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Abstract

Stock valuation ratios contain expectations of returns, yet, their performance in predicting returns
has been rather dismal. This is because of an omitted variable problem: valuation ratios also contain
expectations of cash flow growth. Time-variation in cash flow volatility and a structural shift towards
repurchases have magnified this omitted variable problem. We show theoretically and empirically
that scaling prices by forward measures of cash flows can overcome this problem yielding optimal
return predictors. We construct a new measure of the forward price-to-earnings ratio for the S&P
index based on earnings forecasts using machine learning techniques. The out-of-sample explanatory
power for predicting one-year aggregate returns with our forward price-to-earnings ratio ranges from
7% to 11%, thereby beating all other predictors and helping to resolve the out-of-sample predictability
debate (Goyal and Welch, 2008).
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1 Introduction

Is it possible to predict stock market returns? This is one most of the important questions for finance

applications. Unfortunately, researchers have not come to a conclusive answer on this fundamental

question. For out-of-sample prediction – which is arguably the only relevant test for investors’ asset-

allocation decisions – the outlook is rather bleak. Goyal and Welch (2008) show that most predictors

proposed by prior studies fail to predict returns out-of-sample (for an update see Goyal, Welch, and

Zafirov (2021)). A number of studies have since developed tools to “resurrect” out-of-sample return

predictability, but still find rather small explanatory power (e.g. Campbell and Thompson, 2008, etc.).1

Yet, the fact that we struggle to predict returns out-of-sample is unsatisfactory given the widely-held

view that discount rates move around over time (Cochrane, 2011). And this fact is even more puzzling

considering that commonly-used price-ratios, such as the price-dividend (PD) or price-earnings (PE)

ratio, contain expectations of returns (Campbell and Shiller, 1988). Unless price-ratios perfectly forecast

cash flow growth, they must also forecast returns (Cochrane, 2008).

Our paper aims to make progress on this issue. To do so, we first theoretically outline the issues that

have resulted in the poor return-prediction performance of previously-used price ratios in the literature

and the optimal stock market price ratio that circumvents these issues and yields the highest possible

R-squared performance in predicting future long-run returns. Second, we then empirically test our

theoretical predictions and show they are borne out in data. Most saliently, when we construct a proxy

for the optimal stock market price ratio we find we can obtain an in-sample and out-of-sample R-squared

in predicting annual stock market returns of 12.7% and 10.8%, respectively, thereby beating – by a wide

margin – all other forecasting variables that have been put forth in the literature to date (Goyal and

Welch, 2008; Goyal, Welch, and Zafirov, 2021). These results imply that our method extracts a clean

measure of future expected returns from stock prices, similar to the measure of expected corporate

bond returns constructed by Gilchrist and Zakrajšek (2012). Our results have important relevance for

both academics and practitioners alike, for example for investors’ asset-allocation and firms’ investment

decisions.

We start by drawing on insights put forth in prior work (e.g., Campbell and Shiller, 1988; Lettau

and Ludvigson, 2005, etc.) that trailing price-ratios, i.e. ratios of prices to a trailing measure of cash

flows such as dividends or earnings, contain both expected returns and expected cash flow growth, and

1Some of these studies have focused on imposing model restrictions based on economic priors (Campbell and Thompson,
2008; Ferreira and Santa-Clara, 2011). Other studies have allowed for time-varying model parameters to take into account
regime shifts (Dangl and Halling, 2012). Another approach is combine individual forecast (Rapach, Strauss, and Zhou, 2010).
In contrast to these paper, we construct a price-ratio whose ability to predict return in- and out-of-sample is stable over time,
i.e., we completely eliminate concerns about model uncertainty and parameter instability.
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that not accounting for expected cash flow growth leads to an omitted variable problem. Building on

this work, we show that the in-sample explanatory power of trailing price-ratios for predicting future

returns is, in almost all cases, negatively related to two components of time-varying expected cash flow

growth. First, it is negatively related to the volatility of expected cash flow growth. Intuitively, if ex-

pectations of cash flow growth are very volatile, then these expectations drive most of the variation

in trailing price-ratios undermining their ability to predict returns. Second, it is negatively related to

structural changes in mean expected cash flow growth. Intuitively, these changes will result in shifts

in the mean of trailing price-ratios without necessarily any change in expected returns undermining

the in-sample regression’s ability to predict returns. In addition to these two considerations, a final re-

lated issue is the extent to which the trailing cash flow measure used to scale prices captures all payout

methods (Boudoukh, Michaely, Richardson, and Roberts, 2007). We show if there is a regime change in

the payout method (e.g., from dividends to repurchases) and the trailing cash flow measure (e.g., divi-

dends) does not capture the new payout method it will again lead to a structural shift in the price-ratio

and undermine the in-sample regressions ability to predict returns.

While this omitted variable problem impacts in-sample return predictions, it is even more important

for out-of-sample predictions. More formally, we show that the delta between the in-sample and out-

of-sample R-squared from using a price-ratio to forecast returns over a period that spans two distinct

regimes which have different population regression coefficients (i.e., different population intercepts and

slopes) increases in the wedge between the two intercept coefficients and the wedge between the two

slope coefficients. Accordingly, regime changes in cash-flow return volatility, expected cash flow growth

or payout methods (to the extent the trailing cash flow measure used does not include them) will cause

structural shifts in the intercept and slope coefficients which will drive a wedge between the (potentially

already) low in-sample R-squared and the even lower out-of-sample R-squared.

Armed with these theoretical insights, we proceed to delineate empirically why trailing price-ratios

struggle to predict returns. For the PE ratio, we show that its poor predictive performance is related to

the high and time-varying volatility of earnings. Especially over the last three decades, annual earnings

volatility was extremely high at 44% (Hillenbrand and McCarthy, 2022). We split the data into three

periods – namely, 1871-1944, 1945-1989 and 1990-2022 – where the first and last periods were high earn-

ings volatility regimes and where the intermittent period was a low earnings volatility regime. In line

with the theory, we show the in-sample R-squared of the PE ratio in predicting returns for the two high-

volatility periods is dismal, ranging between 1% and 4%, while we find the R-squared was much higher

(14%) for the low-volatility period. In addition, the out-of-sample R-squared is even lower and negative

over the entire sample period. For the PD ratio, we show that its poor predictive performance is related
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to a shift in firms’ payout policy (Boudoukh, Michaely, Richardson, and Roberts, 2007) undermining the

use of dividends as an accurate measure of total cash flows. In particular, firms started distributing cash

flows to shareholders via repurchases (instead of dividends) in the 1980s and markedly increase their

repurchases in the 1990s. This shift towards repurchases meant prices (which are based off total cash

flows) are being scaled by a comparatively smaller amount of dividends overtime causing an upward

shift in the PD ratio. It furthermore implies that, when we regress future returns on the PD ratio, the re-

gression intercept will invariably change over time. Consistent with this, we find that the out-of-sample

R-squared using the PD ratio begins to deteriorate around 1990 coinciding with structural shift in firms’

payout-method. By contrast, the predictive power of the PD ratio is much higher and stable when we

split the sample based on the different payout policy regimes.

Ultimately, trailing PD and the PE ratios fail to predict returns, because the former does not accu-

rately capture total cash flows over the forecasting sample while both do not adequately account for

expected future cash flow growth. Accordingly, we show that the optimal valuation ratio for predict-

ing expected returns is one which uses a measure of total cash flows (e.g., earnings) but then removes

expected cash flow growth and we call such a price-ratio the “Optimal price-ratio”. We show the Op-

timal price-ratio yields the highest R-squared in predicting long-run returns and is equal to the ratio

of the variance of expected returns to the variance of realized returns. We then delineate that, in an

economy in which cash flow growth shocks last for Tyrs (before reverting to a constant expected growth

process), removing expected cash flow growth over the next Tyrs will result in the Optimal price-ratio.

By corollary, in such an economy, removing T-1yrs, T-2yrs, ..., 1yrs of expected cash flow growth will

be progressively sub-optimal at accounting for expected cash flow growth, and therefore, forecasting

long-run returns. We then derive three additional theoretical results that guide our empirical analyses.

First, we show that the Optimal price-ratio is also optimal for one-period returns if expected returns

follow an autoregressive structure (e.g. Van Binsbergen and Koijen, 2010). Second, we show that it is op-

timal to use rational, full-information expectations of cash flows, instead of (potentially biased) market

expectations. Intuitively, the Optimal price-ratio will pick up on both market expected returns and any

cash flow news that arises from biased market expectations. Finally, we show that we can empirically

proxy for the Optimal price-ratio by scaling prices by optimal forecast of cash flows (“forward price-

ratios”). Intuitively, this is because forward price-ratios circumvent the aforementioned issues that not

accounting for expected cash flow growth give rise to.

To construct optimal forward price-ratios we need to construct optimal forecasts of aggregate future

cash flows. To do so, we build on a recent burgeoning literature using machine learning algorithms

to construct optimal forecasts of macroeconomic quantities (e.g., Van Binsbergen, Han, and Lopez-Lira,
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2020; De Silva and Thesmar, 2021; Bianchi, Ludvigson, and Ma, 2022, etc.). In particular, we use machine

learning algorithms to predict firm-level earnings growth and then aggregate these forecasts up to the

market-level. To construct optimal, out-of-sample firm-level forecasts two ingredients are key. First, we

need a large set of firm-level accounting information. To achieve this, we use firm-level annual report

data collected from the Morningstar Industrial Manuals (Graham, Leary, and Roberts, 2015; Graham

and Leary, 2018; Graham, Kim, and Leary, 2020), and thereafter use data from Compustat. This process

yields a large set of annual firm-level variables that spans the period from 1927 to 2020. Second, we need

to ensure that this information would be available to forecasters at the time of forecast. To achieve this,

we assume a six-month lag between the annual report date and its release date.

We then train our machine learning algorithm to predict firm-level earnings growth over 1-year,

2-year, 3-year and 5-year horizons, crucially allowing for the necessary gaps between training and fore-

casting to ensure there is no look-ahead bias. We aggregate these firm-level growth forecasts to the S&P

500 level and compound trailing S&P 500 earnings with the aggregate earnings growth forecasts. Finally,

we scale the S&P 500 index by these earnings forecasts, thereby yielding 1-year, 2-year, 3-year and 5-year

forward PE ratios. These forward PE ratios are constructed only using information that would be avail-

able to forecasters in real-time, so that investors could feasibly use them for real-time capital-allocation

decisions.

With these forward PE ratios in hand, we test their ability to predict returns out-of-sample. We

find that the out-of-sample (“OOS”) R-squared using the forward PE ratios ranges between 7.4% and

10.8%. This is substantially higher than price-ratios previously used in the literature, such as the PD

ratio, the PE ratio, and the CAPE ratio, for which the OOS R-squared ranges between -6.7% and -0.9%.

The predictive power is far better than any single predictor variable tested in the framework of Goyal

and Welch (2008) (see also Goyal, Welch, and Zafirov (2021) for an update of the initial analysis).

Lastly, we test whether our empirical results confirm additional theoretical predictions. First, we

find the OOS R-squared of the 5-year forward PE ratio is 10.8%, which is higher than the OOS R-squared

of the 3-year ratio (8.8%), which is higher than the OOS R-squared of the 2-year ratio (8.4%) and so

forth. This is exactly in line with theoretical predictions that price-ratios using longer-term cash flow

forecasts should be better predictors of returns as they are better in isolating expected returns. Second,

we compare the deltas between in-sample and OOS R-squared for different return predictors. Consistent

with our theory, we show that the deltas for the forward 1-year, 3-year and 5-year PE ratios are fairly

close to 0% over the sample period and converge toward 1.5%, 1% and 1.9%, respectively. This indicates

that forward PE ratios account for any structural shifts in the economy over the sample and so their

intercept and slope coefficients are stable. By contrast, the deltas for the PD and PE ratios are much
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larger at 9.9% and 5.5%, respectively, and diverge exactly when there is a structural shift in firms’ payout

method and firms’ earnings volatility, respectively, in line with the theory. For the CAPE the divergence

occurs early on and is constant throughout the sample suggesting that taking an average of past earnings

consistently yields unstable intercept and slope coefficients. Finally, we test whether the forward PE

ratio using objective machine learning forecasts can outperform the forward PE ratio using subjective

market forecasts. To proxy for the market’s expectations of future earnings, we use forecasts of equity

analysts. We find the forward PE ratio constructed with the machine learning forecasts outperforms the

one constructed using market forecasts by nearly 3%. This indicates market expectations of future cash

flows are not fully optimal – in line with prior work (e.g., Bordalo, Gennaioli, LaPorta, and Shleifer, 2022;

Bianchi, Ludvigson, and Ma, 2022, etc.) — and that the forward PE ratios are extracting both market

expected returns and the cash flow news that arises from biased market expectations.

The rest of this paper is organized as follows. Section 2 shows theoretically and empirically why tra-

ditional price-ratios have failed to predict returns. Section 3 delineates the theory behind why forward

price-ratios are the optimal valuation ratio for predicting returns. Section 4 discusses how we construct

forward price-ratios. Section 5 uses forward price-ratios to predict returns. Section 6 concludes.

2 Return prediction and the omitted variable problem

2.1 Some basic theory

Price and return decompositions. We start with some rather basic price and return decompositions

that are useful for deriving some of our theoretical results. The Campbell and Shiller (1988) identity

states that the PD ratio can be decomposed into (for readability we ignore constants in this paper, be-

cause they are irrelevant for the results)

pdt = ∆dt+1 − rt+1 + κpdt+1, (1)

where κ = exp(pd)
1+exp(pd)

. Iterating forward on pdt+1 we get (under the assumption that the no-bubble

condition holds)

pdt = ∑ ∆dt+1 − ∑ rt+1, (2)

where we use the short-hand notation ∑ ∆dt+1 = ∑∞
j=0 κ j∆dt+1+j and ∑ rt+1 = ∑∞

j=0 κ jrt+1+j. Taking

expectations yields

pdt = ∑ Et∆dt+1 − ∑ Etrt+1 (3)
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where we have defined similarly ∑ Et∆dt+1 = ∑∞
j=0 κ jEt

[
∆dt+1+j

]
and ∑ Etrt+1 = ∑∞

j=0 κ jEt
[
rt+1+j

]
.

Note that equation (3) must hold for any investor who understands the present-value identity.

We can also use the Campbell-Shiller equation to decompose realized returns into expected returns,

cash flow news and discount rate news (Campbell, 1991):

rt+1 = Etrt+1 + ηCF,t+1 − ηDR,t+1 (4)

where ηCF,t+1 = (Et+1 − Et)∑∞
j=0 κ j∆dt+1+j and ηDR,t+1 = (Et+1 − Et)∑∞

j=1 κ j∆rt+1+j. Summing over

all future periods yields

∑ rt+1 = ∑ Etrt+1 + ∑ ηCF,t+1 − ∑ ηDR,t+1 (5)

where ∑ ηCF,t+1 = ∑∞
j=0 κ jηCF,t+1 and ∑ ηDR,t+1 = ∑∞

j=0 κ jηDR,t+1.

The summation term for cash flows is given by

∑ ηCF,t+1 =
∞

∑
j=0

κ j (Et+1+j − Et+j
) [ ∞

∑
i=0

κi∆dt+1+j+i

]
=

∞

∑
j=0

kj(∆dt+1+j − Et
[
∆dt+1+j

]
) (6)

and similarly for the summation of discount rate news

∑ ηDR,t+1 =
∞

∑
j=0

κ j (Et+1+j − Et+j
) [ ∞

∑
i=1

κirt+1+j+i

]
=

∞

∑
j=1

kj(Et+j
[
rt+1+j

]
− Et

[
rt+1+j

]
). (7)

We will use these price and return decompositions throughout the paper.

Return prediction. Return prediction using linear regressions is a simple problem. One regresses fu-

ture returns, i.e. return that occur beyond time t, on a single predictor variable that is formed as of time

t. For analytical tractability, we mostly focus on long-horizon returns ∑ rt+1. This could approximate

the perspective of investors who have a very long holding period. Let us predict long-horizon returns

with predictor variable xt, then the long-horizon return regression is given by

− ∑ rt+1 = ax + bxxt + ϵt (8)

The (population) regression coefficient bx is then determined by

bx =
Cov(−∑ rt+1, xt)

σ2(xt)
=

Cov(−∑ Etrt+1, xt)

σ2(xt)
, (9)
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where we use the fact that (i) we can use equation (5) to decompose the realized returns and (ii) future

cash flows news and future discount rate news are unpredictable as of time t if the expectations E are

formed rationally. Formally, this means Cov(−∑ ηCF,t+1, xt) = Cov(−∑ ηDR,t+1, xt) = 0

The R-squared – our main object of interest in this paper – is the squared correlation coefficient (see

the appendix for the derivation as well derivations of the following results)

R2
x = Corr(−∑ rt+1, xt)

2 =
Cov(−∑ rt+1, xt)2

σ2(−∑ rt+1)σ2(xt)
=

Cov(−∑ Etrt+1, xt)2

σ2(−∑ rt+1)σ2(xt)
. (10)

Because only expected returns are predictable, the maximum R-squared can be obtained by a regressor

that is perfectly correlated with expected returns, i.e. x̃t = γ ∑ Etrt+1. Such a regressor would yield the

maximum R-squared of

R2
max =

Cov(−∑ Etrt+1, γ ∑ Etrt+1)
2

σ2(−∑ rt+1)σ2(γ ∑ Etrt+1)
=

σ2(∑ Etrt+1)

σ2(∑ rt+1)
. (11)

2.2 The omitted variable problem

Price ratios that scale prices by a measure of past cash flows, such as the PD or PE ratio, can be such a

predictor variable xt. From the Campbell-Shiller decomposition given by equation (3), we can immedi-

ately see why the PD ratio is theoretically appealing for forecasting returns: it contains expected returns.

Re-arranging the equation yields

− ∑ Etrt+1 = pdt − ∑ Et∆dt+1 (12)

We can see why there is an omitted variable problem when forecasting returns with the PD ratio: Ex-

pected cash flow growth show up on the right-hand side of this equation. Or in other words, the price-

dividend ratio not only contains expected returns, but also expected dividend growth. That intuition

is well known (Lettau and Ludvigson, 2005; Cochrane, 2008). While the PD ratio must forecast returns,

the fact that we are not controlling for cash flow growth weakens the predictive power of the PD ratio.

One potential way to overcome this issue is to estimate a joint system of expected returns and cash flow

growth (Van Binsbergen and Koijen, 2010, e.g.).

Let us examine of what happens if we simply run a regression of returns on the PD ratio as does most

prior studies (Goyal and Welch, 2008, e.g.,), i.e., we use pdt as predictor in equation (8). The (population)
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slope coefficient is given by (see appendix for the derivation)

bpd =
1 − ρr,∆d

σ(∑ Et∆dt+1)
σ(∑ Etrt+1)

1 + σ2(∑ Et∆dt+1)
σ2(∑ Etrt+1)

− 2ρr,∆d
σ(∑ Et∆dt+1)
σ(∑ Etrt+1)

(13)

where ρr,∆d is the correlation between ∑ Et∆dt+1 and ∑ Etrt+1. Thus, the slope coefficient depends

crucially on two factors. First, it depends on the correlation between expected returns and expected

dividend growth. Second, it depends on the ratio of the volatility of expected cash flow growth relative

to the volatility of expected returns. Thus, if these two parameters change over time – and we show

empirical evidence below which suggests that this is likely the case –, then this leads to a change in

the slope coefficient. Of course, this will make out-of-sample prediction hard, as it relies on parameter

estimates that are estimated in prior data samples. We can see that expected cash flow growth would be

constant, then would obtain a slope coefficient of one.

There is also an economic interpretation of the slope coefficient bpd. We know from the Campbell-

Shiller identity that all movements in the PD ratio must either come from movements in expectation of

cash flows or movements. We can start with equation (3), take the covariance of both sides with pdt and

divide by the variance of pdt. It follows that bpd measures the variation of the PD ratio that is driven

by cash flow expectations. Vice versa, 1 − bpd then gives the variation of the PD ratio that is driven by

return expectations.

Returning to our regression, the intercept is given by (using equation (3))

apd = (1 + bpd)∑ Etrt+1 − bpd ∑ Et∆dt+1. (14)

Because this depends on the slope coefficient, bpd, the intercept also depends on the correlation between

expectations of cash flows and expectations of returns as well as the volatility ratio of these two expec-

tations. In addition, it also depends on the level of expected cash flow growth ∑ E∆d. Thus, if there

are changes in the expectation about long-run cash flow growth over time, then the regression intercept

is going to change. This is particularly important (and problematic) in light of structural shift towards

repurchases which we will highlight in more detail below.

The (in-sample) R-squared is given by

R2
pd =

σ2(∑ Etrt+1)

σ2 (∑ rt+1)
·

[
1 + ρ2

r,∆d
σ2(∑ Et∆dt+1)
σ2(∑ Etrt+1)

− 2ρr,∆d
σ(∑ Et∆dt+1)
σ(∑ Etrt+1)

]
[
1 + σ2(∑ Et∆dt+1)

σ2(∑ Etrt+1)
− 2ρr,∆d

σ(∑ Et∆dt+1)
σ(∑ Etrt+1)

] (15)
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Thus, the in-sample predictive power depends also correlation between expectations of cash flows and

expectations of returns ρr,∆d as well as the volatility ratio of these two expectations. While the in-sample

R-squared is not affected by any changes in long-run expected cash flow growth, the out-of-sample

R-squared will also be.

Figure 1: The omitted variable problem
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Note: This figure shows the regression coefficient and in-sample R-squared when predicting long-run returns ∑ rt+1 with the
PD ratio pdt for (i) varying correlations between expectations of cash flows and expectation of returns ρr,∆d and (ii) varying
volatility ratios σ(∑ Et∆d)/σ(∑ Etr).

Figure 1 shows the slope coefficient and the in-sample R-squared for different values of the correla-

tion ρr,d and the volatility ratio σ(∑ Et∆d)
σ(∑ Etr)

. We can see that the R-squared drops sharply when the volatility

ratio rises from 0 to about 1. Intuitively, this means that more of the variation in the PD ratio is driven by

expectation of cash flows growth and therefore the PD ratio will be a noiser measure of expected returns

and the R-squared goes down.

Out-of-sample prediction. The problem that investors face is an out-of-sample problem. They want

to forecast returns with the data that is available up to period t. In out-of-sample regression, we are

therefore forecasting returns with regression coefficients that have been estimated in prior data.

Let’s imagine that these estimated coefficients are ã and b̃. Then, we run the regression in the un-

seen data using these estimates. To fix the idea, let us say the optimal coefficient, i.e. the in-sample

coefficients, for this new sample are a and b. By definition, the coefficient a and b are the coefficient that

maximize the R-squared (as they minimize the squared errors). Thus, using the previously estimated

coefficients ã and b̃ will inherently decrease the predictive power of the PD ratio.

To see how much the prediction gets worse, we can compare the out-of-sample R-squared, i.e. the

R-squared from a prediction using ã and b̃, with the in-sample R-squared, i.e. the R-squared from a
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prediction using a and b. Let us define ∆a = ã − a and ∆b = b̃ − b, then we can show that

R2
pd − R2

OOS,pd

R2
pd

=
(∆a)2 + (2∆a + ∆b)∆b · E [pdt] + (∆b)2 · σ2(pdt)

b2σ2(pdt)
. (16)

What do we learn from this exercise? The equation says that the R-squared difference increases in

the difference of the estimated coefficient and the optimal in-sample coefficients. Thus, if the underlying

economy changes a lot over time, then the out-of-sample predictive power goes down. There is one ad-

ditional message compared to the in-sample R-squared. While the in-sample R-squared is not affected

by ∑ Et∆dt+1, the out-of-sample R-squared is (through the changes in the intercept ∆a).

We derive three main insights from this theoretical analysis. First, price ratios, such as the PD ratio,

are natural predictors for returns given that they contain expectations of returns. Second, while are

natural predictors, they entail an omitted variable problem: they also contain expectations of cash flows.

Depending on the characteristics of cash flow and return expectations, this decreases the in-sample

predictive power for returns. Third, time-variation in these characteristics amplifies this problem when

we try to predict returns out-of-sample.

2.3 Why trailing price ratios fail to predict returns

In this section we try to use these insights to understand why commonly-used price ratio, such as the

PD and the PE ratio, struggle to predict returns (out-of-sample). Because these price ratios scale prices

by measures of trailing cash flows, we call them “trailing price ratios”. Figure 2 repeats the exercise

of Goyal and Welch (2008) and shows the poor performance of trailing price ratios. It shows that the

R-squared for the PD and PE ratio is close to zero and slightly negative. Why do these price ratios have

such a hard time forecasting returns despite their apparent appeal?

The shift towards repurchases and the PD ratio. Firm earnings can either be paid out to shareholders

(in the form of dividends or share repurchases) or can be retained to invest into the firm to generate

future payouts to shareholders. Since 1980 there is a strong trend towards firms paying out their earn-

ings in the form of repurchases and not in the form of dividends. Boudoukh, Michaely, Richardson, and

Roberts (2007) documents this trend until 2003, but Figure 3 shows that this trend has only strengthened

in the recent two decades. Especially, since the 2000s, firms pay out only half of their entire payouts in

the form of dividends (panel A). If firms still pay out the same total amount as they did in the past, then

this shift towards repurchases implies that dividends have grown slower over the past decades. This

means that scaling prices by “raw” dividends leads to an extreme increase in the price-dividend ratio
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Figure 2: Empiricial performance of trailing price ratios

(A) Price-to-Dividend Ratio
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(B) Price-to-Earnings Ratio
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Note: The figure shows the predictive power when predicting one-year log returns with the log PD ratio in Panel (A) and
the log PE ratio in Panel (B) for the S&P 500 index. One-year returns, the S&P 500 index, earnings and dividends prior 1926
are from Robert Shiller’s website. Dividends after 1926 are from CRSP. For the out-of-sample exercise, we require 20 years of
data to fit the regression and we plot the R-squared after predicting 20 years of returns out-of-sample. We use an expanding
window to fit the regression.

(panel B). If instead we scale prices by total payouts, then we see that the price ratio looks more stable.

Figure 3: Repurchases and price ratios

(A) Dividends and Repurchases
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Note: This figure shows the trend towards repurchases. Panel A shows dividends and repurchases at the S&P 500 level (on a
per share basis). The black line shows the fraction of total payouts (dividends plus repurchases) that are paid out as dividends.
Panel B shows price ratios scaling the price by trailing dividends and total payouts.

How does the shift towards repurchases impact return prediction? Let us assume that the firm

payouts a fraction αt of the total payouts Ot as dividends Dt and fraction 1 − αt as repurchases. Scaling
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log prices by log dividends now yields

pdt = log
(

Pt

Dt

)
= log

(
Pt

αtOt

)
= pot − log(αt). (17)

Similarly we can decompose the PD ratio into

pdt = ∑ Et [∆αt+1] + ∑ Et [∆ot+1]− ∑ Et [rt+1] , (18)

where ∑ ∆αt+1 = ∑∞
j=0 κ j∆αt+1+j and ∑ ∆ot+1 = ∑∞

j=0 κ j∆ot+1+j. Thus, a shift towards repurchases

would show up in ∆α. Thus, even if ∑ ∆ot+1 was stable over time, the shift towards repurchases would

cause an omitted variable problem when predicting returns. This undermines the predictive power of

the PD ratio over long samples and when trying to predict returns out-of-sample. By contrast, focusing

on in-sample prediction for shorter samples produces better results (Dybvig and Zhang, 2018).

Earnings volatility and the PE ratio. Dividends are not a good measure of firm payouts, i.e. cash

flows to shareholders, since there has been a shift to repurchases. Alternatively, we can scale prices by

earnings to get the PE ratio.

Let’s start with earnings and define the log payout ratio δt = dt − et. Using this, we can rewrite the

Campbell-Shiller identity

pet = ∆et+1 − rt+1 + (1 − κ)δt+1 + κpet+1 (19)

Iterating forward on pet+1 we obtain

pet = (1 − κ)∑ δt+1 + ∑ ∆et+1 − ∑ rt+1 (20)

which we can alternatively re-write as

pet = δt + ∑ ∆δt+1 + ∑ ∆et+1 − ∑ rt+1. (21)

Thus, under this alternative definition the PE ratio is a function of expected earnings growth, expected

changes in the payout ratio and expected returns.

Unfortunately, using the PE ratio does not solve the return predictability problem either. The rea-

son is that the volatility of earnings has shifted dramatically over the last decades. Especially, under

the most commonly used accounting standard, i.e. generally accepted accounting principles (GAAP),

earnings have become massively volatile over the last three decades (Hillenbrand and McCarthy, 2022).
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Figure 4: The volatility of earnings and payouts
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Note: This figure shows the time-variation in earnings and payout volatility. Earnings and dividends prior to 1926 are from
Robert Shiller’s website. Dividends since 1926 and total payouts (the sum of dividends and repurchases) are from CRSP.

Figure 4 documents the secular trends in earnings volatility over the last 150 years. It shows that there

are approximately three regimes: a regime with high earnings volatility up until 1945, followed by a

regime of subdued earnings volatility, followed again by a regime of high volatility. Based on the theory

outlined above, we know that a high earnings volatility entails a large omitted variable problem for any

return prediction. The theory predicts that the in-sample predictive power would be particularly low

for the periods with high earnings volatility. The table documents that this prediction is exactly borne

out in the data. The in-sample R-squared is below 4% for the periods 1987 – 1944 and 1990 – 2022, but is

much higher (15%) in the period 1945 – 1989. Additionally, the table reports that the fraction of the PE

ratio movements that can be explained by one-year earnings growth is 41% in the sample from 1871 to

1944 and 56% in the sample from 1990 to 2022. This numbers rise to 49% and 87%, respectively, when

looking at two-year earnings growth. Thus, much of the variation in the PE ratio does not come from

expected returns explaining the dismal in-sample R-squared.

Did the earnings volatility trickle down to volatility in payouts to shareholders? Table 1 shows that

the volatility regimes also holds when we look at total payouts (dividends plus repurchases) as well

as for dividends. Unsurprisingly, we then the find same pattern for the in-sample R-squared that we

documented for earnings. Similarly, the fraction of price ratio that is explained by cash flow growth

varies substantially over the subsamples. Our facts presented here are consistent with Chen (2009) who

shows that dividend growth predictability varies significantly over time.

This section was mostly concerned with illustrating the omitted variable problem theoretically and
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Table 1: The volatility of earnings and payouts

1871-1944 1945-1989 1990-2022

Earnings
Mean of log earnings growth 1.2% 7.2% 6.7%
Volatility of log earnings growth 0.29 0.14 0.44
In-sample R-squared when predicting 1-year returns 0.01 0.15 0.04
Fraction price-to-earnings ratio explained by 1-year earnings growth 0.41 0.08 0.56
Fraction price-to-earnings ratio explained by 2-year earnings growth 0.49 0.09 0.87

Payouts (=Dividends + Repurchases)
Mean of log payout growth 0.8% 7.1% 6.4%
Volatility of log payout growth 0.19 0.11 0.20
In-sample R-squared when predicting 1-year returns 0.00 0.25 0.03
Fraction price-to-payout ratio explained by 1-year payout growth 0.52 -0.00 0.33
Fraction price-to-payout ratio explained by 2-year payout growth 0.64 -0.09 0.39

Dividends
Mean of log dividend growth 1.2% 6.5% 5.1%
Volatility of log dividend growth 0.17 0.07 0.09
In-sample R-squared when predicting 1-year returns 0.02 0.25 0.14
Fraction price-to-dividend ratio explained by 1-year dividend growth 0.47 -0.05 0.06
Fraction price-to-dividend ratio explained by 2-year dividend growth 0.62 -0.11 0.02

Note: This table shows the time-variation in earnings, dividend and payout volatility and its implication for return predictabil-
ity. For each cash flow measure, the third row reports the in-sample R-squared when predicting one-year log returns using
the respective price ratio, i.e., the PE ratio for earnings. We also report the fraction of the price ratio that can be explained by
one-year and two-year realized cash flow growth, i.e., for the PE ratio and one-year earnings growth, we report the regression
coefficient Cov(∆et+1, pet)/Var(∆pet). One-year returns, the S&P 500 index, earnings and dividends prior to 1926 are from
Robert Shiller’s website. Dividends since 1926 and total payouts (the sum of dividends and repurchases) are from CRSP.
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documenting why it has a serious impact on the ability of trailing price ratios, such as the PD or the

PE ratio, to predict returns. The next section tries to make progress by solving or at least mitigating the

omitted variable problem.

3 Theory: The optimal valuation ratio

In this section we derive theoretical results that help us to come up with the optimal valuation ratio

for predicting returns. We show that the optimal predictor for long-run returns is the long-run forward

price ratio which takes into account all future expected cash flows. Intuitively, this means that once we

take into future cash flows, the only variation in the price ratio that is left comes from expected returns.

Putting it differently, this implies that the long-run forward price ratio achieves the maximum attainable

R-squared for out-of-sample return prediction. We then derive a number of additional theoretical results

that guide the empirical analysis that follows.

3.1 The optimal return predictor: long-run forward price ratios.

In this section, we will show formally that using forward price ratios, i.e. ratios that scale prices by

forward-looking fundamentals are the best long-run return predictors.

Realized cash flow growth. To gain some intuition, let us start by subtracting the entire stream of fu-

ture realized cash flow growth, ∑ ∆dt, from the pdt ratio, to construct the predictor pdt − ∑ ∆dt. Equation

(2) implies

pdt − ∑ ∆dt+1 = −∑ rt+1. (22)

Thus, by subtracting the cash flow growth, all that we are left are future returns. Using the left-hand

size as predictor variable xt in the return prediction regression (xx) leads to regression statistics given

by

bpdt−∑ ∆dt+1 =
Cov(−∑ rt+1, pdt − ∑ ∆dt+1)

σ2(pdt − ∑ ∆dt)
=

Cov(−∑ rt+1,−∑ rt+1)

σ2(−∑ rt+1)
= 1 (23)

R2
pdt−∑ ∆dt+1

= Corr2(−∑ rt+1, pdt − ∑ ∆dt+1) =
Cov2(−∑ rt+1,−∑ rt+1)

σ2(−∑ rt+1)σ2(−∑ rt+1)
= 1. (24)

Thus, perhaps unsurprisingly to the reader, we obtain the maximum R-squared of 1 when we run this

regression.2 Of course, one would not even need to estimate a regression to get this results as equation

(22) directly reveals this result. Putting it differently, we do not need to estimate the relationship between

future realized returns and our predictor as the relationship is already known.

Of course, the issue with this predictor is that an investors (or an any econometrician) would not

2This must hold in the data except for any approximation errors in the Campbell-Shiller approximation.
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have access to this information, as realized cash flow growth after time t becomes only observable after

time t. Running this regression is therefore a purely hypothetical exercise.

Expected cash flow growth. Instead of substracting the realized cash flows, we now want to subtract

the entire stream of future expected cash flow growth ∑ Et∆dt+1. Let’s define the long-run forward price

ratio pd∞
t as

pd∞
t = pdt − ∑ Et∆dt+1. (25)

Equation (3) implies

pd∞
t = −∑ Etrt+1. (26)

Intuitively, this equation says that all variation in pd∞
t comes from expected returns. The results that

now follow rest on this intuition.

Let us re-run the predictive regression with the long-run forward price ratio, i.e. use pd∞
t as the

predictor variable xt. The slope coefficient is given by

bpd∞ =
Cov(−∑ rt+1, pd∞

t )

σ2 (pd∞
t )

=
Cov(−∑ Etrt+1, pd∞

t )

σ2 (pd∞
t )

=
Cov(−∑ Etrt+1,−∑ Etrt+1)

σ2 (−∑ Etrt+1)
= 1 (27)

and the R-squared for this regression is given by

R2
pd∞ =

σ2(∑ Etrt+1)

σ2 (∑ rt+1)
, (28)

where we use the fact that Cov(−∑ ηCF,t+1, pd∞
t ) = Cov(−∑ ηDR,t+1, pd∞

t ) = 0 which holds if the ex-

pectations are formed rationally. Intuitively, forecast errors for cash flows and discount rates are not

predictable as of time t. The following proposition states that the long-run forward price ratio is the

optimal valuation ratio for forecasting returns.

Proposition 1. The maximum attainable R-squared when forecasting long-run horizon returns is given by R2 =

σ2(∑ Etrt+1)/σ2 (∑ rt+1). The long-run forward price ratio is therefore the best predictor for returns, i.e. it is

the predictor that maximizes the R-squared when forecasting long-horizon returns.

The proposition follows immediately from equation (26), but we also provide a formal proof in the

appendix. This simple result is the key result in our study. The theoretical analysis that follows provides

more guidance for the empirical analyses that follow later.
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3.2 Rational vs. market expectations

Investment professionals’ expectations (“market expectations”) of future earnings are now readily avail-

able, for example in the widely-used Thomson Reuters I/B/E/S data. However, research suggest that

these expectations biased and more importantly, that the bias could vary over time De Silva and Thes-

mar (2021); Bordalo, Gennaioli, LaPorta, and Shleifer (2022).

Is it better to use market or rational expectations when predicting returns? When the two are the

same, i.e. market expectations are rational, then this question is meaningless. However, when the

market deviates from rational expectations, then it is important to understand which is a better measure

to scale prices.

To make progress on this question, let us denote the market expectation by EM and define the market

forward PD ratio as pdM,∞
t = pdt − ∑ Et∆dt+1. If the market expectations satisfy the Campbell-Shiller

identity (3), then we can write

pdM,∞
t = ∑ EM

t rt+1

Proposition 2. When the market expectation deviate from rational expectation, the forward price ratio constructed

using rational forecasts outperforms the market forward price ratio. That is, it has a higher R-squared when

predicting returns.

This can be seen immediately from proposition 1. We give a formal proof that illustrates the intuition

of why this is the case.

Proof. Because we have assumed that the Campbell-Shiller identity also holds for the market expecta-

tion, we can use equation (3) to write

∑ Et∆dt+1 − ∑ Etrt+1 = pdt = ∑ EM
t ∆dt+1 − ∑ EM

t rt+1

Re-arranging this equation we get

∑ Etrt+1 = ∑ EM
t rt+1 +

(
∑
[
Et − EM

t

]
∆dt+1

)
(29)

Intuitively, the rational expectations of returns consist of two parts: (1) the market expectations of returns

plus (2) the forecast bias of the market expectations. Following on this, using rational expectations of

cash flows we can extract both terms, while using market expectations we can only extract the first

component. To show this formally we need that predicting returns with pdM,∞
t produces an R-squared
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lower than σ2(∑ Etrt+1)σ
2/ (∑ rt+1), i.e. the R-squared when predicting returns with pd∞

t :

R2
pdM,∞ =

Cov2(−∑ rt+1, pdM,∞
t )

σ2 (∑ rt+1) σ2
(

pdM,∞
t

) =
Cov2(∑ Etrt+1, ∑ EM

t rt+1)

σ2 (∑ rt+1) σ2
(
∑ EM

t rt+1
)

= Corr2(∑ Etrt+1, ∑ EM
t rt+1)

σ2(∑ Etrt+1)

σ2 (∑ rt+1)
<

σ2(∑ Etrt+1)

σ2 (∑ rt+1)

(30)

where the second equality uses Cov(−∑ ηCF,t+1, pdM,∞
t ) = Cov(−∑ ηDR,t+1, pdM,∞

t ) = 0.

3.3 Short-horizon vs. long-horizon returns

So far, we have only considered long-horizon returns (where we sum all returns until infinity). However,

in practice investment managers have a finite holding period or investment horizon, and would be

therefore interested in forecasting a finite sum of returns. In addition, many prior studies has considered

short-term returns, e.g. one-year returns. How well does the long-run forward price ratio when we

predict one-year returns?

Let us decompose the term structure of expected returns into two components, a short-run (one-

year) component and a long-run components R1 = Etrt+1 and R2 = ∑∞
j=1 κ jEt

[
rt+1+j

]
, which means

R1 + R2 = ∑ Etrt+1 (31)

Let’s imagine we run the one-year return prediction (where the tilde denotes statistics for the one-year

return prediction)

rt+1 = β̃0 + β̃pd∞ pd∞
t + ε̃t (32)

Then we can derive the R-squared to be (see the appendix for the derivation)

R̃2
pd∞ =

σ2 (R1)

σ2 (rt+1)
·

1 + 2 · ρR1R2 ·
σ(R2)
σ(R1)

+ ρ2
R1R2

· σ2(R2)
σ2(R1)

1 + 2 · ρR1R2
σ(R2)
σ(R1)

+ σ2(R2)
σ2(R1)

(33)

where ρR1R2 is the correlation between R1 and R2. If we assume that this correlation equals one, then

second term would equal one implying that the R-squared we obtain is σ2(R1)
σ2(rt+1)

.

Proposition 3. If short-term expected returns (1year returns) and long-horizon expected returns (everything

beyond 1-year) are perfectly correlated, then the long-run forward price ratio pd∞
t is the optimal predictor.

We can use the same logic as in proposition 1 to conclude that the maximum R-squared when fore-

casting one-year returns is R1. In other words, any predictor that is perfectly correlated with one-year
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expected returns yields the maximum attainable predictive power. The fact that the short-run and the

long-run component are perfectly correlated is an assumption that is very common in the literature. In

particular, it is very common in the literature to assume that expected returns following autoregressive

processes (Pástor and Stambaugh, 2009; Van Binsbergen and Koijen, 2010, e.g.,).

What if expectations of short-run and long-run expectation are not perfectly related? For example,

Cochrane (2011) argues that adding a high-frequency variables such as the cay factor (Lettau and Lud-

vigson, 2001a,b, 2005) to the predictive regression can increase the in-sample explanatory power. We

can get some simple intuition from the rather extreme case where R1 and R2 are uncorrelated. In this

case, the R-squared is given by

R2
pd∞ =

σ2 (R1)

σ2 (rt+1)
· σ2 (R1)

σ2 (R1) + σ2 (R2)
.

We can see this R-squared gets closer to the optimal R-squared if more of the variation in prices comes

from short-term expected returns rather than long-term expected returns. And vice versa, the more of

the variation comes from expectations of long-term returns, the less strong is the predictive power of

pd∞ for one-period returns.

3.4 Short-run vs. long-run forward price ratios

Obtaining or making forecasts for the entire term structure of expected cash flows is infeasible. In our

empirical analysis that follows, we obviously use finite long-run forecast to construct the forward price

ratio. When is this ratio still the optimal predictor?

For illustration, we focus on the one-year forward PD ratio. Subtracting Et [∆dt+1] from both sides

of the Campbell-Shiller equation (3) yields the 1-year forward PD ratio pd1
t :

pd1
t = pt − Et [dt+1] =

∞

∑
j=2

κ j−1Et
[
∆dt+j

]
− ∑ Et [rt+1] . (34)

We can re-arrange this to get

∑ Et [rt+1] = pd1
t −

∞

∑
j=2

κ j−1Et
[
∆dt+j

]
(35)

Thus, the one-year forward price ratio is a worse predictor than the long-run forward price ratio as

it eliminates less of the omitted variable problem. Putting it differently, it is a less clean measure of

expected returns because it also contains expectations of cash flow growth.

When is the one-year forward price ratio the optimal predictor? Imagine that the cash flow expec-
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tations beyond the next period, i.e., beyond t + 1, are equal to a constant g, i.e. Et
[
∆dt+j

]
= g ∀j ≥ 2.

Putting it differently, dividend growth beyond the next year is unpredictable. Formally, this means

∞

∑
j=1

κ j−1Et
[
∆dt+j

]
= Et

[
∆dt+j

]
+ ∑

j=2
κ j−1g = Et

[
∆dt+j

]
+

κ

1 − κ
g.

Thus, all variation in expected dividend growth comes from the cycle, i.e. next-periods growth,

σ2 (∑ Et∆dt+1
)
= σ2 (Et∆dt+1)

Corollary 1. If cash flow growth only contains a one-period cycle component, i.e. cash flow growth is unpre-

dictable beyond the next year, then the one-year forward price ratio is the optimal predictor for long-horizon

returns.

This follows because the maximum R-squared pd1
t is equal to the maximum attainable R-squared

of σ2(∑ Etrt+1)/σ2 (∑ rt+1). Intuitively, the one-year forward PD ratio removes the expected cash flow

terms and therefore eliminates the omitted variable problem.

What if cash flow growth is predictable beyond year one? Then, we would need to use longer-term

forecast to scale prices.

Corollary 2. If cash flows growth predictability persist for some time into the future, then a longer-run forward

price ratio outperforms a shorter-run forward price ratio.

We finish our section on the construction of the optimal valuation ratio with this useful insight. A

three-year forward price ratio should outperform a two-year forward price ratio which should outper-

form a one-year forward price ratio. We now turn to constructing an empirical optimal valuation ratio

using our theoretical insights from this section.

4 Construction of forward price ratios

To construct optimal forward valuation ratios we need to construct optimal forecasts of future cash

flow growth. To do so, we use Machine Learning algorithms conditions on the large set of information

in the economy that would be available to researchers at the time of forecast. With these cash flow

growth forecasts at the 1yr, 2yr, 3yr and 5yr horizon we compound the most recently available S&P

index earnings at these growth forecasts to construct 1yr, 2yr, 3yr and 5yr aggregate earnings forecasts.

Finally, we scale the SP500 index by these earnings forecasts to construct 1yr, 2yr, 3yr and 5yr forward

price-to-earnings (“Xyr Fwd. PE") ratios.
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4.1 Data sources

To obtain firm-level data prior to 1950, we use annual report data as collected from the Morningstar

Industrial Manuals and used in series of papers (Graham, Leary, and Roberts, 2015; Graham and Leary,

2018; Graham, Kim, and Leary, 2020). This gives us nineteen independent forecasting variables for the

pre-1950 period that capture firm’s balance sheet and income statement dynamics overtime. For the

post-1950 data period, we use data from Compustat and CRSP yielding a set of fourty-seven forecasting

variables. The precise variables we use pre- and post-1950 are given in Appendix C.

We apply the following cleaning procedures before feeding the data into the machine learning al-

gorithm. First, we drop financial firms.3 Second, for the pre- and post-1950 periods, we drop firm-year

observations which are missing the set of pre- and post-1950 required variables as laid out in Appendix

C. This yields an average of 411 and 2,689 yearly firm-level pre- and post-1950. Third, we scale all firm-

level variables by assets to transform them to stationary series. Additionally, to capture firm-size in the

cross-section we standardize firm assets each year. Finally, we replace any missing observations with a

value of zero.

For the dependent variable, we need a measure of (annualized) firm-level earnings growth over

the 1yr, 2yr, 3yr and 5yr horizons. For this, we use the (annualized) growth in net income excluding

excluding special, extraordinary, and non-recurring tax items over the 1yr, 2yr, 3yr and 5yr horizons. We

windsorize firm-level growth at the 5%-95% level each year. To ensure no-look ahead bias we forecast

earnings growth in June of every year assuming we have access to the annual firm-level data from the

prior-year’s annual report (i.e., we assume a minimum of six-months lag between a firm’s annual report

date and it’s release data).

4.2 Machine learning algorithm to forecast earnings

To construct optimal forward valuation ratios we need to construct optimal forecasts of future cash flow

growth. To do so, we build on a recent burgeoning literature using machine learning algorithms to

construct optimal forecasts of macroeconomic quantities (e.g., Nagel, 2021; De Silva and Thesmar, 2021;

Bianchi, Ludvigson, and Ma, 2022, etc.).

We use a Random Forest 5-fold cross validation machine learning procedure. We employ this pro-

cedure each year from the initial training set and forecast set until the end of the sample. To do so, we

follow five steps. First, every June we forecast annualized firm-level earnings growth for the 1yr, 2yr,

3yr and 5yr forecast horizons allowing for 1yr, 2yr, 3yr and 5yr gaps between training and forecasting,

respectively, to ensure no look-ahead bias in our forecasts. Second, within each training and forecast

3Specifically, we drop firms which have 2-digit SIC codes between 60 and 67.
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Table 2: Regression Results: Firm-Level earnings growth predictions

(1) (2) (3) (4) (5) (6) (7) (8)
Realized 1yr Realized 2yr Realized 3yr Realized 5yr

ML forecasted 1yr 0.96∗∗∗ 0.99∗∗∗

(0.06) (0.06)

ML forecasted 2yr 0.87∗∗∗ 0.95∗∗∗

(0.05) (0.05)

ML forecasted 3yr 0.67∗∗∗ 0.76∗∗∗

(0.06) (0.05)

ML forecasted 5yr 0.24∗∗∗ 0.29∗∗∗

(0.05) (0.06)

Firm FE ✓ ✓ ✓ ✓

Regression R-squared (%) 8 14 6 14 6 15 1 13
N 120,875 120,875 120,875 120,875 120,875 120,875 120,875 120,875

Note: This table displays the results from regressing firm-level future realized earnings growth on firm-level predicted earn-
ings growth as generated by the Machine Learning procedure. Columns (1), (3), (5) and (7) give the regression results for
the 1yr, 2yr, 3yr and 5yr horizons, respectively, and columns (2), (4), (6) and (8) repeat these regression results controlling for
firm-year fixed effects. Standard errors are clustered at the firm-year level and are shown in parantheses. Significance levels:
*(p<0.10), **(p<0.05), ***(p<0.01).

loop, we mitigate the impact of outliers by replacing each independent variable observation in both the

training set and forecast set with five times it’s inter-quartile range for those observations which are

outside this range, where the interquartile range is calculated from the training set. Third, within each

training and forecast loop, we standardize each independent variable in both the training and forecast

set, where the mean and variances are calculated from the training set. Fourth, we then train the algo-

rithm where we grid search for the optimal hyper-parameters using the same hyper-parameter ranges as

in De Silva and Thesmar (2021). Finally, we use two-hundred fifty ensembles and average the forecasts

over all ensembles to produce our final forecast. To train the algorithm we use an expanding window

where we set the initial training window to be such that the out-of-sample forecasts start 15yrs after

the beginning of the sample for the 1yr, 2yr, 3yr and 5yr forecast horizons.4 Furthermore, we expand

the set of forecasting variables used by the machine as we progress through the sample given our set of

information on the economy increases overtime.5

This procedure yields firm-level 1yr, 2yr, 3yr and 5yr earnings growth forecasts starting in 1946Q2.

To display the forecasting power of the machine at predicting future firm-level earnings growth, Table

4This implies our initial training windows are 14yrs, 13yrs, 12yrs and 10yrs for the 1yr, 2yr, 3yr and 5yr forecast horizons,
respectively.

5Per section 4.1, prior to 1950 we use data collected from Morningstar Industrial Manuals allowing us to construct roughly
twenty forecasting variables but from 1950 onwards we have access to large array of accounting variables available in Com-
pustat allowing us to construct roughly fifty forecasting variables.
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2 gives the results of regressing future realized firm-level earnings growth on the Machine Learning

generated firm-level earnings growth forecasts. Starting in column (1), we see the machine can sig-

nificantly predict 1yr-ahead firm-level earnings level growth with a regression coefficient close to one

(as one would expect if the machine forecasts are unbiased). Similarly, we find the machine is almost

equally good at yielding unbiased forecasts for the 2yr, 3yr-ahead earnings growth per columns (3) and

(5), respectively. When we extend the forecast horizon to 5rs, we see the performance of the machine

deteriorates somewhat given the increased role for unforeseeable shocks at longer horizons (Bianchi,

Ludvigson, and Ma, 2022), but we note the machine can still significantly forecast future 5yr earnings

growth. Ultimately, we are more interested in forecasting time-series variation in the firm-level earnings

growth (relative to cross-sectional variation). Accordingly, in columns (2), (4), (6) and (8) we repeat the

regressions in columns (1), (3), (5) and (7), respectively, also controlling for firm fixed effects. We see the

results are similar but that the regressions coefficients in all cases are closer to one.

To obtain proxies for earnings growth forecasts at the market-level, we aggregate the firm-level

earnings growth forecasts by taking their market-capitalization weighted average each year.6

4.3 Forward PE ratios

We construct market forward price ratios in three steps. First, we use realized S&P500 GAAP earnings

per share (excluding extraordinary, discontinued, special and non-recurring tax items) over the past year

to proxy for realized earnings per share (“Actual EPS”) of the stock market.7 Second, we compound Ac-

tual EPS at the Machine Learning generated 1yr, 2yr, 3yr and 5yr (annualized) earning growth forecasts

to construct earnings per share forecasts at the 1yr, 2yr, 3yr and 5yr horizons, respectively. Third, we

take the log difference between the S&P500 index and the log of the corresponding earnings forecasts,

yielding 1yr, 2yr, 3yr and 5yr forward PE ratios.

Figure 5 Panel (A) plots the 1yr, 3yr and 5yr forward PE ratios against one another. We see the

forward valuation ratios are stationary overtime fluctuation around their mean values. In Panel (B), we

compare the Forward 1yr PE against the PD ratio where we see their is a structural upward shift in the

latter ratio reflecting the structural shift by firms’ away from dividends toward repurchases to pay out

cash flows. In Panel (C) we plot the Forward 1yr PE against the PE ratio where we see the latter ratio

is much more volatile and spikes in both the dot-com bust and financial crisis because of the transitory

earnings items that hit firms’ income statements in crises periods. Finally, in Panel (D) we plot the 1yr

6Results are robust if we take the earnings weighted average each year instead.
7We exclude extraordinary, discontinued, special and non-recurring tax to remove transitory items related to realized earnings
which has contributed to the increased volatility in GAAP earnings in the past three decades(Hillenbrand and McCarthy,
2022).
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Figure 5: Optimal Valuation Ratios
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Note: Panels (A), (B), (C) and (D) plot the 1yr, 2yr, 3yr and 5yr forward (log) PE ratios against both the (log) price-to-dividend
and the (log) price-to-earnings ratio, respectively. The time period is 1942 to 2020.

forward PE ratio against the (shiller) CAPE where we see the CAPE is subject to an upward structural

shift post-2000. Indeed, the CAPE has been constructed to smooth prior earnings by using an average

of earnings over the 10yrs but this creates an upward shift in the latter period because it includes large

depressed earnings report (i.e., in the financial crisis) in its denominator which arguably the market does

not believe will re-occur in the near future.

Finally, we report summary statistics for the aggregate earnings growth, forward PE ratios and

traditional PE ratios (i.e., PD, PE and CAPE) in Appendix Table D.
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5 Return prediction with forward PE ratios

5.1 Empirical framework

To compute a measure for the valuation ratios forecasting power at predicting future realized 1yr re-

turns, we calculate their in-sample and out-of-sample r-squared following Goyal and Welch (2008).

Concretely, the in-sample r-squared for valuation ratio xt over the forecasting sample is calculated by

In-sample R2 = 1 −
T

∑
t=0

(rt+1 − r̂IS
t+1)

2

(rt+1 − r̄)2 (36)

where T is the number of years in the forecasting sample, r̄ = ∑T
t=0

rt+1
T is the mean future realized

1yr return over the forecasting sample and r̂IS
t+1 is the predicted future realized 1yr return generated by

running the following in-sample regression over the full forecasting period

rt+1 = b0 + b1xt + ϵt+1 (37)

The out-of-sample R2 is computed analogously, except we re-run equation (37) for every year t using

only data that was available prior to and including year t, thereby generating (i) a series of out-of-sample

1yr return predictions by running forecasting regression (37) (r̂OOS
t+1 ) and (ii) a series of mean realized 1yr

returns by calculating r̄t = ∑t−1
j=0

rj+1
t−1 , thereby yielding the out-of-sample R2 statistic given by

Out-of-sample R2 = 1 −
T

∑
t=0

(rt+1 − r̂OOS
t+1 )2

(rt+1 − r̄t)2 (38)

Finally, in the empirical implementation we start calculating return predictions only once we have

at least ten years of data to generate regression coefficients. Given we have data on forward PE ratios

starting in 1942, this implies we start calculating out-of-sample 1yr ahead return predictions in 1951.

5.2 Empirical Results

Out-of-sample return prediction. Figure 6 plots the evolution of the out-of-sample r-squared perfor-

mance of the forward PE ratios against the PE, PD and CAPE ratios. Starting in Panel (A), we see the

out-of-sample (“OOS”) r-squared of the ML forward PE ratios range between 7.4% and 10.8% over the

full-sample and are consistently above zero. These OOS r-squared statistics are significantly above that

of any predictor variable tested in Goyal and Welch (2008)’s comprehensive review. Furthermore, the

OOS r-squared of the 5yr forward PE ratio is 10.8%, which is higher than the OOS r-squared of the 3yr

ratio (8.8%) which is higher than than the 1yr ratio (7.4%) exactly in line with our theoretical predic-
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Figure 6: Out-of-sample R-squared
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Note: This figure plots the out-of-sample R-squared when we predict one-year aggregate returns as in Goyal and Welch (2008).
Panel (A) plots the out-of-sample r-squared performances of the (machine learning constructed) forward PE ratios for the 1yr,
3yr and 5yr horizons. Panels (B), (C) and (D) compares the out-of-sample r-squared performance of the forward 1yr PE ratio
against the PD, PE and (shiller) CAPE ratios, respectively. We start calculating return forecasts in 1951 (i.e., 10 years post
sample-start) and allow for fifteen years to pass before reporting out-of-sample r-squared results. Accordingly, the time period
for out-of-sample r-squared statistics spans 1966 to 2020.

tion that, in the presence cash flow shocks that propagate for many years, longer-term forward PE ratios

which better account for these cash flow shocks will outperform shorter-term forward PE ratios. In Panel

(B), we compare the OOS performance of the forward 1yr PE ratio against the PD ratio where we see

the performance of the PD ratio deteriorates rapidly around 1995 coinciding with the commencement

of large firm repurchase programs per Figure 3 Panel (A) in line with the theory that not accounting for

structural shifts in payouts magnifies the omitted variable problem. Similarly in Panel (C), we plot the

OOS r-squared of the forward 1yr PE ratio against the PE ratio where we see the PE ratio’s performance

deteriorates rapidly in the financial crisis due to increased earnings volatility during this period again
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Figure 7: In-sample vs out-of-Sample R-squared
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Note: This figure plots the difference between the in-sample and out-of-sample r-squared overtime for each valuation ratio.
Panel (A) plots this differential r-squared performance for the (machine learning constructed) forward PE ratios for the 1yr, 3yr
and 5yr horizons. Panels (B), (C) and (D) compares the differential r-squared performance of the forward 1yr PE ratio against
the PD, PE and (shiller) CAPE ratios, respectively. We start calculating return forecasts in 1951 (i.e., 10 years post sample-start)
and allow for fifteen years to pass before reporting r-squared results. Accordingly, the time period for the r-squared statistics
spans 1966 to 2020.

in line with the theoretical predictions. Finally, in Panel (D) we plot the forward 1yr PE OOS r-squared

against the CAPE where we see the CAPE performs poorly throughout the entire sample because it’s

denominator averages over backward looking earnings which is not reflective of current normalized

earnings because of structural shifts in earnings growth and earnings volatility across multi-decade pe-

riods per Table 1.

In-sample vs. out-of-sample return prediction. Per equation (16), our framework predicts that the

difference between the in-sample (“IS”) and OOS performance for a valuation ratio scaled by current

cash flows will diverge in the presence of structural shifts in cash flow growth (e.g., caused by structural
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Table 3: R-squared overview

(1) (2) (3) (4) (5) (6) (7)
Fwd 1yr PE

(%)
Fwd 2yr PE

(%)
Fwd 3yr PE

(%)
Fwd 5yr PE

(%)
PD
(%)

PE
(%)

CAPE
(%)

IS r-squared 8.9 9.3 9.7 12.7 6.4 4.6 5.0

OOS r-squared 7.4 8.4 8.8 10.8 -3.5 -0.9 -6.7

IS minus OOS r-squared 1.5 0.9 1.0 1.9 9.9 5.5 11.8

Note: This table provides summary statistics of the in-sample, out-of-sample and in-sample minus out-of-sample r-squared
performances for various valuation ratios over the sample period. Columns (1), (2) and (3) report the results for the (machine
learning constructed) forward PE ratios over the 1yr, 3yr and 5yr horizons, respectively. Columns (1), (2) and (3) report the
results for the price-to-dividend (PD), price-to-earnings (PE) and (shiller) 10yr cyclically adjusted price-to-earnings (CAPE)
ratios, respectively. The sample period is from 1942 to 2020.

shifts in productivity or firm’s payout methods) or changes in earnings volatility regimes. Moreover, to

the extent constructed forward PE ratios adequately account for these changes the difference between

the IS and OOS performance of the forward PE ratio should converge toward zero. To empirically test

these predictions, we calculate the evolution of the IS and OOS performances of the forward PE ratios

alongside the PD, PE and CAPE ratios. Results are plotted in Figure 7.

Per Panel (A), we find the delta between the IS and OOS performance of the forward 1yr, 3yr and

5yr PE ratios converge toward 1.5%, 1% and 1.9%, respectively. This indicates our forward PE ratios

are adequately accounting for any structural changes embedded in current earnings and are close to

optimal. Furthermore, we note these deltas consistently fluctuate close to zero over the entire sample.

In Panels (B), (C) and (D) we plot the differential r-squared performance of the 1yr forward PE ratio

against the PD, PE and CAPE ratios, respectively. We see for the PD, PE and CAPE ratio the IS r-squared

performance significantly beats the corresponding OOS r-squared by 9.9%, 5.5% and 11.8% consistent

with the intuition that these ratios undergo structural changes over the sample period for which the IS

regression can better account for relative to its OOS counterpart.

Machine vs. market forecasts. Per Proposition 2, if the market’s expectation of future cash flows

deviates from rational expectation, the forward price ratio constructed using rational forecasts should

outperform the market forward price ratio. That is, it has a higher r-squared when predicting returns.

Intuitively, this is because the rationally constructed forward PE ratio will capture not only the market’s

expected returns but also forecastable cash flow news due to the market’s biased expectations.

To proxy for the market’s expectations of aggregate future earnings, we use investment profession-

als’ expectations per the widely-used Thomson Reuters I/B/E/S data. Concretely, we construct a mea-

sure of the market’s 1yr ahead earnings by aggregating equity analysts’ 1yr ahead firm-level earnings

forecasts at each forecast date (Hillenbrand and McCarthy, 2022, see also). We then scale the S&P500
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Figure 8: Machine vs market: Out-of-sample R-squared
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Note: This figure plots the evolution of the out-of-sample r-squared performance of the (machine learning constructed) 1yr
forward PE ratio against a measure of the Market’s 1yr forward PE ratio. We construct the latter measure by scaling the S&P500
index by equity analysts’ 1yr ahead earnings per share forecasts at the S&P500 level. This Market 1yr forward PE ratio is only
available from 1976 onwards and so for the pre-1976 period we set the Market forward PE ratio to be equal to the (machine
learning constructed) 1yr forward PE measure. The time period is from 1976 to 2020.

index by this market measure of 1yr ahead earnings per share at the S&P500 level, yielding the “Market

forward 1yr PE ratio”.

A line of prior research indicates that market expectations are biased (De Silva and Thesmar, 2021;

Bordalo, Gennaioli, LaPorta, and Shleifer, 2022; Bianchi, Ludvigson, and Ma, 2022), suggesting that the

(machine learning constructed) forward 1yr PE ratio will outperform the Market forward 1yr PE ra-

tio. To test this, Figure 8 plots the evolution of the OOS r-squared performance of the forward 1yr PE

ratio against the Market forward 1yr PE ratio from 1976 onwards.8 We find the forward 1yr PE ratio

outperforms the Market forward 1yr PE by nearly 3% over the sample, and the out-performance is con-

centrated during both the dot-com bust and financial crisis, suggesting the bias in market expectations

is pronounced during these periods.

6 Conclusion

This paper outlines both theoretically and empirically why commonly-used price ratios have struggled

to predict return. In short, they do not adequately account for expected cash flow growth thereby cre-

ating an omitted variable problem, a problem which we show is amplified when there are structural

shifts in firms’ payout method, shifts in the level of expected earnings growth or shifts in the expected

earnings volatility. We show how to circumvent the omitted variable problem by a constructing forward

8The Market 1yr forward PE ratio is only available from 1976 onwards (given data on equity analyst forecasts as collected
I/B/E/S start then) and so for the pre-1976 period we set the Market forward PE ratio to be equal to the (machine learning
constructed) 1yr forward PE measure.
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price ratios which adequately accounts for expected cash flow growth, thereby by yielding a price ratio

which has the highest r-squared in forecasting long-run returns and is therefore optimal. When we con-

struct empirical proxies for the optimal price-ratio we find an in-sample and out-of-sample r-squared

for predicting one-year aggregate returns of 12.7% and 10.8%, respectively, beating all other predictors

and resolving the return-predictability debate (Goyal and Welch, 2008). We conclude by asserting that

our work has large relevance for economic agents, who use real-time expected return measures to make

economic decisions, impacting firms’ capital budgeting decisions, portfolio theory, investment profes-

sionals’ capital-allocation decisions, macroeconomics and so forth.
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APPENDIX FOR “THE OPTIMAL STOCK VALUATION RATIO”

A Derivations for Section 2
R-squared and correlation coefficient. The R-squared from a regression of y on x is equal to the corre-
lation coefficient between y and x:

R2 =
Explained sum of squares

Total sum of squares
=

Var(ŷ)
Var(y)

=
Var (β0 + β1x)

Var(y)
= β2

1
Var(x)
Var(y)

=

(
cov(x, y)
Var(x)

)2

· Var(x)
Var(y)

=
cov(x, y)2

Var(x)2 · Var(x)
Var(y)

=
cov(x, y)2

Vav(x) · Var(y)
=

(
cov(x, y)√

Vav(x) · Var(y)

)2

= ρ2
xy

(A.1)

Derivation of regression coefficient and R-squared for pdt. Then the regression coefficient is given
by

b∑ r =
Cov(−∑ EM

t r, pdt)

σ2 (pdt)

=
σ2(∑ EM

t r)− Cov(∑ EM
t r, ∑ EM

t ∆d)
σ2(∑ EM

t r) + σ2(∑ EM
t ∆d)− 2Cov(∑ EM

t r, ∑ EM
t ∆d)

(A.2)

The R-squared is:

R2
∑ r = Corr2(−∑ r, pdt)

=
Cov2(−∑ EM

t r, pdt)

σ2 (∑ r) σ2 (pdt)

=
Cov(−∑ EM

t r, pdt)

σ2 (pdt)︸ ︷︷ ︸
b∑ r

Cov(−∑ EM
t r, pdt)

σ2
(
∑ EM

t r + ∑ ηM
CF − ∑ ηM

DR
)

=
Cov2(−∑ EM

t r,−∑ EM
t r + ∑ EM

t ∆d)
σ2 (∑ r) σ2 (pdt)

=

[
σ2(∑ EM

t r)− Cov(∑ EM
t r, ∑ EM

t ∆d)
]2

σ2 (∑ r)
[
σ2(∑ EM

t r) + σ2(∑ EM
t ∆d)− 2Cov(∑ EM

t r, ∑ EM
t ∆d)

]
=

σ2(∑ EM
t r)

σ2 (∑ r)

[
1 − ρd,r

σ(∑ EM
t ∆d)

σ(∑ EM
t r)

]2

[
1 + σ2(∑ EM

t ∆d)
σ2(∑ EM

t r) − 2ρd,r
σ(∑ EM

t ∆d)
σ(∑ EM

t r)

]
=

σ2(∑ EM
t r)

σ2 (∑ r)

[
1 + ρ2

d,r
σ2(∑ EM

t ∆d)
σ2(∑ EM

t r) − 2ρd,r
σ(∑ EM

t ∆d)
σ(∑ EM

t r)

]
[
1 + σ2(∑ EM

t ∆d)
σ2(∑ EM

t r) − 2ρd,r
σ(∑ EM

t ∆d)
σ(∑ EM

t r)

]

(A.3)
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B Derivation and Proofs for Section 3
Proof for proposition 1

Proof. Suppose there is another predictor that predicts returns according to

x̃t = ∑ Etrt+1 + ϵt

Note that we can write this without loss of generality (run a regression of ϵt on Etrt+1) as

x̃t = ∑ Etrt+1 + νt + ϵ̃t

where νt is perfectly correlated with Etrt+1 and ϵ̃t is orthogonal to Etrt+1. Note that the existence of ϵ̃t

immediately implies
|Corr(Etrt+1, x̃t)| < 1

Let’s start with the case where νt = 0, then

R2
x̃ =

σ4(∑ Etrt+1)

σ2 (∑ rt+1) σ2 (x̃t)
=

σ2(∑ Etrt+1)

σ2 (∑ rt+1)

σ2(∑ Etrt+1)

σ2 (∑ Etrt+1) + σ2 (ϵ̃t)
=

=
σ2(∑ Etrt+1)

σ2 (∑ rt+1)

1

1 + σ2(ϵ̃t)
σ2(∑ Etrt+1)

<
σ2(∑ Etrt+1)

σ2 (∑ rt+1)

(A.4)

Now, let’s go to the case where νt ̸= 0, then

R2
x̃ = Corr2(Etrt+1, x̃t)

σ2(∑ Etrt+1)σ
2(xt)

σ2(∑ rt+1)σ2(xt)
= Corr2(Etrt+1, xt)

σ2(∑ Etrt+1)

σ2(∑ rt+1)
<

σ2(∑ Etrt+1)

σ2(∑ rt+1)
(A.5)

where the last line follows from |Corr(Etrt+1, x̃t)| < 1.

Derivation of the regression coefficient when predicting one-year returns.

R2
∞ = Corr (rt+1, pd∞

t )
2 =

Cov (R1,−R1 − R2)
2

σ2 (rt+1) · σ2 (R1 + R2)
=

Cov (R1, R1 + R2)
2

σ2 (rt+1) σ2 (R1 + R2)

=
σ4 (R1) + 2 · σ2 (R1) · Cov (R1, R2) + Cov (R11R2)

2

σ2 (rt+1) · σ2 (R1 + R2)
=

=
σ4 (R1) + 2 · σ2 (R1) ρR1,R2 · σ (R1) σ (R2) + ρ2

R1,R2
σ2 (R1) σ2 (R2)

σ2 (rt+1) · [σ2 (R1) + σ2 (R2) + 2 · ρR1,R2 · σ (R1) σ (R2)]

=
σ2 (R1)

σ2 (rt+1)
· 1

σ2(R1)+σ2(R2)+2ρR1R2 ·σ(R1)σ(R2)

σ2(R1)+ρ2
R1,R2

σ2(R2)+2pR1R2 ·σ(R1)·σ(R2)

=
σ2 (R1)

σ2 (rt+1)
· 1

1+2·ρR1R2
σ(R2)
σ(R1)

+
σ2(R2)
σ2(R1)

1+2·ρR1R2 ·
σ(R2)
σ(R1)

+ρ2
R1R2

· σ2(R2)
σ2(R1)
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Derivation of R-squared for one-year forward price ratio and trend growth

R2 = Corr
(
−∑ r, pd1

t

)2
=

Cov (−Σr, b1gt − ΣEr)2

σ2(Σr) · σ2 (b1gt − ΣEr)
=

=
σ4 (∑ Er)− 2 · Cov (∑ Er, b1gt) · σ2 (∑ E) + Cov (∑ Er, b1gt)

2

σ2 (∑ r) · [σ2 (∑ Er)− 2 Cov (b1gt, ΣEr) + σ2 (b1gt)]

=
σ2(∑ Er)
σ2(∑ r)

· 1
1−2b1·ρg,ER

σ(gt)
σ(ΣE)

+b2
1

σ2(gt)
σ2(ΣEr)

1−2b1·ρg,ER
σ(gt)

σ(ΣEr)+b2
1ρ2

g,Er
σ2(gt)
σ(ΣEr)

(A.7)
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C Data: Variables Used

Variables (Post-1950) Compustat Label Pre-1950
Required
Pre-1950

Required
Post-1950

Assets at ✓ ✓ ✓
Liabilities lt ✓ ✓ ✓
Revenue revt ✓ ✓ ✓
SG&A xsga
R&D xrd
Cost-of-goods dold cogs ✓
Current assets act ✓
Current Liabilities lct ✓
Cash ch ✓
Cash and short-term investemtns che ✓
Income tax txt ✓
Total long-term debt dltt ✓
Total long-term debt due in 1yr dd1
Debt in current liabilites dlc ✓
D&A dp
Ebit ebit ✓
Ebitda ebitda
Interest & related expense total xint ✓
Interest paid-net intpn
Capex capx
Income taxes payable txp
Income taxes paid txpd
Income taxes total txt ✓
Net income ni ✓
Cash dividends on common stock cdvc ✓
Purchase of common and preferred stock prstkc
Sale of common and preferred stock sstk
Subordinated debt ds
Gross profit gp ✓
Operating activities - net cash flow oancf
Common shares for diluted eps cshfd ✓
Price close (fiscal year-end) prcc_f ✓ ✓ ✓
Extraordinary items xi ✓
Special items spi
Acquisitions aqc
Capitalized leases (2yr-5yr) cld2 – cld5
Common esop obligation esopct
Goodwill (net0 gdwl
Interest and related income (total) idit
Total intangible assets intan
Marketable security adjustments msa
Property, plant and equipment (net) ppent ✓ ✓ ✓
Non-operating income nopi
Tax loss carryforward tlcf
Pension and retirement expense xpr
Preferred stock liquidating value pstkl ✓
Extraordinary and discontinued items xido
Non-recurring income taxes (after-tax) nrtxt
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D Data Output

Table A.1: Summary Statistics

mean sd min max count

Earnings growth

Realized 1yr growth 0.13 0.18 −0.17 1.14 75

ML predicted 1yr growth 0.12 0.08 −0.12 0.32 75

Realized 2yr growth 0.12 0.14 −0.10 0.92 75

ML predicted 2yr growth 0.11 0.06 −0.04 0.26 75

Realized 3yr growth 0.12 0.12 −0.07 0.66 75

ML predicted 3yr growth 0.15 0.08 −0.05 0.34 75

Realized 5yr growth 0.13 0.10 −0.02 0.60 75

ML predicted 5yr growth 0.14 0.07 −0.05 0.33 75

Valuation Ratios

ML fwd. 1yr price-to-earnings 2.56 0.38 1.64 3.41 75

ML fwd. 2yr price-to-earnings 2.47 0.39 1.61 3.35 75

ML fwd. 3yr price-to-earnings 2.32 0.40 1.32 3.16 75

ML fwd. 5yr price-to-earnings 2.15 0.40 1.34 3.03 75

price-to-dividend 3.45 0.45 2.50 4.46 75

price-to-earnings 2.74 0.47 1.80 4.78 75

cape 2.83 0.41 1.90 3.76 75

Note: This table provides summary statistics of the variables used in the paper. All variables are on the aggregate stock market,
i.e., S&P500 index, level. The unit of observation is year. The time period is from 1942 to 2016.
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