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Abstract
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1. Introduction

Big data is revolutionizing the finance industry (Goldstein, Spatt, and Ye, 2021) and

is the key input to a new information economy (Farboodi and Veldkamp, 2021). Machine

learning is recognized as a technology that unleashes the potential of Big Data, but empirical

research suggests that there is more to the story (Gu, Kelly, and Xiu, 2020). Applied to return

prediction, methods that rely on dimensionality reduction outperform ordinary least squares

regression by successfully employing more predictors. However, they are outperformed by

neural networks taking advantage of non-linear function approximation. A sophisticated

approximation is useful when the true functional form of the underlying prediction problem

is unknown. In this paper, I introduce a tractable formulation of such a prediction problem

and derive its implications for financial markets.

Investors trade an asset with a pay-off for which some statistical properties are unknown

and must be estimated from data. A multitude of data sources is available for designing

the statistical model. All data sources would improve investors’ predictions of the pay-off

if they knew the true model. However, estimating the statistical model generates a loss of

predictive performance compared to the baseline, a cost of complexity. Investors limit the

cost of complexity by choosing an estimator that optimally trades off bias and variance, given

the difficulty of the estimation problem and their level of sophistication, their estimation

technology. Estimation technology covers algorithms and data quality/quantity as well as

heuristics and experience. An unbiased estimator is generally not optimal due to its high

variance. The immediate effect of improving estimation technology may be a larger bias

if the trade-off with variance is attractive. Even with the optimal estimator, the cost of

complexity of including certain data sources can be so high that it outweighs the benefits,

and investors improve their prediction of the pay-off by excluding these data sources.

In a representative agent model, econometricians analyzing the generated market data

will find predictability in returns even if they perform their analysis out of sample unless

their optimal bias coincides with investors’ bias. Furthermore, a lower cost of complexity

due to better estimation technology can lead econometricians to consider data sources that

investors originally ignored. While this is actual predictability not exploited by investors,

it is not due to risk premia or irrational mispricing but the complexity of extending the

statistical model to include those data sources.1 In both cases, the predictability generated

by the necessity of function approximation is fundamentally different from the in-sample

1For a real-world example, consider the application of natural language processing to newspaper articles
and annual reports. Both sources of information have been available and presumably used by investors.
However, the ability to search for patterns across thousands and thousands of publications is unique to the
statistical/algorithmic approach to textual analysis.
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predictability in returns related to parameter uncertainty (Lewellen and Shanken, 2002;

Martin and Nagel, 2021). With parameter uncertainty, in-sample predictions of returns are

biased, but conditioning only on information available at the time of trading (out-of-sample

testing) removes the bias. With function approximation, advances in estimation technology,

whether those are new tools like machine learning or better heuristics, become a source of

predictability that persists out-of-sample as well.

Embedding the prediction problem in the workhorse asymmetric information model of

Grossman and Stiglitz (1980), with informed and uninformed investors, the cost of complex-

ity may be so high that no one would decide to become an informed investor even if data

was available for free. The condition for informed predictions to outperform uninformed

predictions is related to the condition for whether or not to ignore new data sources, but

they are not identical. It is possible for informed predictions to deteriorate due to higher

dimensional2 data without informed investing being given up. I explicitly show how infor-

mation asymmetry is another source of predictability that does not disappear out-of-sample.

Earlier works by O’Hara (2003) and Biais, Bossaerts, and Spatt (2010) analyze asset pricing

implications of models similar to the baseline model without the estimation problem, but

rather than discussing return predictability per se, they focus on implications for CAPM.

In the full model, the interaction between asymmetric information and function approxima-

tion produces out-of-sample ‘echoes’ of in-sample results even if econometricians manage to

match the optimal bias and active information set of investors. This problem is particularly

pronounced in markets prone to large supply shocks, high levels of noise trading. This is a

concern for empirical work since trading noise might appear to be behavioral bias as these

markets are populated by investors who can be considered particularly susceptible to such

biases, i.e., specific stocks with large exposure to retail investors. The interaction, however,

also represents an opportunity for empirical analysis since cross-sectional variation in noise

trading affects the predictability arising from investors’ optimal bias but not ignored data

sources. The channel is price responsiveness, how strongly prices react to information and

supply shocks. Generally, shocks that enter the price through investors’ predictions will vary

with price responsiveness, and others, e.g., priced risk, do not. In either case, additional vari-

ation is required to distinguish between such sources of predictability and those generated

by the prediction problem.

The model provides additional predictions for price informativeness, price pressure and

reversals, trading volume, and fund performance. Objective price informativeness is sub-

ject to a bias-variance trade-off, which is not optimized by the solution to the investors’

prediction problem. Investors might ignore new data sources that improve price informa-

2Such a deterioration can occur if subsets of the data cannot be ignored selectively.
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tiveness. Improving estimation technology closes the gap between the private and social

value data. Price pressure is generated both by supply shocks and estimation noise of the

prediction problem, making short-term price reversals more likely, other things being equal.

In contrast to an established tradition of analyzing price pressure (Campbell, Grossman,

and Wang, 1993; Hendershott and Menkveld, 2014), conditioning on price variance is more

effective than trading volume for distinguishing between the two sources. Fund performance

is subject to an unanticipated transfer between investors when comparing investors’ ex-ante

expectations of profits to the ex-post average of realized profits. The sign of this transfer

depends on whether investors over- or underestimate the covariance between the pay-off and

informed investors’ prediction and appears predictable in retrospect.

In an empirical application of the model, I analyze two patterns of predictability from the

literature on predicting the equity risk premium following (Welch and Goyal, 2008). The first

pattern emerges across studies. A group of predictive variables outperforms the historical

mean in the earlier part of the sample, followed by under-performance in the later part.

The turn-around falls in the early 1990s. It follows the rise of the private computer in the

1980s and coincides with the early years of the internet. The second pattern emerges between

studies and is that later papers present estimation approaches that outperform earlier papers

(Campbell and Thompson, 2008; Rapach, Strauss, and Zhou, 2010; Neely, Rapach, Tu, and

Zhou, 2014; Buncic and Tischhauser, 2017; Hammerschmid and Lohre, 2018). The second

pattern does to a certain extent coincide with the introduction of additional data sources.

However, I show that the pattern can be replicated by comparing ordinary least squares

to regularized linear models (Ridge regression and LASSO). An improvement in investors’

estimation technology over the run of the data series can explain the first pattern, and

improved estimation technology employed in later studies can explain the second pattern.

In the model, technology has a one-dimensional and, as such, ordered representation.

Calibrating the representative agent model to the data to replicate the first pattern, the

change in predictability requires a large shift in technology, with the relevant parameter

tripled from the earlier to the later period. The calibration is consistent with a substantial

improvement in investors’ estimation technology. Furthermore, the calibration demonstrates

the importance of modeling optimal bias, i.e., a bias traded off for lower variance. The

fit that generates the pattern of predictive out-performance followed by under-performance

does not produce a decrease in the bias of investors’ estimator but rather an increase.
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1.1. Related literature

The central prediction problem in this paper is motivated by results in the empirical

literature on applying machine learning to asset pricing (Gu et al., 2020; Ma, 2021). The

formalization abstracts the practical approach of estimating an information structure with

factor loadings and factors as distinct sub-problems formulated for linear sub-problems in

Kelly, Pruitt, and Su (2017) and extended to non-linear sub-problems in Gagliardini and Ma

(2019) and Gu, Kelly, and Xiu (2021) (in particular Figure 2 of that paper is a clear repre-

sentation). An emerging literature on the virtue of complex models (Kelly, Malamud, and

Zhou, 2022; Didisheim, Ke, Kelly, and Malamud, 2023) establish theoretically and empiri-

cally how over-parametrized models achieve good performance in return prediction. Through

a rigorous application of random matrix theory the existence of a complexity wedge between

a feasible and an ideal model is established in a partial equilibrium setting. The virtue of

complex models suggests that increasingly complex models can outperform their antecedents

and provides a motivation for studying how technological improvement of prediction methods

affects a general equilibrium setting as done in the this paper.

In the analysis of return predictability as econometricians’ prediction problem, this paper

builds on the literature on learning in financial markets, specifically learning about param-

eters (Lewellen and Shanken, 2002; Pastor and Veronesi, 2009) and its extension to the

high-dimensional regime of big data (Martin and Nagel, 2021). The step from learning to

machine learning introduced in this paper is achieved by necessitating function approxima-

tion and, as such, introducing a bias-variance trade-off in investors’ prediction problem.

The model extends classic models of information aggregation (Grossman and Stiglitz,

1980; Hellwig, 1980; Kyle, 1985) where one signal is sufficient to model. That signal might

be the outcome of a complicated process of following news, analyzing company and industry

fundamentals, or having private information about a firm, but the sources themselves are

not important. The cost of complexity depends on the information structure, which breaks

the irrelevance of the individual sources. The setting is also distinct from the multi-asset

setup of Admati (1985) in which the relevance of the information structure comes from the

multitude of assets rather than information sources.

In the literature on costly information acquisition (Van Nieuwerburgh and Veldkamp,

2010), a feedback effect between trading and learning decisions makes the covariance struc-

ture of pay-offs and signals relevant. The cost functions in these specifications are rather

flexible and have been modeled on the spectrum from rational inattention, see Sims (2003),

to the entire process of cleaning, evaluating, and processing data, see Dugast and Foucault

(2020). The cost of complexity in my model is conceptually different from these exogenous

cost structures in that it is an integrated part of the estimation problem and is inherently a
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cost measured in predictive performance. In terms of implications, the function approxima-

tion prediction problem is distinct from costly information acquisition in that it introduces

an optimal bias. Furthermore, the decision to include a data source or not is not strategic,

as in anticipating the feedback between trading and learning, but purely based on the statis-

tical properties of the information. Allowing this decision to be strategic in a model about

constrained but optimal prediction would correspond to allowing investors to distort their

beliefs against their better knowledge, more like the optimal self-deception of Brunnermeier

and Parker (2005) than rational inattention. Ultimately, the burden put on investors’ ability

to comprehend the full information counterfactual is smaller in my model as the trading and

prediction problems are separated. In this way, the model is also distinct from the bounded

rationality models of complexity of Gabaix (2014), and Molavi, Tahbaz-Salehi, and Vedolin

(2021).

A pertinent question following the rise of big data has been whether it has made prices

more informative. Early results in Bai, Philippon, and Savov (2016) suggest that this is the

case, whereas later findings suggest that a subset of firms drives earlier results (Farboodi,

Matray, Veldkamp, and Venkateswaran, 2020) and that price informativeness of other sub-

groups have been constant or might even have declined. This discussion has taken place in

the equities market space, and the explanation proposed by Farboodi et al. (2020) focuses on

the value of data about large firms versus small ones. In the presence of a cost of complexity,

more data can lead to worse predictions if investors cannot separate the data into distinct

sources and ignore some of them. If investors can separate the data, they might still ignore

new data, and, as a result, price informativeness is unchanged. Advances in estimation tech-

nology asymptotically close the gap, but the pace of convergence at lower levels depends on

the information structure. Therefore, it varies across assets even if the estimation technology

is standardized.

In parallel to the discussion of price informativeness, the discussion of return predictabil-

ity has, in the last ten years, seen the declaration of the ‘factor zoo’ (Cochrane, 2011), a

replication crisis (Harvey, 2017; Hou, Xue, and Zhang, 2020), and a potential rebuttal by

reference to a Bayesian baseline (Jensen, Kelly, and Pedersen, 2021). It might not only be

econometricians who are affected by the high-dimensional inference problems but also in-

vestors (Martin and Nagel, 2021), and investors’ solution to their prediction problem feeds

into econometricians’ empirical analysis. Changes in estimation technology can generate

return predictability even out-of-sample, and additional sources of variation are necessary to

distinguish it from risk premia and/or anomalies.

I proceed as follows. In Section 2, I show the inference problem in the context of a

representative agent model and how it generates optimal bias and a cost of complexity.
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In Section 3, I embed the inference problem in an asymmetric information model with

heterogeneity across agents. In Section 4, I discuss model predictions and the value of

data analytically and numerically. Section 5 covers the empirical aplication to patterns in

predictability of the equity risk premium and Section 6 implications for further empirical

work before I conclude with Section 7.

2. Representative agent

The inference problem of the representative agent (or of the informed investors in my

extension to a Grossman and Stiglitz (1980) setting in Section 3) is my key information

friction. It presents a principled deviation from the dogma of rational expectations by only

allowing partial knowledge of the true underlying information structure. The remaining part

must be estimated, and I assume that this is done by choosing an estimator that optimizes

the quality of the prediction of a risky pay-off, with mean squared error as the measure of

quality.

To highlight the impact of the main information friction, assume investors are symmetric

and have demand that is linear in the difference between their prediction and the price.3

Trading one risky asset and one risk-less asset in elastic supply in one period and consuming

their wealth in the second (see Appendix B.1), market clearing amongst symmetric agents

require price to equal prediction. Denoting the pay-off by y and investors prediction of ŷ

that is p = ŷ. In Section 3, I embed the inference problem described below in the asymmetric

information work-horse model of Grossman and Stiglitz (1980), introducing heterogeneity in

agents.

2.1. Inference problem

For clarity, I impose a factor structure on the pay-off y = β>q and allow for high

dimensionality through factors q with signals s that are well-behaved. Meanwhile true factor

loadings β are constant (and finite) but must be estimated from noisy data by estimator β̂,

which, due to the noise, is a random variable. The choice of estimator is the key problem in

the model.

Assumption 1 (Estimator choice). Investors minimize the mean squared error of their

predictor ŷ by trading off the bias and variance of the estimator β̂. The elements of the

vectors of biases is assumed to be finite and the variance-covariance matrix of β̂ full-rank.

True β is constant and element-wise finite.

3Risk neutrality or the demand function described in Appendix B.3 or Appendix B.4 are all valid choices.
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Intuitively, Assumption 1 says that investors care about making the best possible predic-

tion, in contrast to putting more weight on unbiasedness for instance. Furthermore, while

turning estimator choice into an optimization problem is inspired by the approach to pre-

dictions of machine learning the trade-off could be considered a prior selection mechanism.

For tractability, an additional assumption on the independence of the noise in the estimator

is important.

Assumption 2 (Independent noise). The noise in the data of estimator β̂ is independent

of factors q and signals s.

The noise in the estimation data makes β̂ a random variable with unconditional expec-

tation E
[
β̂
]

= µβ and variance-covariance matrix V ar
[
β̂
]

= σ>βRβσβ where Rβ is the

correlation matrix of β̂ and I drop the hat on subscripts to avoid clutter.

Factors and signals are well-behaved, assuming joint normality of non-constant, non-

redundant variables. I use the notation Γ := RqsR
−1
s R

>
qs where matrices Rqs,Rs,Rsq are

correlation matrices. Additionally, I denote a diagonal matrix by D.

Assumption 3 (Gaussian factor expectations). Factors and signals follows a multi-variate

normal distribution, such that the conditional expectation of factors given signals is

ζ := E[q|s] = µq + ΣqsΣ
−1
s (s− µs), where ζ ∼ N

(
µq,Σζ

)
,

with element-wise finite expectations µq and full-rank variance-covariance matrix

Σζ = ΣqsΣ
−1
s Σ>qs = DσqRqsDσsD

−1
σsR

−1
s D

−1
σsDσsRqsDσq = DσqΓDσq .

To derive the bias-variance trade-off of Assumption 1, I first decompose the mean squared

error of predictor ŷ. Some notation is helpful here. The second moment matrix of conditional

expectation ζ and unconditional bias of estimator β̂ are respectively

Ωζ := E
[
ζζ>

]
= µqµ

>
q + Σζ , and εβ := E

[
β − β̂

]
= β − µβ.

Lemma 1 (Mean squared error decomposition). The mean squared error of predictor ŷ can

be decomposed into three terms

E
[
(y − ŷ)2] = (E[y]− E[ŷ])2 + V ar[y] + V ar [ŷ]− 2Cov [y, ŷ]

= ε>β Ωζεβ︸ ︷︷ ︸
bias-squared term

+σ>β (Rβ �Ωζ)σβ︸ ︷︷ ︸
variance term

+ V ar[y|s,β]︸ ︷︷ ︸
irreducible error
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Proof. Given Assumption 2, the variance of the predictor is the variance of two independent

random vectors, which can be written using the Hadamard product � (see Appendix A.1)

V ar[ŷ] = ε>β Σζεβ − β>Σζβ + 2β>Σζ(β − εβ) + σ>β (Rβ �Ωζ)σβ, (1)

and β>Σζ(β − εβ) = Cov [y, ŷ] which cancels out with the negative covariance terms of the

mean squared error. The squared bias of predictor ŷ can be written as a quadratic form of

the bias of the estimator and factor means ε>βµqµ
>
q εβ and collected in ε>β Ωζεβ with ε>β Σζεβ

of V ar[ŷ] in equation (1). The remaining two terms can be collected in the conditional

variance under the true model

β>Σqβ − β>Σζβ = V ar[y|β]− V ar[ŷ|β] = V ar[y|s,β]

Existence of the moments follows from Assumption 1 and Assumption 3.

The labeling of the three terms in Lemma 1 matches the bias-variance decomposition as it

is usually defined (see Hastie, Tibshirani, and Friedman (2009) chapter 7.3), and the variance

under the true model is the irreducible noise from the perspective of choosing the estimator

β̂. Therefore, the the bias-variance trade-off for a given information set only applies to the

first two terms. This is in contrast to considerations on expanding the information set as I

will return to in Section 2.4. Notice that the decomposition of Lemma 1 does not depend

on the asumptions on the specific functional form of the bias and variance of the estimator

except for the finiteness and full-rank condition of Assumption 1.

2.2. Bias-variance trade-off

More structure is necessary to formulate a meaningful minimization of the first two terms

in Lemma 1. One piece is the constraint that it is a trade-off between bias and variance.

Imposing the constraint directly on the bias and variance terms neglects the factor structure

of the problem. Instead, I specify element-wise symmetric functions for bias εβ and volatility

σβ and extend Assumption 2 to assume no correlation between factor loadings as well.4 Bias

and volatility functions are linked through a vector of controls c. The controls are an

abstraction that captures the choices involved in choosing an estimator. They incorporate

both the high-level decision of which estimator (e.g. ordinary least square, LASSO, neural

net etc.) but also the details such as how to clean the data and tune any hyper-parameters

4Estimating factors and factor loadings are two sub-problems of the prediction problem. The assumptions
made about the factors and signals of the risky pay-off in Assumption 3 are separate from the specification
of the factor loadings.
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the estimator may have.

Assumption 4. Bias and volatility are element-wise symmetric functions εβi = fε(ci) and

σβi = fσ(ci), such that ∂εβj/∂ci = ∂σβj/∂ci = 0 ∀j 6= i and factor loadings are uncorrelated,

i.e. Rβ = I.

In this way, the trade-off constraint can be imposed cleanly as a set of pairwise restrictions

f ′ε(ci)f
′
σ(ci) < 0, and the interactions between factors loadings arise from the minimization

rather than being imposed on it. The structure of these interactions is entirely determined

by the factor structured encoded in Ωζ as the weighing matrix of the variance term simplifies

to I �Ωζ = DΩζ . To motivate Assumption 4, recall that the randomness in the estimator

of the factor loadings follows from the noise in the data and (potentially) the estimation

method. Without a specific type of interaction between the two in mind, it seems prudent

to limit the impact on the solution of structure imposed on the noise of the problem. How-

ever, maintaining the assumption of a pairwise trade-off, interactions can be introduced by

specifying a correlation matrix Rβ and simply replacing the diagonal matrix Dζ by Rβ�Ωζ

in the following derivations.

Applying Assumption 4 to the first two terms of Lemma 1 and requiring that volatility

is non-negative, the bias-variance trade-off as a constrained minimization is

min
c

Θ := ε>β Ωζεβ + σ>βDΩζσβ subject to f ′ε(ci)f
′
σ(ci) < 0, fσ(ci) ≥ 0 ∀ci ∈ c. (2)

The strict inequality of the constraint on the product of first derivatives requires that both are

non-zero. To derive a closed form solution, I impose additional restrictions on the functional

form of bias and volatility.

Assumption 5. Bias is a linear and volatility an affine function of control given by

fε(ci) = kεci, fσ(ci) = kσci + kσ0, subject to kεkσ > −∞, kσ0 ∈ (0,∞).

Assumption 5 is more technical than Assumption 4, and its motivation is to limit the

problem defined in (2) to a class of minimizations with unique minima, and make it easier

to parse equilibrium outcomes. The assumption of affinity of the volatility function is not

necessary for uniqueness and has the drawback that while a solution to an unrestricted

solution to optimization (2) exists (see Proposition 1) it might not be feasible as it could

violate the non-negativity constraint. However, when that solution is feasible, it is available

in closed form and feasibility only depends on the factor structure, not the parameters of the

bias and volatility functions. Bias can be extended to an affine form without fundamentally

altering the form of optimal controls and minimized bias-variance (see Appendix A.2.3) but
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it comes at the cost of more involved expressions. In contrast, restricting both functions to a

linear form leaves controls of all zeros as the only solution to the minimization. Restricting

bias rather than variance makes it possible to study the impact of forcing the estimator to

be unbiased by setting controls to zero c = 0 for an estimator with variance σβ = kσ01.

2.3. Optimal bias

I denote the optimal controls by a star c∗ = arg maxc Θ and denote the minimized

objective as χ := Θ|c=c∗ . In Section 2.4, I show formally that χ is the cost of complexity and

it increases in the number of signals ns. Additionally, to describe the solution to optimization

(2) it is convenient to define the ratio of the slope parameters of the bias and volatility

functions as kc := kσ/kε. I will refer to the square of the ratio of slope parameters k2
c as the

estimation technology parameter because the cost of complexity χ is everywhere decreasing

in it (see Equation 3). In contrast, I will interpret the constant of the volatility function

kσ0 as the difficulty of the estimation because it determines the cost of complexity under

the inefficient but unbiased estimator Θ|c=0 that is only optimal for k2
c = 0. Increasing k2

c

changes the trade-off whereas increasing kσ0 simply scales up bias, volatility, and the cost of

complexity.

Proposition 1 (Bias-variance trade-off solution). Under Assumption 4 and Assumption 5,

the unconstrained solution to optimization (2) and cost of complexity are

c∗ = −k−1
σ kσ0

{
I −D−1

Ωζ
X−1

}
1, χ = Θ|c=c∗ = k2

σ01
>X−11, where X = k2

cΩ
−1
ζ +D−1

Ωζ

This solution to the unconstrained minimization problem always exists and it is unique.

Proof. For the complete algebraic manipulation see Appendix A.2.1. Existence follows from

the positive definiteness of X, and uniqueness from the positive definiteness of the Hessian

matrix of the objective k2
εΩζ +k2

σDΩζ . Since both are sums of positive definite matrices they

are also positive definite.

Corollary 1.1 (Optimal bias and volatility). Bias and volatility only depend on slope pa-

rameters kε and kσ through their ratio kc

εβ|c=c∗ = −k−1
c kσ0

{
I −D−1

Ω X
−1
}

1 ≥ 0, σβ|c=c∗ = kσ0D
−1
Ω X

−11.

Proof. For the proof of the inequality see Appendix A.2.2.

Proposition 1 leaves open the question of the feasibility of the solution described. In

Assumption 6, I present the condition for feasibility of the solution in Proposition 1. Tech-
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nological developments captured by changes in the technology parameters kc and kσ0 do not

affect the status of the feasibility condition because it does not depend on them.

Assumption 6 (Bias-variance trade-off feasibility). I assume that the following element-wise

vector inequality holds

σβ|c=c∗ > 0 ⇐⇒ Ωζ1 > 0.

See Appendix A.2.2 for the algebraic manipulation of σβ|c=c∗ that demonstrates equiv-

alence of the two inequalities. Informally, since the on-diagonal entries of Ωζ are positive,

Assumption 6 restricts the set of factor structures with a feasible solution to structures with

“not too” negative average cross-second moments of conditional expectations of factors given

signals.

For the interpretation of the square of the ratio of slope parameters k2
c as a measure of

estimation technological development, notice that the cost of complexity is indeed decreasing

in it

∂χ

∂k2
c

= −k2
σ01
>X−1Ω−1

ζ X
−11 ≤ 0, (3)

but in a non-linear fashion, which means that it changes the trade-off between bias and

variance rather than simply scaling them up or down. This improvement could represent

new techniques or better input data for the estimation of factor loadings β̂ since both are

abstracted into the properties of the estimator in Assumption 1 and Assumption 2.

2.4. Cost of complexity

To demonstrate that the minimized objective χ is the cost of complexity and the variance

under true model V ar[y|β, sI ] is the balancing cost of simplicity, I first provide a recursive

formulation of the second moment matrix of conditional expectations Ωζ based on block

matrix inversion and multiplication. The recursion is over the number of signals ns, and

concerns the decision of including the nst́h signal in the vector of signals s. The main step

is to operate on the matrix of correlations Γns = Rqs,nsR
−1
s,nsR

>
qs,ns , and in particular the

inverse signal correlation matrix R−1
s,ns . Explicit derivations are in the Appendix A.3, but it

is necessary to introduce some notation here. Denote the correlation between the new signal

ns and the extant signals sns−1 by ρs,ns := Corr[sns−1, sns ], the correlation between the

new signal and factors q by ρ>qis,ns = (ρqis,ns−1 ρqisns ), and define the correlation correction

ρs,ns|ns−1 := 1 − ρ>s,nsR
−1
s,nsρs,ns . With this notation, it is possible to define the vector φns

with elements φi,ns := ρ>qis,n−1R
−1
s,ns−1ρs,n − ρqisns . The recursive formulation of the matrix
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of correlations is then Γns = Γns−1 + ρ−1
s,ns|ns−1φnsφ

>
ns and it follows immediately that the

difference Γns − Γns−1 = ρ−1
s,ns|ns−1φnsφ

>
ns is positive semi-definite. Finally, this means that

the second moment matrix of conditional expectations has the recursive formulation

Ωζ,ns = µqµ
>
q +DσqΓns−1Dσq + ρ−1

s,ns|ns−1Dσqφnsφ
>
nsDσq

= Ωζ,ns−1 + ρ−1
s,ns|ns−1Dσqφnsφ

>
nsDσq , (4)

where the last term also can be written as an outer product

Dσqφnsφ
>
nsDσq =

(
σq � φns

) (
σq � φns

)>
.

Proposition 2 (Cost of complexity vs simplicity). Signs of the increments in the minimized

bias-variance trade-off objective and the conditional variance under the true model based on

including a signal are

χns − χns−1 = kσ01
> {X−1

ns −X
−1
ns−1

}
1 ≥ 0,

V ar[y|β, sns ]− V ar[y|β, sI,ns−1] = β>Dσq(Γns−1 − Γns)Dσqβ ≤ 0.

Proof. The second inequality follows from the observation made in the main-text that Γns−
Γns−1 is positive semi-definite. By properties of symmetric positive definite matrices the

difference X−1
ns −X

−1
ns−1 is positive semi-definite if Xns−1 −Xns is positive semi-definite.

This is shown to be the case in Appendix A.4.

An illustration of Proposition 2 can be found in Figure 2, which covers both the case where

the cost of complexity dominates and the case where the benefit of reducing variance under

the true model is greater. In Appendix A.5 and Appendix A.6, I show how to extend this

analysis to an arbitrary group of additional signals. By induction, the results in Proposition 2

must hold for groups of signals, but I demonstrate that a convenient form similar to 4 exist

for a group of signals and, indeed, confirm Proposition 2 for this more general case.

Intuitively what Proposition 2 shows is that adding another signal always (weakly) in-

creases the cost of complexity and lowers the conditional variance under the true model.

This is key for interpreting χ as the cost of complexity because it increases when the model

is expanded along new dimensions. It is also worth noticing, that the cost of complexity

only increases in signals that are fundamentally informative about the factors or the already

included signals. This follows from the recursive formulation of the second moment matrix

in equation (4) and the definition of the vector φ1,ns . For a signal uncorrelated with factors q

and already included signals sI,ns−1, the vector vector ψns is zero and there is no difference
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between second moment matrix Ωζ,ns and Ωζ,ns−1, which propagates to Xns and Xns−1.

This aligns well with the cost of simplicity being the conditional variance under the true

model, which clearly is not decreased by conditioning on an irrelevant signal.

3. Heterogeneous agents

In this section, I formulate an extension of the model on the basis of the work-horse

asymmetric information model of Grossman and Stiglitz (1980). I make two adjustments to

uninformed inference and demand that do not change the classic model but make a difference

when informed investors solve the inference problem described in the previous Section 2.1.

Two homogeneous groups of investors, informed and uninformed denoted by i ∈ {I, U},
trade a risky asset with independent mean-zero stochastic supply z optimizing demand δi

over the utility of ultimate profit (equivalent to final wealth, See Appendix B.1). A risk-free

asset, which acts as a numeraire with a price and pay-off of one, is available in perfectly

elastic supply. Investors are price-takers trading in demand-schedules akin to posting limit

orders rather than market orders, see Kyle (1989).

3.1. Uninformed inference

Investors have common priors, which would lead all investors to make the same predic-

tions if endowed with the same information. Investors of type i have information set Fi
and a linear demand function of the form δi = ψi(ŷi − p) where ŷi = E[y|Fi] and, with

uncertainty aversion αi, ψi = {αiE[(y − ŷi)
2]}−1. In Appendix B.3 and Appendix B.4, I

present two foundations for this demand function, respectively a robust profit maximization

objective, and CARA-utility with ambiguity aversion. For simplicity, assume that investors

know the unconditional mean squared error.5 In equilibrium, the market clears and the

uninformed can extract the signal sU := p − ψ−1
I δU = ŷI − ψ−1

I z, where ψI is the scaling

factor of informed demand. I assume that the uninformed investors’ prediction of informed

investors’ prediction is the best linear approximation which I signify by adding a tilde to the

expectation, i.e. Ẽ[·]. It is given by the projection

ŷU = Ẽ[ŷI |sU ] = (1− λU)E[ŷI ] + λUsU where λU =
V ar[ŷI ]

V ar[ŷI ] + ψ−2
I σ2

z

< 1, σ2
z = V ar[z]

5This assumption can be understood as investors having access to methods such as simulation and cross-
validation, to approximate the unconditional mean squared error, and that these methods are accurate
enough to abstract away this approximation step and model the approximation as the true unconditional
mean squared error. As such, what is abstracted away is the noise in the approximation step.
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The best linear approximation minimizes the mean squared error E[(ŷI − ŷU)2], which is

consistent with the way the informed chose their predictor (see Section 2.1). In the baseline

model where factor loadings are known (equivalent to Grossman and Stiglitz (1980)) this

prediction corresponds to the expectation of the pay-off given sU (see Appendix B.2). The

conditional expectation is linear and, therefore, the best linear approximation is the best

approximation. The formulation here allows for the informed investors noisy estimation of

factor loadings that does not depend on a full specification of the distribution of noise. This

is true in the baseline model with known factor loadings as well.

3.2. Uninformed mean squared error

The mean squared error of the uninformed investors is a convex combination of the mean

squared error of the informed investors and the sum of the unconditional variance of the

pay-off and the square of biases scaled by factor means

E[(y − ŷU)2] = (1− λU)
{
V ar[y] + (ε>βµq)

2
}

+ λUE[(y − ŷI)2].

Other things equal, a high bias compared to the total cost of complexity χ, which is an

element of the informed mean squared error, tends to make the mean squared error of

the uninformed higher than that of the informed. Meanwhile, the variance of the pay-off

contribute to both both terms but in the informed mean squared error it is through the

conditional variance. The conditional variance decomposes into V ar[y|β, sI ] = V ar[y] −
V ar[E[y|β, sI ]]. Compared to the cost of complexity, signals more informative under the

true model, captured by the variance of the expectation with known factors, also tend to make

the predictions of the informed investors better than the uninformed. In a baseline model

with known factor loadings there is no cost of complexity and the informed mean squared

error is always (weakly) lower than the uninformed. I formalize this in Proposition 3.

Proposition 3 (Informed predictions do not always outperform). The necessary and suf-

ficient condition for out-performance of uninformed predictions by informed predictions is

that sum of the bias squared and the variance of the conditional expectation of the pay-off

under the objective measure is greater than the cost of complexity

E[(y − ŷU)2] > E[(y − ŷI)2] ⇐⇒
{
V ar[y] + (ε>βµq)

2
}
> E[(y − ŷI)2]

⇐⇒ V ar[E[y|β, sI ]] + (ε>βµq)
2 > χ.

Proof. See Appendix B.5.
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For investors who make their best effort to produce the best prediction possible, the

condition can be considered a requirement for anyone to choose to be informed. Notice that

the variance of the conditional expectation is the reduction in variance achieved by using

a vector of signals under the true model, formally V ar[y|β, sI ] = V ar[y] − V ar[E[y|β, sI ]].
The condition echoes the cost and benefits analysis of adding signals in Section 2.4 in that,

modulo the squared bias term, the quality of the signals under the true model must be

greater than the cost of complexity.

3.3. Price

I close the model extension by deriving the equilibrium price. With linear demand, and

an uninformed prediction that is a convex combination, price is a convex combination as

well

p = (1− λp)E[ŷI ] + λpsU s.t. λp =
ψI + ψUλU
ψI + ψU

.

Irrespective of the details of the predictions and demand scaling factors ψi, the weight on

the signal is greater than in the uninformed prediction since

λp > λU ⇐⇒ ψI + ψUλU > (ψI + ψU)λU ⇐⇒ 1 > λU .

The functional form of price is the same as the expectation of the uninformed investors.

If price is viewed as the market’s prediction of the risky pay-off, the uninformed are less

responsive to the information and supply shocks of sU than the market since the market

also reflect the positioning of informed investors and noise traders. This follows from the

asymmetric information and form of demand rather than the inference problem.

4. Predictions

In this section, I highlight a number of predictions where the model (with an without

the heterogeneous agents extension) deviate from the baseline model with known factor

loadings. To support the analytical analysis, I perform a numerical analysis. For tractability,

the numerical analysis is carried out in the minimal setting of two factors, two established

signals, and two new signals. For reference, parameters can be found in Table 1, the central

matrices in Table 2, key moments in Table 3, and market structure variables in Table 4.

First, I impose more structure on the addition of new or more data and discuss what it

means for the value of data.
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4.1. Value of data

The specification of the inference problem in Section 2.1 introduces two types of data.

The signals about factors and the data that estimates of the factor loadings are based on.

Throughout the paper, I have lumped in the second type with the estimation technology,

because they are both abstracted into the properties of the estimator, and are mathematically

summarized by the parameters kc and kσ0. Conceptually, improving estimation technology

could mean getting better input data, and better data could mean bigger data. From this

perspective, the value of data is a matter of assumption, if it increases k2
c it lowers the cost

of complexity, if it increases kσ0 it raises the cost of complexity. The type of data that affects

inference under the true model is the signals. By affecting both the cost of complexity and

cost of simplicity the model puts more structure on this data, and its effects on equilibrium

outcomes can be compared directly to the baseline model with perfect inference. I extend

the study of the inclusion of a group of discrete signals as in Section 2.4 (or groups of signals

in Appendix A.5), to the continuous case by analyzing a degree formulation of the problem

where the second-moment matrix is given by

Ωζ = Ωζ0 + kSDσqΦnsR
−1
s,ns+|ns−Φ>nsDσq := Ωζ0 + kSS, (5)

and the formulation of the additional signals matrix is taken from Appendix A.5. If the

additional signals are independent of each other and the extant signals and kS is an integer,

it can be interpreted directly as a count of the number of identical signals. More generally, kS

scales the signal group up or down without changing in-between correlations or correlations

with the base signals in Ωζ0, providing a way to have more or less of the information it

represents. A limitation of this approach is that there is no built-in restriction on kS that

guarantees that the overall correlation structure is feasible. In applications, kS must be kept

at levels that do not generate impossibilities like a negative conditional variance under the

true model. However, with this restriction in place, comparative statics with the parameters

k2
c , kσ0, and kS is a useful exercise that captures different aspects of the model.

It is possible to say a bit more about the specification in (5) because the conditional

variance under the true model is linear in kS and the cost of complexity can be shown to

be a rational function with an oblique asymptote (i.e. the asymptote is linear in kS), see

Appendix D.1. As the cost of complexity is increasing in kS and the cost of simplicity

decreasing by Proposition 2, the overall mean squared error is eventually linear in kS, and
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the tendency comes down to comparing

∂V ar[y|β, sI ]
∂kS

= −β>Sβ, to lim
kS→∞

∂χ(kS)

∂kS
= k2

σ01
>(k2

cS
−1 +D−1

S )−11.

Because χ(kS) is everywhere increasing, it approaches the asymptote from below and it

follows that ∂χ(kS)
∂kS

is decreasing. Over a given range of kS, it is, therefore, possible for the

mean squared error E[(y−ŷI)2] to take one of three shapes. If the derivative of the asymptote

dominates the cost of simplicity, it is monotonically increasing. When the reverse is true,

the mean squared error can be hump-shaped as the ∂χ(kS)
∂kS

is decreasing or monotonically

decreasing. One shape the specification cannot generate is a U-shape where more data is

initially beneficial and then eventually becomes a liability.6 Treating the full second-moment

matrix in (5) as one, it is possible that an initial reduction in mean squared error Ωζ0 is

gradually undone by a higher kS until it is eventually better to ignore the full vector of

combined signals if it is not possible to separate it. This way the specification can simulate

what is in Dugast and Foucault (2020) described as the needle in a haystack problem of big

data that is that it becomes harder to find the good signals when there are many to search

through.

4.2. Bias and volatility

In addition to covering the optimal bias and volatility across the technology parameters k2
c

and kσ0 as well as the new data parameter kS, Figure 1 includes a graphical representation of

the restriction in Proposition 3 that informed predictions outperform uninformed predictions.

For baseline levels k2
c = 1 and kS = 0.5 the cut-off is at a bit above kσ0 = 0.6, which is

chosen as a harder estimation baseline compared to kσ0 = 0.3. In Figure 4 the significance

of these two levels of difficulty is demonstrated. Under the easy estimation, a stronger

new data source input (a higher kS) results in an overall lower mean squared error of the

informed investors’ predictor. In contrast, the cost of complexity dominates for the harder

estimation problem. There is a basic tension between the constraint of Proposition 3 and

predictive deterioration with a stronger new data signal because the former requires the

cost of complexity to be bounded and the latter requires it to rise faster than conditional

variance falls under the true model. For the special case of a diagonal second moment matrix

Ωζ = DΩζ , which implies zero mean factors µq = 0 such that DΩζ = DΣζ , and symmetric

6By letting correlations decrease in kS , it is possible to ensure that the lower bound of zero for conditional
variance is respected, and with heterogeneity, in the effect, such a U-shape may appear, but in doing so one
sacrifices tractability, and I leave the investigation of this extension for future work.
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true factor loadings β = β̄1 the juxtaposition is particularly clear since the constraint is

V ar [E[y|β, sI ]] + (ε>βµq)
2 = β̄21>DΣζ1 + 0 > k2

σ0(1 + k2
c )
−11>DΣζ1 = χ

⇐⇒ β̄2(1 + k2
c ) > k2

σ0,

and the asymptotic condition for a positive derivative of the mean squared error with respect

to new data parameter kS, see Appendix D.1,

lim
kS→∞

∂χ

∂kS
= k2

σ0(1 + k2
c )
−11>DS1 > β̄21>DS1 =

∂V ar [y|β, sI ]
∂kS

⇐⇒ k2
σ0 > β̄2(1 + k2

c ).

While the system of inequalities is only guaranteed to represent a contradiction asymptoti-

cally, numerical analysis suggests the intuition that a richer factor structure is necessary to

accommodate these conflicting forces. Similarly to panel 1(d) in Figure 1, the restriction of

Proposition 3 can be applied to ranges of technology parameter k2
c and new data parameter

kS. In the low difficulty case kσ0 = 0.3 it does not restrict positive values of the two, whereas

kS is limited to be below 0.9 and k2
c above 0.8 for high difficulty kσ0 = 0.6 and plots are

adjusted accordingly.

In the first of the three remaining panels of Figure 1, panel 1(a), it is possible to see how

initial increases in technology parameter k2
c introduces a bias of the estimator while lowering

its volatility before eventually decreasing both. Despite the asymmetry of the chosen factor

structure, the difference between factors is negligible compared to the difference between

moments across both technology k2
c and difficulty kσ0 in panel 1(c). The comparative statics

across new data parameter kS in panel 1(b) represents more heterogeneity but also a striking

symmetry whereby the bias and volatility of each factor visually mirrors one another. Due

to the apparent mirroring, it is not obvious from this plot that the cost of complexity is

increasing in kS as stated in Proposition 2, however, the plots in Figure 2 show that it is

indeed the case.

4.3. Return predictability

It is the introduction of bias that creates the ex-post predictability of realized price

changes r, and bias is optimally chosen by investors to improve the precisions of their pre-

dictions. This is in contrast to models with parameter uncertainty (Lewellen and Shanken,

2002; Martin and Nagel, 2021), where bias is with respect to a rational expectations baseline

where parameters of the model are known, while those parameters are random variables to
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agents who have to learn about their realization. Distinction betweeen in-sample and out-

of-sample correspond to econometricians testing under the objective measure versus testing

under the measure that investors use which I denote by c∗, in a reference to the solution to

the bias-variance minimization problem of equation (2). Econometricians make predictions

through linear projections, which are tantamount to regressions, but estimation includes an

estimator choice as in Section 2.1.

In the symmetric agents model of Section 2, my results are only the same as Martin and

Nagel (2021), i.e. anomalies seem to exist in-sample, but disappear out of sample, when the

quality of estimation technology, parametrized by k2
c , that investors and econometrician use

is the same, or econometrician match the optimal bias and active information set of investors,

choice of data sources to include and ignore. By varying k2
c it is possible to analyse probable

scenarios where econometricians do out of sampling testing, but have access to superior

information estimation technology.7 In this case, a different bias is optimal and I show in

Section 4.3.1 that this is a source of predictability. Furthermore, due to the difference in cost

of complexity, data sources that are freely available might optimally be ignored by investors

using inferior estimation technology but used by econometricians.

The heterogeneous agents model of Section 3 introduces a second source of bias through

the learning from prices. It arises from the weight uninformed investors put on their prior.8

A specific concern for the combination of these two sources of bias is that the out-of-sample

testing required to correct the former does not correct the latter. Therefore, econometricians

might find an echo of in-sample results in out-of-sample tests.

4.3.1. Returns

Returns can be decomposed into three components that relate to, respectively, the two

groups of investors and stochastic supply

r = y − p = (1− λp)(y − E[ŷI ]︸ ︷︷ ︸
uninformed

) + λp(y − ŷI︸ ︷︷ ︸
informed

) + λp ψ
−1
I z︸ ︷︷ ︸

supply

.

In the representative agent model of Section 2.1, only the second term remains (with a

coefficient of λp = 1) since p = ŷ (see Section 2). The inclusion of uninformed investors and

stochastic supply introduces the first and last term. As a result, price responsiveness drops

below one λp < 1 because the uninformed investors put some weight on their prior. There

is no predictability in the supply term and stochastic supply is only relevant in the presence

7The objective measure corresponds to the limit k2c →∞, the best possible technology, see Appendix A.8.
8Conceptually, econometricians cannot mimic the beliefs of a representative agent, which is a weighted

average of the informed and uninformed beliefs (Biais et al., 2010).

19



of uninformed investors through its effect on price responsiveness λp.

The predictability of the two investor terms can be analyzed by endowing econometricians

with an estimation technology corresponding to optimal controls c∗e that select the vector of

signals se. True out-of-sampling testing is the special case of same estimator c∗e = c∗ and

dataset se = sI . Problematic in-sample testing corresponds to same dataset but evaluation

under the objective measure. If they are available, in-sample testing will include a broader

set of signals than the original estimation done by investors as the objective measure is the

limiting measure in terms of estimation technology with zero cost of complexity (see A.8).

For ease of exposition, I focus on the case where signals employed by investors are a

subset of the econometricians’ signals sI ⊆ se, and the additional signals in se, if any, are

uncorrelated with sI . I denote the vector of additional signals s̃e. This restriction is not

consequential for whether econometricians find predictability or not, but helps to disentangle

where it comes from.

I reserve the notation µβ and εβ for the mean and bias of investors’ estimator, e.g.

E[β̂|c∗] = E[β|c∗] = µβ, and notice that in the dataset that econometricians work with these

are constants. I denote econometricians’ bias by εβe. Finally, I assume that econometricians

estimate a cross-sectional average, eliminating the variability in their estimate of factor

loadings and, as such, its covariance with investors estimate β̂, which is in effect evaluated

at its mean so E[β̂|c∗e] = µβ.9

Proposition 4 (Predictability in returns). The contribution of the informed component is

E[y − ŷI |c∗e, se] = β>(E[q|se]− E[ζ|se]) + ε>βE[ζ|se]− ε>βeE[q|se] (6)

= (β − εβe)>Λẽ(s̃e − µẽ) + (εβ − εβe)>ζ, where Λẽ = Σqs̃eΣ
−1
s̃e

(7)

and the contribution of the uninformed component is

E[y − E[ŷI ]|c∗e, se] = (β − εβe)>(E[q|se]− µq) + (εβ − εβe)>µq
= (β − εβe)> {ΛI(sI − µI) + Λẽ(s̃e − µẽ)}+ (εβ − εβe)>µq,

where ΛI = ΣqsIΣ
−1
sI

Proof. The explicit expectations in equation (6) does not depend on c∗e due to Assump-

tion 2, estimator noise independence from factors and signals, and the cross-sectional mean

assumption implies E[β̂|c∗e] = β − εβ. Equation (7) uses the independence between s̃e and

9Alternatively, the exercise can be viewed as an analysis of the unconditional expected coefficients on
signals.
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sI which yields

E[q|se] = µq + ΛI(sI − µI) + Λe(s̃e − µq) = ζ + Λẽ(s̃e − µq).

The derivation of the uninformed component follows from re-arranging terms after substi-

tuting in E[y|c∗] = µ>βµq and once again applying the assumption of independence of s̃e

and sI in the second line.

In contrast to Martin and Nagel (2021), out-of-sample estimation will still be biased if

econometricians have access to better technology, especially if that technology leads them to

use signals that were available, but too complex to be beneficial at the time of investment. In

Figure 4, the estimation quality of the econometricians is increasing and eventually lead to

introduction of two additional signals. This affects not only their own predictive coefficients

but also those of the actually used signals even though the two are independent. The latter

effect is driven by the change in econometricians’ own bias, which shifts discretely away from

that of investors, visible in the break in the curve of Figure 4(c).

The coefficients on the vector of additional signals is the same for the informed and

uninformed component, ∂E[r|c∗e, se]/∂s̃e = (β−εβe)>Λẽ, so they are unaffected by the price

responsiveness λp introduced by the presence of uninformed investor. It is also unaffected by

investors bias because these signals are ignored. Therefore, the coefficients on these unused

signals are relatively large in absolute terms across the two scenarios, positive or negative

true factor loadings, in Figure 4. Assuming variables are properly demeaned, the constant

term of the projection is the difference in biases scaled by factor means E[r|c∗e, se]|se=E[se] =

(εβ − εβe)>µq. The coefficients on the used signals also depends on the difference in biases

∂E[r|c∗e, se]
∂sI

= {λp(εβ − εβe) + (1− λp)(β − εβe)}>ΛI = {λpεβ + (1− λp)β − εβe}>ΛI ,

(8)

so when the technological gap between investors and econometricians is not too large, co-

efficients on used signals and the constant are smaller, because biases are similar. In the

heterogeneous agent model, the true factor loadings in the coefficients on used signals are

scaled down by a factor of (1− λp) compared to the unused signals’ coefficients. The repre-

sentative agent model is at the extreme end of this scaling with the true factor loading term

equal to zero.

Only the coefficient on used signals are sensitive to the level of price responsiveness, and

as such marks the difference between the representative agent model and the heterogeneous

agent model. On the one hand, this means that even if it is possible to control for estimation
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technology and match investors bias, these coefficients are never zero as would be the null

hypothesis in most empirical work and they are sensitive to the out-of-sample echo mentioned

above. On the other hand, it is possible to distinguish them from unused signals and other

components of returns, such as risk premia, through their sensitivity to variations in price

responsiveness.

4.3.2. Return predictability and noise trading

I focus on the level of noise trading σ2
z as a source of variation in price responsiveness since

it does not affect predictability through other channels, and can more reasonably be taken

as exogenous than share of uninformed investors which would be the closest alternative.10

The scenario in Figure 3 is the easy estimation problem kσ0 where there is no difference

in investors’ and econometricians’ information set and all signals, therefore, are affected by

shocks to price responsiveness λp. In the parametrization of the numerical analysis, the

effect of having only half the amount of noise trading, i.e. σ2
z = 0.5 instead of σ2

z = 1, is to

lower price responsiveness from 0.92 to 0.87. While this is a modest decrease it is enough

to visualize the effect that can also be read of equation (8), which is to shift coefficients

by (β − εβ)>ΛI . Signals that, through the variance-adjusted covariance matrix ΛI , load

heavily on factors with a difference between factor loading and bias βi− εβi of the same sign

as the signals coefficient will have their coefficients amplified. In markets where more noise

trading drives price responsiveness down (which might be considered the natural direction),

signals with biases that lead to attenuation of true factor loadings towards zero (including

special case εβi = 0) have larger coefficients in predictive projections when there is more

noise trading. This is potentially problematic because noise trading, for good reasons, often

is associated with behavioral biases. Even if such behavioral biases effectively generate

random noise, a pattern identified in a broad sample may be amplified in a sub-sample

that would appear especially representative. It is, however, also a possibility to distinguish

between return components as discussed above.

4.4. Price informativeness

The impact of the specifics of investors’ inference problem on price informativeness or

market efficiency as referred to by Ozsoylev and Walden (2011) has only become more

prominent in the context of big data and machine learning on financial markets, see Dugast

10While the extension to a variable share of informed versus uninformed investors is straightforward, (see
Appendix B.6) allowing the share of informed versus uninformed to vary begs an optimization in the spirit
of the original paper to find the optimal share and the introduction of a traditional information acquisition
problem, which is well-studied elsewhere and beyond the scope of this paper.
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and Foucault (2020) and Farboodi et al. (2020). In the classic formulation of Grossman and

Stiglitz (1980), price informativeness is the inverse of the variance of the pay-off conditional

on equilibrium price. When price and pay-off are normal random variables, this measure

coincides with the mean squared error of a projection, which has led to empirical estimation

strategies based on regression analysis, see Dessaint, Foucault, and Frésard (2020). For

comparability, I also base my measure of price informativeness on a projection. As discussed

in Section 3.1, this projection is also the best linear approximation. Price informativeness is

given by

E[(y − E[y|p,β])2]−1 =

{
V ar[y]−

λ2
p

λ2
p

Cov[y, ŷI ]
2

V ar[sU ]

}−1

=

{
β>Σqβ −

(β>Σζµβ)2

V ar[ŷI ] + ψ−2
I σ2

z

}−1

.

(9)

Equation (9) shows how price responsiveness λp does not affect price informativeness. The

effect of uninformed trading on price informativeness is just to scale supply by the square

inverse scaling factor of the informed investors, ψ−2
I , while larger supply σ2

z unambiguously

decreases it. This is true in the baseline model of known factor loadings as well. The

difference is in the inflation of variance of the informed predictor compared to the variance

of the expectation with known factors, and the attenuation of the covariance

V ar[ŷI ]− V ar [E[y|β, sI ]] = χ− 2β>Σζεβ, Cov[y, ŷI ]
2 = (V ar [E[y|β, sI ]]− β>Σζεβ)2.

Higher estimation noise σβ unambiguously inflates the variance of the predictor through the

cost of complexity, while the role of the bias is less clear cut. However, numerical analysis

supports the tendency of variance inflation and covariance attenuation. The presence of

the interaction term β>Σζεβ in both the denominator and numerator implies that if a

configuration of bias amplifies rather than attenuates covariance it will with at an even

higher inflation of variance.

Taking noisy inference as a given, the unattainable base line is less interesting than the

fact that price informativeness under this condition is subject to a trade-off between bias

and variance just as the predictor of (informed) investors. Figure 6 is based on, respectively,

the equilibrium inverse price informativeness (mean squared error), and the counterfactual

of a social planner optimizing price informativeness, i.e. solving the non-linear problem of

maximizing equation 9 with respect to controls c that control the bias and variance of the

estimator β̂ (see Section 2.2). Carried out under the objective measure, a stronger new

data source signal (higher kS) raises the price informativeness (lowers the mean squared

error), even though the baseline difficulty is high kσ0 = 0.6, which means that the mean
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squared error of the informed predictor is increasing (see Figure 2). Of the three dimensions

considered, only sophisticated estimation technology (high k2
c ) leads to conversion between

the private optimization and the planner’s optimization. While the two other parameters

are restricted by the requirement that informed predictions outperform (Proposition 3), the

tendency to convergence happens in the unrestricted direction towards zero, but convergence

is not reached before the hard cut-off at zero. A planner with an ability to invest in improving

technology ↑ k2
c , lowering the baseline difficulty ↓ kσ0 or making new data sources available

↑ kS, would find all beneficial but might prefer the first as it aligns the goals of private

individuals with its own. Especially since the incorporation of new data sources might

require better technology to be attractive to private individuals, as it is possible for informed

investors’ predictive power to be deteriorating even while price informativeness is improving.

4.5. Excess price volatility

Another measure of market quality is price volatility and in particularly in excess of

the volatility of dividends (Shiller, 1980). In the model, this comparison correspond to the

contrast between price variance

V ar[p] = λ2
pV ar[sU ] = λ2

p

{
V ar[ŷI ] + ψ−2

I σ2
z

}
,

and the variane of the pay-off V ar[y]. In the baseline model with known factor load-

ings, conditional expectation of the pay-off is V ar[y|β, sI ] = V ar[y] − V ar[E[|y|β, sI ]],
and V ar[E[|y|β, sI ]] replaces V ar[ŷI ] in V ar[p]. As such, excess price variance is not pos-

sible in the representative agent model. In the heterogeneous agent model it requires large

amounts of noise trading and the off-setting effect of uninformed traders correcting for it to

be small11 (with no uninformed demand, price responsiveness is unity λp = 1). The addi-

tional noise from the estimation process makes excess price variance more prevalent in the

parameter space and it can occur even in the representative agent model of Section 2, i.e.

V ar[ŷI ] > V ar[y] is possible.

11The effect of more noise trading on λp has two counter-acting forces. More noise leads the uninformed
to put more weight on their prior (↓ λU ), which lowers λp, but they also take smaller positions (↓ ψU ), which
increases λp as informed investors and noise traders make up a bigger share of the market. Conversely,
when uninformed investors form their best estimate by copying informed investors as best as they can (see
Section 3.1) they do not adjust the same way for estimation noise as noise trading. Because higher estimation
noise goes into V ar[ŷI ], they will actually increase the weight they put on their signal derived from price
(↑ λU ).
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4.6. Short-term price reversals

There is a long tradition of using short-term price reversals to disentangle informed trad-

ing from liquidity demand, see Hendershott and Menkveld (2014), since the price pressure

from liquidity demand can be expected to be reversed in the spirit of Campbell et al. (1993).

Predicting price change by price gets at short term price reversals in the context of a two

period model assuming a constant before-price of E[p], see Breon-Drish (2015). I first il-

lustrate how the price pressure of liquidity demand relates to price reversals before adding

realized estimated factor loadings β̂ as an additional conditioning variable. I once again

apply projection as the linear approximation of the expectation and in, addition to price, I

condition on negative stochastic supply z (liquidity demand)

Ẽ[r|p, z] = ε>βµq +
Cov[y, ŷI ]− λpV ar[ŷI ]

λpV ar[ŷI ]
(p− E[p])− Cov[y, ŷI ]

λpV ar[ŷI ]
ψ−1
I (−z)︸︷︷︸

liquidity
demand

,

(derivations that can be found in Appendix C.1). The non-zero constant of the projection

ε>βµq generates a tendency for price drift that might over time be picked up as momentum

or long term reversal. This component is analysed in Section 4.3 on return predictability

and here I focus on short-term reversals instead.

It is useful to consider that in the baseline model without noisy inference, covariance of

the pay-off and the informed predictor is the variance of the predictor Cov[y, E[y|β, sI ]] =

V ar[E[y|β, sI ]]. Therefore, the coefficients simplify to (1−λp)/λp and −ψ−1
I /λp respectively,

and positive supply shock tends to be followed by negative return. Directionally, the impact

of a large supply shock is the same as in the baseline model with known factor loadings if

the covariance between informed prediction and pay-off is positive. It is still positive but

it is attenuated if Cov[y, ŷI ] < V ar[ŷI ], which is likely as a sufficient condition is for this

inequality is V ar[y] < V ar[ŷI ].

More important for interpreting empirical results on reversals, conditioning on the re-

alization of the factor loadings in the projections yields identical coefficients on rescaled

negative supply −ψ−1
I z and factor-mean weighted realized factor loadings µ>β̂.

Proposition 5 (Short-term reversals). Both liquidity demand (−z) and realized estimated

factor loadings β̂ generate expected short-term reversals with a common factor in marginal
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effects

Ẽ
[
r|p, z, β̂

]
= ε>βµq +

Cov[y, ŷI ]− λp(V ar[ŷI ]− µ>qD2
σβ
µq)

λp(V ar[ŷI ]− µ>qD2
σβ
µq

(p− E[p])

− Cov[y, ŷI ]

λp(V ar[ŷI ]− µ>qD2
σβ
µq)

(−ψ−1
I z)− Cov[y, ŷI ]

λp(V ar[ŷI ]− µ>qD2
σβ
µq)

µ>q (β̂ − µβ).

Proof. See Appendix C.1.1.

While it is unreasonable to expect econometricians to directly observe either stochastic

supply z or factor loadings estimates β̂, the significance of Proposition 5 is that any variable

that correlates with price reversals could be correlated with liquidity demand, but could

equally well be correlated with noisy estimation. Whether it is meaningful to group these two

types of noise into one will depend on the context. In contrast to the results in Section 4.3,

which were largely driven by the bias of the noise inference the effect for short-term reversals

is a function of the variance of the estimation process.

Short term reversals can also be linked to price variance (see Section 4.5) since higher

estimation noise tends to attenuate coefficients on both the price, supply shocks, and realized

factor loadings per Preposition 5. Higher trading noise only affects coefficients through price

responsiveness λp which will tend to decrease as uninformed investors put more weight on

their prior. Analysing price variance and price reversals is, therefore, useful for understanding

whether a likely common factor is: estimation noise (attenuated coefficients), or trading noise

(amplified coefficients).

In the limiting case of the estimation technology parameter k2
c growing large presented in

Figure 7, both of these relations exist, and there is additionally a negative relation between

the coefficient on price and price variance when driven by estimation noise and a positive

one when driven by trading noise. For the parametrization of this numerical analysis, the

relations between trading noise, price variance, and reversal coefficients are consistent across

different levels of technological sophistication for the case of attenuation bias captured by

+β̄. The case of amplifying bias, −β̄, is more complicated because the relation between the

base-parameter of estimation difficulty kσ0 and price variance changes over the range of the

estimation technology parameter k2
c , from being positive for lower values to eventually being

negative and some instability in between. The interesting aspect of the limiting case is how

the relationship between price variance and the reversal coefficients again prevails despite

the changes in the relationship with the base parameter with amplification bias, i.e. price

variance is decreasing in kσ0.

It is not the only one possible, but from an empirical perspective the most straightforward
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identifying assumption is that estimation bias is dominated by attenuation bias, in which case

the opposing relations between price variance and the price reversal coefficient emerges. It is

additionally attractive because of its significance in turning noise trading into predictability

in returns as covered in Section 4.3.2.

4.6.1. Trading volume

With several explanations for returns, a natural additional dimension of market data to

consider is trading volume following Campbell et al. (1993). Realized trading volume v is

given by

v =
1

2
{|δI |+ |δU |+ |z|} =

1

2
{|δI |+ | − δU |+ |z|}

=
ψI
2

{ ∣∣(1− λp)(ŷI − E[ŷI ])− λpψ−1
I z
∣∣+ (1− λp)

∣∣(ŷI − E[ŷI ]) + ψ−1
I z
∣∣+ |ψ−1

I z|
}
,

see Appendix C.2. From this expression it is possible to point out a difference between liq-

uidity demand and noisy estimation. Other things equal, the impact of an absolute increase

in stochastic supply/liquidity demand |z| = | − z| is always positive for non-zero demand

and supply since

∂v

∂|z|
=

1

2
ψ−1
I {−λp sign(δI) sign(z)− (1− λp) sign(δU) sign(z) + 1} ≥ 0.

Conversely, an informed prediction with larger absolute deviation from its expected value is

ambiguous

∂v

∂|ŷI − E[ŷI ]|
= (1− λp) sign(ŷI − E[ŷI ]) {sign(δI)− sign(δU)} ,

however, for large enough deviations the effect will be positive as the trading between in-

formed and uninformed investors dominates the trading flow. The classic intuition that

conditioning on large trading volume with low expected returns helps to identify liquidity

demand, following Campbell et al. (1993), breaks down in the presence of noisy inference.

4.7. Fund performance

By identifying informed investors as sophisticated funds who invest in inference tech-

nology and the data it requires and uninformed investors as their simpler counterparts, I

compare performance as measured by their expected profits. Profit of investors under a
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measure c∗j is derived in Appendix C.3.1,

E[πI ] = ψI
{

(1− λp)
(
Cov[y, ŷI |c∗j ]− λpV ar[ŷI ]

)
+ λ2

pψ
−2
I σ2

z

}
, and

E[πU ] = ψU
{

(λp − λU)
(
λpV ar[ŷI ]− Cov[y, ŷI |c∗j ]

)
+ (λp − λU)λpψ

−2
I σ2

z

}
= ψI(1− λp)

{(
λpV ar[ŷI ]− Cov[y, ŷI |c∗j ]

)
+ λpψ

−2
I σ2

z

}
,

see Appendix C.3.1. Contrasting ex-ante expected profits under investors’ measure c∗ with

the large numbers average realized profit (expectation under objective measure or equivalent

limiting measure c∗∞) comes down to comparing Cov[y, ŷI |c∗] and Cov[y, ŷI ]. The difference

between the two defines the ex-post surprise investors are expected to experience under the

model. In Appendix C.3.3, I show that there is no ex-post surprises with respect to the total

profits of the investor base and the surprise is a transfer between informed and uninformed

investors equal to

E[πI ]− E[πI |c∗] = −(E[πU ]− E[πU |c∗]) = ψI(1− λp)(Cov[y, ŷI ]− Cov[y, ŷI |c∗]).

The condition for a surprise ex-post out-performance of informed investors, and by sym-

metry the under-performance of uninformed investors, is whether the covariance between

the pay-off and the informed predictor is over- or underestimated under the contemporary

measure compared to the objective measure. In Appendix C.3.2, I link expected profit under

the contemporaneous measure, i.e. expected out-performance by informed investors, to the

condition for informed investors making better predictions presented in Proposition 3. Un-

der the parametrization of the numerical analysis, Figure 8 establishes a clear relationship

between this condition and the sign of β̄, and Figure 9 shows that it carries over to profits.

With attenuation bias (+β̄), the out-of-sample surprise is in favor of informed investors,

(sophisticated investors, for some period perhaps quantitative funds) and with amplifica-

tion bias, the effect is in the direction of hype followed by disappointment. Linking these

conditions to Section 4.3.1 and Section 4.6 the common environment is characterized by

the shared condition of attenuation bias, and fund performance is a way to identify periods

where this condition is likely true (under the model). The period leading up to a period of

out-performance by quantitative funds (or another identifier of informationally sophisticated

funds) is a good candidate for the joint analysis of return predictability and short-term price

reversals.
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5. Predictability of the equity risk premium

In this section, I focus on a specific case of predictability in the asset pricing literature that

the noisy estimation with changing technology provides an explanation for: the predictability

of the equity risk premium, specifically with respect to the predictive variables surveyed by

Welch and Goyal (2008) and the literature inspired hereby (Campbell and Thompson, 2008;

Rapach et al., 2010; Neely et al., 2014; Buncic and Tischhauser, 2017; Hammerschmid and

Lohre, 2018). Variation in estimation technology offers an explanation for two empirical

patterns found within and across these studies: vanishing predictability over time (in the

data) but stronger predictability overall between studies (see Section 5.1). As a single time

series with variation through predictive variables rather than a cross-section of assets the

application is better suited of the narrower representative agent model of Section 2 than

the extended heterogeneous agent model of Section 3. Therefore, in Section 6, I provide

some considerations for further empirical work collecting and extending observations made

in Section 4 and Section 4.1.

5.1. Predicting the equity risk premium

An empirical pattern found in Welch and Goyal (2008) and confirmed in later studies

with other empirical strategies and auxiliary data (e.g. Buncic and Tischhauser (2017)) is

that of, over time, an initial out-performance of the historical mean followed by deteriorating

performance12 driven by the variables identified in the first study. The turn-around falls in

the earlier 1990s and as such it follows the rise of the private computer in the 1980s and

coincides with the early years of the internet. A second pattern that appears between studies

is one of empirical approaches in subsequent papers out-performing approaches in earlier

papers. These effects have a natural interpretation in terms of the estimation technology of

respectively investors and econometricians.

In the model, the parameter k2
c can be interpreted as the quality of estimation technology.

By providing subscripts I for investors and e for econometricians, the first empirical pattern

can be understood as fixing k2
ce and increasing k2

cI . Within a given study the empirical

method used by econometricians is the same through time while the data it is applied to

changes. Over time, the estimation technology of investors could reasonably be improving

as new techniques become available.

The second empirical fact, can be seen as fixing a path for k2
cI and increasing k2

ce where

12Dependent on specific set-up this might mean under-performance or performance only on par with that
of the historical mean. Introducing a floor of zero for the prediction of the equity risk premium as proposed
by Campbell and Thompson (2008), generally helps to avoid under-performance.
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later studies represents a better estimation technology than earlier. Abstracting estimation

technology into the single dimension of k2
c suggests that there is a hierarchy of methods.

A priori, it is not obvious how to rank approaches and without assumptions on the data-

generating process no such ranking can exists given the no free lunch theorem for learning

algorithms (Wolpert, 1996). However, ex posteriori, some empirical strategies should out-

perform others if there is something to learn from the data. One point to address, is that

out-performance between studies coincides with the introduction of new data. As discussed

in Section 4.1, in the model, data that is used for estimation of the factor loadings is reflected

in k2
c (or kσ0, the estimation difficulty). Conceptually, however, allowing this dimension to

vary at the same time as fundamental data, the structure imposed by the model is loosened

substantially. Therefore, in my replication of these patterns in Figure 12, I do not generate

the second pattern by replicating the studies directly. Instead, I fix the data used and shows

how regularised linear approaches can outperform plain vanilla ordinary least squares.13 In

the calibration of Section 5.1.1, I focus on the first empirical pattern and investigate which

shift in investors estimation technology k2
cI is required to generate it.

5.1.1. Calibration

In the calibration, I focus on moments that rely only on a subset of parameters. I

consider ten of the predictive variables studied by Welch and Goyal (2008) and use the

updated time series data from Amit Goyal’s website.14 In addition to the assumption that

the representative agent model is a meaningful first-order representation of the phenomenon,

I operate under the identifying assumption that investors’ signal set is the same over the

period. With the discussion of the potency of a mismatch between employed signals and

available signals in Section 4.3.1, it is a very relevant alternative hypothesis, and one to keep

in mind when considering the results of the calibration. Approaching it directly, however,

requires richer data as it introduces more degrees of freedom. The first set of moments is the

difference in variance adjusted expected coefficients on the econometricians signals between

the two sub-periods{
E

[
∂E[r2|c∗e, se]

∂se

]
− E

[
∂E[r1|c∗e, se]

∂se

]}
V ar[se] = (εβ2 − εβ1)>DσqRqsIR

−1
sI
RsIse

13Per the discussion of the impossibility of an a priori ranking of methods it is not generally clear that
such an out-performance should exists, but the application is inspired by the uses of regularization in later
studies (Rapach et al., 2010; Buncic and Tischhauser, 2017)

14The variables are listed in Table 5.
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empirically estimated by the averages of the coefficients from rolling regressions with 30 years

windows.15 Notice how keeping the econometricians estimation technique fixed along with

the signal set of the investor means that terms involving the bias of the econometricians

drop out. The second set, relies on a different assumption to eliminate terms involving the

econometricians bias, which is that the benefit of in sample estimation eventually makes the

estimation error of econometricians on a given data-set small in comparison to investors.

It is the variance adjusted expected coefficients on the econometricians signals over the full

sample

E

[
∂E[r|c∗e, se]

∂se

]
V ar[se] = [wεβ2 + (1− w)εβ1]>DσqRqsIR

−1
sI
RsIse

where the weights are approximated by the number of observations in the two sub-periods.

In Figure 13, I confirm that the coefficients targeted can generate the empirical pattern of

predictive out-performance followed by deteriorating performance when applied to the data.

Finally, I include the difference in the unconditional expectation,

E[r2]− E[r1] = (εβ2 − εβ1)>µq,

as a target moment.

I fix a number of parameters up front and limit the estimation to the correlation structure

and the second period investor estimation technology quality parameter kcI2. I maintain the

structure from the numerical analysis of two factors with common mean and variance, µ̄q and

σ̄q, but summarize investors’ group of signals in one signal which requires two correlation

parameters, ρqsI1 and ρqsI2. Varying µ̄q, σ̄q, the baseline kσ0, and first period estimation

difficulty kcI1 has little impact on the directional effects as long as certain relations are

maintained to ensure convergence, µ̄q < σ̄q and kσ0 ≈ |kcI1|. I run the estimation iteratively

in a two step procedure alternating between minimizing the mean squared error between

theoretical and empirical moments over the correlation parameters and then kcI2. I find that

then convergence occur, it happens after a few iterations.

I pick kσ0 and µ̄q to match the baseline values studied in the numerical analysis and

calibrate σ̄q such that the correlations between each factor and investors’ signal group come

out with comparable magnitudes in the estimation, ρqsI1 ≈ 0.3 and ρqsI2 ≈ −0.21. Apart

from these two correlation parameters, I estimate a correlation parameter for each of the

15In Figure 10 and Figure 11 I investigate the in-sample fit of expanding and contracting as well as rolling
windows. The pattern for shorter windows is consistent with some amount of over-fitting in sample as the
shorter samples achieve noticeably higher scores but have very poor untabulated out-of-sample performance.
The interpretation of in-sample analysis as converging to the objective measure, following Martin and Nagel
(2021), is not reasonable for the shorter windows and I focus on 20 and 30 years windows instead.
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ten predictive variables,which, from the perspective of the model, are the econometricians

signals. Most parameter values can be found in Table 6, but the correlation parameters for

the predictive signals I instead visualize in Figure 14, which clearly shows that the magnitude

of correlation with investor signals is the largest for the valuation ratios of dividend- and

earnings-to-price. Since the estimation is done with respect to variance-covariance corrected

measures, should not be taken to mean that these are the only relevant predictive variables.

Rather, valuation is estimated to be the strongest channel through which the variables relate

to investors signals which is in line with the view that this group of predictive variables

represent signals about fundamentals as opposed to, for instance, sentiment.

The key number of interest is the shift in estimation technology. A direct way to look

at it is through the percentage increase in the magnitude of parameter kcI which comes

out to kcI2/kcI1 − 1 ≈ 233%. For a more contextual view that also reflects the estimated

information structure, the change in investors optimal bias can be calculated based on the

calibration. With two factors the vector has two elements which are virtually the same

both experiencing a growth of εβi,2/εβi,1 − 1 ≈ 82%. Taking the information structure into

account the magnitude of the shift is attenuated substantially. However, what is perhaps

more surprising about this estimate is the direction of the shift. The estimated optimal bias

has grown. Since there is a trade-off between bias and variance increasing bias and decreasing

cost of complexity both follow from the increasing quality of estimation technology. For a

visual demonstration of this mechanism see Figure 1(a). Recognizing that bias can be optimal

helps to explain the empirical pattern.

The shift in estimation technology is substantial, which might to a certain extent reflect

the discretization into just two periods. The turnaround in Figure 12 is, however, rather

sharp and the alternative hypothesis of technological development also changing the compo-

sition of investors signal group is reasonable. Either way, the calibration is consistent with

technological development historically playing a large role in predictability of returns.

6. Further directions for empirical work

One of the key challenges in working empirically with the model, is that taking the concern

that both investors and econometricians face an estimation problem in forming predictions

about pay-offs or returns seriously makes it problematic to estimate key ingredients of the

model such as the cost of complexity directly from the data. Extending to the cross-section,

separating the estimation of β̂ and factor expectations ζ à la Kelly, Pruitt, and Su (2019) or in

a non-linear fashion as in Gu et al. (2021) would allow for more targeted contrasts of sources

predictability. E.g. once a factor structure is estimated cost of complexity under various
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signal configuration and parameter choices could be matched to moments of predictability

in the cross-section. Alternatively, separating returns into components that more closely

match what is pay-off and price in the model, by proxying expected pay-offs by earnings

expectation or focusing on returns around earnings-announcement would again allow a more

targeted estimation.

Irrespectively of the cross-sectional approach, the heterogeneous agent extension high-

lights promising ways to sub-sample the data. Most directly related to return predictability,

the decomposition of signals available to in Section 4.3 shows how only signals employed

by investors are affected by price responsiveness. This suggest an empirical strategy of sub-

sampling on proxies for noise trading to sort components of predictability on their sensitivity

to this cross-sectional variation.16 Another prediction related to noise trading is that when

higher noise trading leads to lower price responsiveness the coefficient on signals estimated

with attenuation bias are larger in sub-samples with more noise (see Section 4.3.2). While it

might be natural to assume that attenuation bias is more common than amplification that

can generally be an identifying assumption that is hard to provide direct support for. In the

context of the model, relations between price variance and short-term price reversals with re-

spect to levels of noise trading is particularly stable under attenuation bias (see Section 4.6),

and in the time series, fund performance can be related to the dominant type of bias, as

periods of success (better than expected performance) for sophisticated investors are more

likely under attenuation bias (see Section 4.7).

7. Conclusion

The complex prediction problems faced by investors in financial markets have a number

of implications for equilibrium outcomes. Complexity generates a cost of expanding pre-

dictive models of the risky pay-off with new signals. Investors optimally trade off bias for

precision and the benefit of including a signal for the associated cost of complexity. Advances

in estimation techniques such as machine learning methods mitigate the issues of complexity

for investors. In the study of financial markets, these advanced methods, however, require

careful application to undo rather than amplify the bias optimally introduced by investors.

Empirically, the effect of changing estimation technology on predictability is not only rele-

vant for new methods going forward but and can explain historical patterns of predictability

as well. For new methods that likely lowers the cost of complexity, a high level of cau-

tion is warranted in assessing their likely future performance through historical back-testing.

Analysing historic performance over time rather than summarising performance in an aggre-

16These component may be predictive variables or relevant transformations of the data.
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gate statistic is a mitigating measure, as well as analysis of cross-sectional sub-samples in

various dimensions especially around proxies for noise trading.
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Figures and Tables

Table 1: Baseline parameter values.

Notation Value

Estimation technology level k2
c 1

Difficulty of estimation problem kσ0 0.3
New data sources strength kS 0.5
Common component in factor loadings β̄ 0.6

Individual components in factor loadings β̃ (1 0.3)>

Common uncertainty aversion αI , αU 1
Intensity of stochastic supply (noise trading) σ2

z 1
Common factor mean µ̄q 0.2
Common factor volatility σ̄q 1
Common factor scaling factor (1/|1|)1 0.7× 1
Correlation between factors ρq 0
Correlation between established signals ρs0 0.2
Correlation between new signals ρs1 -0.5
Correlation inc. signals and factors (diagonal matrix) diag(Rqs0) (0.5 0.25)>

Correlation new signals and factors (diagonal matrix) diag(Rqs1) (0.25 0.5)>

Correlation inc. signals and new (independent) Rss 0I
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Table 2: Baseline factor structure.

Notation Value

Factor mean outer product µqµ
>
q

(
0.02 0.02
0.02 0.02

)
Factor covariance Σq

(
0.5 0
0 0.5

)
Cond. exp. of factors

Est. signals covariance term Σζ0

(
0.13 −0.01
−0.01 0.03

)
Unscaled new signals cov. term S

(
0.04 0.04
0.04 0.17

)
Second moments Ωζ = µqµ

>
q + Σζ0 + kSS

(
0.17 0.03
0.03 0.14

)

Table 3: Baseline moments.

Notation Value +β̄ Value −β̄

Variance of pay-off V ar[y] 0.20 0.20
Cost of complexity χ 0.02 0.02
Cond. var. of pay-off true model V ar[y|β, sI ] 0.14 0.14
Mean squared error informed E[(y − ŷI)2] 0.15 0.15
Mean squared error uninformed E[(y − ŷU)2] 0.17 0.16
Var. informed predictor V ar[ŷI ] 0.04 0.11
Expectation of inf. pred. E[ŷI ] 0.07 -0.15
Expectation of pay-off true E[y|β] 0.11 -0.11
Var. inf. pred. true model V ar[E[ŷI |β, sI ]] 0.06 0.06

Cov. inf. predictor and pay-off

Contemporary measure Cov[y, ŷI |c∗] 0.03 0.10
Objective measure Cov[y, ŷI ] 0.04 0.08

Table 4: Baseline market structure.

Notation Value +β̄ Value −β̄

Informed position scaling factor ψI 6.6 6.6
Uninformed position scaling factor ψU 6.0 6.3
Uninformed responsiveness to price-signal λU 0.64 0.82
Price responsiveness to shocks λp 0.82 0.91
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Table 5: Predictive variables. In depth variable descriptions can be found in Welch and
Goyal (2008).

Name Notation

Dividend price ratio dp
Earnings price ratio ep
Stock variance svar
Book to market value bm
Corporate Issuing Activity ntis
Treasury bills tbl
Long term yield lty
Default yield spread dfy
Default return spread dfr
Inflation infl

Table 6: Parameters of the calibration (see Section 5.1.1) excluding predictive variables
correlation parameters (see Figure 14).

Name Notation Value

Weight in full sample average expected coefficients w 0.64
Common factor mean µ̄q 0.2
Common factor volatility σ̄q 0.8
Difficulty of estimation problem kσ0 0.3
Investors’ estimation technology level period 1 kcI1 -0.3
Investors’ estimation technology level period 2 kcI2 -1.0
Correlation between investors’ signal group and factor 1 ρqsI1 0.3
Correlation between investors’ signal group and factor 2 ρqsI2 -0.21
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Fig. 1. Bias εβ and volatility σβ. Panel 1(d) shows cost of complexity χ and the left hand
side of the inequality of Proposition 3 as † = V ar[y|β, sI ] + (ε>βµq)

2.

(a) Better estimation technology (b) Stronger new data source

(c) Harder estimation problem (d) Informed investors better informed

Fig. 2. Mean squared error of the informed predictor E[(y− ŷI)2], cost of complexity χ, and
conditional variance of the pay-off under the true model V ar[y|sI ,β]. Stronger new source
of data (higher kS) can lead to higher or lower mean squared error. Given the baseline
parametrization the two scenarios are captured by high or low estimation difficulty kσ0.

(a) Easier estimation (baseline) kσ0 = 0.3 (b) Harder estimation (baseline) kσ0 = 0.6
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Fig. 3. Easier estimation problem (kσ0 = 0.3) means that informed investors uses all infor-
mation. The microstructure fundamental of trading noise mainly shifts coefficient curves to
larger absolute values. Price responsiveness λp is respectively ≈ 0.92 and ≈ 0.87.

(a) Less noise trading σ2
z = 0.5 (b) More noise trading σ2

z = 1
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Fig. 4. Harder estimation problem (kσ0 = 0.6) means that the information set of informed
investors and econometricians eventually differs. Noise trading is at the baseline level σ2

z = 1.
Information differences demonstrates a notable break. Signals sI and se are independent,
but their coefficients are connected through econometricians’ bias.

(a) Positive β̄ (b) Negative β̄

(c) Econometricians’ bias

Fig. 5. The bias in the constant term of the projection of price changes r onto signals is
increasing in the gap between investors’ and econometricians’ bias as the latter a decreases
toward zero (see Figure 4).

(a) Easier estimation kσ0 = 0.3 (b) Harder estimation kσ0 = 0.6
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Fig. 6. Mean squared error of prediction based on price contrasting optimal choice of es-
timator made by the informed investors (private) and a social planner optimizing for price
informativeness. All plots under the hard estimation scenario (baseline) kσ0 = 0.6. Easy es-
timation scenario is similar in most cases, except for the contrast between same and opposite
sign true factor loadings, +β̄ and −β̄ respectively, when varying the new data parameter kS,
which is less pronounced with both graphs looking more like the plot in column 6(b).

(a) Positive β̄ (b) Negative β̄
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Fig. 7. Variance of price and reversals coefficients with respect to trading noise σ2
z , and

estimation noise driven by estimation difficulty kσ0. Price variance increasing in trading noise
also holds at lower levels of estimation technology parameter k2

c , as well as for same sign bias
and true factor loadings (+β̄). Meanwhile price variance decreasing in estimation difficulty
kσ0 is reversed at lower levels. Overall the tendency for opposite trends in coefficients is
found at different levels of technological sophistication in parameter regions allowed by the
constraint of Proposition 3 (informed predictions outperform).

(a) Limiting case k2c = 100, trading noise σ2
z (b) Positive β̄, trading noise σ2

z

(c) Limiting case k2c = 100, estimation noise kσ0 (d) Positive β̄, estimation noise kσ0

(e) Negative β̄, estimation noise kσ0
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Fig. 8. Variance and covariance of informed predictor and pay-off under contemporary
measure c∗ and objective measure. Both the shape of the curves as well as the ordering of
the covariances is determined by the sign of the sign of true factor loadings parametrized by
β̄. The variation across estimation difficulty is included for comparability with Figure 9.

(a) Easier estimation kσ0 = 0.3, negative β̄ (b) Harder estimation kσ0 = 0.6, positive β̄
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Fig. 9. Fund performance under the contemporary measure and objective measure. The
ordering of the corresponding covariances determine whether average expected profit or
average realized profit is higher. The baseline difficulty influences the trend of the two
other parameters, most notably new data kS, which increases profits in the hard estimation
scenario.

(a) Easier estimation kσ0 = 0.3, negative β̄ (b) Harder estimation kσ0 = 0.6, positive β̄
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Fig. 10. Expanding and contracting windows adjusted in-sample R-squared. Adj R2 =
1 + n+1

n−p(R2 − 1) where n is number of observations and p is number of parameters.

(a) Expanding window (b) Contracting window

Fig. 11. Rolling windows adjusted in-sample R-squared. Adj R2 = 1 + n+1
n−p(R2− 1) where n

is number of observations and p is number of parameters. Each curve represent the adjusted
R-squared of a model estimated over the number of years shown in the legend. Plots are
smoothened by plotting 10 years rolling averages of the adjusted R-squared.
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Fig. 12. Predictive performance compared to historical mean of different methods over rolling
windows of 20 and 30 years and with and without the Campbell and Thompson (2008) zero
floor that floors predictions at zero denoted CT. Except for 30 years with CT, OLS is a
clear under-performer. All plots present deteriorating performance in the second sub-period
(starting around 1991) and all expect 20 years OLS without CT present out-performance in
the first.

(a) 20 years, no CT (b) 20 years, CT

(c) 30 years, no CT (d) 30 years, CT
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Fig. 13. Predictive performance compared to historical mean of expected coefficient targets
for estimation.

(a) Expected coefficients of sub-periods (b) Expected coefficients full period

Fig. 14. Predictive variable correlation parameters estimated in calibration. Description of
variables in Table 5.
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Appendix A. Inference problem

A.1. Variance of dot-product of independent random vectors

For random vectors v and w with mean and variance µx,Σx ∀x ∈ {v, w} using the trace

operator tr

V ar
[
v>w

]
= E

[(
v>w

)2
]
−
(
E
[
v>w

])2
= E

[
v>ww>v

]
−
(
E [v]>E [w]

)2

= E
[
tr
(
vv>ww>

)]
−
(
µ>v µw

)2
= tr

(
E
[
vv>

]
E
[
ww>

])
−
(
µ>v µw

)2

= tr
({
µvµ

>
v + Σv

}{
µwµ

>
w + Σw

})
−
(
µ>v µw

)2

= tr
(
µvµ

>
v µwµ

>
w

)
+ tr

(
µvµ

>
v Σw

)
+ tr

(
Σvµwµ

>
w

)
+ tr (ΣwΣv)−

(
µ>v µw

)2

=
(
µ>v µw

)2
+ tr

(
µwµ

>
wΣv

)
+ tr

(
Σwµvµ

>
v

)
+ tr (ΣwΣv)−

(
µ>v µw

)2

= µ>v Σwµv + µ>wΣvµw + tr (ΣwΣv) .

Using the Hadamard product identities v>(A �B)w = tr
(
DvADwB

>) and D>vADw =

wv> �A, the covariance matrix identity Σw = DσwRwDσw , and the interchangability of

vectors in vector-diagonal matrix products µ>vDσw = σ>wDµv , the variance can be written

as

V ar
[
v>w

]
= σ>wDµvRwDµvσw + µ>wΣvµw + σ>w(Rw �Σv)σw

= σ>w(Rw � µvµ>v )σw + σ>w(Rw �Σv)σw + µ>wΣvµw

= σ>w(Rw �Ωv)σw + µ>wΣvµw,

where Ωv = µvµ
>
v + Σv.

A.2. Bias-variance trade-off solution

A.2.1. Linear-affine case

Substituting vectors of bias and volatility as functions of controls c given by Assumption 5

into the objective in (2) yields

Θ = k2
εc
>Ωζc+ k2

σc
>DΩζc+ 2kσ0kσ1

>DΩζc+ k2
σ01
>DΩζ1

= k2
σc
>(k−2

c Ωζ +DΩζ)c+ 2kσ0kσ1
>DΩζc+ k2

σ01
>DΩζ1.

51



Hessian matrix is positive definite due to the full rank assumption Section ?? and given by

∂Θ

∂c2
= k2

εΩζ + k2
σDΩζ .

Optimal controls from first order condition are

0 =
∂Θ

∂c
= 2k2

σc
>(k−2

c Ωζ +DΩζ) + 2kσ0kσ1
>DΩζ

⇐⇒ c∗ = −k−1
σ kσ0

(
k−2
c Ωζ +DΩζ

)−1
DΩζ1,

and substituting back into the objective it simplifies to

χ = Θ|c=c∗ = k2
σ01
>DΩζ

(
k−2
c Ωζ +DΩζ

)−1
(k−2
c Ωζ +DΩζ)

(
k−2
c Ωζ +DΩζ

)−1
DΩζ1

− 2k2
σ01
>DΩζ

(
k−2
c Ωζ +DΩζ

)−1
DΩζ1 + k2

σ01
>DΩζ1

= −k2
σ01
>DΩζ

(
k−2
c Ωζ +DΩζ

)−1
DΩζ1 + k2

σ01
>DΩζ1

= −k2
σ01
>
{
DΩζ −

(
k2
cΩ
−1
ζ +D−1

Ωζ

)−1
}

1 + k2
σ01
>DΩζ1

= k2
σ01
>
{
k2
cΩ
−1
ζ +D−1

Ωζ

}−1

1.

Letting X := k2
cΩ
−1
ζ +D−1

Ωζ
, optimal controls and cost of complexity are

c∗ = −k−1
σ kσ0

{
I −D−1

Ωζ
X−1

}
1, χ = Θ|c=c∗ = k2

σ01
>X−11,

and bias and volatility

εβ|c=c∗ = kε

(
−k−1

σ kσ0

{
I −D−1

Ωζ
X−1

}
1
)

= −k−1
c kσ0

{
I −D−1

Ωζ
X−1

}
1,

σβ|c=c∗ = k−1
σ

(
−k−1

σ kσ0

{
I −D−1

Ωζ
X−1

}
1
)

+ kσ01 = kσ0D
−1
Ωζ
X−11.

A.2.2. Feasibility condition simplification and positive optimal bias

Intermediary steps for the condition in Assumption 6. Notice that kσ0 > 0 and by the

Woodbury matrix identity

X−1 = DΩζ −DΩζ(k
−2Ωζ +DΩζ)

−1DΩζ =⇒ D−1
Ωζ
X−1 = I − (k−2

c Ωζ +DΩζ)
−1DΩζ .
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The non-zero condition on the vector of volatilities of the estimator β̂ at the optimum c∗

can be rewritten as

σβ|c=c∗ = kσ0D
−1
Ω X

−11 ≥ 0 ⇐⇒
{
I − (k−2

c Ωζ +DΩζ)
−1DΩζ

}
1 ≥ 0

⇐⇒ (k−2
c Ωζ +DΩζ)1 ≥DΩζ1 ⇐⇒ Ωζ1 ≥ 0.

For the bias, notice −k−1
c kσ0 > 0 so

εβ|c=c∗ =
{
I −D−1

Ωζ
X−1

}
1 ≥ 0 ⇐⇒ 1 ≥D−1

Ωζ
X−11 ⇐⇒ XDΩζ1 ≥ 1

⇐⇒ (k2
cΩ
−1
ζ +D−1

Ωζ
)DΩζ1 ≥ 1 ⇐⇒ k2

cΩ
−1
ζ DΩζ1 + 1 ≥ 1

⇐⇒ DΩζ1 + k−2
c Ωζ1 ≥ k−2

c Ωζ1 ⇐⇒ DΩζ1 ≥ 0,

and the bias is always positive.

A.2.3. Affine-affine case

Relax Assumption 5 to allow bias to have intercept kε0, let kc0 := kσ0/kε0, Ω̃ζ :=

D
− 1

2
Ωζ

ΩζD
− 1

2
Ωζ

, Ω̃ζ∗1 := Ω̃ζ + kckc0I, Ω̃ζ∗0 := Ω̃ζ + k2
c0I, then optimal control and objec-

tive at solution are given by

c∗ = −kε0
kε
D
− 1

2
Ω Ω̃

−1

ζ∗ Ω̃ζ∗1D
1
2
Ω1, χ = k2

ε01
>D

1
2
Ω

{
Ω̃ζ∗0 − Ω̃ζ∗1Ω̃

−1

ζ∗ Ω̃ζ∗1

}
D

1
2
Ω1,

based on derivations analogous to Appendix A.2.1. Notice that substituting optimal control

into the objective the expression for χ follows from

χ = 1>
{
k2
ε

k2
ε0

k2
ε

D
1
2
ΩΩ̃ζ∗0Ω̃

−1

ζ∗ Ω̃ζΩ̃
−1

ζ∗ Ω̃ζ∗0D
1
2
Ω + k2

σ

k2
ε0

k2
ε

D
1
2
ΩΩ̃ζ∗0Ω̃

−1

u∗ IΩ̃
−1

ζ∗ Ω̃ζ∗0D
1
2
Ω

− 2kεkε0
kε0
kε
D

1
2
ΩΩ̃ζΩ̃

−1

ζ∗ Ω̃u∗0D
1
2
Ω − kσkσ0

kε0
kε
D

1
2
ΩIΩ̃

−1

ζ∗ Ω̃ζ∗0D
1
2
Ω

+ k2
ε0D

1
2
ΩΩ̃ζD

1
2
Ω +

k2
ε0

k2
ε0

k2
σ0DΩ

}
1,

by collecting terms in the first and second line.

A.3. Recursive formulation of Γns single signal

For every entry Γi,j,ns = γij,ns = ρqis,nsR
−1
s,nsρ

>
qjs,ns

, denoting the vector of correlations

between sns and other informed signals by ρs,ns = Corr(sns−1, sns), and the correlation cor-
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rection ρs,ns|ns−1 = 1− ρ>s,nsR
−1
s,ns−1ρs,ns , block matrix inversion provides the decomposition

Rs,ns =

(
Rs,ns−1 ρs,ns
ρ>s,ns 1

)

=⇒ R−1
s,ns =

(
R−1
s,ns−1 0

0> 0

)
+

1

ρs,ns|ns−1

(
R−1
s,n−1ρs,nsρ

>
s,nsR

−1
s,n−1 −R−1

s,ns−1ρs,ns
−ρ>s,nsR

−1
s,ns−1 1

)
.

The vector of correlations between a factor and all signals can be split into ρ>qis,ns =(
ρqis,ns−1 ρqisns

)
, let φi,ns := ρ>qis,n−1R

−1
s,ns−1ρs,ns − ρqisns and the quadratic form γij,ns

can be rewritten as

γij,n = ρ>qis,ns−1R
−1
s,ns−1ρqjs,ns−1 +

1

ρs,ns|ns−1

{
ρ>qis,n−1R

−1
s,n−1ρs,nρ

>
s,nR

−1
s,ns−1ρqjs,ns−1 + ρqisnρqjsn

− ρqjsnρ>qis,n−1R
−1
s,n−1ρs,n − ρqisnρ>s,nR−1

s,n−1ρqjs,n−1

}
= γij,ns−1 +

φi,nsφj,ns
ρs,ns|ns−1

.

Since the correlation correction ρs,ns|ns−1 is the same across entries, defining the vector

φ>n =
(
φ1,ns φ2,ns . . . φnq ,ns

)
, the full matrix can be written recursively as

Γns = Γns−1 +
1

ρs,ns|ns−1

φnsφ
>
ns

The diagonal elements of Γns is weakly increasing in ns as

γii,ns = γii,ns−1 +
φ2
i,ns

ρs,ns|ns−1

≥ γii,ns−1,

and the sum over all entries is as well, since the outer product φnsφ
>
ns is positive semi-definite,

formally

1>(Γns − Γns−1)1 =
1

ρs,ns|ns−1

1>φnsφ
>
ns1 ≥ 0.

A.4. Cost and benefit of complexity single signal

The impact of adding another signal is always to weakly increase χ as can be demon-

strated by the positive semi-definiteness of the difference X−1
n −X−1

n−1. By properties of

symmetric positive definite matrices,17 the difference is semi-positive definite if the differ-

17For symmetric positive definite matrices A and B with the same dimensions it is the case that

v>(A−B)v ≥ 0 =⇒ v>(B−1 −A−1)v ≥ 0 ∀v,
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ence Xn−1−Xn is. Let Dφ,ns = ρ−1
s,ns|ns−1 diag

(
φnsφ

>
ns

)
, then explicit calculation using the

Sherman-Morrison formula for the inverse of the sum of a positive definite matrix and the

outer product of vectors of the difference yields

Xn−1 −Xn =

k2
cΩ
−1
ζ,ns−1 +D−1

Ωζ ,ns−1 − k2
cΩ
−1
ζ,ns
−D−1

Ωζ ,ns
= k2

c

(
Ω−1
ζ,ns−1 −Ω−1

ζ,ns

)
+D−1

Ωζ ,ns−1 −D
−1
Ωζ ,ns

= k2
c

Ω−1
ζ,ns−1 −

Ω−1
ζ,ns−1 −

ρ−1
s,ns|ns−1Ω

−1
ζ,ns−1Dσqφnsφ

>
nsDσqΩ

−1
ζ,ns−1

1 + ρ−1
s,n|n−1

(
σq � φns

)>
Ω−1
ζ,ns−1

(
σq � φns

)


+D−1
Ωζ ,ns−1 −

[
D−1

Ωζ ,ns−1 −
(
DΩζ ,ns +DΩζ ,nsD

−1
σqD

−1
φ,ns
D−1

σqDΩ,n

)−1
]

= k2
c

ρ−1
s,ns|ns−1Ω

−1
ζ,ns−1Dσqφnsφ

>
nsDσqΩ

−1
ζ,ns−1

1 + ρ−1
s,ns|ns−1

(
σq � φns

)>
Ω−1
ζ,ns−1

(
σq � φns

)
+
(
DΩζ ,ns +DΩζ ,nsD

−1
σqD

−1
φ,ns
D−1

σqDΩζ ,ns

)−1

,

which, as a sum of (semi-)positive definite matrices, is semi-positive definite.

A.5. Recursive formulation of Γns multiple signals

For every entry Γi,j,ns = γij,ns = ρqis,nsR
−1
s,nsρ

>
qjs,ns

, denoting the matrix of correlations

between sns+ and other informed signals byRns−ns+ = Corr(sI,ns , sns+), and the correlation

correction Rns+|ns− = Rs,ns+ −R>ns−ns+R
−1
s,ns−Rns−ns+, block matrix inversion provides the

decomposition

Rs,ns =

(
Rs,ns− Rns−ns+

R>ns−ns+ Rs,ns+

)

=⇒ R−1
s,ns =

(
R−1
s,ns− 0

0> 00>

)

+

(
R−1
s,ns−Rns−ns+R

−1
ns+|ns−R

>
ns−ns+R

−1
s,ns− −R

−1
s,ns−Rns−ns+R

−1
ns+|ns−

−R−1
ns+|ns−R

>
ns−ns+R

−1
s,ns− R−1

ns+|ns−

)
.

The vector of correlations between a factor and all signals can be split into ρ>qis,ns =(
ρ>qis,ns− ρ>qis,ns+

)
, let φ>i,ns := ρ>qis,ns−R

−1
s,ns−Rns−ns+ − ρ>qis,ns+ and the quadratic form

i.e. if the difference A−B is positive semi-definite, the difference B−1 −A−1 is positive semi-definite.
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γij,ns can be rewritten as

γij,n = ρ>qis,ns−R
−1
s,ns−1ρqjs,ns−

+ ρ>qis,ns−R
−1
s,ns−Rns−ns+R

−1
ns+|ns−R

>
ns−ns+R

−1
s,ns−ρqis,ns−

− ρ>qis,ns−R
−1
s,ns−Rns−ns+R

−1
ns+|ns−ρqis,ns+

− ρ>qis,ns+R
−1
ns+|ns−R

>
ns−ns+R

−1
s,ns−ρqis,ns−

+ ρ>qis,ns+R
−1
ns+|ns−ρqis,ns+

= γij,ns−1 + φ>i,nsR
−1
s,ns+|ns−φj,ns .

Since the correlation correction matrix R−1
ns+|ns− is the same across entries, defining the

matrix Φns = Rqs,ns−R
−1
s,ns−Rns−ns+−Rqs,ns+, where the rows are φ>i,ns , the full matrix can

be written recursively as

Γns = Γns− + ΦnsR
−1
s,ns+|ns−Φ>ns .

The diagonal elements of Γns are weakly increasing in ns asR−1
s,ns+|ns− is positive semi-definite

so

γii,ns = γii,ns− + φi,nsR
−1
s,ns+|ns−φ

>
i,ns ≥ γii,ns−,

and the sum over all entries is as well, since Γns − Γns− = ΦnsR
−1
s,ns+|ns−Φ>ns is positive

semi-definite.

A.6. Cost and benefit of complexity multiple signals

The impact of adding another group of signal is always to weakly increase χ as can be

demonstrated by the positive semi-definiteness of the difference X−1
ns+ −X

−1
ns−. By proper-

ties of symmetric positive definite matrices,18 the difference is semi-positive definite if the

difference Xns− − Xns+ is. Explicit calculation using the Sherman-Morrison formula for

the inverse of the sum of a positive definite matrix and the outer product of vectors of the

18For symmetric positive definite matrices A and B with the same dimensions it is the case that

v>(A−B)v ≥ 0 =⇒ v>(B−1 −A−1)v ≥ 0 ∀v,

i.e. if the difference A−B is positive semi-definite, the difference B−1 −A−1 is positive semi-definite.
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difference yields

Xns− −Xns+ =

k2
cΩ
−1
ζ,ns− +D−1

Ωζ ,ns− − k
2
cΩ
−1
ζ,ns
−D−1

Ωζ ,ns
= k2

c

(
Ω−1
ζ,ns− −Ω−1

ζ,ns

)
+D−1

Ωζ ,ns− −D
−1
Ωζ ,ns

= k2
c

[
Ω−1
ζ,ns− −

(
Ω−1
ζ,ns− −Ω−1

ζ,ns−Φ>ns
(
Rs,ns+|ns− + Φ>nsΩ

−1
ζ,ns−Φns

)
Φ>nsΩ

−1
ζ,ns−

)]
+D−1

Ωζ ,ns− −
[
D−1

Ωζ ,ns− −
(
DΩζ ,ns +DΩζ ,nsD

−1
σqD

−1
Φ,ns
D−1

σqDΩ,n

)−1
]

= k2
cΩ
−1
ζ,ns−Φ>ns

(
Rs,ns+|ns− + Φ>nsΩ

−1
ζ,ns−Φns

)
Φ>nsΩ

−1
ζ,ns−

+
(
DΩζ ,ns +DΩζ ,nsD

−1
σqD

−1
Φ,ns
D−1

σqDΩζ ,ns

)−1

,

which, as a sum of (semi-)positive definite matrices, is semi-positive definite.

A.7. Impact on including signals of improving technology

The matrix derivative

∂X−1
ns+ −X

−1
ns−

∂k2
c

= −X−1
ns+

∂Xns+

∂k2
c

X−1
ns+ +X−1

ns−
Xns−

∂k2
c

X−1
ns−

= −X−1
ns+Ω−1

ζ,ns+
Xns+ +X−1

ns−Ω−1
ζ,ns−X

−1
ns−

is positive semi-definite if the matrix difference

Xns+Ωζ,ns+Xns+ −Xns−Ωζ,ns−Xns−

= k4
c

{
Ω−1
ζ,ns+

−Ω−1
ζ,ns−

}
+
{
D−1

Ωζ ,ns+
Ωζ,ns+D

−1
Ωζ ,ns+

−D−1
Ωζ ,ns−Ωζ,ns−D

−1
Ωζ ,ns−

}
+ k2

c

{
Ωζ,ns+D

−1
Ωζ ,ns+

+D−1
Ωζ ,ns+

Ωζ,ns+ −Ωζ,ns−D
−1
Ωζ ,ns− −D

−1
Ωζ ,ns−Ωζ,ns−

}
is positive definite. This is always eventually true as k2

c →∞ and only the first term remains

since Ωζ,ns− −Ωζ,ns+ is positive definite.

A.8. Objective measure is the limiting measure

This is true as the cost of complexity is reduced to zero as estimation technology param-

eter goes to infinity k2
c →∞ (kc is the ratio of slope parameters in the bias variance trade-off

minimization, see Section 2.3). This can seen by taking the limit of a slightly rearranged

cost of complexity χ
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lim
k2c→

χ = lim
k2c→

k−2
c k2

σ01
>
{

Ω−1
ζ + k−2

c D
−1
Ωζ

}−1

1 = 0× k2
σ01
>Ωζ1 = 0.

Appendix B. Heterogeneous agents

B.1. Profit function from budget constraint

Normalize the price and pay-off of the risk free asset to one (equivalent to a risk free

rate of zero). The value of the position in the risk free asset is its size, denote it by Bi.

With the initial value of position in the risky asset given by position times price δip, the

budget constraint that the total value of investments cannot exceed initial wealth w0i is

w0i ≥ Bi + δip. For a utility function increasing in wealth the budget constraint binds, and

it follows that Bi = w0i − δip. Therefore, after-trade wealth is

w1i = Bi + δiy = w0i − δip+ δiy = w0i + δi(y − p).

It can be shown that in determining position δi, for an investor with CARA utility of after-

trade wealth, initial wealth (endowment) can be normalized to one without loss of generality,

see Breon-Drish (2015). This holds as well for an investor maximizing a mean-variance

criterion as initial wealth drops out of the first order condition because it enters wealth

additively, which extends to the mean-mean squared error criterion described in the main

text. In all three cases optimizing the profit function πi = δi(y−p) is equivalent to optimizing

after-trade wealth.

B.2. Predicting prediction

To see that E[y|sU ,β] = E[ŷI |sU ,β], notice that for known β

Cov[y, sU |β] = Cov[y, ŷI |β] = β>Cov[q,u]β = β>Cov[q, sI ]Σ
−1
s Σ>qsβ = β>ΣqsΣ

−1
s Σ>qsβ

= β>ΣqsΣ
−1
s ΣsΣ

−1
s Σ>qsβ = β>ΣqsΣ

−1
s V ar[sI ]Σ

−1
s Σ>qsβ = V ar[ŷI |β],

and

E[y|β] = β>µq = β>{µq + ΣqsΣ
−1
s (E[sI ]− µs)} = E[ŷI |β] = E[sU |β],
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so

E[y|sU ,β] = E[ŷI |β] +
V ar[ŷI |β]

V ar[sU |β]
(sU − E[sU |β]) = E[ŷI |sU ,β].

B.3. Demand: robust profit maximization objective

I assume that investors optimize an extended mean-variance objective that consist of the

expectation of the scaled profit function π̃i(y) := δiαi(y − p) applied to the prediction ŷi

and an uncertainty-adjustment for the fact that investors optimize estimated rather than

true profits extended from unconditional variance to unconditional mean squared error. In

this two period model, optimizing over profits corresponds to optimizing over second pe-

riod wealth (see Appendix B.1). The specification reflects the fact that investors ultimately

care about true profits but are averse to the risk in the pay-off as well as the model uncer-

tainty. To account for both sources of randomness, the uncertainty-adjustment is based on

the unconditional mean squared error, and, for consistency with the problem faced by in-

vestors with CARA-utility facing a Gaussian gamble, it is half, i.e. 1
2
δ2
iE
[
(π̃i(y)− π̃i(ŷ))2] =

1
2
α2
iE
[
(y − ŷi)2]. Formally, demand from optimizing the objective function yields

δi = arg max π̃i(ŷi)−
1

2
E
[
(π̃i(y)− π̃i(ŷ))2] = ψi (ŷi − p) , where ψi =

{
αiE

[
(y − ŷi)2]}−1

.

where the expression follows from a reorganization of the first-order condition analogous to

a classic mean-variance optimization and the second-order condition is satisfied due to the

positivity of the mean squared error. If investors know the true model they act as mean-

variance optimizers since the covariance between the pay-off and the predictor is the variance

of the predictor Cov[y, ŷi] = V ar[ŷi] and the predictor is unbiased, E[y]−E[ŷi], so the mean

squared of the predictor equals the conditional variance of the pay-off given the predictor,

i.e.

E
[
(y − ŷi)2] = V ar[y]− V ar[ŷi] = V ar[y|ŷi].

Without the noisy estimation introduced in Section 2.1, my specification of demand is, as

was the case for uninformed inference in Section 3.1, simply a re-formulation of the baseline

model provided by Grossman and Stiglitz (1980), the classic mean-variance criterion for

utility optimization.
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B.4. Demand: CARA-utility with ambiguity aversion

For the informed investors I in Section 3.1, their linear demand function is the demand of

investors with CARA-utility and risk tolerance αI , who performs a maximization of utility of

final wealth w1I over demand δI given price p that is robust to miscalculated risk. Conditional

on the estimate β̂, the pay-off y is normally distributed, which extends to final wealth wI1.

Utility of final wealth is log-normal and expected utility is

E[UI ] = E
[
−e−α

−1
I w1I

∣∣β̂, s, p] = −e
−α−1

I E

[
w1I

∣∣β̂,s,p]+ 1
2
α−2
I V ar

[
w1I

∣∣β̂,s,p]
.

Maximizing the negative exponential is equivalent to minimizing its exponent, which again

can be turned into a maximization by swapping the sign on the objective. Starting wealth

can be normalized to zero without loss of generality, so final wealth is w1I = δI(y − p),

see Appendix B.1. As in the main text, the conditional expectation of the pay-off is the

predictor ŷI . Denote the conditional variance of the pay-off by σ2
ŷI ∈

[
σ2
ŷI , σ

2
ŷI

]
, where the

interval is the set of multiple priors of a maxmin expected utility model in the tradition of

Gilboa and Schmeidler (1989).

max
δI

min
σ2
ŷI

α−1
I δI(ŷI − p)− δ2

I

1

2
α−2
I σ2

ŷI , s.t. σ2
ŷI ∈

[
σ2
ŷI , σ

2
ŷI

]
.

The first order condition of the minimization is the expression −δ2
i α
−2
i /2, which is always

negative, meaning that the unconstrained solution would be positive infinity and the con-

strained solution is the upper bound. Substituting the upper bound into the objective,

differentiating, and solving for the optimal position in the risky asset yields a result with a

familiar form δ∗I = αIσ
−2
ŷI (ŷI − p). However, rather than being scaled by the inverse condi-

tional variance, the position is scaled by the inverse worst-outcome variance. The product of

ambiguity and ambiguity aversion, effective ambiguity, is pinned down by defining the upper

bound of the multiple priors set. Setting it equal to the unconditional mean squared error,

i.e. σ2
ŷI = E[(y − ŷI)2], yields the demand function in the main text.

The assumption that the uninformed predictor is the best linear approximation of the

the informed prediction ŷI can be tightened to the uninformed investors approximating

the distribution of ŷI by a normal distribution. This stronger assumption also makes ŷU

the projection presented in the main text. Additionally, following the steps outlined for

the informed investors, uninformed investors’ demand function in Section 3.1 corresponds to

CARA-utility with risk tolerance αU optimizing over profit δU(ŷI−p) robust to miscalculation
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of risk. Formally, expected utility is

E[UU ] = E

[
−e−α

−1
U δU (ŷI−p)

∣∣sU ,p] = −e
−α−1

U δUE

[
ŷI

∣∣sU ,p]+ 1
2
α−2
U V ar

[
ŷI

∣∣sU ,p]
.

With predictor ŷU = E
[
ŷI
∣∣sU , p] and conditional variance V ar

[
ŷI
∣∣sU , p] = σ2

ŷU ∈
[
σ2
ŷU , σ

2
ŷU

]
the robust optimization is

max
δU

min
σ2
ŷU

α−1
U δU(ŷU − p)− δ2

U

1

2
α−2
U σ2

ŷU , s.t. σ2
ŷU ∈

[
σ2
ŷU , σ

2
ŷU

]
.

Setting the upper limit equal to the unconditional mean squared error, i.e. σ2
ŷU = E[(y −

ŷU)2], yield the demand function in the main text.

B.5. Uninformed mean squared error

The mean squared error of the predictor of the uninformed

E[(y − ŷU)2] = V ar[y] + V ar[ŷU ]− 2Cov[y, ŷU ] + (E[y]− E[ŷU ])2

= V ar[y] + λ2
U

{
V ar[ŷI ] + ψ−2

I σ2
z

}
− 2λUCov[y, ŷI ]

+ [(β − {(1− λU)µβ + λUµβ})>µq]2

= V ar[y] + λU(V ar[ŷI ]− 2Cov[y, ŷI ]) + (ε>βµq)
2

= V ar[y] + λU(χ− β>Σζβ) + (ε>βµq)
2

= (1− λU)
{
V ar[y] + (ε>βµq)

2
}

+ λUE[(y − ŷI)2]

so a necessary and sufficient condition for higher lower squared error of informed vs unin-

formed is

E[(y − ŷU)2] > E[(y − ŷI)2] ⇐⇒
{
V ar[y] + (ε>βµq)

2
}
> E[(y − ŷI)2]

⇐⇒ χ < β>Σζβ + (ε>βµq)
2 = V ar[E[y|β, sI ]] + (ε>βµq)

2.

B.6. Variable share of informed investors

Market clearing `IδI(p) + (1− `I)δU(p) = z so

sU = p− ψ−1
I `−1

I (1− `I)δU(p) = ŷI − ψ−1
I `−1

I z
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and

p =
`IψI ŷI + (1− `I)ψU ŷU − z

`IψI + (1− `I)ψU
=
{`IψI + (1− `I)λUψU} sU + (1− `I)(1− λU)ψUE[y|c∗]

`IψI + (1− `I)ψU

= (1− λp)E[y|c∗] + λpsU s.t. λp =
`IψI + (1− `I)λUψU
`IψI + (1− `I)ψU

so the changes to equilibrium outcomes are captured by price responsiveness λp, uninformed

responsiveness λU , and uninformed signal sU .

Appendix C. Predictions

C.1. Short-term price reversals

Price and stochastic supply. Moments: variance

V ar[p, z]−1 =

(
V ar[p] −λpψ−1

I σ2
z

−λpψ−1
I σ2

z σ2
z

)−1

=
1

λ2
pV ar[ŷI ]σ

2
z

(
σ2
z λpψ

−1
I σ2

z

λpψ
−1
I σ2

z V ar[p]

)

and covariance

Cov
[
y − p,

(
p z

)]
=
(
Cov[y, p]− V ar[p] λpψ

−1
I σ2

z

)
Coefficient on price

(Cov[y, p]− V ar[p])σ2
z + λ2

pψ
−2
I σ4

z

λ2
pV ar[ŷI ]σ

2
z

(p− E[p]) =
Cov[y, p]− λ2

pV ar[ŷI ]− λ2
pψ
−2
I σ2

z + λ2
pψ
−2
I σ2

z

λ2
pV ar[ŷI ]

(p− E[p])

=

(
λpCov[y, ŷI ]

λ2
pV ar[ŷI ]

− 1

)
(p− E[p]) =

Cov[y, ŷI ]− λpV ar[ŷI ]
λpV ar[ŷI ]

(p− E[p]).

and on stochastic supply/negative liquidity demand

λpψ
−1
I σ2

z

λ2
pV ar[ŷI ]σ

2
z

{Cov[y, p]− V ar[p] + V ar[p]} z = − Cov[y, p]

λpV ar[ŷI ]
ψ−1
I (−z)

in baseline model Cov[y, ŷI ] = V ar[ŷI ], so Cov[y, ŷI ]− λpV ar[ŷI ] = (1− λp)V ar[ŷI ].
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C.1.1. Noisy factor loadings

Including noisy factor loadings. Let V ar[p, z] = Σpz and

Σpz|β̂ = Σpz −

(
λpµ

>
qD

2
σβ

0>

)
D−2

σβ

(
λpD

2
σβ
µq 0

)
= Σpz −

(
λpµ

>
qD

2
σβ
D−2

σβ

0>

)(
λpD

2
σβ
µq 0

)
= Σpz −

(
λ2
pµ
>
qD

2
σβ
µq 0

0 0

)

=

(
V ar[p]− λ2

pµ
>
qD

2
σβ
µq −λpψ−1

I σ2
z

−λpψ−1
I σ2

z σ2
z

)

so

|Σpz|β̂| = (V ar[p]− λ2
pµ
>
qD

2
σβ
µq)σ

2
z − λ2

pψ
−2
I σ4

z

= λ2
pV ar[ŷI ]σ

2
z + λ2

pψ
−2
I σ4

z − λ2
pµ
>
qD

2
σβ
µqσ

2
z − λ2

pψ
−2
I σ4

z

= λ2
p(V ar[ŷI ]− µ>qD2

σβ
µq)σ

2
z

and

Σ−1

pz|β̂ =
1

λ2
p(V ar[ŷI ]− µ>qD2

σβ
µq)σ

2
z

(
σ2
z λpψ

−1
I σ2

z

λpψ
−1
I σ2

z V ar[p]− λ2
pµ
>
qD

2
σβ
µq.

)

Notice that

−Σ−1

pz|β̂

(
λpµ

>
qD

2
σβ

0>

)
D−2

σβ
= −|Σpz|β̂|

−1

(
σ2
z λpψ

−1
I σ2

z

λpψ
−1
I σ2

z V ar[p]− λ2
pµ
>
qD

2
σβ
µq

)(
λpµ

>
qD

2
σβ

0>

)
D−2

σβ

= −|Σpz|β̂|
−1

(
σ2
z

λpψ
−1
I σ2

z

)
λpµ

>
q ,

and

−D−2
σβ

(
λpD

2
σβ
µq 0

)
Σ−1

pz|β̂ = −|Σpz|β̂|
−1D−2

σβ

(
λpD

2
σβ
µq 0

)( σ2
z λpψ

−1
I σ2

z

λpψ
−1
I σ2

z V ar[p]− λ2
pµ
>
qD

2
σβ
µq

)
= −|Σpz|β̂|

−1λpµq

(
σ2
z λpψ

−1
I σ2

z

)
,
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as well as

|Σpz|β̂|
−1
(
λpµq 0

)( σ2
z

λpψ
−1
I σ2

z

)
λpµ

>
q = |Σpz|β̂|

−1λ2
pµqµ

>
q σ

2
z .

Moments: variance

V ar
[
p, z, β̂

]−1

=

 Σpz

(
λpµ

>
qD

2
σβ

0>

)
(
λpD

2
σβ
µq 0

)
D2

σβ


−1

=

(
0I2×2 0I2×n

0In×2 D−2
σβ

)
+ |Σpz|β̂|

−1

 Σadj

pz|β̂ −λp

(
σ2
z

λpψ
−1
I σ2

z

)
µ>q

−λpµq
(
σ2
z λpψ

−1
I σ2

z

)
λ2
pµqµ

>
q σ

2
z


covariance

Cov
[
r,
(
p z β̂

)]
=
(
Cov

[
r,
(
p z

)]
−λpµ>qD2

σβ

)
=
(
λp(Cov[y, ŷI ]− λpV ar[sU ]) λpψ

−1
I σ2

z −λpµ>qD2
σβ

)
−

Coefficients

Cov
[
r,
(
p z β̂

)]
V ar

[
p, z, β̂

]−1

=
(
0> −µ>q

)
+ |Σpz|β̂|

−1

(
Cov

[
r,
(
p z

)]
Σadj

pz|β̂ + λ2
pµ
>
qD

2
σβ
µq

(
σ2
z λpψ

−1
I σ2

z

)
− λpCov

[
r,
(
p z

)]( σ2
z

λpψ
−1
I σ2

z

)
µ>q − λ2

pµ
>
qD

2
σβ
µqµ

>
q σ

2
z

)
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where

|Σpz|β̂|
−1
(
Cov

[
r,
(
p z

)]
Σadj

pz|β̂ + λ2
pµ
>
qD

2
σβ
µq

(
σ2
z λpψ

−1
I σ2

z

))(p− E[p]

z

)

= |Σpz|β̂|
−1

((
λp(Cov[y, ŷI ]− λpV ar[sU ]) λpψ

−1
I σ2

z

)( σ2
z λpψ

−1
I σ2

z

λpψ
−1
I σ2

z V ar[p]− λ2
pµ
>
qD

2
σβ
µq

)

+ λ2
pµ
>
qD

2
σβ
µq

(
σ2
z λpψ

−1
I σ2

z

))(p− E[p]

z

)

=
Cov[y, ŷI ]− λp(V ar[ŷI ] + ψ−1

I σ2
z) + λpψ

−1
I σ2

z + λpµ
>
qD

2
σβ
µq

λ2
p(V ar[ŷI ]− µ>qD2

σβ
µq)σ

2
z

λpσ
2
z(p− E[p])

+ λpψ
−1
I σ2

z

λpCov[y, ŷI ]− V ar[p] + V ar[p]− λ2
pµ
>
qD

2
σβ
µq + λ2

pµ
>
qD

2
σβ
µq

λ2
p(V ar[ŷI ]− µ>qD2

σβ
µq)σ

2
z

z

=
Cov[y, ŷI ]− λp(V ar[ŷI ]− µ>qD2

σβ
µq)

λp(V ar[ŷI ]− µ>qD2
σβ
µq)

(p− E[p])− Cov[y, ŷI ]

λp(V ar[ŷI ]− µ>qD2
σβ
µq)

(−ψ−1
I z)

and

−

{
1 + σ2

z

λpCov[y, ŷI ]− λ2
pV ar[sU ] + λ2

pψ
−2
I σ2

z + λ2
pµ
>
qD

2
σβ
µq

λ2
p(V ar[ŷI ]− µ>qD2

σβ
µq)σ

2
z

}
µ>q (β̂ − µβ)

= − Cov[y, ŷI ]

λp(V ar[ŷI ]− µ>qD2
σβ
µq)

µ>q (β̂ − µβ).

C.2. Trading volume

Realized trading volume v is given by

v =
1

2
{|δI |+ |δU |+ |z|}

=
1

2

{
ψI
∣∣(1− λp)(ŷI − E[ŷI ])− λpψ−1

I z
∣∣+ ψU(λp − λU)

∣∣(E[ŷI ]− ŷI − ψ−1
I z)

∣∣+ |z|
}

=
1

2

{
ψI
∣∣(1− λp)(ŷI − E[ŷI ])− λpψ−1

I z
∣∣+ ψI(1− λp)

∣∣−(ŷI − E[ŷI ])− ψ−1
I z
∣∣+ |z|

}
=
ψI
2

{ ∣∣(1− λp)(ŷI − E[ŷI ])− λpψ−1
I z
∣∣+ (1− λp)

∣∣(ŷI − E[ŷI ]) + ψ−1
I z
∣∣+ ψ−1

I |z|
}
,

which in the third line uses the equality

ψU(λp − λU) = ψU
ψI + λUψU − λU(ψI + ψU)

ψI + ψU
= ψI

(1− λU)ψU
ψI + ψU

= ψI(1− λp).
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C.3. Expected profit and ex-ante expected utility

C.3.1. Expected profit

Using that

ŷI − p = (1− λp)ŷI − (1− λp)µ>βµq − λpψ−1
I z = (1− λp)(ŷI − E[ŷI ])− λpψ−1

I z

=⇒ E[ŷI − p] = 0

=⇒ E[(ŷI − p)2] = V ar[ŷI − p] = (1− λp)2V ar[ŷI ] + λ2
pψ
−2
I σ2

z

key expectations are

E[(ŷI − p)y] = (1− λp)Cov[y, ŷI ] = (1− λp)β>Σζµβ

E[(ŷI − p)p] = Cov[ŷI , p]− V ar[p] = λpV ar[ŷI ]− λ2
p

{
V ar[ŷI ] + ψ−2

I σ2
z

}
= λp(1− λp)V ar[ŷI ]− λ2

pψ
−2
I σ2

z

and informed profit under the objective measure is

E[πI ] = ψIE [(ŷI − p)(y − p)] = ψI {E[(ŷI − p)y]− E[(ŷI − p)p]}

= ψI
{

(1− λp) (Cov[y, ŷI ]− λpV ar[ŷI ]) + λ2
pψ
−2
I σ2

z

}
.

Under the contemporary measure E[β|c∗] = µβ, covariance is the quadratic form Cov[y, ŷI |c∗] =

µ>β Σζµβ, profits are

E[πI |c∗] = ψI
{

(1− λp) (Cov[y, ŷI |c∗]− λpV ar[ŷI ]) + λ2
pψ
−2
I σ2

z

}
,

and out of sample surprise is

E[πI ]− E[πI |c∗] = ψI(1− λp)(Cov[y, ŷI ]− Cov[y, ŷI |c∗]).

Similar analysis for the uninformed profit yields

ŷU − p = (λp − λU)(E[ŷI ]− sU) =⇒ E[ŷU − p] = 0

=⇒ E[(ŷU − p)2] = (λp − λU)2V ar[sU ]

so

E[(ŷU − p)y] = −(λp − λU)Cov[y, ŷI ], E[(ŷU − p)p] = −(λp − λU)λpV ar[sU ]
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and expected profit under the objective measure is

E[πU ] = ψUE [(ŷU − p)(y − p)] = ψU {E[(ŷU − p)y]− E[(ŷU − p)p]}

= ψU
{

(λp − λU) (λpV ar[ŷI ]− Cov[y, ŷI ]) + (λp − λU)λpψ
−2
I σ2

z

}
.

Notice that

ψU(λp − λU) = ψU
ψI + λUψU − λU(ψI + ψU)

ψI + ψU
= ψI

(1− λU)ψU
ψI + ψU

= ψI(1− λp)

so out of sample surprise is

E[πU ]− E[πU |c∗] = ψI(1− λp)(Cov[y, ŷI |c∗]− Cov[y, ŷI ]).

C.3.2. Difference in profit under contemporaneous measure

Expected difference in profit under the contemporaneous measure is

E[πI |c∗]− E[πU |c∗] = ψI
{

(1− λp) (Cov[y, ŷI |c∗]− λpV ar[ŷI ]) + λ2
pψ
−2
I σ2

z

}
− ψI(1− λp)

{
(λpV ar[ŷI ]− Cov[y, ŷI |c∗]) + λpψ

−2
I σ2

z

}
= ψI

{
2(1− λp) (Cov[y, ŷI |c∗]− λpV ar[ŷI ]) + [2λp − 1]λpψ

−2
I σ2

z

}
A necessary condition for the differential to be positive is that the last term in the curly

bracket, [2λp − 1]λpψ
−2
I σ2

z , which require that informed investors trade more aggresively

ψI > ψU , since

2λp > 1 ⇐⇒ 2ψI + 2λUψU > ψI + ψU ⇐⇒ ψI + (2λU − 1)ψU > 0 ⇐= ψI > ψU .

For symmetric uncertainty aversion, this simplifies to the informed making better prediction

(see Proposition 3).

C.3.3. Ex-post performance

Ex-post performance surprises are symmetric and only exist with non-zero bias

E[πI ]− E[πI |c∗] = ψI(1− λp) {Cov[y, ŷ]− Cov[y, ŷ|c∗]} = ψI(1− λp) {εβΣζεβ − βΣζεβ} ,

and E[πU ]− E[πU |c∗] = −ψI(1− λp) {εβΣζεβ − βΣζεβ} .
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By algebraic manipulation

Cov[y, ŷ]− Cov[y, ŷ|c∗] = β>Σζµβ − µ>β Σζµβ = εβΣζεβ − βΣζεβ

and

ψU(λp − λU) = ψU
ψI + λUψU − λU(ψI + ψU)

ψI + ψU
= ψI

(1− λU)ψU
ψI + ψU

= ψI(1− λp).

Of the two components of the cost of complexity, ex-post performance surprises are entirely

driven by the bias, and while the sign of the first term in the curly bracket could be both

negative or positive, the quadratic form is always positive due to the positive definiteness of

Σζ , suggests that the term might be positive more often than not.

Ex-post performance surprises are a transfer between investors, and due to their symme-

try it leaves certain results from the baseline model unaltered regardless of its sign. Ex-post

performance surprises are a transfer between investors and nets out in total

E[πI ]− E[πI |c∗]− (E[πU ]− E[πU |c∗]) = 0.

It follows that for matters concerning the total profits of investors the distinction between

objective measure and contemporary measure is irrelevant. The corresponding result in the

baseline model arises trivially because V ar[E[y|β, sI ]] = Cov[y, E[y|β, sI ]] so there are no

ex-post surprises. Due to the common component in expected profit, total profit of investors

simplifies to

E[πI ] + E[πU ] = E[πI |c∗] + E[πU |c∗] = ψ−1
I σ2

z = αIE[(y − ŷI)2]σ2
z .

This result mirrors a result in the baseline model where it holds with the modification that the

mean squared error collapses to the conditional variance under the true model. Introducing

noisy estimation does not alter the intuition of the baseline model that total profits are

increasing in the quality of predictions made by informed investors.
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Appendix D. Value of data

D.1. Rational function formulation of cost of complexity

Let the adjacency matrix of any matrix A be indicated by superscript Aadj and the

determinant by |A|, and define

W := k−2
c Ωζ +DΩζ = k−2

c Ωζ0 +DΩζ0 + kS(k−2
c S +DS) := W 0 + kSW S

such that

1>X−11 = 1>
{
k2
cΩ
−1
ζ +D−1

Ωζ

}−1

1 = 1>DΩζ1− 1>DΩζ

{
k−2
c Ωζ +DΩζ

}−1
DΩζ1

= 1>DΩζ1− 1>DΩζW
−1DΩζ = DΩζ1− |W |−11>DΩζW

adjDΩζ1

= 1>DΩζ1

− |W |−1
{
1>DΩζ0W

adjDΩζ01 + k2
S1>DSW

adjDS1 + 2kS1>DΩζ0W
adjDS1

}
.

For a sum of matrices where one is scaled by a scalar k such as W , it can be shown, see

Appendix D.2, that the determinant is a polynomial in k of degree equal to the number of

rows (or columns) of the matrix, and that the sum over its adjugate matrix is a polynomial

in k of one degree less. Scaling the entries of the adjugate matrix before taking the sum, as

is done in the terms of the curly bracket above, does not change the degree of the resulting

polynomial. However, the multiplication of the second term by the square of kS, which

is the variable of the polynomial for W , yields a polynomial of a degree one higher than

the number of rows, which for W is equal to the number of factor nq. The curly bracket

divided by the determinant is therefore a rational function (ratio of polynomials) of kS. By

extension, the cost of complexity is a rational function of kS

χ(kS) = k2
σ0|W |−1

{
|W |1>DΩζ01 + kS|W |1>DS1− 1>DΩζ0W

adjDΩζ01

− k2
S1>DSW

adjDS1− 2kS1>DΩζ0W
adjDS1

}
= k2

σ0

∑nq+1
`=0 a`k

`
S∑nq

`=0 b`k
`
S

.

The degree of the polynomial in the numerator is exactly one higher than the degree of the

polynomial in the denominator and the rational function therefore has a an oblique asymp-

tote, which is linear in kS. The slope of the asymptote is the coefficient of the highest power

of the polynomial in the numerator divided by the coefficient of the highest power in the de-

nominator anq+1/bnq , or the limit of the derivative with respect to kS, i.e. lim
kS→∞

∂χ(kS)/∂kS.
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A special case is that of a diagonal S matrix, in which case the derivative simplifies to

lim
kS→∞

∂χ(kS)

∂kS
=

k2
σ0

1 + k2
c

1>DS1,

and in the even more special case where all true factor loadings are the same β = β̄1,

whether more data (stronger signal) is asymptotically valuable or value destroying is entirely

determined by the base-parameters kσ0, kc and β̄, specifically

lim
kS→∞

∂χ(kS)

∂kS
+
∂V ar[y|β, sI ]

∂kS
= 1>DS1

{
k2
σ0

1 + k2
c

− β̄2

}
.

D.2. Matrix inverses as rational functions

If a square matrix L = A+ kB is of dimensions two by two matrix, its determinant is a

polynomial in k of the form

|L2×2| = |A|+ k2|B|+ k(a11b22 + a22b11 − a12b21 − a21b12).

Let M ij be the (n− 1)× (n− 1) sub-matrix of the square n×n matrix L that deletes row i

and column j, i.e. its determinant |M ij| is the ij-minor of L. By a Laplace expansion over

row i, the determinant of L is given by |L| =
∑

j(−1)i+jlij|M ij|, where the entries of L are

of the form lij = aij + kbij. Therefore, if |M ij| is a polynomial in k, the product lij|M ij| is

a polynomial in k of one degree higher. Since |L2×2| is a polynomial of second degree, the

determinant of Ln×n is a polynomial of n’th degree. Meanwhile, the co-factor matrix of L

denoted C has entries cij = (−1)i+jlij|M ij| which are polynomials in k of degree n− 1. The

sum over the adjugate matrix 1>Ladj1 = 1>C>1 is, therefore, a polynomial of degree n− 1.
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