specification uses the full panel structure of the data, it permits clustering standard errors

1To name a few, for the former see Heckman, Smith, and Clements (1997), Bitler, Gelbach, and Hoynes
(2006), Callaway and Li (2019), the latter de Chaisemartin and D’Haultfœuille (2020), and both in one
Callaway, Li, and Oka (2018).
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at the bond level as recommended by Bertrand, Duflo, and Mullainathan (2004).

Our second approach is what we call “semi-matching” (or, synthetic matching). This

essentially matches treated bonds with synthetic control bonds having the same residual

maturity. We compare and contrast these two methods and show that they are identical

when the synthetic matching approach involves a second stage where curve fitting is applied

to the individual bond-level difference-in-differences. Thus, we show that there are two ways

to generate the DiD Delta curve over the term structure.

The paper relates to several literatures. First and foremost, it contributes to a large

finance literature as papers aim to use DiD analysis to measure treatment effects with

dependent variables that exhibit time-varying term structures. We show false and mis-

measured effects in the most trivial setting with security level data, yield as dependent

variable, and security fixed effects on the right-hand side of the regression equation. In this

form, this relates already to many analyses in finance; it affects many different types of

fixed-income securities such as bonds, bills, notes, loans, asset-backed securities, mortgage

loans, etc. and both in primary and secondary markets. Importantly, however, false and

mismeasured treatment effects survive (1) if the unit of analysis is not the security level but

an aggregation of it such as the firm, the country, or the bank-firm relationship, (2) with

other dependent pricing variables such as expected returns, loan rates or spreads, yield

spreads, logarithms of these variables, etc. and (3) if, instead of bond fixed effects, the

right-hand side of the regression equation explicitly controls for maturity or functions of

it.2 To give a feeling of how widespread these issues are, Table 1 provides a list of relatively

recent top finance publications that use the DiD method in ways potentially affected.

Insert Table 1 here.

Second, a large literature in finance attempts to estimate the unobserved yield curve

parameters (e.g., Nelson and Siegel, 1987; Svensson, 1994; Liu and Wu, 2021). Because

these parameters can be interpreted as unobserved factors (Diebold and Li, 2006) and DiD

analysis is a special case of fixed-effects setting, our paper relates to a literature on con-

2Regarding (2), any pricing variable that exhibits a time-varying term structure can lead to false and
mismeasured treatment effects. Loan or yield spreads are typically calculated with maturity-matched
interpolated LIBOR or treasury rates. Bao and Hou (2017), for example, show that an issuer’s relatively
longer-dated bonds have larger yield spreads and more co-movement with the issuer’s equity and, hence,
provide evidence for a term structure in yield spreads rather than in yields. See also John, Lynch, and
Puri (2003), Chava, Livdan, and Purnanandam (2009), Ayotte and Gaon (2011).
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founding factor structures in fixed-effects settings (Bai, 2009). Gobillon and Magnac (2016)

and Xu (2017) show that the DiD effect is biased if one ignores correlation between factors

and the treatment. Our contribution is twofold. First, we demonstrate that heterogeneous

idiosyncratic yield-curve effects over maturity (“factors”) naturally confound the estima-

tion of Specification (1) in the context of fixed-income pricing data. Second, the proposed

approaches overcome false and mismeasured treatment effects because they accurately deal

with heterogeneous term effects (“factors”). Both approaches make use of the rich yield-

curve fitting literature in finance to identify the true effects but they do so in different

ways. The fully flexible yield-curve DiD method, our first approach, models flexible yield

curves as part of the DiD estimator and does not only control for “factors” but, simulta-

neously, provides maturity-dependent treatment effects. As we show, the latter is relevant

because Specification (1) produces mismeasured treatment effects even after controlling for

“factors.” Semi-matching, our second approach, instead, removes the “factor structure”

before applying DiD, as in the synthetic control literature (Abadie and Gardeazabal, 2003;

Abadie, Diamond, and Hainmueller, 2010; Abadie, 2021).

Third, the paper relates to a large literature that more generally shows how DiD method-

ology can lead to incorrect measurements of effects, as synthesized, for instance, by Call-

away (2023) and Roth, Sant’Anna, Bilinski, and Poe (2023). Specification (1) assumes a

fixed bond effect, when the bond effect, in fact, is variable as a function of maturity, coupon

structure, and idiosyncratic yield-curve effects, which is a misspecification and leads to in-

correct inference. In that vein, Callaway and Tong (2023), for example, show that the

DiD method is less suitable to conduct policy evaluation during a pandemic because the

unit-level fixed effect, in fact, is not fixed but highly nonlinear. In our case, we can make

use of the rich curve fitting literature in finance to identify the true effects. Furthermore,

Imbens and Wooldridge (2009) discuss the overlap assumption, which, in our case, implies

that the support of the residual maturity distribution is the same for control and treated

sample bonds. We show that Specification (1) leads to false and mismeasured treatment

effects almost surely due to small bond samples and wide maturity ranges even if the over-

lap assumption holds. Moreover, mismeasured treatment effects have been shown in the

context of staggered DiD analysis with heterogeneous treatment effects in the time dimen-

sion.3 We examine heterogeneous treatment effects in the cross-sectional dimension, which

3See, for instance, Sun and Abraham (2021), Callaway and Sant’Anna (2021), Goodman-Bacon (2021),
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we can address by modeling the spot yield curve.

The rest of the paper is structured as follows. Section 2 presents the term structure

modeling and the data simulation. Section 3 shows how Specification (1) can lead to false

treatment effects. Section 4 provides methodology to overcome false treatment effects.

Sections 5 and 6 show the cases of mismeasured as well as false and mismeasured treatment

effects combined, respectively. Section 7 provides further methodology to resolve false and

mismeasured treatment effects. Section 8 concludes.

2. Term structure modeling and data simulation

Our approach is to posit idiosyncratic (treatment unrelated) as well as systematic treat-

ment effects in the underlying spot yield curve (pricing kernel) and, then, examine the

performance of Specification (1) and its alternatives on random samples of bonds. For

simplicity and to isolate the effect of time to maturity, we use zero-coupon bonds. Thus,

the cash flow structure of the bonds are completely captured by their respective times to

maturity. We then draw random samples of residual maturities separately for treated and

control bonds. Since the feature of real data that we want to capture is heterogeneity in

the distribution of residual maturities between treated and control bonds, we also allow for

treated and control bonds to be drawn from different distributions. In this section, to gen-

erate the data, we focus on the two features that, combined, lead to false and mismeasured

treatment effects, which are heterogeneous idiosyncratic or actual treatment yield-curve ef-

fects over maturity and unequal residual maturity distributions in the control and treated

bond samples.

2.1 Modeling term structure effects

In practice, fixed-income securities are priced against the term structure of interest rates,

typically of the issuer, using its individual maturities. Thereby, pricing terms vary over time

and heterogeneously so in different parts of the term structure. Therefore, pricing variables

such as yields or credit spreads, which is what Specification (1) has on its left-hand side,

exhibit issuer-specific term structures whose shapes change over time. This feature, which

is inherent to fixed-income pricing data, is shown in Table 2. Using yield curve data from

Athey and Imbens (2022), Baker, Larcker, and Yang (2021).

7



Bloomberg from January 2000 to December 2022 for a selected group of countries, the table

shows distributions of daily and monthly changes in the ten-year minus three-month term

spread in Panels A and B, respectively.

Insert Table 2 here.

In Table 2 the twelve countries are ordered according to the range in the change of

the term spread. For example, changes in daily term spreads vary from ±30 basis points

(bps) in Japan to between −210 to +190 bps in China.4 In Spain, which is one of the

two countries in the middle of the list, daily (monthly) term spread changes vary between

−121 and +63 (−143 and +137) bps, which shows that yield curves are issuer-specific and

vary heterogeneously along maturity over time. The standard deviation of the change in

the term spread in the pooled sample of countries is 87.9 bps with monthly data, 57.5 bps

with weekly data (not reported in Table 2), and 27.4 bps with daily data.

Motivated by the magnitudes of yield curve movements observed in practice (Table 2),

we consider two types of yield-curve effects. First, idiosyncratic yield-curve effects are

unrelated to the treatment. These are idiosyncratic movements in the term structure that

result from economic forces other than the treatment. They move “treated” and control

bonds from pre- to post-treatment irrespective of the treatment.5 Second, following the

same logic but in the absence of treatment-unrelated idiosyncratic yield-curve effects, we

model heterogeneous yield-curve treatment effects. From pre- to post-treatment, they affect

only the treated bonds but heterogeneously over maturity.

To model heterogeneous idiosyncratic and treatment yield-curve effects we employ

Diebold and Li’s (2006) factorization of the Nelson-Siegel (1987) term structure param-

eterization.6 The spot, or zero-coupon, rate, or yield, with maturity x at time t is

yieldt(x; λt) = γ0,t + γ1,t

(
1 − e−λtx

λtx

)
+ γ2,t

(
1 − e−λtx

λtx
− e−λtx

)
, (2)

where γ0,t is a long-term or level factor, γ1,t a short-term or slope factor, γ2,t a medium-term

or curvature factor, and λt the decay parameter. To model effects in the term structure, we

4In Greece, a country that was hit exceptionally hard during the European sovereign debt crisis, daily
term spreads move exceptionally between −2,012 and 1,822 bps.

5For example, Foley-Fisher, Ramcharan, and Yu (2016) show how the Fed’s maturity extension program
depresses yields of long-term but not short-term bonds.

6As explained by Diebold and Li (2006) their specification suffers less from multicollinearity between
the parameters as compared to the original Nelson and Siegel (1987) specification.
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manipulate the level, slope, and curvature parameters while following Diebold and Li (2006)

and holding the decay parameter fixed, namely λt = λ = 0.7308.7

Exhibit 1: Overview effects and sections discussing them
Treatment effect

No Yes
Idiosyncratic effect No − Section 5

Yes Section 3 Section 6

Inference using Specification (1) will be erroneous. We show this by, first, allowing for

idiosyncratic yield-curve effects only, then for systematic treatment effects only, and finally

we combine the two types of effects. Exhibit 1 provides an overview of the modeled effects.

First, we model two idiosyncratic yield-curve effects. The idiosyncratic short-end effect

corresponds to a yield reduction of −50 bps at a residual maturity of one year and an

effect close to zero (+1 bps) at fifteen years (details will be provided later). Contrarily, the

long-end effect amounts to a yield decline of −50 bps at fifteen years and an effect close to

zero (+4 bps) at one year. As a preview, the analysis in Section 3 shows that the classical

DiD specification produces potentially large, statistically significant treatment effects even

if a true treatment effect is entirely absent from the data.

Second, we model two systematic treatment effects. Either the treatment leads to a

yield-curve twist, which pushes up (down) the yields of treated bonds at the one-year (ten-

year) maturity by +6 (−6) bps, or the treatment affects treated bonds only at the short-end

with −6 (0) bps at the one-year (ten-year) maturity. By choosing relatively small treatment

effects, we mimic reality where treatment effects are typically smaller than the idiosyncratic

yield-curve effects. As shown in Section 5 and much along Kahn and Whited (2018), the

classical DiD specification produces an average treatment effect, which is a quantity that

ignores an important dimension in this case, namely the spot curve, or the pricing kernel.

Because the true treatment effect is dependent on maturity, this quantity is “mismeasured”

as it may lead to incorrect conclusions. For example, if the treatment twists the curve for

treated bonds (short-end up, long-end down) and, incidentally, treated bonds pile up at

the long-end, one finds a negative treatment effect while the true effect is positive at the

short-end. The mismeasurement depends on the distribution of the treated bonds over

maturity as the treatment effect itself depends on maturity.

7The authors explain that λt determines the point where the loading on the curvature factor, γ2,t,
obtains its maximum and pick this, based on practice, to be at a maturity of 30 months. If maturity is
measured in months λt = λ = 0.0609, which translates to λ = 0.7308 if maturity is measured in years.
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Third, in Section 6 we combine idiosyncratic and treatment effects (four combinations).

Heterogeneous yield-curve effects along maturity, either idiosyncratic or treatment effects

or both, are the first critical feature that leads to false and mismeasured treatment effects.

2.2 Simulation of residual maturity

In practice control and treated bonds are often distributed differentially over maturity.

This property arises naturally in fixed-income data as residual maturity is a continuous

variable; individual issuers inherently issue only a limited number of securities but the

range of residual maturity is large. As an illustration, Table 3 provides the number of

securities together with the percentage of debt outstanding by maturity bucket for the

same twelve countries as used previously (Panel A: January 2023; Panel B: January 2011).

Insert Table 3 here.

The table illustrates two key aspects. First, across panels, the number of securities

lies between 16 in Ireland and 559 in Japan and is relatively small compared to the wide

maturity range, which lies between zero and more than thirty years. In 2023, seven of

the twelve countries have less than 100 securities outstanding. Second, the countries have

relatively more short-dated debt but the exact maturity structure is issuer- and time-

specific. For example, while the US’ maturity structure is tilted toward the short-end,

the UK’s is tilted toward the (5-10]-year bucket. The Netherlands has short maturities

in 2011 but rather uniformly distributed ones in 2023. Non-governmental issuers typically

issue even fewer securities. The small number of securities per issuer in conjunction with

wide maturity ranges make it difficult to maturity-match two same-issuer securities. To

work with non-matched samples and neglect maturity is inherently prone almost surely to

unequal maturity distributions in the treated and control bond samples.

To analyze the performance of Specification (1), our goal is to mimic maturity struc-

tures realistically. We use simulations to emulate bond maturity. Motivated by the maturity

structures in Table 3, in particular, we draw residual maturity from a triangular proba-

bility density function (pdf), which is a continuous pdf and, hence, suitable in simulating

residual maturity. Moreover, the triangular pdf enables us to generate residual maturity

distributions similar to the maturity structures in Table 3. To be specific, we draw residual

time-to-maturity, x, for control and treated bonds from triangular pdfs, p(x; m), that range
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from zero to twenty years, x ∈ [0, 20], and have mode m:8

p(x; m) =






0, if x < 0 or x > 20,

x
10m

, if 0 ≤ x ≤ m,

20−x
10(20−m)

, if m < x ≤ 20.

(3)

The mode m parameterizes the feature of real data that we want to capture, namely the

location of the “peak” of the triangular pdf that allows us to create heterogeneity in the

distributions of residual maturities between control and treated bonds. For controls we use

m = 0.25 years. For treated bonds we use m = 0.25, 1, 3 and 10 years. In particular, we

repeat the following procedure 1,000 times:

1. Control bonds: Draw 50 maturities from p(x; m = 0.25),

2. Treated bonds: Draw 50 maturities from each of p(x; m), m = 0.25, 1, 3, 10.

Thus, we have 1,000 families f , each comprised of 50 control bond maturities and four times

50 treated bond maturities. For each family, f , we then create four sample couplets, each

comprised of the 50 control-bond maturities, where m = 0.25, and the four times 50 treated

bond maturities based on m = 0.25, 1, 3, and 10 years. The idea is to examine inference

mistakes as the underlying distributions of control and treated bond maturities get more

different by increasing m for the treated bonds as illustrated in Figure 1. However, even if

treated bonds are based on m = 0.25 years, just as the control bonds, the realized control

and treated bond maturities will differ almost surely as, inherently, there is a paucity of

bonds given the wide possible maturity range. This by itself creates inference mistakes (with

non-trivial probability), which are exacerbated when the underlying maturity distributions

of the treated bonds move away from that of the control bonds.

Insert Figure 1 here.

For illustration purposes, in Table 4 we compute the average of residual maturity of

the fifty bonds in each sample and calculate for each sample couplet its ratio (average

residual maturity of treated bonds divided by that of controls). Panels A and B show

population means as well as distributions, respectively, of the sample averages and the

average-maturity ratios across the 1,000 families by treatment group and mode m.

8Notice that for countries the upper limit of twenty years is a rather conservative choice (see Table 3).
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Insert Table 4 here.

If residual maturities of control and treated bonds are drawn from the same triangular

pdf (m = 0.25), by definition the unconditional population ratio in Panel B is one as the

unconditional population means in Panel A are the same (6.75 years). With increasing

mode for the treated bonds the unconditional population ratio in Panel B rises above one.

While means and medians of the residual-maturity averages conditional on the samples in

Panel A and their ratios in Panel B are very similar to the unconditional population means,

importantly, the dispersion is fairly extreme. For example, if residual maturity is drawn

from triangular pdfs with m equals to 0.25 years, the average-maturity ratios conditional

on the samples in Panel B vary by between 0.59 to 1.52 significantly around the population

mean of one. This is an artifact of drawing relatively small samples from wide ranges of

maturities, as seen in Table 3.9

The unequal maturity distributions of the control and treated samples bonds, in turn,

lead to a critical property. Panel C shows the distribution of the correlation between resid-

ual maturity and the treatment indicator variable over the 1,000 families by m. If residual

maturity of control and treated bonds is drawn from the same p(x, m = 0.25), the correla-

tion distribution exhibits large dispersion that ranges from −0.349 to 0.318 (while means

and medians are close to zero). Drawing relatively small samples from wide maturity ranges

introduces spurious correlation between residual maturity and the treatment. Instead, if

the treated bonds’ residual maturities are tilted toward the long-end, i.e. if m increases,

the distributions are still dispersed but now means and medians of the correlations lie sys-

tematically above zero. Hence, drawing residual maturities of control and treated bonds

systematically from different distributions introduces spurious combined with systematic

correlation. This correlation between residual maturity and the treatment indicator vari-

able is the second critical feature that leads to false and mismeasured treatment effects.

The following sections make use of the simulated maturity data and the modeled term

structure effects to analyze the performance of Specification (1) and its alternatives.

9Given the maturity structures in Table 3, the triangular pdf seems a reasonable benchmark from which
to draw residual maturity. However, if anything, this choice is conservative as the dispersion in the average-
maturity ratio would increase if residual maturity is drawn, for example, from a uniform distribution.
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3. False treatment effects

In this section we run Specification (1) on the simulated data when the term structure

exhibits heterogeneous idiosyncratic effects across maturity, which are not related to the

treatment whatsoever; true treatment effects are entirely absent from the data. We analyze

the simplest possible case, namely when there are only two time periods, labeled “pre-”

and “post-treatment.” To model the scenarios, we use Diebold and Li’s (2006) yield curve

specification in (2). In either scenario, each period has its own yield curve.10

Insert Figure 2 here.

Figure 2 provides the underlying yield curve parameter values used to build the curves

together with the resulting yield levels and differences at selected maturities and graphically

illustrates the two scenarios.11 From pre to post treatment, the idiosyncratic effect either

pushes down the yield curve particularly at the short-end with −50 (+1) bps at the one-year

(fifteen-year) maturity or particularly at the long-end with +4 (−50) bps, respectively.

3.1 Main result: False treatment effects

We estimate treatment effects by running Specification (1) using ordinary least squares

methodology (OLS). Since Bertrand, Duflo, and Mullainathan (2004) show that the persis-

tence of the treatment indicator in DiD settings induces serial correlation in the error term

and that clustering at the level of the treated unit helps to diminish this issue, standard

errors are clustered at the individual bond level. In our case, this does not matter as we

have “perfect” draws and only two time periods. But in practice it might matter and, thus,

the possibility to be able to cluster is an attractive feature of Specification (1).

Figure 3 provides first results. Each graph plots the 1,000 estimated DiD effects against

its t-statistics. The first (second) row of graphs covers the idiosyncratic short-end (long-

end) effect and graphs on the left (right) the case when m = 0.25 (m = 10) years.

Insert Figure 3 here.

10Logic: Prior to treatment, control and treated bonds share the same yield curve (pre-treatment curve).
Since there is no treatment effect, control and treated bonds also share the same yield curve after treatment
but the idiosyncratic effect has shifted it to a different location (post-event curve).

11With the chosen parameter values the curves are upward sloping but the argument is independent of
the shape of the yield curve. False treatment effects can also be shown for downward sloping or flat curves.
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The figure illustrates that the classical DiD specification generates false treatment effects

almost surely if there are heterogeneous idiosyncratic effects along maturity. Figures 3a and

3c show that even if residual maturity of the control and treated bonds is drawn from the

same underlying triangular pdf with m equals to 0.25 years, the specification produces false

treatment effects. The effects can go in either direction and the larger in absolute value, the

more likely they are statistically different from zero. The latter results from underestimated

standard errors as these are calculated based on the conditional sample distribution and not

on the unconditional population distribution. Across the 1,000 families and in case of an

idiosyncratic yield-curve short-end (long-end) effect, the false treatment effects range from

−11.59 to 10.85 (−11.34 to 12.01) bps and 91 (88) of them are statistically significant at the

10%-level. Notice, however, that mean and median of the distributions for either type of

idiosyncratic effect are close to zero. Hence, what we observe is not a bias but imprecision

in the measured treatment effects and its t-statistics, as we elaborate on shortly.

What happens, however, if residual maturities of the treated bonds are drawn from a

triangular pdf with m equals to 10 years? In case of an idiosyncratic yield-curve short-end

(long-end) effect all the 1,000 estimated treatment effects are positive (negative), range

from 2.30 to 22.99 (−24.06 to −2.59) bps, and 992 (991) of them are statistically different

from zero at the 10%-level as illustrated in Figure 3b (3d). However, now mean and

median of the distributions across the 1,000 coefficients are not close to zero. In case

of an idiosyncratic short-end (long-end) effect mean and median are positive (negative)

and statistically different from zero. Thus, the imprecision in measured treatment effects

described above is now compounded with a bias.

As will be shown next, these issues result from a combination of heterogeneous idiosyn-

cratic effects in different parts of the term structure and unequal residual maturities in the

samples of control and treated bonds.

3.2 The main driver of false treatment effects

A key driver of false treatment effects is the average-maturity ratio of treated sample bonds

relative to controls and the implied correlation, either spurious or spurious combined with

systematic correlation, between residual maturity and the treatment. To illustrate this we

proceed as follows. For each m we sort the 1,000 families of sample couplets on the average-

maturity ratio and index them in ascending order from 1 to 1,000. Table 5 then shows the
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implied correlation between residual maturity and the treatment indicator variable as well

as the estimated treatment effects for a selection of nine sample couplets. For each m,

the first and the last sample couplets in the ordered distribution, with order index j = 1

and 1, 000, are the sample couplets with the minimum and maximum average-maturity

ratio, respectively. In between, with order indices j = 10, 50, 250, 501, 751, 951, 991, are the

samples couplets with average-maturity ratio at, approximately, percentile j/10.

Insert Table 5 here.

Panel A provides the average-maturity ratio for the nine selected sample couplets by

m. From the upper left corner (order index 1 and m = 0.25) to the lower right corner

(order index 1,000 and m = 10) this ratio tends to go up.12 Panel B shows the implied

correlation between residual maturity and the treatment indicator variable for the nine

selected sample couplets by m. If m equals to 0.25 years the correlation is negative for

about the first half of the 1,000 sample couplets (with j = 1, ..., 501) and positive for the

second half (j = 502, ..., 1, 000). This is what we refer to as spurious correlation. If m

increases the correlation tends to become positive but still exhibits the large dispersion,

which is what we refer to as spurious combined with systematic correlation.

Panels C and D show the DiD coefficients and, underneath in parentheses, the associated

p-values for each of the nine selected sample couplets by m. In case of an idiosyncratic yield-

curve short-end (long-end) effect in Panel C (D), the estimated DiD effects tend to increase

(decrease) with the average-maturity ratio in Panel A and the implied maturity-treatment

correlation in Panel B both within and across m. The table shows that the false treatment

effects result from unequal distributions of residual maturity in the treatment group samples

and the implied maturity-treatment correlations and heterogenous idiosyncratic effects over

the term structure. For example, for the same sample couplet, e.g. if j = 1 and m = 0.25,

the false treatment effect is tilted away from the true, unconditional zero-effect in opposite

direction for an idiosyncratic effect at the short-end (−11.59 bps) compared to at the long-

end (+12.01 bps). This also illustrates that, conditional on what part of the term structure

moves, the bias will be conditional on the selected bonds.

Furthermore, the table highlights that larger coefficients in absolute value, which are

tilted away more from the true, unconditional zero-effect, are more often statistically signif-

12Panel A of Table 5 is essentially just a more granular depiction of Panel B in Table 4.
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icant. In Table 5, coefficients that are statistically significant at the 10% level are marked

in bold and the letters a, b, and c indicate significance at the 1%, 5%, and 10% levels,

respectively. The table shows that the larger is the average-maturity ratio in Panel A and

the implied maturity-treatment correlation in Panel B, both within and across m, the more

likely the false treatment effect is statistically different from zero. The reason is that, based

on standard methods, the standard errors are underestimated as they are calculated using

the conditional sample distribution and not the unconditional population distribution.

The analysis so far illustrates that the classical DiD specification applied to fixed-income

securities data with yield as dependent variable produces false treatment effects. Even in

the absence of a true treatment effect the specification generates potentially economically

large and statistically significant but false treatment effects. They can go in either direction,

which is dependent on the combination of heterogeneous treatment-unrelated idiosyncratic

effects in different parts of the term structure and unequal distributions of residual matu-

rity in the samples of control and treated bonds. The latter introduces spurious or even

a combination of spurious and systematic correlation between residual maturity and the

treatment indicator variable which leads, respectively, to imprecise or even a combination

of imprecise and biased false treatment effects. Furthermore, when using standard meth-

ods, the larger is the false treatment effect in absolute value, the more likely it also is

(erroneously) statistically different from zero. The reason is that the standard errors are

underestimated as they are not calculated unconditionally but conditionally on the sample.

3.3 Estimation separately by individual maturity buckets

To deal with heterogeneous treatment effects, the literature typically uses fixed effects

on the discrete units present in the data. Applied to fixed-income securities with yield as

dependent variable, researchers sometimes measure the DiD effects separately by individual

maturity buckets (see, for example, Bao, O’Hara, and Zhou, 2018; Todorov, 2020).

Table 6 shows the results if we run Specification (1) on four buckets with residual

maturities in the ranges [0, 2], (2, 5], (5, 10], and (10, 20] years. Panels A and B cover the

cases of m equals to 0.25 and 10 years, respectively. Each panel provides the distributions

of estimated treatment effects by the idiosyncratic effect and maturity bucket as well as

separately for statistically significant and non-significant coefficients (two-sided 10%-level).
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Insert Table 6 here.

The results show that running Specification (1) separately for individual maturity buck-

ets does not eliminate false treatment effects. In our case, the false treatment effects are

the largest in the (2, 5]-year maturity bucket. For example, if there is an idiosyncratic

yield-curve short-end effect and m equals to 0.25 years, as in Panel A, across the 1,000

estimated treatment effects 53 + 47 = 100 range from −7.49 to −3.31 and from +3.55 to

+8.47 bps and are statistically significant at the 10%-level. The remaining 900 coefficients

are also different from zero but not statistically significant. Mean and median of the distri-

butions across the 1,000 estimated treatment effects are, however, close to zero. This shows

that the false treatment effects are not the result of a bias but of imprecise measurement.

The reason is that Specification (1) ignores maturity and the unequal residual maturity

distributions of control and treated sample bonds introduces spurious correlation between

residual maturity and the treatment indicator variable also on the maturity-bucket level.

However, if m increases to 10 years, as in Panel B, in 2 cases it is not possible to estimate

effects in the (2, 5]-year bucket because of no treated observations. Out of the remaining

998 coefficients 25 + 211 = 236 are statistically significant and they range more extremely

from −10.51 to −3.32 and from +3.26 to +11.89 bps. This time neither mean nor median of

the distributions across the 998 coefficients are zero. The reason is that, this time, the false

treatment effects are the result of spurious combined with systematic correlation between

residual maturity and the treatment and are, therefore, not only imprecisely measured

but also biased. How large the systematic correlation between residual maturity and the

treatment is depends on the relative probability masses of the triangular pdfs of control

and treated bonds in the (2, 5]-year maturity bucket. In this case, as seen in Figure 1,

the systematic correlation is positive, which, with an idiosyncratic yield-curve short-end

(long-end) effect, on average, leads to positive (negative) false treatment effects.

In case of an idiosyncratic yield-curve long-end effect the results are similar but, if

anything, even more extreme. Importantly, a specification that is immune against bias and

imprecise measurement and, therefore, would eliminate false treatment effects, should elicit

effects of zero in all of these cases.

The analysis illustrates that maturity-bucket controls do not resolve the measurement

of false treatment effects but shift the issue to the maturity-bucket level. Moreover, taking

this approach further and choosing maturity buckets of shorter length leads, in the extreme
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case, to many infinitesimal short maturity buckets and no or only very few bonds remain

in each bucket. Hence, because residual maturity is a continuous habitat variable we would

prefer to work with an approach that acknowledges maturity-dependent effects.

3.4 Naive specification adjustment: Explicit yield curve control

Instead of using Specification (1) and controlling for bond specific characteristics via bond

fixed effects, researchers sometimes use DiD specifications that explicitly control for bond

maturity or functions of it (see Table 1). In this section we study the, in our case, most

extreme version of this, namely explicit parametric control for the term structure itself.

Moreover, we use the exact same yield-curve specification in the estimation as used to

model the true underlying yield-curve effects. The question is whether such explicit term-

structure control enables a DiD specification to elicit the true underlying effects or, at least,

reduce the size of false treatment effects. Specifically, we run

yieldit = B′ Lit + α 1Treated,i + δ 1Post,t + βDiD 1Treated,i × 1Post,t + εit, (4)

where the notation is as above, α (δ) is the parameter that corresponds to 1Treated,i (1Post,t),

and the new term B′Lit explicitly controls parametrically for the yield curve. As alluded

to, we continue to employ Diebold and Li’s (2006) term structure specification in (2) and,

hence, we use the exact same yield-curve specification in the estimation as used to model

the true underlying yield-curve effects. Lit is a three-dimensional vector with elements 1,

l1(xit; λ), and l2(xit; λ), with the latter two terms defined as

l1,t(x; λ) =

(
1 − e−λx

λx

)
and l2,t(x; λ) =

(
1 − e−λx

λx
− e−λx

)
, (5)

B the corresponding vector of coefficients with individual elements βk, k = 0, . . . , 2, and

the decay parameter λ assumed to be independent of time t.

In terms of estimation, since we know the underlying parameter value of lambda, which

is λ = 0.7308, we could simply plug it into the expressions in (5) and use OLS to run

Specification (4). Instead, we use nonlinear least squares methodology (NLS) to estimate λ

in-sample together with the other parameters and take, as start value, λSeed = 1. Standard

errors are clustered at the bond level, which, in our case, however, makes no difference.
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It turns out that the specification with explicit term structure control in (4) produces the

exact same false treatment effects as the classical DiD specification in (1). As illustration

we compute the difference between the coefficients estimated with Specifications (1) and (4)

for the two idiosyncratic yield-curve effects and the 4,000 sample couplets (four modes and

1,000 families). Across the 8,000 differences in DiD coefficients between Specifications (1)

and (4) minimum and maximum amount to −0.0000 and 0.0000 bps, respectively.13 Hence,

the two specifications produce the exact same false treatment effects.

The fact that we use the same yield-curve specification in the estimation as used to

model the true underlying yield curves illustrates that it is not the yield-curve specifica-

tion that creates the problems but the way it is embedded in the regression specification.

The regression specification in (4) explicitly controls for the yield curve parametrically via

B′Lit. However, B′Lit just removes the average term structure in the pooled data (treated,

controls, pre-, post-treatment). The specification therefore restricts yield-curve movements

between the different groups to parallel yield-curve level-shifts. While this feature is explicit

with B′Lit, the classical DiD specification imposes the same parallel level-shift restrictions

more implicitly through the bond fixed effects If, however, the idiosyncratic yield-curve

effects come as movements other than parallel level-shifts and, simultaneously, the samples

are affected by spurious or even spurious combined with systematic maturity-treatment

correlation, then either of the Specifications (1) and (4) produce false treatment effects.

Put differently, as these specifications restrict idiosyncratic yield-curve effects to parallel

level-shifts they are misspecified when the true underlying effects are not limited to parallel

level-shifts. The results illustrate that these specifications are not suitable when there are

heterogeneous idiosyncratic effects in different parts of the yield curve.

The next section provides methodology to deal with heterogeneous idiosyncratic yield-

curve effects along maturity and, therefore, overcomes false treatment effects.

4. A solution: Flexible yield-curve DiD specification

As touched on in the Introduction, a simple solution to the problem would be to perfectly

match each treated sample bond with a control bond on residual maturity. This approach

13We have also calculated the 8,000 differences in p-values, which range from −0.0049 to −0.0000, showing
that Specification (4) is slightly more conservative than (1).
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eliminates one of the two components that lead to false treatment effects, namely unequal

maturity distributions in the samples of control and treated bonds. However, in the context

of fixed-income securities data, perfect matching on maturity is rarely feasible in practice

because individual issuers only issue relatively few securities compared to the wide maturity

ranges. In Section 7 we approach the challenge from this side and combine a matching

procedure with yield-curve modeling.

In this subsection, however, we provide an alternative approach to overcome false treat-

ment effects. The goal is to accurately deal with the other relevant component, namely

heterogeneous idiosyncratic effects along the term structure. The limitation of the speci-

fications discussed so far, which ultimately leads to false treatment effects, is its inability

to control for idiosyncratic yield-curve effects if those are heterogeneous over maturity.

Therefore, false treatment effects are the result of a misspecification, namely assuming

that treatment-unrelated yield-curve effects are homogeneous along maturity. The solution

provided in this section combines the DiD method with fully flexible yield curves.

The fully flexible yield-curve DiD specification, first used by Nyborg and Woschitz (2023),

does not impose any particular relation between pre- and post-curves of treated and control

bonds. On the contrary, the specification implicitly estimates yield curves separately for

each group (control, treated, pre-, post-treatment) and uses those to quantify the DiD in

yield curves. Specifically, the fully flexible specification is

yieldit = B′

1 Lit + B′

2 Lit 1Treated,i + B′

3 Lit 1Post,t + B′

4 Lit 1Treated,i × 1Post,t + εit, (6)

where notation is as above except that each of the four indicators (constant, 1Treated,i,

1Post,t, and 1Treated,i × 1Post,t) has its own Diebold-Li curve, B′

jLit, with j = 1, . . . , 4 and

three individual coefficients each, βk,j, k = 0, . . . , 2. For simplicity, the fourth parameter,

λ, is assumed to be time-invariant and the same for treated and control bonds.14

The first curve, when j = 1, represents the spot curve of control bonds pre treatment

and is given by

sdl(x; λ̂) = β̂0,1 + β̂1,1 l1(x; λ̂) + β̂2,1 l2(x; λ̂), (7)

where {β̂k,1}
2
k=0 are the estimated regression coefficients, x is residual maturity, and l1 and

l2 are as in (5) with λ replaced by λ̂. The other three curves are either differences curves,

14This assumption can easily be relaxed.
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namely when j = 2 or 3, or the difference-in-differences curve, when j = 4, given by

∆dl
j (x; λ̂) = β̂0,j + β̂1,j l1(x; λ̂) + β̂2,j l2(x; λ̂), (8)

where {β̂k,j}
2
k=0 are the estimated regression coefficients. The differences and difference-

in-differences curves capture the incremental differences for i) treated bonds (j = 2), ii)

the post-treatment period (j = 3), and iii) treated bonds over the post-treatment period

(j = 4). Adding them to the spot curve for control bonds pre treatment, sdl(x; λ̂), returns

the spot curve, respectively, for i) treated bonds pre treatment, sdl(x; λ̂) + ∆dl
2 (x; λ̂), ii)

control bonds post treatment, sdl(x; λ̂) + ∆dl
3 (x; λ̂), and iii) treated bonds post treatment,

sdl(x; λ̂) +
∑4

j=2 ∆dl
j (x; λ̂).

The difference-in-differences curve, ∆dl
4 (x), measures the DiD in yield curves of treated

relative to control bonds over the treatment. ∆dl
4 (x) is a function of residual maturity x

and, therefore, returns the treatment effect at specific maturities. Treatment-unrelated

idiosyncratic yield-curve effects from pre- to post-treatment will be captured by the dif-

ferences curve on the post-treatment indicator variable, ∆dl
3 (x). Hence, the specification is

able to separate treatment-unrelated idiosyncratic yield-curve effects from actual treatment

effects and allows for both heterogeneous idiosyncratic as well as heterogeneous treatment

effects, simultaneously, in different parts of the yield curve.

To analyze its performance, we estimate Specification (6) with NLS. Lambda is esti-

mated in-sample together with the other parameters using the start value λSeed = 1 (as

above; true λ = 0.7308).15 Standard errors are clustered at the bond level. For each re-

gression, the estimation gives twelve coefficients and one estimate for lambda. Because it

is difficult to grasp the economics from these coefficients, however, we use them to cal-

culate the treatment effect at selected maturities. The corresponding standard errors are

calculated with the delta method.16

Table 7 shows the results. At selected maturities of x = 1, 2, 3, 5, 7, 10, and 15 years,

the table shows the true underlying treatment effects, which unconditionally are zero at all

maturities. To the right, the table provides minimum and maximum of the estimated treat-

15Alternatively, we could use NLS to first estimate the yield curves separately for treated and control
bonds pre- and post-treatment and, then, average across those within-group λ̂s, plug the average into (5)
and use OLS to estimate Specification (4). For an application see Nyborg and Woschitz (2023).

16See, for example, Casella and Berger (2001). The Internet Appendix illustrates the procedure in detail.
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ment effects across the two idiosyncratic yield-curve effects and the 1,000 families separately

by m using the estimated difference-in-differences curve, ∆dl
4 (x), from Specification (6).

Insert Table 7 here.

In Panel A, when m equals to 0.25 years, Specification (6) estimates treatment effects

across all maturities which are maximally ±0.01 bps away from the true unconditional

zero-effect across the 2,000 regressions. These are highly accurate estimates and a large

improvement compared to the corresponding false treatment effects produced with Speci-

fication (1) that range from −11.59 to 12.01 bps (Figure 3). With m equals to 0.25 years,

however, we only consider the case when the sample couplets are affected only by spurious

correlation between residual maturity and the treatment indicator variable.

When spurious maturity-treatment correlation is compounded by systematic correla-

tion, i.e. when m increases, the tails of the distributions exhibit relatively more measure-

ment error at the short-end of the yield curve. The largest error is measured when m equals

to 10 years at the one-year maturity. However, across the 2,000 regressions the difference

ranges between −0.14 and +0.08 bps, which is still an improvement compared to the corre-

sponding false treatment effects produced with Specification (1) which range from −24.06

to +22.99 bps (Figure 3). Moreover, Panel B shows that the increasing measurement error

in m results from a lack of data. As a crude test, we repeat the analysis in Panel A but re-

strict the data to “good sample couplets,” namely to those that contain at least one control

and one treated bond in the [0,1]-year maturity bucket. Using those 5,468 “good sample

couplets” (from the total of 8,000), the measurement error at the short-end disappears.

The estimation error lies, again, maximally ±0.01 bps away from the true unconditional

zero-effect across all maturities and all m. This shows that the estimation error in Panel A

results from a lack of data at the short-end in some samples.

In short, the fully flexible yield-curve DiD specification in (6) is able to control for

relatively large treatment-unrelated, maturity-dependent idiosyncratic effects if there is

sufficient data to estimate the yield curves. The specification eliminates false treatment

effects independent of whether the samples are affected only by spurious correlation between

residual maturity and the treatment or spurious combined with systematic correlation.
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5. Mismeasured treatment effects

In this section, we model systematic actual treatment effects to examine whether Speci-

fication (1) identifies them. We focus exclusively on the case when only the yield curve

of treated bonds, through the treatment effect, experiences a shift. Hence, there are no

treatment-unrelated idiosyncratic effects.17 The treatment either leads to a yield-curve

twist or affects the treated bonds’ yield curve only at the short-end. As a preview, the

estimated treatment effect will be the average DiD effect conditional on the sample, which

ignores maturity. Because the true underlying treatment effect, however, is maturity-

dependent, this average will depend on where the treated bonds are located in the distri-

bution of maturity and the true underlying treatment effects there.

Insert Figure 4 here.

To model the underlying term structures we continue to use Diebold and Li’s (2006)

yield-curve specification in (2). Figure 4 provides the underlying parameter values and

shows the resulting yield curves graphically together with the numbers for yield levels and

differences. The treatment yield-curve twist leads to a yield-curve increase for treated

bonds of +6 bps at a maturity of one year and a reduction of −6 bps at ten years. The

short-end treatment effect corresponds to a yield reduction for treated bonds of −6 bps at

a maturity of one year and no effect (0 bps) at ten years relative to the pre-curve. In either

case control bonds stay on the pre-treatment curve.

5.1 Main result: Mismeasured treatment effects

We use OLS to run Specification (1) with standard errors clustered at the bond level on

this data. Figures 5a and 5b provide the results, respectively, for a treatment yield-curve

twist and a treatment short-end effect. From left to right, the graphs show 1) the true

underlying treatment effects as a function of maturity, 2) the distributions of estimated

treatment effects when m is equal to 0.25 or 10 years for the treated bonds, and 3) the DiD

effects against its t-statistics for these two modes.

17Logic: Control and treated bonds share the same term structure prior to treatment. Since there is no
treatment-unrelated idiosyncratic effect, control bonds stay on the pre-treatment curve when the treatment
takes place. Only the yield curve of treated bonds moves to a different location.
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Insert Figure 5 here.

The classical DiD specification estimates an average treatment effect that (erroneously)

ignores maturity. In case of a treatment yield-curve twist (Figure 5a) and if m equals to 0.25

years, based on t-statistics calculated with standard methods and conditional on the sample,

across the 1,000 estimates one concludes in 121 cases that there is no treatment effect

(at the 10%-significance level), and in 879 cases that the treatment effect is statistically

significantly negative even if, in fact, the true underlying treatment effect at one year is a

positive +6 bps. If the treated bonds are shifted toward the long-end, i.e. if m equals to 10

years, this becomes more extreme. In all the 1,000 cases the treatment effect is statistically

significantly negative despite the positive true treatment effect of +6 bps at one year.

In case of a yield-curve treatment short-end effect (Figure 5b) and if m equals to 0.25

years, the average effect ranges from −2.94 to −0.48 bps. In terms of the coefficient’s

sign, researchers will draw the correct conclusion but the size of the effect is not identified.

However, if the treated bonds are tilted sufficiently to the long-end, i.e. if m increases to

10 years, the estimated effects range from −0.72 to +0.06 bps. In 699 cases one concludes

that there is no treatment effect because the DiD estimate is not statistically significant at

the 10%-level if, in fact, the true treatment effect at one year is a negative −6 bps.

The analysis shows that the classical DiD specification may lead to incorrect conclusions.

This is the case even in the absence of treatment-unrelated idiosyncratic yield-curve effects

if the treatment effects themselves vary over maturity. The reason is that the classical DiD

specification produces an average treatment effect that abstracts from maturity. Therefore,

this average is tilted toward the effect at those maturities where the treated sample bonds

are located. Much in the spirit of the discussion in Kahn and Whited (2018), the classical

DiD specification is not able to elicit the true underlying treatment effect because the

quantity it measures ignores maturity. The classical DiD specification is not designed to

capture heterogeneous treatment effects in different parts of the term structure.

5.2 Naive specification adjustment does not work

How does the naive specification adjustment with the explicit term structure control handle

the mismeasurement of treatment effects? The analysis shows that running Specification (4)

produces the same mismeasured treatment effects as Specification (1). For illustration pur-
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poses, we compute the difference between the coefficients estimated with Specifications (1)

and (4) for the two yield-curve treatment effects and the 4,000 sample couplets. Across

the 8,000 differences in DiD coefficients between Specifications (1) and (4) even minimum

and maximum amount to −0.0000 and 0.0001 bps, respectively.18 Thus, the specifications

produce the exact same mismeasured treatment effects.

As in Subsection 3.4, B′Lit removes the average yield curve in the pooled sample of

control, treated, pre- and post-event observations. Specifications (1) and (4) restrict the

treatment effect to a parallel yield-curve level-shift from pre- to post-treatment. They

are, therefore, misspecified if the true underlying treatment effect depends on maturity.

Either of the specifications may lead to incorrect conclusions if the true treatment effect is

maturity-dependent and, simultaneously, the samples are affected by spurious or spurious

combined with systematic correlation between residual maturity and the treatment. This

illustrates that these specifications are not suitable when there are heterogeneous treatment

effects in different parts of the yield curve.

5.3 Fully flexible yield-curve DiD specification works well

In this subsection, we run Specification (6) on the data without treatment-unrelated id-

iosyncratic yield-curve effects but with true, maturity-dependent treatment effects. Basi-

cally, we repeat the analysis from Section 4 to see whether the fully flexible yield-curve

DiD specification is able to identify the true underlying effects.

At selected maturities, Table 8 provides the true, maturity-dependent treatment effects.

Either the data exhibits a yield-curve treatment twist or a yield-curve treatment short-

end effect; there are no treatment-unrelated idiosyncratic effects. To the right, the table

shows the minimum and maximum of the difference between the estimated and the true

treatment effect across the two types of effects and the 1,000 families separately by m using

the estimated difference-in-differences curve, ∆dl
4 (x), from Specification (6).

Insert Table 8 here.

The quantity that the difference-in-difference curve, ∆dl
4 (x), measures is a function of

maturity. In Panel A, when m equals to 0.25 years and, therefore, the sample couplets

are affected only by spurious correlation between residual maturity and the treatment,

18The differences in p-values range from −0.0049 to 0.0000, with (4) being slightly more conservative.
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Specification (6) estimates precise treatment effects across all maturities and the 2,000

regressions that are maximally ±0.01 bps away from the true treatment effects. When

spurious maturity-treatment correlation is compounded by systematic correlation, i.e. when

m increases, we observe the same pattern as in Section 4. For example, when m equals

to 10 years, the measurement error at the short-end increases from ±0.01 bps to between

−0.21 and 0.18 bps. However, to focus on the “good sample couplets,” those with at least

one treated and one control bond in the [0,1]-year bucket (Panel B), makes the estimation

error disappear and, again, the effects lie ±0.01 bps around the true treatment effects.

The fully flexible yield-curve DiD specification in (6) estimates the treatment effect as

a function of maturity, which is meaningful (Kahn and Whited, 2018) since, in practice,

the true treatment effects may depend on maturity. As shown, the specification is able to

precisely measure even relatively small treatment effects independent of whether the sam-

ples are affected only by spurious correlation between residual maturity and the treatment

or spurious combined with and systematic correlation.

6. Combine false and mismeasured treatment effects

In this section, we combine treatment-unrelated idiosyncratic with systematic treatment

effects. We continue to employ Diebold and Li’s (2006) yield-curve specification in (2) to

build the underlying term structures. The yield curve parameter values and resulting yield

levels and differences are provided in Table 9.

Insert Table 9 here.

By choosing values for the yield curve parameters, we generate an idiosyncratic short-

end (long-end) effect, which reduces yields at a residual maturity of one year (fifteen years)

by −50 bps and is close to zero at a maturity of fifteen years (one year). On top, we add

a treatment yield-curve twist (short-end effect), which pushes yields of treated bonds up

(down) by 6 bps at one year and pushes yields down by 6 bps (has a zero effect) at ten

years relative to the idiosyncratic effects. Hence, we have a total of four combinations of

idiosyncratic and treatment effects. The true underlying effects in this section are the same

as the individual true effects from Sections 3 and 5 combined.
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6.1 Main results

When idiosyncratic and actual treatment effects are present in the data simultaneously, it

turns out that the estimated treatment effect for each sample couplet and combination of

true effects equals the sum of the corresponding individual false and mismeasured treat-

ment effects from Sections 3 and 5.19 To illustrate this, we estimate the treatment effect

with Specification (1) in the data with both effects present simultaneously and compare

them to the sum of the individually estimated components, namely the false effect from

Section 3 and the mismeasured effect from Section 5 using the same sample couplet and

true underlying effects. We run a total of 16,000 different regressions, namely for the four

combinations of idiosyncratic and treatment effects, the four m, and the 1,000 families.

The difference between the coefficient estimated in the data with both effects present si-

multaneously and the sum of the individual coefficients estimated separately in the data

when only one of the effects is present across the 16,000 regressions ranges from −0.003 to

0.003 bps and is, therefore, virtually zero.

Inherently, the treatment effect is assumed to be the same for all the treated bonds

and the idiosyncratic effect the same for all the sample bonds. Specification (1), therefore,

neither allows for heterogeneous idiosyncratic nor for heterogeneous systematic treatment

effects along maturity. If these effects, however, are heterogeneous over maturity, Specifica-

tion (1) produces a combination of false and mismeasured effects. The magnitude depends

on the true underlying yield-curve effects and the spurious or spurious combined with sys-

tematic correlation between residual maturity and the treatment as implied by the relative

maturity distributions in the treated and control bond samples.

6.2 Naive specification adjustment does not work

The naive specification adjustment with explicit term structure control in (4) does also

not help to overcome the combined version of false and mismeasured treatment effects. As

before, we compute the difference between the coefficients estimated with Specifications (1)

and (4) for the four combinations of idiosyncratic and treatment effects and the 4,000 sample

couplets. Across the 16,000 differences in DiD coefficients between Specifications (1) and

19This results from the simplicity of having just two time periods and no bond-individual noise (the
bonds always lie on the term structure).
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(4) even minimum and maximum amount to −0.0000 and 0.0000 bps, respectively.20 This

shows that the two specifications produce the exact same false and mismeasured treatment

effects for the same reasons as explained in Subsections (3.4) and (5.2). Specifications (1)

and (4) are misspecified if the true underlying yield-curve effects vary along maturity as

these specifications restrict the true effects to parallel yield-curve level-shifts.

6.3 Fully flexible yield-curve DiD specification works well

In this subsection, we repeat the analysis from Section 4 and run Specification (6) on the

data that exhibit both treatment-unrelated idiosyncratic yield-curve as well as yield-curve

treatment effects while both type of effects vary along maturity.

At selected maturities, Table 10 provides true underyling treatment effects of the four

combinations of idiosyncratic effects (short- or long-end) and treatment effects (twist or

short-end). To the right, the table shows minimum and maximum of the difference between

the estimated and the true treatment effects across the four effect combinations and the

1,000 families separately by m using ∆dl
4 (x) from Specification (6).

Insert Table 10 here.

The table shows that Specification (6) is able to separate even relatively small, maturity-

dependent treatment effects from large, treatment-unrelated, and maturity-dependent id-

iosyncratic effects. In Panel A, when m equals 0.25 years and, therefore, the sample couplets

are affected only by spurious maturity-treatment correlation, the estimated treatment ef-

fects across all maturities and the 4,000 regressions differ by maximally ±0.01 bps from

the true treatment effects. When m increases, i.e. when spurious is compounded by sys-

tematic maturity-treatment correlation, the measurement error at the short-end increases

to between −0.14 and 0.15 bps (when m = 10 at one-year maturity). As before, focusing

on the “good sample couplets” (Panel B), again eliminates this estimation error.

In short, the fully flexible yield-curve DiD specification in (6) eliminates both false and

mismeasured treatment effects independent of whether the samples are affected only by

spurious maturity-treatment correlation or spurious combined with systematic correlation.

Through the difference-in-differences curve, ∆dl
4 (x), the specification meaningfully estimates

the treatment effect as a function of maturity (Kahn and Whited, 2018) and through the

20The differences in p-values range from −0.0056 to −0.0000, with (4) being slightly more conservative.

28



differences curve on the post-treatment indicator variable, ∆dl
3 (x), it accurately controls

for treatment-unrelated idiosyncratic yield-curve effects. The specification separates small,

maturity-dependent treatment effects from large, treatment-unrelated, maturity-dependent

idiosyncratic effects and provides precisely estimated coefficients.

7. Semi-matching

Section 4 eliminates false and mismeasured treatment effects by combining the standard

DiD method with flexible yield-curve modeling. Specification (6) accurately deals with

one of the two components that create the problems, namely with heterogeneous effects in

different parts of the term structure. This section shows that it is possible to eliminate false

and mismeasured treatment effects by, instead, dealing with the other relevant component,

namely unequal maturity distributions in the treatment sample groups.

As described earlier, a simple solution to the problem would be to perfectly match each

treated with a control bond on maturity. However, since perfect matching on maturity is

only rarely feasible in practice, researchers sometimes implement imperfect matching pro-

cedures (see, e.g., Ang, Bhansali, and Xing, 2010; Choi, Hoseinzade, Shin, and Tehranian,

2020). In this section we implement imperfect matching for a fixed-income pricing variable

by combining a matching procedure with yield-curve modeling such as, for example, used

by Lentner (2023).

In this section, we apply what we call “semi-matching,” which works as follows. As

perfect matching is not feasible, each treated bond is matched with a synthetic control

bond whose yield is inferred from a contemporaneous yield curve of control bonds. The

term “semi-matching” reflects that exact matching is not possible; only semi-matching on a

synthetic control bond whose yield is estimated from the surrounding bonds via yield-curve

modeling is feasible. We apply semi-matching as follows:

1. Separately for pre- and post-treatment periods, use Diebold and Li’s (2006) specifi-

cation in (2) to estimate the yield curve of control bonds;21

2. Apply semi-matching: Separately for each period, subtract the spot yield of the

maturity-matched synthetic control bond from the yield of each treated sample bond;

21As before, we use NLS to estimate lambda in-sample using a start value λSeed = 1.
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3. For each maturity-matched pair of treated and synthetic control bond, calculate the

difference in the pair’s yield-difference from pre- to post treatment, which represents

the DiD in yields for each bond pair i, yieldDiD

it .

Semi-matching is illustrated in Figure 6 using a random sample couplet with m equal to

0.25 years. The figure plots the difference between the estimated Diebold-Li control-bond

curves from pre- to post-treatment for an idiosyncratic yield-curve short-end (long-end)

effect on the left (right). The (red) diamonds and (green) crosses show the difference of the

treated bonds’ yields from pre- to post-treatment in the cases, respectively, of a treatment

yield-curve twist and a yield-curve treatment short-end effect.

Insert Figure 6 here.

In the following, we show in three steps that 1) semi-matching applied on a sample

couplet eliminates false but not mismeasured treatment effects and may, thus, still lead to

incorrect conclusions; 2) the analysis by maturity bucket overcomes false and reduces the

likelihood of mismeasured treatment effects; 3) the analysis bond-by-bond resolves both

false and mismeasured treatment effects. Finally, we show that estimating a yield curve

through the individual bond-level DiDs after having applied semi-matching results in the

difference-in-differences curve, ∆dl
4 (x), from Specification (6).

7.1 Mismeasurement

Semi-matching eliminates false treatment effects that derive from treatment-unrelated id-

iosyncratic yield-curve effects. As an illustration, we proceed as follows: First, we run a

regression of the bond-level DiDs in yields on a constant C ,

yieldDiD

it = βDiD ×C + εit, (9)

to estimate the average treatment effect, βDiD, for each sample couplet. We run Specifica-

tion (9) on the simulated data used in Section 6 with both true underlying idiosyncratic

and treatment effects present simultaneously. This is a total of 16,000 different regressions

(four combinations of idiosyncratic and treatment effects, four m, and 1,000 families). Im-

portantly, idiosyncratic effects are present in that data.

Second, for each sample couplet, we compute the difference between the semi-matched
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DiD coefficient from Specification (9), run on the data with idiosyncratic effects, and the

DiD coefficient from Specification (1), but run on the data where only treatment (no

idiosyncratic) effects are present (as in Section 5). Importantly, the latter coefficients are

affected only by mismeasurement as idiosyncratic effects are absent from the data.

Across the 16,000 cases, namely the four combinations of idiosyncratic and treatment

effects, the four m, and the 1,000 families, the differences in coefficients range from −0.003

to 0.004 bps.22 This shows that semi-matching applied to an entire sample couplet produces

the same mismeasurement as in Section 5 but, importantly, in the data with idiosyncratic

effects. Hence, independent of spurious correlation between maturity and the treatment

or of spurious combined with systematic correlation, semi-matching eliminates false treat-

ment effects that stem from treatment-unrelated idiosyncratic yield-curve effects. However,

mismeasured treatment effects may still lead to incorrect conclusions.

7.2 Semi-matching by maturity buckets

This subsection shows that semi-matching applied by maturity bucket eliminates false

and reduces the likelihood of mismeasured treatment effects. As an illustration, we run

Specification (9) on the data that exhibit both true idiosyncratic and treatment effects

simultaneously, as in the previous subsection, but this time separately by maturity buckets

as used in Subsection 3.3, namely [0, 2], (2, 5], (5, 10], and (10, 20] years.

Table 11 shows the results. Panels A and B cover the two treatment effects, twist and

short-end effect, respectively. Separately by maturity bucket, each panel shows the number

of estimated treatment effects, minimum and maximum number of involved bonds, the

true treatment effects at maturity-range start and end, and minimum and maximum of the

distributions of the estimated treatment effects for each idiosyncratic effect. Per panel and

maturity bucket this is a total of 4,000 different regressions (four m and 1,000 families).

Insert Table 11 here.

Across panels, the number of estimated coefficients is below 4,000 for the [0, 2]- and

the (2, 5]-year buckets as for some sample couplets no treated bonds are available in those

maturity buckets. The remaining 3,614 and 3,998 coefficients for these two buckets are es-

22Notice that this extreme similarity is not generic. It is the result of the simplicity of the setting with
only two time periods and no noise of yields around the term structures.
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timated with maximally twenty-four treated bonds. Hence, the more granular the maturity

buckets, the shorter its maturity ranges, and the fewer bonds per bucket.

Comparing true and estimated treatment effects shows that, for each maturity bucket,

the estimated coefficients cover, with one exception, the range of true treatment effects.23

Semi-matching produces an average treatment effect per maturity bucket, which misguides

less often as, on the maturity-bucket level, more likely the sign of the coefficient is correct.

However, it is still possible to draw incorrect conclusions regarding the sign of the coefficient.

In our case, this is possible in maturity bucket (2, 5] in Panel A and (5, 10] in Panel B.

Overall, this illustrates the trade-off between the accuracy of measured treatment ef-

fects and the power of the test. With more maturity buckets of relatively shorter length,

the precision of the estimated effects increases but is based on fewer bonds. Semi-matching

applied on the maturity-bucket level eliminates false and reduces the likelihood of mismea-

sured treatment effects but the latter is not entirely ruled out.

7.3 Semi-matching bond-by-bond

The limiting case is to analyze the effects bond-by-bond as in the synthetic control literature

(see, e.g., Abadie, 2021). Figure 6 shows the small treatment effects relative to the large

idiosyncratic yield-curve effects and that both effects vary over maturity. Applying semi-

matching via yield-curve modeling eliminates treatment-unrelated idiosyncratic yield-curve

effects and is, as no averaging takes place, simultaneously immune against the mismeasure-

ment of treatment effects. However, as discussed in detail in the synthetic control literature

(see, e.g., Xu, 2017), estimating adequate standard errors is more laborious.24

One way to express the results of bond-by-bond semi-matching is to estimate a curve

through the bond-level DiDs in yields. Separately for the four combinations of idiosyncratic

and treatment effects and the same sample couplet as in Figure 6, we use NLS and λSeed = 1

to fit a Diebold-Li curve through the bond-level DiDs in yields in Figure 6. Exhibit 2 shows

the true as well as the estimated treatment effects at selected maturities.

In short, Exhibit 2 shows the same treatment effects as the fully flexible yield-curve

DiD specification in (6). Hence, estimating a curve through the bond-level DiDs in yields

23The one exception relates to the (2, 5]-year bucket in Panel B, where the maximum of −0.29 bps in
case of an idiosyncratic short-end effect is outside the range of true effects of [−2.97,−0.26] bps.

24Standard errors are typically derived from bootstrapping methods.
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after having applied semi-matching results in the difference-in-differences curve, ∆dl
4 (x; λ̂),

as used in Section 4 and provided in (8).

Exhibit 2: Estimated treatment effects (in bps) with semi-matching
Residual True treat- Idiosyncratic and treatment effects
maturity ment effects short-end long-end
(in years) twist short-end twist short-end twist short-end

1 5.87 -6.23 5.88 -6.23 5.87 -6.23
2 3.75 -2.97 3.75 -2.97 3.74 -2.97
3 1.58 -1.39 1.58 -1.39 1.58 -1.39
5 -1.87 -0.26 -1.87 -0.26 -1.87 -0.26
7 -4.11 0.00 -4.11 0.00 -4.11 0.00

10 -6.09 0.08 -6.09 0.08 -6.09 0.08
15 -7.72 0.09 -7.71 0.09 -7.71 0.09

Overall, the advantage of the fully flexible yield-curve DiD specification is its simple and

fast implementation. In our case, with zero-coupon yields it accurately estimates the DiD in

yield curves with one single regression. Furthermore, it is possible to cluster standard errors

at the bond level (Bertrand, Duflo, and Mullainathan, 2004). However, semi-matching

is more broadly applicable if, besides maturity, other fixed-income characteristics such

coupons, callability, ratings, etc. are of relevance. Contrarily, semi-matching is laborious,

for example, when it comes to the estimation of standard errors (see, e.g., Xu, 2017).

8. Concluding remarks

Difference-in-differences (DiD) methodology is frequently used in finance to measure the

causal impact of a treatment on yields or other pricing variables that exhibit time-varying

term structures. Using simulations, this paper shows that the classical DiD specification

with yield as dependent variable systematically produces false and mismeasured treatment

effects, which holds even if the treatment is assigned randomly. To illustrate false and

mismeasured treatment effects we simulate residual maturity of treated and control bond

samples and model two types of yield-curve effects that both vary along maturity. The

first type of effect is an idiosyncratic yield-curve effect that is not related to the treatment

whatsoever and affects “treated” and control bonds irrespective of the treatment. The

analysis shows that heterogeneous idiosyncratic effects over maturity lead to systematically

false treatment effects even in the absence of true underlying treatment effects.
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The second type of effect is a systematic actual yield-curve treatment effect that affects

only the treated bonds. However, heterogeneous treatment effects across maturity may

lead, even without true underlying idiosyncratic effects, to mismeasured treatment effects.

Both false and mismeasured treatment effects can be economically large and can go in either

direction. Based on standard methods, the likelihood of statistical significance increases

with the coefficients’ absolute size. As shown, neither explicit term structure control in the

specification nor regressions separately by individual maturity buckets overcome the issues.

The limitation of these specifications is the inability to capture idiosyncratic and treat-

ment effects if these effects vary over maturity. The magnitudes of false and mismeasured

treatment effects depend on 1) heterogeneous idiosyncratic and treatment effects along

maturity and 2) unequal residual maturity distributions in the treated and control bond

samples. The root lies in the specifications’ implicit restrictions of movements in the un-

derlying yield curves to parallel level-shifts between the involved groups (controls, treated

bonds, pre- and post-treatment). In fact, false and mismeasured treatment effects survive

any DiD specification that implicitly assumes parallel yield-curve level-shifts if the true

underlying effects are not limited to parallel level-shifts.

The paper provides new methodology to overcome both false as well as mismeasured

treatment effects by combining DiD analysis with yield-curve modeling. First, the fully

flexible yield-curve DiD specification takes the yield curve parameterization explicitly into

the DiD estimator. The specification measures the DiD in yield curves between the in-

volved groups and eliminates both false and mismeasured treatment effects. Second, semi-

matching applies the first approach step-by-step to data.

False and mismeasured treatment effects are shown in the most trivial setting with bond

yield on the left-hand side of the regression equation and bond-fixed effects on the right-

hand side. Importantly, however, both false and mismeasured treatment effects survive (1)

when the unit of analysis is an aggregation of the bond level, (2) with other dependent

pricing variables (as long as they exhibit time-varying term structures), and (3) for other

right-hand side controls of maturity. Overall, this shows that DiD analysis must be applied

with great caution in fixed-income settings, especially with respect to residual maturity.
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Table 1: Recent top finance publications potentially affected.
This tables shows a collection of recent top finance publications potentially affected by the issues discussed in the present paper. The

list was created by a manual search of The Journal of Finance (JF), The Journal of Financial Economics (JFE), and The Review of
Financial Studies (RFS) over the period July 1 to September 10, 2021, using relevant combinations of key words. “Treas.” is short for
Treasury and “mat.” is short maturity.

Publ. Jour- Analysis Dependent Independent variable(s)

Authors year nal level variable to capture maturity(1)

Chava, Livdan, Purnanandam 2009 RFS Loan, or firm Log changes in loan spread over LIBOR −

Qiu, Yu 2009 JFE Firm Credit spread over mat.-matched Treas. Duration and convexity(2)

Titman, Tsyplakov 2010 RFS Mortgage Credit spread over mat.-matched Treas. Mortgage resid. time-to-mat.
Ayotte, Gaon 2011 RFS ABS issuance ABS spread over mat.-matched swap rates Average life and its quadratic term
Hasan, Hoi, Wu, Zhang 2014 JFE Loan facility Log loan spread over LIBOR Log resid. time-to-mat.
Rodano, Serrano-Velarde, Tarantino 2016 JFE Bank-firm Loan interest rate Bank-firm fixed effects, loan mat.(3)

Adelino, Ferreira 2016 RFS Loan facility Loan spread over LIBOR −

Cornaggia, Cornaggia, Israelsen 2018 RFS Bond Yield, credit spread over dur.-matched Treas.(4) Duration

Dannhauser 2017 JFE Bond Yield spread over mat.-matched swap rates(5) Bond fixed effects
Bao, O’Hara, Zhou 2018 JFE Bond Yield spread over mat.-matched Treas. Log resid. time-to-mat.
Todorov 2020 JFE Bond Yield Bond fixed effects

Gao, Lee, Murphy 2020 JFE Bond Yield spread over coupon-equiv. Treas. yield(6) Resid. time-to-mat. and its inverse

Painter 2020 JFE Bond Annualized issuance cost(7), yield Log resid. time-to-mat.(8)

Benetton, Fantino 2021 JFE Bank-firm Loan rate Bank-firm fixed effects
Ding, Xiong, and Zhang 2021 JFE Issuance Issuance spread over Chinese Treas. Resid. time-to-mat.
(1) Dashes mean that there are no independent variables to capture maturity
(2) Bond-level characteristics are converted into firm-level measures (value-weighted). Authors also run bond level regressions:

Independent variables are not aggregated
(3) Loan maturity is measured with indicator variables for < 1 year, 1-5 years, and > 5 years
(4) Either using each bond’s time-to-maturity or with the callable bonds’ call dates in lieu of their maturity dates
(5) Monthly volume-weighted yield of a bond over the maturity-matched swap rate
(6) See Footnote 7 in Gao, Lee, and Murphy (2020) for details
(7) For details see Painter (2020), page 470
(8) Sample split at maturity of 25 years throughout the paper
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Table 2: Time-variation in the term spread in practice.
This table shows the distribution of changes in the term spread for a selected group of countries

over the period from January 3, 2000 to December 14, 2022. The term spread is measured in
basis points (bps) and calculated as ten-year minus three-month zero-coupon spot yield. Panel
A shows daily changes in the term spread (using end-of-day pricing data) and Panel B monthly

changes (using end-of-month data). Data source: Bloomberg.

Country Mean SD Min P1 P5 Med P95 P99 Max N

Panel A: Distribution of daily changes in ten-year minus three-month term spread (in bps)
Japan 0 3 -30 -9 -4 0 4 10 30 5,985

Germany 0 5 -37 -13 -7 0 7 14 39 5,987
United States 0 6 -61 -16 -9 0 10 18 63 5,983
France 0 5 -78 -12 -7 0 7 13 86 5,217

United Kingdom 0 6 -84 -16 -8 0 9 17 81 5,985
Spain 0 7 -121 -17 -9 0 9 19 63 5,959

Ireland 0 7 -117 -17 -8 0 8 19 76 5,982
Netherlands 0 5 -100 -12 -7 0 7 13 99 5,831

Italy 0 9 -178 -24 -11 0 12 24 110 5,987
Portugal 0 13 -180 -37 -11 0 12 37 142 5,985

China 0 12 -210 -34 -15 0 15 33 190 4,766
Greece 0 90 -2,012 -126 -27 0 22 121 1,822 5,976

Panel B: Distribution of monthly changes in ten-year minus three-month term spread (in bps)
Japan 0 10 -31 -22 -14 -1 18 28 49 219
United States 0 30 -103 -58 -45 -1 61 83 93 219

France -1 24 -97 -61 -35 -3 38 109 118 193
Germany -1 23 -92 -51 -35 -3 35 64 149 219

Netherlands -1 25 -109 -59 -36 -3 36 53 151 207
United Kingdom 0 27 -143 -58 -38 -2 43 79 135 219

Spain 1 31 -143 -87 -36 -2 47 127 137 216
China 0 34 -116 -102 -54 0 46 116 166 179

Ireland 0 34 -115 -82 -52 -2 48 112 208 219
Italy 0 32 -148 -73 -44 -3 38 116 219 219

Portugal 1 49 -145 -121 -61 -4 53 193 285 219
Greece 0 283 -1,810 -1,060 -219 0 221 876 1,745 219
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Table 3: The maturity structure of outstanding debt in practice.
This table provides the number of outstanding securities as well as outstanding debt by maturity

buckets for the same selection of countries as in Table 2 at the beginning of 2023 (Panel A) and
at the beginning of 2011 (Panel B). For each country, outstanding debt by maturity bucket is

provided as percentage of the total outstanding debt by that country. Data source: Bloomberg.

Country # of sec. [0-2] (2-5] (5-10] (10-15] (15-20] (20-30] >30y
Panel A: At the beginning of 2023

Netherlands 31 23 21 26 9 11 9 1
Portugal 32 17 28 35 14 2 5 0

Ireland 59 10 20 38 11 3 13 4
Spain 82 23 25 30 8 5 7 2

Greece 82 21 18 27 18 6 9 1
Germany 84 30 24 26 6 4 10 0

France 97 21 25 31 6 7 7 4
United Kingdom 122 14 17 19 10 10 17 13
Italy 205 28 25 25 9 5 7 1

United States 444 42 24 17 0 6 10 0
China 493 33 29 23 1 2 9 4

Japan 559 31 20 21 8 8 9 2
Panel B: At the beginning of 2011

Netherlands 41 35 25 22 6 4 4 3
Portugal 45 26 27 30 11 0 5 0

Ireland 16 12 20 59 9 0 0 0
Spain 63 33 24 23 7 4 8 2

Greece 105 22 28 28 10 5 7 1
Germany 274 33 26 26 3 4 8 1
France 92 30 24 25 8 4 6 3

United Kingdom 100 14 19 21 9 8 16 13
Italy 178 30 23 22 9 5 9 1

United States 305 41 26 23 3 3 5 0
China 285 32 24 21 12 5 5 1

Japan 466 36 25 22 6 7 3 0
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Table 4: Overview on simulation of residual maturity.
This table provides an overview of the simulated residual maturities. Family f comprises five

simulated residual maturity samples, namely one for control bonds with m = 0.25 and four for
treated bonds with m = 0.25, 1, 3, 10. m is the mode of the triangular pdf from which residual

maturity is drawn. Each sample is comprised of fifty bonds. For each family f , we build four
sample couplets by pairing each sample of treated bonds (m = 0.25, 1, 3, 10) with the sample

of control bonds (m = 0.25). Thus, each sample couplet contains fifty control and fifty treated
bonds. In total, we draw 1,000 families. Panel A shows the distributions of average-maturity
across the 1,000 families separately for each treatment group and mode. Panel B provides the

distributions of average-maturity ratios across the families by mode m. For each sample couplet,
the ratio is calculated as average residual maturity of the fifty treated bonds divided by average

residual maturity of the fifty control bonds. Panel C shows the distributions of the correlation
between residual maturity and the treatment indicator variable by mode m.

Panel A: Average-maturity across families of samples by treatment group and mode
Pop- Sample distributions
ulation No. of

Group m mean families Mean SD Med Min Max
Control 0.25 6.75 1,000 6.764 0.668 6.765 4.327 8.807

Treated 0.25 6.75 1,000 6.734 0.674 6.708 4.322 9.168
1 7.00 1,000 7.034 0.611 7.029 5.361 9.008

3 7.67 1,000 7.648 0.604 7.631 5.819 9.558
10 10.00 1,000 9.979 0.587 10.015 8.043 11.981

Panel B: Average-maturity ratios across families of sample couplets by mode

Pop- Sample distributions
ulation No. of

m treated bonds mean families Mean SD Med Min Max
0.25 1.00 1,000 1.005 0.138 0.994 0.592 1.524

1 1.04 1,000 1.050 0.141 1.039 0.710 1.598
3 1.14 1,000 1.142 0.146 1.135 0.691 1.805

10 1.48 1,000 1.490 0.177 1.481 1.095 2.231

Panel C: Correlation between residual maturity and treatment indicator variable
Sample distributions

No. of
m treated bonds families Mean SD Med Min Max

0.25 1,000 -0.004 0.097 -0.004 -0.349 0.318

1 1,000 0.029 0.098 0.028 -0.268 0.322
3 1,000 0.097 0.098 0.100 -0.301 0.371

10 1,000 0.344 0.091 0.349 0.077 0.627
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Table 5: False treatment effects.

This table shows the estimation of false treatment effects using the simulated data with het-
erogeneous idiosyncratic yield-curve effects along maturity but without true treatment effects.

The specification is yieldit = αi + δt + βDiD 1Treated,i × 1Post,t + εit, where yieldit is the yield-
to-maturity of bond i at time t, the αi’s (δt’s) are bond (time) fixed effects, 1Treated,i (1Post,t) is
a treatment (event and post-event dates) indicator variable, βDiD the treatment effect, and εit

the error term. The specification is estimated with OLS. The results are presented as follows:
For each mode m ∈ {0.25, 1, 3, 10} of the treated bonds the 1,000 families of sample couplets are

ordered according to the average-maturity ratio (treated divided by control bonds). For each m,
we select the sample couplets with order index as indicated in the table. Panel A provides the

corresponding average-maturity ratio and Panel B the corresponding correlation between residual
maturity and the treatment indicator variable. For the corresponding sample couplet in Panels A

and B, Panel C (D) shows the estimated DiD effects and, underneath in parentheses, p-values
based on standard errors clustered at the bond level for an idiosyncratic yield-curve short-end

(long-end) effect. a, b, and c denote significance (two-sided) at the levels of 1%, 5%, and 10%,
respectively. Coefficients statistically significant at the 10%-level or stronger are marked in bold.

Order index of families of sample couplets

m 1 10 50 250 501 751 951 991 1000

Panel A: Ratio of average residual time-to-maturity of treated over control bonds
0.25 0.592 0.742 0.799 0.904 0.994 1.086 1.259 1.379 1.524

1 0.710 0.766 0.838 0.948 1.039 1.142 1.304 1.419 1.598
3 0.691 0.838 0.913 1.044 1.135 1.228 1.400 1.527 1.805

10 1.095 1.144 1.232 1.362 1.482 1.594 1.790 2.027 2.231

Panel B: Correlation between residual maturity and treatment indicator variable
0.25 -0.349 -0.220 -0.162 -0.078 -0.004 0.064 0.157 0.225 0.318

1 -0.268 -0.213 -0.140 -0.039 0.029 0.093 0.196 0.234 0.322
3 -0.301 -0.145 -0.068 0.036 0.094 0.162 0.239 0.308 0.371

10 0.077 0.139 0.176 0.266 0.353 0.413 0.494 0.565 0.567

Panel C: Idiosyncratic yield-curve short-end effect
0.25 -11.59a -7.22b -3.29 -3.89 0.89 -0.58 4.16 9.32a 10.79a

(0.00) (0.04) (0.35) (0.28) (0.81) (0.86) (0.26) (0.01) (0.00)
1 -8.67a -7.79b -4.82 0.54 1.32 2.19 6.01c 7.84b 11.32a

(0.01) (0.02) (0.14) (0.89) (0.70) (0.55) (0.09) (0.03) (0.00)
3 -8.73a -2.01 -0.82 2.30 4.24 5.88c 8.63b 11.35a 14.24a

(0.01) (0.55) (0.82) (0.46) (0.21) (0.09) (0.01) (0.00) (0.00)
10 6.30c 4.26 8.61b 9.88a 10.80a 14.14a 15.34a 19.47a 22.99a

(0.06) (0.14) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Panel D: Idiosyncratic yield-curve long-end effect
0.25 12.01a 7.67b 3.86 4.17 -1.06 0.25 -4.35 -9.94a -11.34a

(0.00) (0.04) (0.30) (0.27) (0.78) (0.94) (0.26) (0.01) (0.00)
1 9.31a 8.31b 5.32 -0.21 -1.51 -2.08 -6.45c -8.28b -11.84a

(0.01) (0.02) (0.13) (0.96) (0.68) (0.60) (0.08) (0.03) (0.00)
3 9.72a 2.59 1.16 -2.15 -4.40 -6.12 -8.82b -11.50a -14.95a

(0.00) (0.47) (0.77) (0.52) (0.22) (0.10) (0.02) (0.00) (0.00)

10 -6.56c -4.54 -8.60b -10.53a -11.79a -15.32a -16.51a -20.63a -24.06a

(0.07) (0.14) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 6: False treatment effects measured individually by maturity buckets.
This table provides the distributions of estimated treatment effects using OLS on the same data, the same modeled idiosyncratic

yield-curve effects, and using the same classical DiD specification as in Table 5 but separately by four individual buckets with residual
maturity in the ranges [0, 2], (2, 5], (5, 10], and (10, 20] years. Panel A (B) covers the case when residual maturity of the treated bonds is
drawn from a triangular pdf with mode m = 0.25 (m = 10) years. Each panel shows mean, median, and minimum as well as maximum

of the distributions of the estimated treatment effects by the idiosyncratic effects (short- or long-end) and the maturity buckets as well as
separately for the cases when t < −tcv, −tcv ≤ t ≤ tcv, and tcv < t, where tcv is the critical value of a two-sided t-test at the significance

level of 10% (which is 1.645 in case of a z-test) with standard errors clustered at the bond level.

Idiosyn- Maturity Number t < −tcv −tcv ≤ t ≤ tcv tcv < t

cratic bucket of meas. Mean Med Min Max Min Max Min Max
effect (in years) effects, N (in bps) N (in bps) N (in bps) N (in bps)
Panel A: m = 0.25 years

Short- [0 - 2] 1,000 0.01 0.02 60 -4.24 -1.49 883 -2.77 2.51 57 1.54 4.17
end (2 - 5] 1,000 -0.01 0.03 53 -7.49 -3.31 900 -4.69 4.73 47 3.55 8.47

(5 - 10] 1,000 -0.09 -0.09 63 -6.14 -2.36 889 -3.43 3.46 48 2.39 5.54
(10 - 20] 1,000 -0.01 -0.02 46 -3.44 -1.15 900 -2.18 2.11 54 1.31 3.10

Long- [0 - 2] 1,000 -0.01 -0.01 61 -2.85 -0.75 868 -1.97 1.92 71 0.74 3.17
end (2 - 5] 1,000 0.01 -0.03 47 -8.94 -3.74 900 -5.03 4.97 53 3.50 7.90

(5 - 10] 1,000 0.10 0.10 48 -6.24 -2.70 888 -3.87 3.66 64 2.65 6.90
(10 - 20] 1,000 0.01 0.02 54 -3.53 -1.49 900 -2.39 2.48 46 1.30 3.92

Panel B: m = 10 years

Short- [0 - 2] 640 1.13 1.03 94 -5.12 -1.14 308 -2.45 3.90 238 0.58 8.01
end (2 - 5] 998 1.77 1.77 25 -10.51 -3.32 762 -6.29 6.15 211 3.26 11.89

(5 - 10] 1,000 1.37 1.45 11 -4.14 -2.08 787 -2.61 3.11 202 2.03 6.70
(10 - 20] 1,000 0.00 -0.01 49 -2.98 -1.18 888 -1.81 1.64 63 1.28 3.15

Long- [0 - 2] 640 -0.48 -0.22 204 -4.82 -0.43 288 -2.24 1.58 148 0.46 2.88
end (2 - 5] 998 -1.87 -1.84 210 -12.70 -3.35 762 -6.60 6.60 26 3.58 11.01

(5 - 10] 1,000 -1.54 -1.63 202 -7.56 -2.28 787 -3.50 2.94 11 2.35 4.67

(10 - 20] 1,000 0.00 0.01 62 -3.58 -1.46 889 -1.87 2.06 49 1.34 3.39
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Table 7: The fully flexible yield-curve DiD specification to eliminate false treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification yieldit = B′

1 Lit + B′

2 Lit 1Treated,i +

B′

3 Lit 1Post,t + B′

4 Lit 1Treated,i × 1Post,t + εit with notation as in Table 5, Lit a three-dimensional vector of regressors with elements
1, l1(xit; λ), and l2(xit; λ), the latter two terms defined as in (5), and Bj the corresponding three-dimensional vectors of coefficients
with individual elements βk,j, k = 0, . . . , 2. The latter measure level, slope, and curvature of the baseline curve for control bonds pre

treatment (j = 1) and the incremental differences of (i) treated bonds pre treatment (j = 2), (ii) control bonds post treatment (j = 3),
and (iii) treated bonds post treatment (j = 4). B4 captures level, slope, and curvature of the DiD yield curve, ∆dl

4 (x), which provides

the treatment effects at maturity x. The specification is estimated with NLS, λSeed = 1, and λ is assumed to be time-invariant and the
same for treated and control bonds. There are treatment-unrelated idiosyncratic yield-curve effects either at the short- or the long-end

but the true, unconditional treatment effect is zero. At selected maturities, the table shows these true underlying effects and, to the
right, the minimum and maximum of the estimated treatment effects across the two types of idiosyncratic yield curve effects (at short-

and long-end) and the 1,000 families separately by m using the DiD yield curve, ∆dl
4 (x). Standard errors are clustered at the bond level

and calculated using the delta method.

Residual Idiosyncratic yield- True treat- Distribution of estimated treatment effects (in bps)

maturity curve effects (in bps) ment effect m = 0.25 m = 1 m = 3 m = 10
(in years) Short-end Long-end (in bps) Min Max Min Max Min Max Min Max

Panel A: All sample couplets
1 -50.35 3.91 0 -0.01 0.01 -0.01 0.01 -0.02 0.02 -0.14 0.08

2 -43.65 -1.47 0 -0.00 0.01 -0.01 0.01 -0.01 0.01 -0.06 0.03
3 -35.82 -9.31 0 -0.01 0.00 -0.01 0.00 -0.00 0.00 -0.03 0.01

5 -22.58 -23.60 0 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.01 0.01
7 -13.69 -33.54 0 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

10 -5.77 -42.50 0 -0.00 0.00 -0.00 0.00 -0.00 0.01 -0.00 0.00

15 0.77 -49.95 0 -0.00 0.00 -0.00 0.01 -0.00 0.01 -0.01 0.00
No. of sample couplets 2,000 2,000 2,000 2,000

Panel B: Good sample couplets*
1 -50.35 3.91 0 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01
2 -43.65 -1.47 0 -0.00 0.01 -0.01 0.01 -0.01 0.00 -0.01 0.01

3 -35.82 -9.31 0 -0.01 0.00 -0.01 0.00 -0.00 0.00 -0.01 0.01
5 -22.58 -23.60 0 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

7 -13.69 -33.54 0 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
10 -5.77 -42.50 0 -0.00 0.00 -0.00 0.00 -0.00 0.01 -0.00 0.00

15 0.77 -49.95 0 -0.00 0.00 -0.00 0.01 -0.00 0.01 -0.00 0.00
No. of sample couplets 1,954 1,818 1,210 486

* At least one treated and one control bond in one-year maturity bucket.
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Table 8: The fully flexible yield-curve DiD specification to eliminate mismeasured treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification (specification and notation are as in

Table 7). There are no treatment-unrelated idiosyncratic yield-curve effects in the data but the treatment effect varies along maturity.
At selected maturities, the table shows these true underlying effects and, to the right, the minimum and maximum of the difference
between the estimated and the true underlying treatment effects across the two types of yield-curve treatment effects and the 1,000

families separately by m using the DiD yield curve, ∆dl
4 (x). Standard errors are clustered at the bond level and calculated using the

delta method.

Residual Idiosyn- True treatment Differences between estimated and true treatment effects (in bps)
maturity cratic effect effect (in bps) m = 0.25 m = 1 m = 3 m = 10

(in years) (in bps) Twist Short-end Min Max Min Max Min Max Min Max
Panel A: All sample couplets

1 0 5.87 -6.23 -0.01 0.01 -0.01 0.02 -0.05 0.03 -0.21 0.18

2 0 3.75 -2.97 -0.00 0.00 -0.00 0.00 -0.01 0.01 -0.08 0.06
3 0 1.58 -1.39 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.03 0.02

5 0 -1.87 -0.26 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
7 0 -4.11 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

10 0 -6.09 0.08 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
15 0 -7.72 0.09 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

No. of sample couplets 2,000 2,000 2,000 2,000

Panel B: Good sample couplets*
1 0 5.87 -6.23 -0.00 0.00 -0.01 0.01 -0.01 0.01 -0.01 0.01

2 0 3.75 -2.97 -0.00 0.00 -0.00 0.00 -0.00 0.01 -0.01 0.01
3 0 1.58 -1.39 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.01 0.01

5 0 -1.87 -0.26 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
7 0 -4.11 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

10 0 -6.09 0.08 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
15 0 -7.72 0.09 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

No. of sample couplets 1,954 1,818 1,210 486

* At least one treated and one control bond in one-year maturity bucket.
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Table 9: Modeling idiosyncratic term-structure effects combined with treatment effects.
To model the term structure we employ Diebold and Li (2006)’s yield curve specification. This table shows the parameter values to

create the true underlying term structures as well as the resulting yield levels and yield differences at selected maturities. Panels A and
C cover the cases of a yield-curve treatment twist and a yield-curve treatment effect only at the short-end in case of an idiosyncratic
short-end effect and Panels B and D, respectively, the same in case of an idiosyncratic long-end effect from pre- to post-treatment.

Panel A: Idiosyncratic short-end effect, treatment yield-curve twist Panel B: Idiosyncratic long-end effect, treatment yield-curve twist

i) Parameter values γ0 γ1 γ2 λ i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308 Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve controls 4.140 -2.650 -0.800 0.7308 Post-curve controls 3.350 -1.350 1.000 0.7308
Post-curve treated 4.030 -2.470 -0.620 0.7308 Post-curve treated 3.240 -1.170 1.180 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities: ii) Yields (in %) and differences (in pps) at selected maturities:
1y 2y 3y 5y 7y 10y 15y 1y 2y 3y 5y 7y 10y 15y

Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82 Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve controls 2.08 2.51 2.83 3.24 3.47 3.67 3.83 Post-curve controls 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01 Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50
Post-curve treated 2.14 2.55 2.85 3.22 3.43 3.61 3.75 Post-curve treated 2.68 2.97 3.11 3.21 3.23 3.24 3.24
Difference 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08 Difference 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08

Panel C: Idiosyncratic short-end effect, treatment short-end effect Panel D: Idiosyncratic long-end effect, treatment short-end effect

i) Parameter values γ0 γ1 γ2 λ i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308 Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve controls 4.140 -2.650 -0.800 0.7308 Post-curve controls 3.350 -1.350 1.000 0.7308
Post-curve treated 4.141 -2.781 -0.670 0.7308 Post-curve treated 3.351 -1.481 1.130 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities: ii) Yields (in %) and differences (in pps) at selected maturities:
1y 2y 3y 5y 7y 10y 15y 1y 2y 3y 5y 7y 10y 15y

Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82 Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve controls 2.08 2.51 2.83 3.24 3.47 3.67 3.83 Post-curve controls 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01 Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50
Post-curve treated 2.02 2.48 2.82 3.24 3.47 3.67 3.83 Post-curve treated 2.56 2.90 3.08 3.23 3.28 3.30 3.32
Difference -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00 Difference -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00
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Table 10: The fully flexible yield-curve DiD specification to eliminate both false and mismeasured treatment effects.
This table shows treatment effects estimated with the fully flexible yield-curve DiD specification (specification and notation are as in

Table 7). There are both treatment-unrelated idiosyncratic yield-curve as well as yield-curve treatment effects in the data and both vary
along maturity. At selected maturities, the table shows these true underlying effects and, to the right, the minimum and maximum of
the difference between the estimated and the true underlying treatment effects across the four combinations of idiosyncratic effects (at

short- or long-end) and treatment effects (twist or short-end) and the 1,000 families separately by m using the DiD yield curve, ∆dl
4 (x).

Standard errors are clustered at the bond level and calculated using the delta method.

Residual Idiosyncratic yield-curve True treatment Differences between estimated and true treatment effects (in bps)
maturity effects (in bps) effect (in bps) m = 0.25 m = 1 m = 3 m = 10

(in years) Short-end Long-end Twist Short-end Min Max Min Max Min Max Min Max
Panel A: All sample couplets

1 -50.35 3.91 5.87 -6.23 -0.01 0.01 -0.01 0.01 -0.02 0.02 -0.14 0.15

2 -43.65 -1.47 3.75 -2.97 -0.00 0.00 -0.01 0.01 -0.01 0.01 -0.06 0.06
3 -35.82 -9.31 1.58 -1.39 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.03 0.02

5 -22.58 -23.60 -1.87 -0.26 -0.00 0.00 -0.01 0.00 -0.00 0.00 -0.01 0.01
7 -13.69 -33.54 -4.11 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

10 -5.77 -42.50 -6.09 0.08 -0.00 0.00 -0.00 0.00 -0.00 0.01 -0.00 0.00
15 0.77 -49.95 -7.72 0.09 -0.01 0.00 -0.01 0.01 -0.01 0.01 -0.00 0.01

No. of sample couplets 4,000 4,000 4,000 4,000

Panel B: Good sample couplets*
1 -50.35 3.91 5.87 -6.23 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01

2 -43.65 -1.47 3.75 -2.97 -0.00 0.00 -0.01 0.01 -0.01 0.01 -0.01 0.01
3 -35.82 -9.31 1.58 -1.39 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.01

5 -22.58 -23.60 -1.87 -0.26 -0.00 0.00 -0.01 0.00 -0.00 0.00 -0.00 0.00
7 -13.69 -33.54 -4.11 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00

10 -5.77 -42.50 -6.09 0.08 -0.00 0.00 -0.00 0.00 -0.00 0.01 -0.00 0.00
15 0.77 -49.95 -7.72 0.09 -0.00 0.00 -0.01 0.01 -0.01 0.01 -0.00 0.00

No. of sample couplets 3,908 3,636 2,420 972

* At least one treated and one control bond in one-year maturity bucket.
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Table 11: Semi-matching separately for individual maturity buckets.
This table shows the results from applying semi-matching separately by maturity buckets using

the data that exhibit both idiosyncratic and treatment effects simultaneously (as in Section 6),
NLS with λSeed = 1 to estimate the Diebold-Li yield curve given in (2), and the specification
yieldDiD

it = βDiD ×C + εit with yieldDiD

it the bond-level DiDs in yields, C a constant, and βDiD the

treatment effect. Panel A (B) covers the case of a yield-curve treatment twist (short-end effect).
Separately for each maturity bucket and idiosyncratic yield-curve short- and long-end effects,

each panel shows the number of estimated treatment effects, minimum and maximum number of
bonds involved in the estimations, the true treatment effects at maturity-range start and end, and

minimum and maximum of the estimated treatment effects across the four m ∈ {0.25, 1, 3, 10} and
the 1,000 families of sample couplets (which is a total of 4,000 regressions per maturity bucket).

Maturity Number of True effects* Distributions of β̂DiD (in bps)
range estim. treat. bonds (in bps) GE: Short-end GE: Long-end

(in years) coeff. Min Max start end Min Max Min Max
Panel A: Treatment yield-curve twist

[0, 2] 3,614 1 20 7.00 3.75 3.75 7.00 3.75 7.00
(2, 5] 3,998 1 24 3.75 -1.87 -1.74 3.34 -1.73 3.34

(5, 10] 4,000 6 31 -1.87 -6.09 -5.30 -3.14 -5.30 -3.13

(10, 20] 4,000 4 36 -6.09 -8.54 -7.98 -6.61 -7.98 -6.61
Panel B: Treatment yield-curve short-end effect

[0, 2] 3,614 1 20 -13.00 -2.97 -12.40 -2.97 -12.40 -2.97
(2, 5] 3,998 1 24 -2.97 -0.26 -2.60 -0.29 -2.60 -0.28

(5, 10] 4,000 6 31 -0.26 0.08 -0.10 0.05 -0.10 0.05
(10, 20] 4,000 4 36 0.08 0.09 0.08 0.09 0.08 0.09

* True treatment effects are given for start and end of maturity range in first column.
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Figure 1: Triangular probability density functions (pdfs) with different modes m.

This figure shows the triangular pdfs used to simulate residual maturity of the one control bond
sample with mode m = 0.25 years and the four samples of treated bonds with modes m = 0.25, 1, 3,

and 10 years while residual maturity x ranges from zero to twenty years (x ∈ [0, 20]) for either
sample. The vertical lines mark the cutoff points in the process of building maturity buckets,
namely 2, 5, and 10 years (discussed in later sections of the paper).
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a) Idiosyncratic yield-curve short-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve 4.140 -2.650 -0.800 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve 2.08 2.51 2.83 3.24 3.47 3.67 3.83
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01

b) Idiosyncratic yield-curve long-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve 3.350 -1.350 1.000 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50

Figure 2: Modeling idiosyncratic effects in the term structure of interest rates.
To model the term structure we employ Diebold and Li (2006)’s yield curve specification. The mini table underneath each plot shows

the parameter values to create the true underlying term structures as well as the resulting yield levels and yield differences at selected
maturities. Figures 2a and 2b provide graphical illustrations of the resulting yield and differences curves when there is an idiosyncratic

short-end or a long-end effect, respectively, from pre- to post-treatment.
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c) Idiosyncratic long-end effect: m = 0.25 d) Idiosyncratic long-end effect: m = 10

No. of coefficients

Idiosyncratic effect mode m Mean SD Med Min Max All |t| > 1.653
a) Short-end 0.25 years -0.15 3.40 -0.14 -11.59 10.85 1,000 91
b) 10 years 12.24 3.04 12.26 2.30 22.99 1,000 992

c) Long-end 0.25 years 0.15 3.60 0.13 -11.34 12.01 1,000 88
d) 10 years -13.05 3.25 -13.08 -24.06 -2.59 1,000 991

Figure 3: False treatment effects graphically.

This figure shows estimated treatment effects based on the 1,000 families of sample couplets
when the modeled term structure exhibits heterogeneous idiosyncratic effects across maturity but
no true treatment effect present in the data. The specification is the same as in Table 5 and

estimated with OLS. The (black) crosses in each plot show the 1,000 estimated DiD coefficients
against the corresponding t-statistics. The vertical dashed (red) lines mark the values of ±1.653,

which correspond to two-sided confidence bands using a significance level of 10%. Subplots on the
left (right) show the estimates when maturity of treated bonds is drawn from the triangular pdf

with m = 0.25 (m = 10) years. The first (second) row of plots covers the idiosyncratic short-end
(long-end) effect. The t-statistics are based on standard errors clustered at the bond level.
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a) Yield-curve treatment twist:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve treated 4.000 -2.000 0.000 0.7308
Post-curve treated 3.890 -1.820 0.180 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve treated 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve treated 2.64 2.99 3.21 3.45 3.57 3.67 3.74
Difference treated 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08

b) Yield-curve treatment short-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve treated 4.000 -2.000 0.000 0.7308
Post-curve treated 4.001 -2.131 0.130 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve treated 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve treated 2.52 2.92 3.18 3.46 3.61 3.73 3.82
Difference treated -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00

Figure 4: Modeling term-structure treatment effects.
To model the term structure we employ Diebold and Li (2006)’s specification. The mini table underneath each plot shows the

parameter values to create the true underlying term structures as well as the resulting yield levels and yield differences at selected
maturities. Figures 4a and 4b provide graphical illustrations of the resulting yield and differences curves when there is a yield-curve

treatment twist and a yield-curve treatment short-end effect, respectively, from pre- to post-treatment.
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b) Treatment short-end effect

m = 0.25 years: β̂DiD ∈ [−2.94,−0.48] bps, |t| >1.653: 1000 m = 10 years: β̂DiD ∈ [−0.72, +0.06] bps, |t| >1.653: 301

Figure 5: Mismeasured treatment effects graphically.
Figures 5a and 5b show true and measured treatment effects on the 1,000 families of sample couplets for yield-curve treatment twist

and treatment short-end effect, respectively, using OLS to estimate the same specification as in Table 5. From left to right, the graphs
plot the true treatment effect over maturity, the distributions (box plots) if maturity of the treated bonds is drawn from triangular pdfs

with m = 0.25 years (purple diamonds) or m = 10 years (green squares), and the estimated treatment effects against the t-statistics.
The vertical dashed (red) lines in the plots to the far right mark the values of ±1.653 (two-sided confidence bands using 10%-significance

level). The t-statistics are based on standard errors clustered at the bond-level.
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Figure 6: Illustration of semi-matching.
This illustration is based on a random sample couplet when m = 0.25 years for both control and treated bonds. Figures 6a and 6b

provide graphical illustrations for semi-matching when there is an idiosyncratic yield-curve effect only at the short-end or only at the

long-end, respectively. In each plot, given the idiosyncratic yield-curve effects there is either an additional yield-curve treatment twist or
a yield-curve treatment effect at the short-end.
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A.1. Appendix

A.1.1 Fully flexible yield-curve DiD: Example

To illustrate the functioning of the fully flexible yield-curve DiD specification, in this ap-

pendix we apply it to one sample couplet j of the simulated data for the eight combinations

of idiosyncratic effects (no effect, short-end effect, long-end effect) and treatment effects

(no effect, twist, short-end effect) leaving out the no effect/no effect combination.

To generate the true underlying yield curves in the simulated data of the paper’s main

body, we have chosen values for the parameters γ0, γ1, γ2, and λ and have plugged them into

Diebold and Li’s (2006) spot curve in Specification (2). Table A.1, Panel A, collects these

parameter values of the spot curves from Figures 2 and 4 as well as Table 9 for the eight

combinations of yield-curve movements. However, while the spot curve parameters of the

control bonds prior to the treatment, {βk,1}
2
k=0, measure the same quantity as the gammas,

γ0, γ1, and γ2, in Specification (6), the {βk,j}
2
k=0 for j = 2, . . . , 4 (for treated pre, control

post, and treated post) represent differential curves and are therefore quantities that differ

from the corresponding gammas in Specification (2). In Table A.1, Panel A, since we want

to compare estimated values to the true underlying parameter values, the γ-representation

from Specification (2) is transformed into the β-representation in Specification (6).

Insert Table A.1 here.

In Panel A, except for λ, parameter values that are not zero are highlighted in bold.

Panel B shows the result of estimating Specification (6) using NLS for the eight combi-

nations of yield-curve effects using family couplet j of the simulated data. In Panel B,

coefficients that are statistically significantly different from zero at a significance level of at

least 1% are also marked in bold. Comparing Panel A, which provides the true underlying

values for the βs in Specification (6), with Panel B, providing the estimated coefficients for

sample couplet j, shows that the bold non-zero values in Panel A form the same pattern as

the bold significant coefficients in Panel B. Measured in percentage points, the parameter

values and coefficients in bold in the two panels are the same (up to at least the third

decimal digit after the comma). These results show the feasibility of identifying the true

underlying parameter values using a simple but well specified regression model.
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Interesting are a few exceptions, where the parameter estimates seem to be slightly

different from the true parameter values. These incidences appear, on the one hand, with

the curvature factor of the control bonds prior to treatment, β̂2,1, and, on the other hand,

with the decay parameter, λ̂, at the bottom of the panel. As explained by Diebold and Li

(2006), the decay parameter determines the point where the loading of the curvature factor

obtains its maximum. Hence, these two parameters have more multicollinearity with each

other than each of them has with the other parameters, level and slope. This relationship

can, for example, be seen by looking at the case of a short-end treatment effect. The

more downward and away-tilted the estimated lambda, λ̂ = 0.7302, from the true value,

λ = 0.7308, the more upward and away-tilted is the pre-treatment control-bond curvature

estimate, β̂2,1 = 0.001, is from the true parameter value, β2,1 = 0.000. This shows that the

estimation might be exposed to multicollinearity between the yield-curve parameters and

estimates might, therefore, be confounded to a certain extent. We will discuss this further

shortly below.

A different question, however, is whether this is the right quantity to consider. By

looking, for example, at the case of an idiosyncratic yield-curve short-end effect and a yield-

curve treatment twist in the fifth regression in Panels A and B of Table A.1, a researcher

learns: First, the differential curve of treated compared to control bonds prior to the

treatment is zero. Second, level, slope, and curvature factors of the control bonds change

by 0.140, −0.650, and −0.800, respectively, from pre to post treatment (which represents

a short-end effect). Third, compared to the post-curve of control bonds, the level factor of

the curve of treated bonds is −0.110 smaller and the slope and curvature factors each 0.180

larger (the additional yield-curve treatment twist). Clearly it is very difficult to grasp what

this information economically means. Panels C and D in Table A.1 provide an alternative

to presenting the same results in a more readable and intuitive manner.

Table A.1, Panel C, shows the true underlying treatment effects of treated bonds from

pre to post treatment, controlling for movements in the yield curve of treated compared to

control bonds and movements in the yield curve from pre to post treatment. The DiD is

a function of maturity and, hence, varies across different maturities as long as the DiD is

not a pure level-shift. Panel C shows that the DiD at selected maturities, 1, 2, 3, 5, 7, 10,

and 15 years, are the same across the three cases of no idiosyncratic effect, an idiosyncratic

short-end, and an idiosyncratic long-end effect. That is how the true underlying effects are
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modeled and is therefore correct.

In Panel D we present the results if we estimate the DiD by using the estimation results

from Panel B and predicting the DiD at the same selected maturities. We use the delta

method to calculate standard errors, which are also clustered on the bond level. Marginal

effects that are statistically significantly different from zero (all at the significance level of

at least 1%) are marked in bold. To help visualize the similarities between Panels C and

D, the true underlying non-zero marginal effects in Panel C are as well highlighted in bold.

The results show that measuring the DiD in percentage points, the true and estimated

numbers are the same up to the third decimal digit after the comma. With respect to

multicollinearity between the regressors as touched upon above, this shows that presenting

the results this way is not impacted by multicollinearity anymore.

Furthermore, the measured quantity is intuitive to understand. For example, the fifth

regression in Table A.1, Panel D, the one for which we tried to describe the results already

above, shows that in case of a yield-curve short-end effect of the control bonds and an ad-

ditional yield-curve treatment twist of the treated bonds, the treatment effect corresponds

to +5.87, +3.75, +1.58, −1.87, −4.11, −6.09, and −7.71 bps at maturities of 1, 2, 3, 5, 7,

10, and 15 years, respectively.

While this appendix section illustrated how to estimate a meaningful quantity using a

random sample couplet j of simulated data, the paper applies the method to all simulated

sample couplets and shows its power to eliminate both false and mismeasured treatment

effects in fixed-income settings.
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Table A.1: Illustration of the fully flexible yield-curve DiD specification.
This table illustrates the fully flexible yield-curve DiD specification by applying it to one sample draw of simulated data. This is done for

the eight combinations of idiosyncratic (no, short-end, long-end effect) and treatment effects (no, twist, short-end effect), leaving out the
no effect/no effect combination. The specification is yieldit = B′

1 Lit+B′

2 Lit 1Treated,i+B′

3 Lit 1Post,t+B′

4 Lit 1Treated,i×1Post,t + εit, where

notation is as in Table 5 and, additionally, Bj are three-dimensional vectors of coefficients, with individual elements βk,j, k = 0, . . . , 2.
They measure the baseline curve for control bonds pre-treatment (j = 1), and the incremental differences of (i) treated bonds pre-

treatment (j = 2), (ii) control bonds post-treatment (j = 3) and, (iii) treated bonds post-treatment (j = 4). B4 is the DiD estimator
and depends on maturity x. Panel A collects the parameter values of γk, k = 0, ..., 2, and λ of the spot curves from Figures 2 and 4 and
Table 9 and transforms the γ-representation in those tables to the β-representation. In Panel A, except for λ, parameter values that

are not zero are highlighted in bold. Panel B shows the result of estimating the specification using NLS for the eight combinations of
yield-curve developments using the one sample draw of simulated data. The decay parameter λ is assumed to be time invariant and the

same for treated and control bonds. In Panel B, coefficients that are statistically significantly different from zero (all at the significance
level of at least 1%) are marked in bold. Panel C shows B4, the true underlying DiD of treated bonds post-treatment, for selected

maturities. In Panel C, parameter values that are not zero are highlighted in bold. Panel D shows B̂4, estimated using the estimation
results from Panel B and predicting the DiD at the same selected maturities as in Panel C. Standard errors are clustered at the bond

level and calculated using the delta method. Coefficients that are statistically significantly different from zero (all at the significance
level of at least 1%) are marked in bold. In Panels B and D, a, b, and c denote significance (two-sided) at the levels of 1%, 5%, and 10%,

respectively.

Panel A: True parameter values

Idiosyncratic effect Short-end Long-end − Short-end Long-end
Treatment effect − − Twist Short-end Twist Short-end Twist Short-end
β0,1 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
β1,1 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000
β2,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β0,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β1,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β2,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β0,3 0.140 -0.650 0.000 0.000 0.140 0.140 -0.650 -0.650
β1,3 -0.650 0.650 0.000 0.000 -0.650 -0.650 0.650 0.650
β2,3 -0.800 1.000 0.000 0.000 -0.800 -0.800 1.000 1.000
β0,4 0.000 0.000 -0.110 0.001 -0.110 0.001 -0.110 0.001
β1,4 0.000 0.000 0.180 -0.131 0.180 -0.131 0.180 -0.131
β2,4 0.000 0.000 0.180 0.130 0.180 0.130 0.180 0.130
λ 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308
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Table A.1 – continued
Panel B: Estimated parameter values for family j of ordered sample couplets

Idiosyncratic effect Short-end Long-end − Short-end Long-end

Treatment effect − − Twist Short-end Twist Short-end Twist Short-end

β̂0,1 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂1,1 -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂2,1 -0.000 -0.000 -0.000 0.001 0.000 -0.000b -0.000 -0.000c

(0.317) (0.148) (0.889) (0.333) (0.908) (0.036) (0.384) (0.068)

β̂0,2 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.170) (0.170) (0.171) (0.170) (0.170) (0.170) (0.170) (0.170)

β̂1,2 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.466) (0.466) (0.467) (0.463) (0.466) (0.466) (0.466) (0.466)

β̂2,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.117) (0.117) (0.117) (0.116) (0.117) (0.117) (0.117) (0.117)

β̂0,3 0.140a -0.650a 0.000 0.000 0.140a 0.140a -0.650a -0.650a

(0.000) (0.000) (0.858) (0.980) (0.000) (0.000) (0.000) (0.000)

β̂1,3 -0.650a 0.650a 0.000 -0.000 -0.650a -0.650a 0.650a 0.650a

(0.000) (0.000) (0.953) (0.845) (0.000) (0.000) (0.000) (0.000)

β̂2,3 -0.800a 1.000a -0.000 0.000 -0.800a -0.800a 1.000a 1.000a

(0.000) (0.000) (0.877) (0.972) (0.000) (0.000) (0.000) (0.000)

β̂0,4 0.000c 0.000 -0.110a 0.001a -0.110a 0.001a -0.110a 0.001a

(0.094) (0.227) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂1,4 0.000 -0.000 0.180a -0.131a 0.180a -0.131a 0.180a -0.131a

(0.576) (0.941) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂2,4 -0.000c -0.000 0.180a 0.130a 0.180a 0.130a 0.180a 0.130a

(0.050) (0.411) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ̂ 0.7308a 0.7308a 0.7308a 0.7302a 0.7307a 0.7309a 0.7308a 0.7309a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Num. of obs. 200 200 200 200 200 200 200 200

Adjusted R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A.1 – continued
Panel C: True difference-in-differences at selected maturities

Idiosyncratic effect Short-end Long-end − Short-end Long-end

Treatment effect − − Twist Short-end Twist Short-end Twist Short-end

Maturity 1 0.0000 0.0000 0.0587 -0.0623 0.0587 -0.0623 0.0587 -0.0623

(in years) 2 0.0000 0.0000 0.0375 -0.0297 0.0375 -0.0297 0.0375 -0.0297

3 0.0000 0.0000 0.0158 -0.0139 0.0158 -0.0139 0.0158 -0.0139

5 0.0000 0.0000 -0.0187 -0.0026 -0.0187 -0.0026 -0.0187 -0.0026

7 0.0000 0.0000 -0.0411 0.0000 -0.0411 0.0000 -0.0411 0.0000

10 0.0000 0.0000 -0.0609 0.0008 -0.0609 0.0008 -0.0609 0.0008

15 0.0000 0.0000 -0.0772 0.0009 -0.0772 0.0009 -0.0772 0.0009

Panel D: Estimated difference-in-differences at selected maturities for family j of ordered sample couplets

Maturity 1 0.0000 0.0000 0.0587a -0.0623a 0.0587a -0.0623a 0.0587a -0.0623a

(in years) (0.895) (0.706) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 -0.0000 -0.0000 0.0375a -0.0297a 0.0375a -0.0297a 0.0374a -0.0297a

(0.231) (0.958) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 -0.0000 -0.0000 0.0158a -0.0139a 0.0158a -0.0139a 0.0158a -0.0139a

(0.139) (0.974) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

5 -0.0000 0.0000 -0.0187a -0.0026a -0.0187a -0.0026a -0.0187a -0.0026a

(0.280) (0.607) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

7 -0.0000 0.0000 -0.0411a 0.0000a -0.0411a 0.0000a -0.0411a 0.0000a

(1.000) (0.231) (0.000) (0.002) (0.000) (0.000) (0.000) (0.001)

10 0.0000 0.0000 -0.0609a 0.0008a -0.0609a 0.0008a -0.0609a 0.0008a

(0.323) (0.157) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

15 0.0000 0.0000 -0.0772a 0.0009a -0.0771a 0.0009a -0.0771a 0.0009a

(0.163) (0.174) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Num. of obs. 200 200 200 200 200 200 200 200

Adjusted R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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