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Job Market Paper

1 December 2022

Abstract

I study the causal effects of life expectancy on households’ financial and economic de-

cisions. My sample consists of individuals who undergo genetic testing for a hereditary

cancer syndrome. Genetic testing randomizes tested persons into two groups. Those who

test positive learn that they face a high risk of cancer and a shorter life expectancy. Those

who test negative learn that their cancer risk is not elevated. The differences in outcomes

between these two groups identify the effects of life expectancy. I find that life expectancy

has a positive effect on wealth accumulation. Lower savings rates, safer portfolios, decreased

labor supply, and different preferences for household composition explain lower wealth ac-

cumulation under reduced life expectancy.
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1 Introduction

Life expectancy plays a fundamental role in the economic behavior of individuals and households

in standard life-cycle models. Yet, empirical evidence on the causal effects of life expectancy on

wealth accumulation, labor supply, portfolio choice and other important economic and financial

choices is still limited. This is due to at least two empirical challenges.

First, life expectancy is correlated with income, health behavior, and other possibly un-

observed variables that may directly affect economic decisions (De Nardi, Pashchenko, and

Porapakkarm, 2017). Identifying the causal effects of life expectancy therefore requires exoge-

nous variation in the mortality risks individuals face. Second, such exogenous variation should

be independent of episodes of bad health. While bad health does reduce life expectancy, it may

also directly impact labor productivity, medical expenditures, disability, access to credit, and

other determinants of economic choices (Garćıa-Gómez et al., 2013; Dobkin et al., 2018).

To overcome these empirical challenges, I exploit a natural experiment that presents ex-

ogenous variation in life expectancy without imposing current bad health. I study individuals

who undertake genetic testing for Lynch Syndrome (LS), a hereditary disorder that drastically

increases the lifetime risk of colorectal, endometrial, and ovarian cancer.1 LS may reduce the

median lifespan by more than 13 years, which exceeds the life expectancy loss suffered by lifetime

smokers (Doll et al., 2004).2

Facing these risks, individuals in my sample decide to undergo genetic testing to learn if they

have inherited the gene mutation that causes LS in their families. Tested individuals are still

healthy, they have not yet developed cancer. Genetic testing randomizes tested individuals into

two groups. Those who test positive learn that they face elevated risks of cancer and a shorter

life expectancy. Those who test negative learn that their cancer risks are similar to those of the

general population. Both groups may react to genetic testing: The differences in their reactions

identify the causal effects of the life expectancy reduction in LS. My genetic dataset contains

a balanced sample of both positive- and negative-tested individuals. I merge this dataset with

Dutch administrative panel data on a rich set of socio-economic variables, including household

balance sheets, income, and demographic characteristics.

1Individuals who carry a Lynch Syndrome gene mutation face a 50 to 80% lifetime risk of colorectal cancer,
a 25 to 50% risk of endometrial cancer, and a 5 to 10% risk of ovarian cancer. In comparison, the lifetime risk
in the general population for colorectal, endometrial, and ovarian cancer are 5.5%, 2.7%, and 1.6%, respectively
(Wolf, Buchanan, and Farkas, 2013).

2Many of the people in my sample experienced the very high mortality of LS at first hand because one parent
of each tested individual was affected by the condition. On the other hand, due to improved preventive care and
cancer treatment, LS-affected individuals in my sample may eventually experience a smaller reduction in their
longevity. Based on the deaths that have occurred in my sample to date, I estimate that the median lifespan of
LS-positive individuals in my sample is reduced by 3 to 4 years. This reduction is similar to the life expectancy
loss suffered by smokers who quit smoking at the age of 50.
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I start my analysis by estimating the effects of changing life expectancy on household wealth

accumulation. In a canonical life-cycle model, households that face a lower life expectancy would

have lower needs to save for retirement, and would consequently accumulate lower wealth (Bloom

et al., 2003). In line with this prediction, I find that the financial assets of households of positive-

tested individuals exhibit a gradual decline following genetic testing, compared to the financial

assets of households of negative-tested individuals. Financial assets are the sum of bank deposits

and financial securities (stocks, bonds, and investments in funds). By the fifth year after testing,

households of Lynch-positive individuals hold on average EUR 50,000 lower financial assets than

household of negative-tested individuals. During the next years, the difference slightly increases,

and subsequently it stabilizes. On average, during the first 15 years after testing, households

of positive-tested individuals hold EUR 60,000 lower financial assets. This is a substantial

difference given that households of negative-tested individuals hold on average EUR 91,000 in

financial assets. Quantile regressions show that not only households with the highest financial

asset holdings are affected: During the first 15 years after testing, median financial assets

are also EUR 9,000 lower among households of positive-tested individuals. This is a sizeable

negative effect compared to the median financial asset holding of EUR 25,500 among households

of negative-tested individuals. I also study a specification where the dependent variable is the

natural logarithm of financial assets, and find that households of positive-tested individuals hold

on average about 40% lower financial assets during the post-testing period. The negative effect

on financial asset accumulation appears to be stronger among men (who face a greater reduction

of life expectancy in LS), and individuals who had no children before testing (who possibly

have weaker bequest motives), although these differences are not statistically significant. While

financial asset accumulation is strongly affected, I find no significant treatment effects on the

other wealth components of tested individuals, including real estate wealth, other assets (e.g.,

businesses), and other debt (e.g., student loans).

Next, I explore four channels that may explain the negative effects of Lynch Syndrome and

the associated reduced life expectancy on financial asset accumulation. These are changing

household composition, decreasing labor and household income, lower portfolio allocation to

risky financial assets, and lower savings rates.

First, I estimate the effects of Lynch Syndrome on two important demographic outcomes,

having a partner and having children. These are important and interesting outcomes to study

on their own, in addition they may also impact wealth accumulation. Having a partner may

mechanically affect the level of financial assets in my sample because balance sheets are ag-

gregated at the household level. Household composition may also impact wealth accumulation

2



by shifting preferences. I find that among individuals who are tested 45 years old or younger,

five years after testing positive-tested individuals have an 8 pp. lower probability of having a

partner (married or unmarried). By year nine the difference grows to 10 pp., although it shrinks

in later years. The negative effect is present both among men and women, and also both among

individuals with a partner before testing and those without a partner. Individuals who are

tested after turning 45 years old are not affected. Genetic testing also impacts reproductive

choices among previously childless individuals who are tested when still in the reproductive

age (here defined as 45 years old or younger). Positive-tested individuals in this group are on

average 12 pp. less likely to ever have children. This is a sizeable effect given that about half

of the negative-tested individuals in this group will eventually have children. Although these

treatment effects on household composition and childbearing are far from negligible, they likely

only explain a minor part of the negative effect of LS on financial asset accumulation. This

is because in the whole sample the probability of having a partner is only slightly negatively

affected (-2.8 pp.), while the negative effects on having any children are restricted to about 1/4th

of the sample who have no children before testing and who test in a childbearing age. Indeed,

when I augment the regressions models of financial asset accumulation with indicators of having

a partner and having any children, the estimated treatment effects are hardly diminished (e.g.,

from EUR 60,000 to EUR 58,000).

Life expectancy may also affect wealth accumulation by impacting individuals’ labor and

household income. In the model of Bloom et al. (2003), a decrease in longevity leads to increased

demand for leisure and reduced labor supply. Indeed, I document that LS has a negative effect on

labor income, but only among males. Female labor income is not affected, although I document

some negative effects on the labor participation of women in the medium term. During the

first five years after testing, positive-tested males earn on average EUR 7,500 lower annual

labor income. This is a major (19%) difference compared to the mean male labor income in

the sample. During the next five years, the difference further increases to EUR 9,800 annually,

although subsequently it slightly drops to EUR 8,000 annually. The negative effect on male

labor income can be explained both by lower labor participation (-3.2 pp., not statistically

significant), and by lower labor supply among those who work. In the first 15 years after

testing, positive-tested working males work on average 19 fewer full-time equivalent days per

year than negative-tested working males. This is a 5.7% reduction compared to the mean annual

FTE days among all working men in the sample. I estimate that it is in the pre-retirement age

(60-64) when working men’s labor earnings and labor supply are the most negatively affected.

Contrary to the negative effect on labor supply, I find that wages are unaffected. Finally, I

3



turn to estimating the effects of LS on disposable household income, the income measure that

presumably has the strongest influence on household wealth accumulation. I estimate slightly

larger negative effects on household income than on labor income. This is predominantly because

the labor income of the partners of tested individuals is also negatively affected, although in

most specifications not statistically significantly. Notwithstanding the sizeable treatment effects

on tested individuals’ labor and household income, I argue that the income channel likely plays

only a minor role in explaining the negative effects on financial asset accumulation. This is

because Dutch households typically save a low share of their disposable income.

Households’ portfolio choices may also change following a shift in their life expectancy.

Individuals who face a lower life expectancy, and consequently a shorter planning horizon, may

find it optimal to invest a lower share of their financial wealth into risky assets because of mean

reversion in returns (Barberis, 2000). Decreasing lifetime labor income, which is often considered

a safe asset, may also prompt people to shift away from risky financial investments. In line with

these predictions, I find that LS has a strong negative effect on households’ risky investments.

By the end of the first year after genetic testing, households of positive-tested individuals hold

a 6.3 pp. lower share of their financial assets in financial securities compared to households of

negative-tested individuals. Dutch households’ financial securities mostly comprise stocks and

investments in equity mutual funds. Therefore, I interpret this estimate as a 6.3 pp. negative

effect on the risky share of financial assets. The negative effect slightly increases in the following

years, but remains largely unchanged during the follow-up period. On average, during the first

15 years of the post-testing period, positive-tested households hold a 9 pp. lower share of

their financial assets in financial securities. This is an economically significant effect given the

unconditional risky share of 12 pp. in the sample. I find that most of this effect is due to

changes at the extensive margin, i.e., households of positive-tested individuals are less likely

to hold any financial securities. While these results show that LS has a strong effect on the

risky share, a back-of-the-envelope calculation suggests that lower financial returns are also not

a major factor in the documented lower accumulation of financial assets.3

Finally, I study the effects of life expectancy on the strongest determinant of wealth accu-

mulation, savings behavior. In the model of Bloom et al. (2003), reduced life expectancy leads

to lower savings rates at every age due to the lower need to save for retirement. The previously

documented large negative effect on financial asset accumulation strongly suggests that reduced

life expectancy indeed leads to lower savings rates in my sample. This is particularly true given

3Multiplying the average financial assets of households in my sample (EUR 77,000) by the negative treatment
effect on the risky share (9 pp.) and by an equity risk premium of 6% yields an estimate of EUR 415 annual
returns foregone due to the lower risky share. This is a small amount compared to the total negative effects on
financial assets, which is about EUR 50,000 five years after genetic testing.
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that the other channels through which Lynch Syndrome may affect asset accumulation (changing

household composition, lower incomes, and more conservative portfolio allocations) are likely of

limited importance. To further investigate the effects of life expectancy on households’ savings

behavior, I construct a savings rate measure that is equal to the share of disposable household

income that the household saves. An important caveat of this exercise is that the savings rate

is measured with considerable noise because I impute savings from changes in household wealth

corrected for capital gains. Notwithstanding the noisy measure, I estimate a strong negative

treatment effect on savings rates: Households of positive-tested individuals indeed save a lower

share of their disposable income than households of negative-tested individuals.

The core of this paper studies the differences in outcomes of positive- and negative-tested

individuals following genetic testing. On the other hand, it is interesting to understand how

these two groups react to genetic testing separately. Are the observed differences in outcomes

due to the changing behavior of positive- or negative-tested individuals? Answering this question

can help to determine the costs and benefits of genetic testing, and it can also shed light on how

people react to upward and downward shifts in life expectancy. The ideal natural experiment

to answer this question would randomize people into untested, positive-tested, and negative-

tested groups. Because I lack such experiment, I apply a matching strategy and use individuals

from the general Dutch population as a benchmark group of untested individuals. I find that

compared to this benchmark group, both positive- and negative-tested individuals change their

behavior following genetic testing. These changes are in the expected opposite directions. For

example, those who test positive and experience a drop in life expectancy start to accumulate

fewer financial assets. On the contrary, those who test negative and experience an increase in life

expectancy start to accumulate more financial assets. I observe similar reactions for most of the

other outcomes as well, including having a partner and having children. These findings suggest

the people react to both good and bad news about their life expectancy. These results also

highlight the potential benefits of genetic testing on negative-tested individuals: by alleviating

health and mortality risks, genetic testing can help improve the socio-economic outcomes of

these people.4

My work aims to contribute to our understanding on how individuals incorporate life ex-

pectancy into their decision-making. This research question is closely related to several active

research areas in the fields of household finance, household economics, macroeconomics, and

health economics.

At least since Hamermesh (1985), a broad literature studies the role of expectations and

4Assuming that having children, earning a higher labor income, and holding more financial assets is beneficial.
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particularly life expectancy on household financial and economic behavior. In macroeconomics,

most work relies on cross-country samples, and mostly documents a positive correlation between

average life expectancy at birth and savings rates (e.g., Bloom et al., 2007). At the micro-level,

the majority of previous work focuses on the later years of life, and reports that individuals

who expect a shorter lifespan exhibit lower consumption growth (Salm, 2010), adjust their

consumption expenditures upwards (B́ıró, 2013), and have a greater propensity not to save

(Heimer, Myrseth, and Schoenle, 2019). My findings are consistent with this literature. In

addition, my work aims to complement the literature in several ways. First, I exploit the

natural experiment of genetic testing to identify the causal effects of life expectancy. Genetic

testing offers a research design close to a randomized experiment, which helps to overcome

the challenges of weak instruments and exclusion restriction violations that previous studies

potentially faced.5 Second, I use comprehensive administrative data to estimate the effects

of life expectancy on household wealth accumulation. Previous work often focused on limited

measures of consumption (e.g., food consumption). Third, my sample includes both young and

old people, while previous studies mostly focused on the behavior of retirees or people close to

retirement. This is important because younger people may react to changes in life expectancy

differently, e.g., they can adjust their labor supply. Fourth, I study the short-term and long-term

effects of life expectancy on a comprehensive set of outcomes including wealth accumulation,

labor supply, and portfolio allocation decisions6, in a uniform framework. Fifth, I document

that people react both to positive and negative shocks to life expectancy.

This paper is also connected to the literature on the economic effects of health shocks.

Adverse health shocks are a major source of economic risk for individuals, with a possible im-

pact on labor earnings (Dobkin et al., 2018; Garćıa-Gómez et al., 2013), consumption/saving

decisions (Kolsrud, Landais, and Spinnewijn, 2020; Meyer and Mok, 2019), and portfolio com-

position (Døskeland and Kvaerner, 2021), among many other outcomes. While the literature

5Not all previous work relies on IV strategies. Oster, Shoulson, and Dorsey (2013) and Oster et al. (2010)
also exploit the natural experiment of genetic testing (but for Huntington’s disease, a progressive neurological
disorder) to study the effects of life expectancy on investments in human capital and long-term care insurance
choices, respectively. Baranov and Kohler (2018) estimate that increases in life expectancy due to better access
to AIDS treatment lead to increased savings, expenditures on education, and children’s schooling in rural Malawi.
In comparison, I study the effects of life expectancy in a developed country where saving for old age is more
important, and where the extensive welfare system limits other health-related (precautionary) savings motives.
In contemporaneous work, Horn (2022) estimates that the death of a close friend induces a reduction in saving
rates. The death of a close friend may contribute to increased survival pessimism, even if it is uninformative
about the mortality risks that the individual faces. In comparison, genetic testing provides individuals in my
sample relevant information on their mortality risks.

6Some literature studies the effects of life expectancy on portfolio allocation. Spaenjers and Spira (2015)
estimate a positive effect of subjective life expectancy, instrumented by the current age or age at death of
the survey respondent’s parents, on equity portfolio shares. Balasubramaniam (2021) reports that survival
pessimism, instrumented by experiences of mass shootings and natural disasters, reduces the time horizon for
financial planning and investment in risky assets. My findings are consistent with this literature.
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mostly focuses on how individuals and households react to contemporaneous health shocks,

I exploit the setting of genetic testing to show that human behavior and socio-economic out-

comes also react to expected future health shocks. My results also illustrate that the extensively

documented negative correlation between wealth and health (e.g., De Nardi, Pashchenko, and

Porapakkarm, 2017) may arise partially because individuals with worse health expectations and

higher mortality risks accumulate lower wealth.

The primary goal and contribution of my work is to understand the effects of life expectancy

on economic behavior. However, I argue that my work also contributes to the medical litera-

ture. Understanding how people react to the results of genetic testing may be an important

consideration for clinical geneticists and other medical professionals. This is especially true

since predictive genetic testing might soon be offered for the general population7, and many

private providers (e.g., 23andMe) already offer testing for some of the more frequent single-gene

genetic disorders (e.g., hereditary breast cancer).

The paper proceeds as follows. Section 2 describes the sample, presents the cancer risks and

mortality associated with Lynch Syndrome, and discusses the theoretical predictions of changing

life expectancy. Section 3 presents the data sources and the main variables, and discusses the

empirical strategy. Section 4 presents the main results on the effects of life expectancy on

wealth accumulation. Section 5 studies five channels through which life expectancy and Lynch

Syndrome may affect wealth accumulation, household composition, labor and household income,

portfolio allocation, savings behavior, and mental health. Section 6 studies the effects of genetic

testing on those who test positive and those who test negative. Section 7 concludes.

2 Background and Incentives

Lynch Syndrome (LS) is a hereditary condition that gives rise to a substantially increased life-

time risk of cancer. LS is caused by a mutation in one of five genes (MLH1, MSH2, MSH6,

PMS2, EPCAM), which leads to an impaired ability to suppress tumor growth. LS mostly in-

creases the risk of colorectal and endometrial cancer, but the risks of many other types of cancer

are also elevated. Lynch Syndrome historically had a large negative effect on life expectancy

(about 13 years of reduction in the median lifespan), although in recent years screening and pre-

ventive surgeries have improved survival. The condition is inherited in an autosomal dominant

manner: individuals with one parent who carries a Lynch mutation have a 50% probability of

7In late 2022, a nationally collaborative project was launched in Australia that will screen at least 10,000
people aged 18-40 for genes that increase risk of certain types of cancers (including Lynch Syndrome) and heart
disease. Source: https://www.monash.edu/news/articles/world-first-preventative-dna-screening-for-cancer-and-
heart-disease-risk2

7



inheriting the faulty gene. Individuals who test negative for the mutation responsible for Lynch

Syndrome in their families face a lifetime cancer risk and life expectancy similar to that of the

general population.

My sample consists of 890 individuals who started their life at a 50% risk of having inherited

the gene mutation that causes Lynch Syndrome in their families. Before the mid-1990s, the exact

genetic cause of LS was unknown. Families suspected of the condition were identified based

on their family history of cancer. The vast majority of individuals in my sample belong to

such families. Given their risk exposure, and following the recommendations of their doctors,

these people registered with the Dutch Hereditary Cancer Registry (DHCR). The goal of the

registry is to promote the identification of families with various forms of hereditary cancer and

to encourage high-risk individuals to participate in medical surveillance programs.

Once genetic testing became available, individuals in my sample decided to undergo testing

to learn if they have actually inherited the bad gene. By this time, the exact gene mutation

responsible for LS in their families had already been determined following the testing of family

members who had a Lynch-specific cancer. These initially tested family members are not part

of my sample as I only consider individuals who had no cancer before genetic testing. Studying

people who have not yet developed cancer offers two advantages. First, these people can learn

from their genetic test results, instead of simply receiving a confirmation of a highly-likely case

of LS based on their cancer history. Second, the behavior of these people is not affected by

current bad health. This enables me to separate the effects of changing life expectancy from

the effects of current health conditions, such as cancer.

Testing is a choice. Although I estimate that over 70% of the family members in the families

in my sample decided to get tested, it is well possible that individuals who decided to test differ in

some observable or unobservable characteristics (e.g., risk aversion) from those who faced similar

risks but decided not (yet) to test.8 Importantly, my identification strategy does not build on

comparing tested and untested individuals. Instead it compares people who test positive or

negative for the suspected mutation. Individuals in both of these groups can learn from the

results of genetic testing. The former group receives confirmation about the bad risk they were

potentially exposed to, while the latter group is relieved from this risk. The differences between

the outcomes of these two groups identify the causal effects of facing the risks associated with

Lynch Syndrome. The majority of this paper is concerned with studying the differences in the

outcomes of these two groups after they learn about their differential mortality risks. Section 6

8For example, as Panel A of Table A2 in Appendix A presents, tested people in my sample are slightly
different in observable characteristics from a birth year-gender matched sample of the general Dutch population:
They are more likely to have children and a partner, earn a somewhat higher household income, have about 18%
higher financial assets, and are 9 percentage points more likely to own a home.
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sets out to separately study the reaction of positive- and negative-tested individuals to genetic

testing, using the benchmark of the untested Dutch population.

2.1 Life Expectancy in Lynch Syndrome

To contextualize the economic reaction to a Lynch Syndrome diagnosis, it is important to

understand the risks associated with the condition. The medical literature reports that people

with a Lynch mutation, depending on their sex and the exact type of the mutation, are exposed

to a 50 to 80% lifetime risk of colorectal cancer. Female carriers face an additional 25 to 50%

risk of endometrial cancer and a 5 to 10% risk of ovarian cancer. In comparison, the lifetime

risks in the general population for colorectal, endometrial, and ovarian cancer are 5.5%, 2.7%,

and 1.6%, respectively (Wolf, Buchanan, and Farkas, 2013). The risks of some other forms of

cancer such as stomach, small bowel, upper urological tract, biliary tract, and brain cancer are

also elevated for Lynch mutation carriers.

As a letter from a clinical geneticist presented in Appendix A Figure A3 reveals, these

baseline risks are clearly communicated to those who undergo genetic testing. People in my

sample had also experienced these risks personally: they are part of families with a long history

of Lynch Syndrome-related cancers. Panel (a) of Figure 1 (red line) presents the lifetime cancer

incidence that the Lynch-affected parents9 of individuals in my sample experienced. By the age

of 50, over half of these parents developed some form of cancer (mostly colorectal). By the age

of 70 this portion exceeded 80%. In comparison, the estimated lifetime cancer incidence faced

by the general Dutch population (dashed blue line) is considerably lower, reaching about 16%

by the age of 70. These excessive cancer risks were also reflected in a substantially reduced life

expectancy. Panel (b) compares the age-dependent survival of the Lynch-affected parents with

the survival of a comparable cohort from the Dutch population.10 The difference in lifespan

is dramatic: while the median length of life in the population was 81 years (84 for females,

77 for males), I estimate a median lifespan of only 68 years (75 for females, 63 for males) for

the Lynch-affected parents. Pylvänäinen et al. (2012) report a similar lifespan reduction in a

Finnish sample. To put it into context, the 13 years reduction in median lifespan even exceeds

the negative effects of lifetime smoking (10 years) (Doll et al., 2004).

Although the experiences of their parents are likely important factors in how tested indi-

viduals think about the risks of Lynch Syndrome, my data also enables me to give an estimate

9 As discussed in Section 3, one of the parents of the individuals in my sample was almost certainly carrying a
Lynch-specific gene mutation, although they might have died before genetic testing became available. I determine
if this parent is the mother (maternal inheritance) or the father (paternal inheritance) using family trees preserved
in the Dutch Hereditary Cancer Registry. I refer to this parent as the Lynch-affected parent. It seldom happens
that both parents carry a Lynch mutation, and in these cases their children very rarely survive to adulthood.

101929 is the median birth year of the Lynch-affected parents.
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In both figures, the line Lynch-positive parent presents non-parametric Kaplan-Meier estimates on cancer
incidence and survival, respectively, for the Lynch-affected parents of the tested individuals in my sample.
I determine the Lynch-affected parent (mother or father) based on family information stored in the Dutch
Hereditary Cancer Registry. Data on cancer incidence is also from the DHCR. Data on birth and death
years are partially from the DHCR and partially from Statistics Netherlands. In figure (a), the line Dutch
population refers to the probability of being diagnosed with at least one cancer among the general Dutch
population, calculated following Sasieni et al. (2011), based on current cancer incidence statistics. In figure
(b), the line 1929 birth cohort refers to the survival probabilities of those Dutch individuals who were born
in 1929 and who were still alive at the age of 21 in 1950. I estimate these survival probabilities using public
data of Statistics Netherlands.

Figure 1: Effects of Lynch Syndrome on the cancer incidence and survival of the Lynch-affected
parents of people in the sample

of tested individuals’ realized cancer and mortality risks. As Panel (a) of Figure 2 presents,

LS-positive individuals in my sample have experienced a lower increase in cancer incidence

compared to the general population than their parents (a gap of about 30 percentage points by

the age of 50 vs. a gap of 50 pp. for their parents at the same age). They have also suffered,

thus far, from lower mortality: In Panel (b) of Figure 2 I fit a parametric survival model on

the observed mortality patterns of positive- and negative-tested individuals in my sample. The

estimates suggest a 3.2 years reduction in median lifespan for the LS-positive group.11 This

is still a non-negligible reduction in lifespan, comparable to the negative effects of smoking if

someone quits at the age of 50 (Doll et al., 2004). The main reason behind this improvement

is the availability of risk mitigating procedures, periodical cancer screenings and in some cases

preventive surgeries.12

11The parametric Gompertz model controls for sex, the age at testing in groups of 10 years, the mutation type,
and the partnership status in the year before testing. I also perform a non-parametric Kaplan-Meier survival
analysis, which suggests a 4 year median lifespan difference between positive- and negative-tested individuals.
These estimates should be treated with caution as they are not statistically significant, presumably due to the
very low number of deaths (77 out of the 890 people) that I observe.

12Preventive surgery against colon cancer (colectomy, the surgical removal of most of the colon) is rarely
applied due to the associated reduction of quality of life, but regular colonoscopy screenings can substantially
reduce colorectal cancer incidence and mortality among LS patients (De Jong et al., 2006). The evidence on
the benefits of gynecological screenings is more limited; on the other hand, prophylactic hysterectomy (removal
of the uterus/womb) and salpingo-oophorectomy (removal of the ovaries and the Fallopian tubes) can eliminate
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In figure (a) the line Positive-tested presents non-parametric Kaplan-Meier estimates on the cancer incidence
(any cancers) of positive-tested people in my sample. The start of the observation time is the year of genetic
testing, failure is defined as developing cancer for the first time, and observations are censored at the year of
death or 2018 at the latest. Observations are not censored at the year of preventive surgeries. The line Dutch
population refers to the probability of being diagnosed with at least one cancer among the general Dutch
population, calculated following Sasieni et al. (2011), based on current cancer incidence statistics. In figure
(b), the two lines refer to positive- and negative-tested individuals in my sample. Survival curve estimates
from a parametric (Gompertz) survival model are presented. The model controls for sex, the age at testing
in groups of 10 years, the mutation type, and the partnership status in the year before testing.

Figure 2: Effects of Lynch syndrome on the cancer incidence and survival of people in the
sample

Individuals tested for Lynch Syndrome take their genetic test results seriously: They cor-

rectly recall their test outcome, exhibit high compliance with recommended cancer screening

protocols, and positive-tested individuals in general report their cancer risks as high (Aktan-

Collan et al., 2001; Järvinen et al., 2009). I also estimate a very high compliance with the

recommended cancer screening protocols in my sample (Figure A5 of Appendix A). Before

testing, both eventually positive-tested and negative-tested individuals participate in cancer

screening on average once every five years (1/0.2). These screenings include colonoscopies and

gynaecological check-ups. Following testing, negative-tested individuals completely stop with

the screenings, while those who test positive start to screen on average every two years. This is

in line with the medical recommendations.

The changes in the cancer screening behavior of the two groups highlight that tested indi-

viduals understand and internalize their test results. It is less obvious how they update their

beliefs on cancer risks and mortality, as this depends on how they perceived the risks in LS

before testing. A large literature argues that individuals rely on the longevity of relatives when

the risks of endometrial and ovarian cancer. These procedures are recommended to LS-positive women after
the age of 40, and/or once they do not wish to have (more) children. The increased risks of extra-colonic and
extra-endometrial cancers (e.g. upper urological tract, pancreatic cancer, and brain cancer) in LS are hard to
mitigate. Pylvänäinen et al. (2012) estimate that in recent years these types of cancer are responsible for about
half of all cancer-related mortality among LS-positive individuals.
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they form subjective survival expectations (Hamermesh, 1985; Hurd and McGarry, 2002, 1995).

In this case tested individuals may fear a LS that reduces their life expectancy by 13 years.

These beliefs would not necessarily be irrational given that tested individuals might not have

perfectly foreseen that improved screening and prevention would reduce the mortality of Lynch

Syndrome. On the other hand, positive-tested individuals in my sample regularly participate

in cancer screenings, which suggests that they expect to benefit from these procedures. My

estimates on objective mortality bound the subjective beliefs on the negative mortality effects

of LS between 3.2 years and 13 years.13

Cancers associated with Lynch Syndrome may not only increase mortality but might also

threaten with high medical costs and disability. The impact of these risks appears to be limited

in the Netherlands. The Dutch universal health insurance largely alleviates the threat of exces-

sive medical costs, although due to deductibles a part of cancer screening and eventual cancer

treatment costs must be paid out of pocket (up to approximately EUR 300 per year during the

sample period).14 The Netherlands also offers a generous and comprehensive public long–term

care system, where the role of out-of-pocket expenses, about 9% of total costs, are small relative

to other countries (Bakx, O’Donnell, and Van Doorslaer, 2016). The threat of earnings loss due

to disability also appears to be bounded. I estimate that in the first 15 years after testing,

positive-tested individuals in my sample are on average only slightly more likely (1.9 pp., not

statistically significant) to receive disability benefits than negative-tested individuals (column 3

of Table A1 in Appendix A). It is possible that tested individuals form their beliefs on disability

risks in LS based on their parents’ experiences. There are no good data available on the fre-

quency of disability among these Lynch-affected parents. Based on cases of both hereditary and

non-hereditary cancers, Crego et al. (2022) estimate that disability risks in the most frequent

types of cancers in LS (colon cancer and cancers of the female reproductive organs) are not

excessive. Among the 5-year survivors of colon cancer (cancers of the female reproductive or-

gans), 14% (6%) are disabled and those working lose about 3% (0%) of their labor income. The

risk of income loss in LS is also limited by the very generous Dutch disability insurance scheme.

This statutory insurance covers non-work-related disability as well, and on average replaces 70

percent of lost gross earnings. In the past, the statutory scheme was often supplemented by

non-statutory benefits for specific collective labor agreements, raising the replacement rate of

13Data on subjective mortality beliefs are not available in administrative datasets. In an ongoing study, in
collaboration with the Netherlands Foundation for the Detection of Hereditary Tumors, I develop a survey that
offers the possibility to measure the subjective beliefs and preferences of individuals who have tested positive for
a LS gene. This study may shed some light on this question.

14People diagnosed with Lynch Syndrome may be recommended to follow a healthy diet. They might also
decide to exercise more. There are no good data on the costs of these lifestyle behaviors, but their effects on
household budgets are likely limited.
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workers from 70 to 80 or even 90% (Koning and Lindeboom, 2015). The progressive Dutch

tax system and a broad range of means-tested benefits further increase the (net) replacement

rate. Finally, Dutch laws guarantee access to health and non-health insurance products under

generous conditions for those affected by hereditary conditions (proven by genetic testing or

only suspected).

2.2 Theoretical Predictions

This paper studies the role of life expectancy on individuals’ wealth accumulation, labor supply

and portfolio allocation decisions. In life-cycle models of savings, decreasing longevity implies

that individuals are less likely to live into the retirement age when they may need to supple-

ment their pension income from their savings. This decreases the motivation to save at all

ages, and leads to slower wealth accumulation (or faster de-accumulation).15 On the other

hand, decreasing longevity may also be associated with increasing morbidity and decreasing

labor productivity, which may shorten the active working life and increase the need for saving

(Bloom et al., 2003). As discussed in the previous section, this latter channel is likely of lim-

ited importance for Lynch-affected Dutch individuals whose labor income is well-insured by the

generous disability insurance schemes. Precautionary saving is another savings goal. The high

cancer risks in LS might motivate people to precautionarily save against medical costs. How-

ever, the Dutch universal health insurance scheme greatly limits this motive.16 Finally, people

may also save to leave bequests. People with strong bequest motives may reduce their savings

rate less when faced with decreasing longevity. On the other hand, they might also decide to

transfer their wealth to the next generation when they receive information on their mortality,

in order to optimize inheritance tax payments (Kvaerner, 2022). Such transfers might lead to

decreasing wealth levels.

Changing life expectancy may also impact optimal labor supply and retirement decisions.

Bloom et al. (2003) shows that under the assumption that consumption and leisure are normal

goods (i.e., the demand for both rises when wealth increases), decreasing life expectancy reduces

labor supply and the optimal life spent working.

Reduced life expectancy can also impact individuals’ portfolio allocation. Decreasing labor

supply reduces the present value of future labor income, which is often considered as a safe

asset in portfolio allocation problems. To keep overall portfolio risks unchanged, the individual

15The effects of a probabilistic increase in mortality risks would be more moderate than the effects of a non-
probabilistic reduction of longevity. This is because individuals precautionarily save against longevity risk, the
risk of outliving their resources (De Nardi, French, and Jones, 2009).

16People may also save to cover the costs of their funerals. However, about 3/4rd of the Dutch population is
covered by a funeral insurance.
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would then need to decrease their allocation to risky assets within their financial portfolio.

A shorten life expectancy also reduces the planning horizon. With mean-reverting returns,

Barberis (2000) shows that a reduced planning horizon leads to a decreased allocation to risky

assets. Finally, if individuals’ preferences exhibit decreasing relative risk aversion (DRRA),

lower wealth accumulation under reduced life expectancy may lead to a decreasing portfolio

allocation to risky assets (Doeskeland and Kvaerner, 2022).

3 Estimation

3.1 Empirical Strategy

Genetic testing offers the prospect of an ideal natural experiment to estimate the causal effects

of the changing risks associated with a positive or negative test result. This is because con-

ditional on the probability of testing positive, the potential outcomes of tested individuals are

independent of their realized test results.

There are two principal empirical challenges that we must overcome to reach this ideal

experiment. The first is to establish the probability of testing positive for tested individuals

in the sample, or to control for the covariates that determine this probability. The second is

to observe both positive and negative test results. The institutional setting of genetic testing

among families in my sample ensures that tested individuals almost certainly faced a 50%

probability of inheriting a LS mutation. This is because within the Lynch-affected families

registered in the DHCR, testing in general followed a systematic procedure referred to as cascade

screening. The idea of cascade screening is to only test individuals who have a proven mutation

carrier first-degree relative (parent or sibling). Having a mutation carrier first-degree relative

puts the risk that the tested individual had inherited the mutation at 50%.17 Figure A4 in

Appendix A presents a simplified pedigree (family tree) of a family registered with the DHCR,

and discusses how cascade screening was implemented in the family.

17The cascade screening procedure can not always be implemented, for example in the case of the initially
tested family member (the so-called proband). However, probands are usually individuals with a history of
Lynch-specific cancer. As I exclude all individuals who had cancer before testing, I also exclude such probands.
Another case when cascade screening is not possible is when an individual has no surviving first-degree relatives
(FDRs), and none of the deceased FDRs has previously tested positive. This mostly occurs when an individual’s
LS-suspected parent has already passed away. Nevertheless, if this parent has previously developed any cancer
that is highly specific of LS (e.g., colon or endometrial cancer at a young age) that would very strongly suggest
that they were Lynch mutation carriers. To verify that almost all individuals in my sample faced a 50% at-birth
risk, I collect data on the cancer history and DNA test results of tested individuals’ FDRs from family trees
and other registers available at the DHCR. Based on criteria discussed in Appendix C.1 (e.g., previously positive
tested FDR, parent that had LS-specific cancer, parent that died at a very young age), I find that at least 93%
of my sample faced almost certainly a 50% risk of inheriting LS. This is a lower bound estimate because cancer
and DNA testing history of family members is incomplete for many families/individuals. In robustness tests (in
Panel D of Table A3 in Appendix A), I repeat my main analyses on this sub-sample of almost certainly 50%
at-birth risk individuals. I find results close to identical to those in my baseline sample.
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While individuals in my sample start their life at a 50% risk of LS, they may also learn

about their mutation status by developing or not-developing a LS-specific cancer. For example,

staying cancer-free by the age of 70 greatly reduces the risk of carrying a LS mutation. On

the contrary, being diagnosed with colon cancer at the age of 40 is highly indicative of LS. The

DHCR contains comprehensive information on the cancer diagnoses of registered individuals.

Because individuals who already had cancer may learn little from genetic testing, and because

they might suffer from bad health, I exclude them from my sample. To ensure that positive- and

negative-tested individuals are comparable conditional on entering my sample (i.e., not having

developed cancer yet), I control for three observable characteristics that are the most important

determinants of cancer-manifestation in Lynch Syndrome. These are the age at testing, sex,

and the gene that causes LS in the tested individual’s family (MLH1, MSH2, MSH6, PMS2, or

EPCAM).18

The second empirical challenge is to collect the genetic test results of all individuals who

undergo testing, irrespective of the test outcome. This is crucial because as Oster, Shoulson,

and Dorsey (2013) also highlight, the kind of persons who want to share their test results despite

testing negative for a condition may form a highly selective group. For example, they may have

greater family involvement of Lynch Syndrome, they may be more altruistic and aim to help

scientific research, or they might simply doubt their test results. Using data from the Dutch

Hereditary Cancer Registry makes it possible to overcome this challenge. The key characteristic

of my sample is that it is based on individuals who had registered with the DHCR before they

underwent genetic testing. This is because they belong to families where the presence of Lynch

Syndrome had been strongly suspected based on family history of cancer. Crucially, the DHCR

strives to obtain the genetic test results of all registered and tested individuals, irrespective

of the test outcome. The registry can achieve this because it has strong connections with the

registered individuals and their doctors.

That the DHCR does an excellent job in tracing genetic test results is also illustrated by

Figure 3. The figure presents the share of positive-tested individuals (y-axis) at different ages of

testing (x-axis). The solid red line shows the share that I observe in my sample (Observed). The

dashed blue line presents the share that we would expect among cancer-free individuals with a

50% at-birth risk of LS (Expected). I calculate this latter measure using Bayes’ rule based on

18Because testing is voluntary, individuals might select into testing based on any observable or unobservable
characteristics. However, selection into testing could only bias the comparison of positive- and negative-tested
individuals if it is based on a characteristic that is correlated with the LS mutation carrier status. As Figure
A5 of Appendix A reveals, positive- and negative-tested individuals were equally likely to participate in cancer
screenings before learning about their genetic test results. Also, as Table 1 below presents, these two groups
exhibited very similar pre-testing characteristics. These facts provide strong evidence that selection into testing
was not different between mutation-carrier and non-carrier individuals.
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cancer incidence estimates for LS mutation carriers and for non-carriers. The two lines almost

perfectly coincide. As previously discussed, individuals who start their life at a 50% risk of

having inherited LS are equally likely to test positive and negative at the age of 25. This is

because LS-specific cancers do not manifest before this age. In older ages, as I exclude from the

sample individuals who already had cancer, the expected share of positive-tested individuals

decreases.
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The figure presents the probability of testing positive conditional on no prior cancer. Observed refers to
the probability observed in my sample, fitted values from a regression of an indicator of testing positive
on a 3rd degree age polynomial. Expected is calculated using Bayes’ rule assuming a 50% probability of
carrying the mutation at birth, and cancer incidence estimates for LS mutation carriers and for non-carriers.
Cancer incidence estimates are based on the estimates for the Lynch-affected parents and the general Dutch
population presented in Panel (a) of Figure 1.

Figure 3: Probability of testing positive conditional on no prior cancer

While Figure 3 presents evidence that the sample includes a balanced number of positive

and negative tested individuals, Table 1 reveals that these individuals are also very similar

before they undergo genetic testing. The table presents results from linear regressions where the

outcome variable is regressed on an indicator of having a positive test result. The sole significant

differences between positive- and negative-tested individuals are in the age at testing and an

indicator for facing the risk of a mutation in the MLH1 or MSH2 genes. This is as expected

because both higher age and having an MLH1/MSH2 mutation are increasing the cumulative

risk of cancer among LS-mutation carriers, i.e., mutation carriers with these characteristics are

less likely to be included in the sample of cancer-free individuals. As previously discussed, I
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Table 1: Comparing pre-testing characteristics of positive- and negative-tested individuals

Variable Positive S.e. Mean N
(1) Age at test -5.07∗∗∗ 0.78 43.03 890
(2) MLH1/MSH2 mutation -0.05∗ 0.03 0.84 890
(3) Female 0.00 0.03 0.55 890
(4) Year of DNA test 0.06 0.31 2002.54 890
(5) Number of siblings -0.05 0.17 4.33 713
(6) Maternal inheritance 0.02 0.04 0.45 789
(7) Parent had cancer before test 0.00 0.03 0.82 789
(8) Has child -0.02 0.03 0.72 877
(9) Has partner 0.04 0.03 0.79 856
(10) Working -0.03 0.04 0.78 591
(11) Annual salary if working (EUR) 2,365 2,454 34,668 463
(12) Disposable household income (EUR) 172 2,080 46,447 395
(13) Financial assets (EUR) 3,166 20,116 65,219 212
(14) Homeowner 0.02 0.04 0.74 554

The table reports coefficient estimates of regression models where individual and household characteristics
(measured in the year before genetic testing) are regressed on an indicator of testing positive. Robust standard
errors are presented in the column ’S.e.’. The unconditional mean in the sample is presented in the column
’Mean’. N refers to the number of observations, which varies between variables due to the different sample
periods (e.g., wealth variables for most individuals are only available from 2006) and the differences in the
sample selection criteria. The control variables are as follows. (1) Age at test: mutation type fixed effects and
gender; (2) MLH1/MSH2 mutation: age at test and gender; (3) Female: mutation type fixed effects and age
at test; (4) Year of DNA test: mutation type fixed effects, age at test, and gender; (5)-(14): mutation type
fixed effects, age at test, gender, and year fixed effects. Regressions (1) to (7) are estimated on the whole
sample, irrespective of the age at testing. For the remaining variables I apply the same sample selection
criteria as elsewhere in the paper and include individuals who are (8)-(9) at least 20 years old, (10)-(12) 25
to 64 years old and diagnosed before turning 61 years old, (13)-(14) at least 25 years old and classified as the
household head or their partner. * p < 0.1, ** p < 0.05, *** p < 0.01

control for these two characteristics (and for sex) when I compare the economic outcomes of

positive- and negative-tested individuals.

Regression Models – Although, as Table 1 presents, positive- and negative-tested indi-

viduals in my sample are very similar before testing, some small imbalances are still present

between the two groups. For example, positive-tested individuals are slightly more likely to

have a partner but less likely to have children before testing. These small initial imbalances

could bias our estimates of the causal effects of testing positive if we simply compared the

outcomes of positive- and negative-tested individuals in the period after testing. Therefore, to

further sharpen my identification strategy, I also exploit pre-testing data and control for indi-

vidual fixed effects in my regression models. This eliminates the effects of potential differences

in time-invariant characteristics. My baseline regression model is,

yi,t = αi + δt +
14∑

k=−6,k ̸=−1

βk{Ki,t = k} · Ti + γ ′
Ki,t

Xi + λ′Zi,t + εi,t (1a)

where yi,t stands for outcome y (such as having a partner or labor earnings) of individual
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i in calendar year t. αi are individual fixed effects. δt are calendar year fixed effects. Ki,t

represents the relative years since the genetic test, where Ki,t = 0 is the year of the test. Ti

is the treatment indicator that takes the value 1 for positive-tested and 0 for negative-tested

individuals. βk are the coefficients of interest, they represent the differential time trend (in

relative years) of positive-tested individuals compared to negative-tested individuals (whose

time-trend is picked up by γ ′
Ki,t

Xi). β−1 (the difference between positive- and negative-tested

in the year before testing) is normalized to 0 due to the individual fixed effects. γ ′
Ki,t

Xi are the

relative year-specific effects of the three characteristics that I assume to drive cancer risk in LS,

sex, age at testing, and mutation type. I control for these characteristics because they affect

selection into the sample (due to the condition of having had no cancer before genetic testing).

Age at testing enters Xi linearly, while mutation type refers to a set of indicators for each of

the five Lynch genes (with the gene that the individual was tested for coded as 1, the remaining

genes as 0). Zi,t are a set of indicators for the individual’s sex (female, male) interacted with

the individual’s age. The error term εi,t is clustered at the individual level. The sample period

is from 6 years before the genetic test to 14 years after.

For outcome variables that are derived from household balance sheet data, such as wealth

components, the active savings rate, and the stock market participation indicator, I primarily

rely on a version of Model 1a that controls for group (positive-tested) fixed effects instead of

individual fixed effects. This is because wealth data are only available from end-2005 for the

majority of individuals in my sample. Because many people tested earlier than 2006, for 3/4th

of the sample no wealth data are available before testing. Using group fixed effects instead of

individual fixed effects enables me to exploit the information provided by these individuals too,

while still controlling for time-invariant differences between the positive and negative-tested

groups. The resulting model is

yi,t = αTi + δt +
14∑

k=−6,k ̸=−1

βk{Ki,t = k} · Ti + γ ′
Ki,t

Xi + λ′Zi,t + εi,t (1b)

where αTi was substituted for αi. For all outcomes where my primary specification is Model

1b, I also execute robustness tests using Model 1a. These robustness tests provide similar results

to the primary specification, although often yield larger standard errors.

While models 1a and 1b make it possible to evaluate pre-trends by observing the estimated

βk for all k < 0, as Borusyak and Jaravel (2017) note, they do not estimate the treatment

effects efficiently: Given no pre-trends all βk, k < 0, should be set to zero. I estimate two

difference-in-differences specifications corresponding to Model 1a and Model 1b, respectively,

where I compare changes between the pre-testing and post-testing periods,
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yi,t = αi + δt + β{Ki,t ≥ 0} · Ti + Controls+ εi,t (2a)

yi,t = αTi + δt + β{Ki,t ≥ 0} · Ti + Controls+ εi,t (2b)

where β represents the average treatment effect for the first 15 years (0 to 14) of the treat-

ment. Controls stands for γ ′
Ki,t

Xi + λ′Zi,t. To summarize treatment dynamics, I also split the

post-testing period into three 5-year periods (year 0 to 4, 5 to 9, and 10 to 14),

yi,t = αi+δt+βs{Ki,t ∈ [0, 4]}·Ti+βm{Ki,t ∈ [5, 9]}·Ti+βl{Ki,t ∈ [10, 14]}·Ti+Controls+εi,t

(3a)

yi,t = αTi+δt+βs{Ki,t ∈ [0, 4]}·Ti+βm{Ki,t ∈ [5, 9]}·Ti+βl{Ki,t ∈ [10, 14]}·Ti+Controls+εi,t

(3b)

where βs, βm, and βl identify the short-, medium-, and long-term treatment effects, respec-

tively. Controls stands for γ ′
Ki,t

Xi + λ′Zi,t.

I study treatment heterogeneity in Models 2a-2b and 3a-3b by partitioning the sample into

sub-samples. Finally, when I study differential treatment effects across age groups, I interact

the Post*Treated indicator {Ki,t ≥ 0} ·Ti in Models 2a-2b with age group indicators Ai,t. I also

include the interaction of Ai,t with the relative year in γKi,t,i.

Attrition – Although by its nature administrative data do not suffer from attrition prob-

lems, attrition does arise due to death, emigration, and most importantly in my design, due to

cancer diagnoses and preventive surgeries. Because I aim to separate the effects of current bad

health from expectations of future health shocks, I only keep individuals in my sample as long

as their health is unimpaired by Lynch Syndrome. I exclude all observations after an individual

has developed cancer or has undergone preventive surgery. As Figure A6 in Appendix A reveals,

by 14 years after genetic testing about 30% of the positive-tested individuals are removed from

the sample due to having cancer or preventive surgeries. Excluding these individuals might

introduce attrition bias. On the other hand, as Table A3 in Appendix A presents, my main

estimates change only slightly when I do not to exclude people who had cancer (panel B) or

those who had cancer or preventive surgeries (panel C).

Staggered Difference-in-Differences – A recent literature highlights that two-way fixed

effects estimators may yield biased estimates of the average treatment effect if treatment effects
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are heterogeneous over time or across units (De Chaisemartin and D’Haultfoeuille, 2022). At

the heart of the problem are ”forbidden comparisons” between outcomes of earlier and later

treated units (Goodman-Bacon, 2021). Several authors propose alternative estimators that are

based on the comparison of treated units with never-treated, not-yet-treated or last-treated

units (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021). This problem is not applicable

to my setup because my regression models do not compare earlier and later treated individuals.

In each regression, I control for the years passed since the genetic test, i.e., I compare positive

and negative tested individuals who got tested exactly K years ago. Controlling for the years

passed since treatment is not possible in standard staggered difference-in-differences models

because the time period of treatment is undefined for the never-treated (control) units. In my

set-up there are no classical control (never-treated) units, instead individuals receive one of two

types of treatment in the year of testing, i.e., they are either tested positive or negative.

3.2 Data

This paper uses administrative microdata from the Netherlands, which I enrich with data on

genetic testing for Lynch Syndrome from the Dutch Hereditary Cancer Registry. This subsection

presents an overview of the main data sources and variables used in the paper. For a detailed

description see Appendix B. Table B1 in Appendix B provides summary statistics for the main

dependent variables.

The Dutch Hereditary Cancer Registry – My data on people at risk of Lynch Syn-

drome, the genetic tests they undertake, their cancer diagnoses, and the preventive surgeries

they undergo come from the Dutch Hereditary Cancer Registry administered by The Nether-

lands Foundation for the Detection of Hereditary Tumors (www.stoet.nl). The registry was

established in 1985 by a collaborative group of physicians with an interest in hereditary col-

orectal cancer. Its main goals are to promote the identification of families with various forms

of hereditary cancer, including Lynch Syndrome, and to encourage high-risk individuals to

participate in medical surveillance programs.

Being established before the discovery of the genes responsible for Lynch Syndrome, dur-

ing its initial phase of operation the DHCR registered individuals who were at risk of Lynch

Syndrome based on clinical criteria (personal and family history of cancer). Starting from the

family members already in scope, genetic fields workers drew up family trees (pedigrees), iden-

tified other at-risk family members, and provided information on cancer surveillance options.

Family members were prompted to register with the DHCR by signing a written consent form.

The discovery of the major gene defects responsible for most of the hereditary cancer syndromes
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during the 1990s profoundly changed the identification of Lynch Syndrome families and family

members at risk. Diagnosis shifted from using clinical criteria to testing for genetic mutations

in the Lynch genes. On the one hand, this enabled a more precise diagnosis of LS for individuals

with cancer. On the other hand, it also contributed to the better identification of LS families

and made predictive testing at the individual level possible.

Once genetic testing became available, many registered participants decided to undergo test-

ing. Crucially, because these individuals had already registered with the DHCR, administrators

strived to obtain their genetic test results regardless of the test outcome. This ensures a bal-

anced sample of positive and negative tested individuals among people who registered with the

DHCR before genetic testing.

Genetic testing - Information on the date/year of the genetic test, the tested gene (MLH1,

MSH2, MSH6, EPCAM, or PMS2.), and the test outcome (mutation carrier or non-carrier).

Figure A1 in Appendix A presents the distributions of the year of testing and the age at testing

in the sample of 890 individuals.

Cancer diagnoses and preventive surgeries - Cancer diagnoses (date, classification code) and

preventive surgeries (date, type of surgery) are reported either by the registered individual, the

individual’s physicians (general general practitioner, medical specialists), or the individual’s

family members. As the DHCR establishes strong relations with the registered families, their

general practitioners, and their medical specialists, the registry receives regular updates on the

cancer screenings, cancer diagnoses, and preventive surgeries of registered individuals.

Administrative Data – Statistics Netherlands (SN) offers a broad set of microdata files

that can be matched at the individual level using pseudo-anonymized identifiers. External

datasets can be matched to the existing collection of microdata files securely. Matching requires

identifying information in the form of either a social security number (BSN number) or the

combination of date of birth, sex, and address details. Due to the high-quality identifying

information, about 98% of all individuals in the DHCR who underwent DNA testing following

registration could be matched to the SN microdata files.

Demographics - Information on age, sex, household composition, partners (married and

non-married), and children, among others. Address information (pseudo-anonymized).

Labor outcomes - Pre-tax labor earnings are available for the whole Dutch working popula-

tion from 1999. From 2001 on the number of full-time equivalent days worked is also available.

For a random sample of about 1/3rd of all Dutch households, pre-tax labor earnings are also

available between 1995 and 1998.

Household income - Disposable household income for the whole Dutch population from
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2003, and for a 1/3rd random sample between 1995 and 2002. Disposable household income is

the sum of the gross personal income (pre-tax labor income, entrepreneurial income, transfers

such as unemployment, sickness, disability insurance benefits, pension benefits, social security

benefits, housing allowance, alimony) of all household members plus household-level income

(income from wealth, and some subsidies received at the household level such as child-related

subsidies) reduced with alimony and other transfers paid at the household level and taxes on

income and wealth.

Household balance sheets - From 2006 on Statistics Netherlands collects annual microdata

on all Dutch households’ wealth, including information on assets (financial assets, financial

securities, primary residence, other real estate, entrepreneurial capital, substantial interests,

and other assets) and debts (mortgage and other). These data are collected either from income

tax declarations (wealth is taxed above a certain exemption amount) or from registers of financial

institutions that are directly linked to the tax authorities and/or Statistics Netherlands (e.g.

stock ownership registry). The level of observation is the household, the wealth of partners

is aggregated. My main dependent variable among balance sheet items is financial assets, the

sum of bank deposits/savings and financial securities. In my baseline specification, I winsorize

financial assets at the 1st and 99th percentiles to reduce the influence of extreme asset values. I

also use the log of financial assets as a dependent variable. In addition, I construct a measure

of financial assets scaled to the mean household disposable income of the individual during the

sample period.

Homeowner - Indicator based on the household income files and ownership status files.

Available for the whole Dutch population from 1999.

Stock market participation and share of risky financial assets - A household is assumed to

participate at the stock market if they have a non-zero holding of financial securities19; the

share of risky financial assets is defined as the ratio of financial securities to total financial

assets (including bank and savings accounts). In my baseline specifications, I only consider

household-year observations if the household has at least EUR 2,500 in bank deposits/savings

(i.e. non-risky financial assets).

Savings rate - One minus the ratio of household-level consumption and household dispos-

able income. Household-level consumption is derived from the accounting identity that total

household spending is equal to income plus capital gains minus the change in wealth over the

19 Financial securities might also include direct bond holdings and investment in mutual funds that partially
invest in safe assets; however, the share of safe assets in total financial securities appears to be limited. Using
detailed survey data, Gaudecker (2015) finds that only 5% of Dutch households with financial securities do not
own any shares or mutual funds but instead own only bonds or options, and that the majority of mutual funds
held are equity funds. Using data from Statistics Netherlands, I estimate that only 17% of households with
financial securities in 2011 received any interest payments from bonds.
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period (Eika, Mogstad, and Vestad, 2020). I correct for capital gains on financial securities

using national account data on the mutation in stocks and bonds due to financial transactions

and due to changing prices, following Ji, Teulings, and Wouterse (2019). For the principal

residence, if a homeowner household does not change address and continues to own its home,

I assume that all value changes are from capital gains. In case a homeowner household moves

but stays a homeowner, I assume that capital gains for the whole year are proportional to the

growth rate of home values in the municipality of origin. If a homeowner household becomes

a renter or a renter household becomes a homeowner, I assume that it earns capital gains for

the fraction of the year it was a homeowner based on the growth rate of home values in the

municipality of origin.

For other real estate, I assume zero capital gains if the households moves from not owning

any other real estate to owning any, or vice-versa. If the household continues to own other real

estate, I assume all year-on-year value changes up to 15% of the base year value to be capital

gains, following Ji, Teulings, and Wouterse (2019). I assume that capital gains on savings

accounts, entrepreneurial wealth, substantial interests, and other assets can be neglected. For

additional sample selection criteria and trimming/winsorization see Appendix B Table B3.

4 Results on Wealth Accumulation

I start my analysis by documenting the effects of Lynch Syndrome on household wealth accumu-

lation. It is important to keep in mind that the treatment effects presented below are differences

between the outcomes of positive- and negative-tested individuals. Both groups may learn from

their genetic test results and both may change their behaviors afterwards. The differences be-

tween the outcomes of the two groups identify the causal effects of the risks associated with

LS.

Figure 4 presents dynamic treatment effect estimates from Model 1b. The figure reveals

a strong negative effect on households’ financial assets. Following genetic testing, households

of positive-tested individuals accumulate lower financial assets than those of negative-tested

individuals: five years after testing they have about EUR 50,000 (panel a) or 39% (exp(−0.5)−1)

(panel b) lower financial assets. Financial assets include both bank deposits and financial

securities (stocks, bonds, and investments in funds). After the initial 5 years, the difference

between the two groups appears to stabilize, although as the wide confidence bounds suggest,

treatment dynamics should be interpreted cautiously.

While financial assets constitute a large part of the household balance sheet, genetic testing

may affect other balance sheet items as well. Table 2 presents treatment effect estimates on
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The figure shows the dynamic effects of testing positive on financial assets (panel a) and log financial assets
(panel b). Coefficient estimates from Model 1b are presented. The x-axis shows the year relative to the year
of the genetic test. The figure presents 95% confidence intervals based on standard errors clustered at the
individual level.

Figure 4: Dynamic treatment effects on financial assets and log financial assets

the different items of the household balance sheet. I decompose household net wealth into four

components, (1) financial assets, plus (2) net real estate (the sum of all real estate minus the

mortgage on the primary residence), plus (3) other assets (business wealth, additional assets

incl. cash), minus (4) other debt (student loans, consumer loans etc.).20

Column (1) of Table 2 summarizes the treatment effects on financial assets in a single

difference-in-differences coefficient (DiD) and three time-period specific coefficients based on

Models 2b and 3b, respectively. The DiD coefficient shows that the year-end financial assets of

positive-tested individuals are on average EUR 60,000 lower in the period after testing (years 0 to

14), compared to the financial assets of negative-tested individuals and the period before testing.

This is an economically significant effect equal to about 80% of the sample mean of financial

assets (EUR 77,000). The three time-period specific coefficients show the average treatment

effect for years 0 to 4, 5 to 9, and 10 to 14, respectively. These coefficients reflect the dynamics

presented in panel (a) of Figure 4, a large negative effect during the first years with subsequent

stabilization. Columns (2) and (3) study the two components of financial assets separately: Both

bank deposits and financial securities (stocks, bonds, and investments in funds) are negatively

affected. Column (4) reports no effects on a binary indicator of homeonwership. Columns

(5) to (7) study other net wealth components, net real estate, other assets, and other debt.

None of these other wealth components are statistically significantly affected by genetic testing,

20Net real estate is the largest wealth element of the households in my sample (mean: EUR 135,000, median:
EUR 65,000), followed by financial assets (mean: EUR 77,000, median: EUR 24,000), other assets (mean: EUR
61,000, median: EUR 0), and other debt (mean: EUR -23,000, median: EUR 0).
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Table 2: Treatment effects on wealth components

(1) (2) (3) (4) (5) (6) (7)

Financial
assets

Deposits Securities
Home
owner

Net real
estate

Other
assets

Other
debt

(EUR) (EUR) (EUR) (binary) (EUR) (EUR) (EUR)

DiD -60,126∗∗∗ -25,142∗∗∗ -28,479∗∗ -.0066 -12,462 -2,694 3,815
(19,829) (8,481) (12,072) (.025) (26,137) (33,428) (10,218)

t=0-4 -31,091∗∗ -11,998 -16,010 -.0012 -7,142 13,121 2,266
(15,828) (7,445) (9,773) (.024) (21,275) (23,084) (7,240)

t=5-9 -71,817∗∗∗ -25,751∗∗∗ -36,402∗∗∗ -.0074 -10,038 -18,700 -1,466
(22,590) (9,096) (13,720) (.029) (28,326) (37,034) (12,572)

t=10-14 -66,435∗∗∗ -33,151∗∗∗ -27,997∗∗ -.017 -18,639 4,472 10,647
(22,690) (9,981) (13,703) (.033) (31,552) (40,087) (12,323)

Cons 94,538∗∗∗ 55,430∗∗∗ 33,024∗∗∗ .78∗∗∗ 138,655∗∗∗ 61,983∗∗∗ 21,953∗∗∗

(9,946) (4,048) (5,873) (.007) (10,431) (14,517) (4,612)

Ind 826 826 826 857 826 826 826
N 8,752 8,752 8,752 12,501 8,752 8,752 8,752

The table presents the differential changes in wealth components following genetic testing for positive-tested
individuals compared to negative-tested individuals. Financial assets (column 1) are the sum of deposits (2)
and financial securities (3). Financial securities include direct stock holdings, investments in funds, but may
also include bond holdings. Homeowner (4) is a binary indicator of owning a primary residence. Net real
estate (5) is the value of all real estate holdings minus the mortgage on the primary residence. Other assets
(6) include entrepreneurial wealth, private businesses, declared cash holdings etc. Other debt (7) includes
educational loans, bank account overdrafts, consumer durable loans, tax debt etc. All dependent variables,
besides Homeowner, are winsorized at the 1st and 99th percentiles. The row DiD reports the difference-
in-differences coefficient β from Model 2b, which estimates the treatment effects using all periods (from -6
to 14). The rows t=0-4, t=5-9, and t=10-14 report the coefficients βs, βm, βl from Model 3b, receptively.
These coefficients represent the treatment effects in different years after genetic testing. Cons reports the
constant, N stands for the number of individual-year observations, while Ind represents the number of unique
individuals in the sample. The sample includes individual-year observations when the individual is at least
25 years old and when they are classified by Statistics Netherlands as the household head or the partner
thereof. Standard errors clustered at the level of the individual are reported in parentheses, * p < 0.1, ** p
< 0.05, *** p < 0.01

although we can observe some negative impact on net real estate wealth. In summary, Table 2

presents evidence that the reduced life expectancy associated with LS has a negative effect on

financial asset accumulation, while it does not significantly affect other wealth components.

The baseline effect of a EUR 60,000 lower financial asset accumulation is an average treat-

ment effect across all tested individuals. As the distribution of financial assets is skewed, even

after winsorization, it is well possible that the large negative effect is due to large treatment ef-

fects on the right tail of the financial assets distribution. Panel A of Table 3 estimates quantile

treatment effects on financial assets based on the non-linear difference-in-differences method

applied among others by Havnes and Mogstad (2015). The quantile treatment effects show

how the specific quantiles of the outcome variable changed due to the treatment, i.e., due to
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testing positive compared to testing negative.21 As the panel reveals, it is indeed the highest

quantiles of the financial assets distribution that are the most negatively affected in EUR terms.

However, lower quantiles of the distribution are also negatively impacted: The median financial

asset holdings among the households of positive-tested individuals are EUR 9,000 lower com-

pared to the median of negative-tested households. These results suggest that genetic testing

does not only affect the financial asset accumulation of the richest households.

Panel B of Table 3 estimates the treatment effects on two alternative transformations of

financial assets, and also presents results from three robustness tests. Column (1) shows the

estimated treatment effects on the natural logarithm of financial assets. The mean effect of -0.52

suggests that households of positive-tested individuals have about 40% (exp(−0.52)− 1) lower

financial assets in the post-testing period, compared to households of negative-tested individuals

and the period before testing. Column (2) show estimates where the dependent variable is

financial assets scaled by the household’s mean disposable income in the sample period. The

treatment effects are also large under this scaling: In the period after testing, positive-tested

households on average hold financial assets equal to a 72 percentage points (pp.) lower share

of their household income than negative-tested households. Columns (3) to (5) present results

from three robustness tests. In column (3), I do not winsorize financial assets at the 1st and

99th percentiles as in column (1) of Table 2. Instead, I exclude the top 1% of individuals with

the highest mean financial assets in the sample period (9 individuals), and use the unwinsorized

values of financial assets. I observe strong negative effects and similar treatment dynamics under

this specification as well. Column (4) is identical to the baseline specification but controls for

individuals fixed effects (Models 2a and 3a) instead of group fixed effects. The results hardly

change under this specification, although the standard errors are larger. Column (5) alters the

baseline specification by controlling for indicators of having a partner and having any children.

As the results show, the treatment effects are only slightly reduced in this specification. This

suggests that changing household composition, as documented below in Section 5, can only

account for a small part of the negative effects on financial asset accumulation.

21Havnes and Mogstad (2015) use non-linear DiD methods to estimate how a child care reform affected
the outcome distribution of exposed children as adults. Their main method, the one I adopt, is based on the
unconditional quantile regressions of Firpo, Fortin, and Lemieux (2009). I use the Stata command rifhdreg to
compute the quantile treatment effect estimates based on this method.
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Table 3: Treatment effects on financial asset quantiles, alternative measures, and robustness

Panel A: Unconditional Quantile Regressions
(1) (2) (3) (4) (5)

10th 25th Median 75th 90th

(EUR) (EUR) (EUR) (EUR) (EUR)

DiD -1,284 -3,070∗∗ -8,948∗∗∗ -29,698∗∗∗ -137,662∗∗∗

(918) (1,365) (3,231) (8,201) (35,568)

Cons 2,493∗∗∗ 8,405∗∗∗ 26,725∗∗∗ 71,271∗∗∗ 208,322∗∗∗

(295) (438) (1,088) (3,367) (12,226)

N 8,752 8,752 8,752 8,752 8,752
Ind 826 826 826 826 826

Panel B: Alternative measures of financial assets and robustness
(1) (2) (3) (4) (5)

Log financial
assets

Scaled to
income

Excluding
richest 1%

Individual
f.e.

Partner
control

(EUR) (EUR) (EUR)

DiD -.52∗∗ -.72∗∗∗ -40,343∗∗∗ -58,018∗∗ -57,759∗∗∗

(.21) (.25) (14,005) (25,945) (19,804)

t=0-4 -.31∗ -.39∗ -18,482 -47,302∗∗ -30,065∗

(.19) (.22) (11,775) (22,942) (15,742)

t=5-9 -.55∗∗ -.78∗∗∗ -46,083∗∗∗ -72,502∗∗ -69,125∗∗∗

(.22) (.26) (16,222) (30,887) (22,446)

t=10-14 -.63∗∗ -.87∗∗∗ -48,460∗∗∗ -68,498∗∗ -63,442∗∗∗

(.25) (.28) (16,477) (29,893) (22,799)

Cons 10∗∗∗ 1.4∗∗∗ 76,890∗∗∗ 96,008∗∗∗ 93,879∗∗∗

(.084) (.11) (7,182) (8,403) (9,880)

N 8,608 8,676 8,661 8,752 8,731
Ind 823 818 817 813 825

The table presents the differential changes in financial assets following genetic testing for positive-tested
individuals compared to negative-tested individuals. Panel A shows treatment effects on the quantiles of the
financial assets distribution. These estimates are based on the non-linear difference-in-differences method
used among others by Havnes and Mogstad (2015), which applies the unconditional quantile regressions of
Firpo, Fortin, and Lemieux (2009). Panel B shows two specifications based on alternative transformations
of financial assets, and presents results from three robustness tests. Log financial assets (1) are the natural
logarithm of financial assets. Scaled to income (2) refers to financial assets divided by mean household
disposable income in the sample period (winsorized at the 1st and 99th percentiles). The dependent variable
in columns 1 to 3 is financial assets. Excluding richest 1% (3) excludes the individuals within the top 1%
of the mean financial assets distribution (over the whole sample period). This column uses non-winsorized
values of financial assets. Individual f.e. (4) controls for individual fixed effects instead of group (positive-
tested) fixed effects. Partner control (5) controls for indicators of having a partner and any children. The row
DiD reports the difference-in-differences coefficient β from Model 2b, which estimates the treatment effects
using all periods (from -6 to 14). The rows t=0-4, t=5-9, and t=10-14 report the coefficients βs, βm, βl

from Model 3b, receptively. These coefficients represent the treatment effects in different years after genetic
testing. Cons reports the constant, N stands for the number of individual-year observations, while Ind
represents the number of unique individuals in the sample. The sample includes individual-year observations
when the individual is at least 25 years old and when they are classified by Statistics Netherlands as the
household head or the partner thereof. Standard errors clustered at the level of the individual are reported
in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01
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Finally, Table 4 studies treatment heterogeneity along three dimensions, gender, age at

testing, and having any children before testing. Panel A shows treatment effect estimates

on financial assets in EUR, panel B studies financial assets in logs, while panel C is based

on a measure which scales financial assets by mean household income. Columns (1) and (2)

split the sample into the sub-sample of males and females, respectively. Although none of the

differences are statistically significant22, treatment effects appear to be larger for males along all

three panels. A possible explanation is that Lynch Syndrome affects male life expectancy more

negatively: the Lynch-affected fathers of individuals in my sample lost on average 14 years of

their lives due to LS, while the Lynch-affected mothers lived 9 years shorter than the general

population. Columns (3) and (4) split the sample into those who test at an older and those

who test at a younger age than the median age at testing (41), respectively. While panel A

shows a slightly larger negative effect on the financial asset accumulation of the latter group,

this difference is hardly present in the other panels. Columns (5) and (6) split the sample into

those how have children before testing and those who do not have any children, respectively.

One could argue that individuals with children should be less sensitive to news about their

life expectancy, as they save not only for their retirement but may also have bequest motives.

Indeed, the results in all three panels point to weaker treatment effects for people who had

children before testing. Still, the previous caveat applies: the sample is not large enough to

statistically identify these differences.

5 Channels

This section considers possible channels that may explain the documented negative effects of

Lynch Syndrome on financial wealth accumulation. I consider four main sets of explanations.

First, I investigate whether Lynch Syndrome affects household composition and childbearing. A

different propensity to have a partner may mechanically affect the level of financial assets in my

data because balance sheets are aggregated at the household level. Household composition may

also impact wealth accumulation by shifting preferences. Next, I explore the treatment effects

on labor income and household income. With a sufficiently high savings rate, lower income

may quickly translate into lower wealth accumulation. Then I proceed to study the treatment

effects on the composition of financial portfolios and on the share of income that households

save. Lower financial wealth may also be the result of a more conservative portfolio allocation,

especially in the long run. On the other hand, lower savings rates (higher consumption rates)

22In general, my sample is not large enough to detect statistically significant treatment heterogeneity, and the
results in Table 4 should be treated as indicative. The sole case in the paper where treatment heterogeneity is
statistically significant is for female and male labor income in Table 7.
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Table 4: Treatment heterogeneity on the change in financial assets

(1) (2) (3) (4) (5) (6)

Male Female
> 41

before test
≤ 41

before test
Had child
before test

No child
before test

Panel A: Financial assets (EUR)

DiD -63,553∗∗ -48,977 -47,393∗∗ -66,403∗∗∗ -48,716∗∗ -108,529∗∗∗

(28,132) (31,462) (22,563) (20,909) (21,043) (41,847)

Ind 378 446 410 414 598 225
N 3,959 4,793 4,454 4,298 6,404 2,347

Panel B: Log financial assets

DiD -.63∗ -.47 -.42 -.45 -.49∗∗ -.87∗

(.33) (.3) (.28) (.29) (.23) (.46)

Ind 377 445 410 412 598 223
N 3,885 4,723 4,386 4,222 6,311 2,296

Panel C: Financial assets scaled to mean household income

DiD -.91∗∗ -.56∗ -.5 -.54∗∗∗ -.53∗ -1.5∗∗

(.45) (.32) (.37) (.18) (.28) (.64)

Ind 376 441 408 409 591 225
N 3,936 4,740 4,436 4,240 6,328 2,347

The table presents the differential changes in financial assets following genetic testing for positive-tested
individuals compared to negative-tested individuals. The table studies treatment heterogeneity in three pairs
of sub-samples formed by gender (columns 1 and 2), the age at testing (columns 3 and 4), and the status
of having children before testing (columns 5 and 6). Panel A shows estimates on financial assets in EUR
(winsorized at the 1st and 99th percentiles). Panel B shows estimates on the natural logarithm of financial
assets. Panel C shows estimates on financial assets scaled by mean household disposable income (winsorized
at the 1st and 99th percentiles). The row DiD reports the difference-in-differences coefficient β from Model
2b, which estimates the treatment effects using all periods (from -6 to 14). N stands for the number of
individual-year observations, while Ind represents the number of unique individuals in the sample. The
sample includes individual-year observations when the individual is at least 25 years old and when they are
classified by Statistics Netherlands as the household head or the partner thereof. Standard errors clustered
at the level of the individual are reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

can affect wealth accumulation immediately. Lastly, I consider changes in the mental health of

tested individuals as an alternative explanation.

5.1 Household Composition

Changes in household composition might impact the outcomes that I study, especially in the long

run. Most economic decisions may be correlated with family composition, including labor supply

and entrepreneurship, retirement (Heyma, 2004), consumption and savings decisions (Browning

and Ejrnæs, 2009; De Nardi et al., 2021), homeownership (Bacher, 2021), and financial portfolio

allocation (Calvet and Sodini, 2014; Hubener, Maurer, and Mitchell, 2016). In addition, family
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composition also mechanically affects wealth levels in my data because in Statistics Netherlands’

datasets wealth data are aggregated at the household level.

Carrying a Lynch Syndrome gene mutation may affect household composition in multiple

ways. First, patient testimonies suggest that positive-tested individuals might find it more diffi-

cult to find a partner.23 Second, childbearing might also be affected. Positive-tested individuals

might be afraid of passing down the faulty gene to their children. Prenatal testing can help to

eliminate this risk by identifying whether the mutation is present in the embryo; however, on

average only every second embryo will be free of the mutation. Also, some individuals prefer

not to undergo prenatal testing. Female mutation carriers are also recommended to undergo

preventive surgeries at an early age, which might shorten their reproductive period. These

different considerations of childbearing might in turn affect the probability of having a partner.

Partnerships – Although some survey-based research (e.g., Dewanwala et al., 2011) and

anecdotal evidence suggest that Lynch Syndrome patients might face difficulties with family and

relationship formation, to the best of my knowledge, no prior study has quantified the effects

of genetic testing among pre-symptomatic individuals. Panel (a) of Figure 5 presents dynamic

treatment effect estimates on having a partner. I restrict my sample to those who test under the

age of 46. I choose this cut-off age because it is mostly in the earlier life when individuals form

partnerships. As Figure 5 illustrates, positive-tested individuals face an immediate reduction

in the probability of having a partner following genetic testing, compared to negative-tested

individuals and the year before testing. The negative effect grows over time, reaching about 10

pp by year 10; however, we can observe some recovery in the long run.24

Table 5 summarizes the treatment effects on partnership formation using Models 2a and

3a, and presents treatment heterogeneity in sub-samples. Contrary to panel (a) of Figure 5,

column (1) considers all individuals in my sample, also those who were tested in an older age.

The results show a much milder negative effect on having a partner, which can be explained

by the lack of effect among individuals who tested at an older age (column 3) compared to

those who tested when younger (column 2). In columns 4 to 7, I again restrict the sample to

the group of individuals who tested when 45 years old or younger. Columns (4) and (5) report

no substantially different treatment effects among women and men. Columns (6) and (7) split

the sample into individuals who had a partner before testing and those who did not have one,

respectively. As the results show, both groups appear to be negatively affected, although most

coefficient estimates are not statistically significant.

23See for example: https://www.thecut.com/2018/05/how-to-date-when-youre-waiting-for-cancer.html
24I find similar initial effects but a much milder recovery in case I do not censor my sample at the time of the

first preventive surgery. This suggests that positive-tested individuals without a partner might be more likely to
undertake preventive surgeries and select out of the sample.
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The figure shows the dynamic effects of testing positive on having a partner (panel a) and on having any
children (panel b). Coefficient estimates from Model 1a are presented. The x-axis shows the year relative to
the year of the genetic test. Both panels (a) and (b) only include individuals who underwent genetic testing
younger than 46 years old. In addition, panel (b) only considers individuals who had no children before
testing. The figure presents 95% confidence intervals based on standard errors clustered at the individual
level.

Figure 5: Dynamic treatment effects on having a partner and having any children

Childbearing – Being diagnosed with a Lynch mutation may also influence the propensity

to have children at least for three reasons. First, as presented above, positive-tested individuals

in the reproductive age (here defined as 45 years old or younger) face a lower probability of

having a partner following testing. Second, Lynch mutation carriers have a 50% probability of

passing the faulty gene to their children, which may discourage some from childbearing. Third,

female mutation carriers are recommended to undergo hysterectomy (surgical removal of the

womb) and risk-reducing salpingo-oophorectomy (removal of fallopian tubes and ovaries) after

the age of 40, and/or once they do not wish to have (more) children. This might prompt some

women to have children earlier, or to have fewer children (Dewanwala et al., 2011). To date,

no study have examined whether mutation status consciously influences reproductive choices

among pre-symptomatic (cancer-free) Lynch mutation carriers (Corrado et al., 2021).

As panel (b) of Figure 5 shows, being diagnosed with a Lynch mutation indeed influences

reproductive choices among previously childless reproductive-age individuals in my sample.

Positive-tested individuals appear to shift their childbearing earlier in the years following genetic

testing. However, in the long run they have a substantially lower probability of ever having

children. While about 50% of the negative-tested childless individuals who get tested before

the age of 46 will eventually have children, this ratio is 12 pp. lower among positive-tested

individuals.

Column (1) of Table 6 summarize the results presented in panel (b) of Figure 5. Columns
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Table 5: Treatment effects on having a partner

≤ 45 before test

(1) (2) (3) (4) (5) (6) (7)

All
≤ 45

before test
> 45

before test
Male Female

Had partner
before test

No partner
before test

DiD -.028 -.048∗ .027 -.039 -.053 -.039 -.014
(.021) (.027) (.032) (.041) (.035) (.025) (.076)

t=0-4 -.0072 -.028 .037 -.023 -.031 -.03 .014
(.019) (.024) (.027) (.037) (.031) (.023) (.074)

t=5-9 -.048∗ -.072∗∗ .019 -.061 -.072∗ -.054∗ -.065
(.026) (.033) (.043) (.052) (.042) (.031) (.088)

t=10-14 -.038 -.05 .016 -.036 -.065 -.033 .014
(.031) (.038) (.049) (.055) (.054) (.037) (.1)

Cons .79∗∗∗ .8∗∗∗ .79∗∗∗ .76∗∗∗ .82∗∗∗ .93∗∗∗ .34∗∗∗

(.005) (.0078) (.005) (.013) (.0097) (.0071) (.024)

Ind 889 555 333 238 316 409 130
N 15,510 9,816 5,694 4,365 5,451 7,379 2,305

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on having a
partner at the end of the year (binary indicator).The row DiD reports the coefficient β from Model 2a, which is
the average treatment effect after genetic testing. The rows t=0-4, t=5-9, and t=10-14 report the coefficients
βs, βm, βl from Model 3a, receptively. These coefficients represent the treatment effects in different years
after genetic testing. Cons reports the constant, N stands for the number of individual-year observations,
while Ind represents the number of unique individuals in the sample. The sample includes individual-year
observations when the individual is at least 20 years old. Column (1) includes all observations that meet this
criterium. Columns (2) and (3) restrict the sample to individuals who underwent genetic testing not older
than 45 years or older than 45 years, respectively. Columns (4) to (7) only consider individuals who tested
not older than 45 years. Columns (4) and (5) split the sample of these individuals into males and females.
Columns (6) and (7) include individuals who had a partner in the year before testing, and those who had no
partner, respectively. Standard errors clustered at the level of the individual are reported in parentheses, *
p < 0.1, ** p < 0.05, *** p < 0.01

(2) and (3) present the treatment effects separately for males and females, respectively. The

estimates suggests that the childbearing of males is more negatively affected, although these

results should be interpreted very cautiously due to the small number of individuals in the

sub-samples (109 and 99, respectively). Finally, column (4) considers tested individuals who

already had at least one child before testing, and estimates the treatment effects on the number

of children they have. As the results reveal, this intensive margin of childbearing is little affected.

Effects on wealth accumulation – Can the changing household composition documented

in this section account for the lower wealth accumulation of Lynch-positive households? The

results previously presented in Table 3 suggest otherwise: controlling for an indicator of having

a partner and having children only slightly reduces the treatment effect estimate on financial

asset accumulation (from EUR 60,000 to EUR 58,000). This is as expected given that in the
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Table 6: Treatment effects on having children

(1) (2) (3) (4)

All Male Female
# children
(had child
before)

DiD -.064 -.084 -.048 -.027
(.044) (.061) (.067) (.059)

t=0-4 .0018 .0014 -.0064 -.027
(.038) (.044) (.066) (.049)

t=5-9 -.083 -.1 -.072 -.034
(.059) (.08) (.088) (.065)

t=10-14 -.14∗∗ -.17∗ -.089 -.018
(.062) (.09) (.087) (.075)

Cons .25∗∗∗ .24∗∗∗ .27∗∗∗ 2.1∗∗∗

(.015) (.021) (.022) (.015)

Ind 209 109 99 330
N 3,831 2,057 1,774 6,340

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on having
children. The row DiD reports the coefficient β from Model 2a, which is the average treatment effect after
genetic testing. The rows t=0-4, t=5-9, and t=10-14 report the coefficients βs, βm, βl from Model 3a,
receptively. These coefficients represent the treatment effects in different years after genetic testing. Cons
reports the constant, N stands for the number of individual-year observations, while Ind represents the
number of unique individuals in the sample. The sample includes individual-year observations when the
individual is at least 20 years old. Columns (1) to (3) are based on the sample of individuals who had no
children before genetic testing and who underwent testing no older than 45 years. The dependent variable in
these columns is a binary indicator of having any children. Column (4) is based on the sample of individuals
who had children before genetic testing and who underwent testing no older than 45 years. The dependent
variable in this column is the number of children an individual has. Standard errors clustered at the level of
the individual are reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

whole sample the probability of having a partner is only slightly negatively affected (-2.8 pp.),

while childbearing is only negatively impacted for about 1/4th of the sample who had no children

before testing and who tested in a childbearing age.

5.2 Income

Next, I turn to estimating the impact of testing positive for Lynch Syndrome on individuals’

labor and household income. A lower income may translate into the lower financial wealth

accumulation documented in Section 4 as long as household save a sufficiently high share of

their income.

Labor income – Figure 6 presents the dynamic effects of testing positive on labor income.

Labor income is equal to the gross salary for individuals who work, while it is set to zero for

non-workers. As the figure illustrates, the treatment effects on labor income are immediate

and rather persistent. Four years after testing, positive-tested individuals earn on average close
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to EUR 5,000 lower labor income compared to negative-tested individuals and the year before

testing. This is an economically meaningful (18%) reduction compared to the mean labor

income of EUR 28,000 in the sample. Although we can observe some recovery in the long run,

the treatment effect is still negative (albeit not statistically significant) 14 years after testing.
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The figure shows the dynamic effects of testing positive on labor income (EUR). Labor income is set to zero
for non-working individuals. Coefficient estimates from Model 1a are presented. The x-axis shows the year
relative to the year of the genetic test. The figure presents 95% confidence intervals based on standard errors
clustered at the individual level.

Figure 6: Dynamic treatment effects on labor income

Table 7 studies heterogeneity in the treatment effects on labor income, and also separates

these effects into extensive and intensive margin components. Column (1) summarizes the

effects presented in Figure 6, based on Models 2a and 3a. The results show that positive-tested

individuals have on average EUR 3,720 lower labor income in the period after testing compared

to negative-tested individuals and the period before testing. This is an economically significant

(13%) reduction compared to the previously cited EUR 28,000 mean labor income in the sample.

Columns (2) and (3) estimate the treatment effects for males and females, respectively. The

results reveal a striking difference: while male labor income is reduced by EUR 8,400 (or 21%

compared to the mean labor income in the sample), female labor income is hardly affected.

This difference is also statistically significant in a regression where I interact the DiD indicator

with an indicator for gender.25

What could explain this striking difference? One possibility is the historically stronger labor

market attachment of men in the Netherlands.26 On the other hand, the difference in the treat-

25Results are available upon request.
26This differential labor force attachment is also present in my sample. In the year before testing, 82% of the
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ment effect stays nearly unchanged if in the above mentioned regression with the DiD*Gender

interaction term I also control for interaction terms of the DiD indicator and indicators of (1)

working full-time, (2) having a partner, and (3) having children.27 It appears that the gender

difference in the treatment effect on labor income is not driven by the different labor force at-

tachment of males and females during the sample period. Another possible explanation is that

men react stronger to genetic testing because male life expectancy is more severely affected

by Lynch Syndrome. As previously discussed, the Lynch-affected fathers of individuals in my

sample lived on average 14 years shorter than the general population, while the Lynch-affected

mothers lost on average 9 years of their lives due to LS.

The last four columns of Table 7 study treatment effects on the extensive and intensive

margin components of male labor income.28 The results in column (4) reveal a negative, albeit

not statistically significant, effect on the probability of working. As the estimates in column

(5) show, positive-tested males also earn a relatively lower labor income if they work (labelled

here as ’salary’). Thus both the intensive and the extensive margins of labor income appear to

be negatively affected. The last two columns further split salary into the full-time equivalent

days worked (column 6) and the wage (column 7). While wages are hardly affected, positive-

tested individuals work on average 19 fewer FTE days in the period after testing compared to

negative-tested individuals and the period before testing. This is a non-negligible 5.7% relative

effect compared to the mean 335 annual FTE days among all working men in the sample.29 As

Table A5 in Appendix A shows, it is in the pre-retirement period when the negative effect on

working men’s labor supply is the largest. Between the ages of 60 and 64, working positive-

tested men work on average 42 fewer FTE days annually than working negative-tested men (a

15.5% relative effect). In summary, the negative treatment effect on male labor income arises

from a negative effect on labor supply, i.e., a lower probability to work and/or less time worked.

Household income – While labor income is an important outcome to study on its own,

it is household income that ultimately matters for household wealth accumulation. Table 8

summarizes the treatment effects on disposable household income and its two main components,

the tested person’s and their partner’s labor income. All coefficients in Table 8 are difference-in-

differences estimates based on Model 2a. In each model, I also control for an indicator of having

tested men and 65% of the tested women worked. Conditional on working, women were also more likely to work
part-time: while women worked on average 235 FTE days in the year before testing, men worked 332 FTEs.
These differences were also reflected in the labor income of men (EUR 36,600) and women (EUR 14,000).

27Results are available upon request.
28Table A4 in Appendix A presents the decomposition of the treatment effect on female labor income into the

same components. The results show that although in euro terms female labor income is little affected, positive-
tested females were on average 5.7 pp. less likely to work in the post-testing period, compared to negative-tested
females and the pre-testing period.

29In the datasets of Statistics Netherlands, an employee who is employed on a full-time contract throughout
the year works 365 or 366 FTE days.
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Table 7: Treatment effects on labor income

Labor income Decomposition of male labor income

(1) (2) (3) (4) (5) (6) (7)

All Male Female Working Salary FTE day Daily wage

(EUR) (EUR) (EUR) (binary) (EUR) (days) (EUR)

DiD -3,720∗∗ -8,412∗∗ -654 -.032 -6,122∗ -19∗∗ 1.7
(1,703) (3,513) (1,166) (.04) (3,172) (8.7) (7.1)

t=0-4 -3,368∗∗ -7,548∗∗ -668 -.046 -4,085∗ -12 3.3
(1,566) (3,315) (1,072) (.038) (2,470) (9) (6.8)

t=5-9 -4,386∗∗ -9,797∗∗ -776 -.033 -8,126∗∗ -28∗∗∗ 1.5
(2,054) (4,115) (1,407) (.048) (4,020) (10) (8.6)

t=10-14 -3,406 -8,012∗ -430 .0018 -7,922∗ -19∗ -2.5
(2,388) (4,657) (1,963) (.055) (4,771) (10) (9.5)

Cons 29,058∗∗∗ 42,998∗∗∗ 17,322∗∗∗ .82∗∗∗ 51,505∗∗∗ 342∗∗∗ 146∗∗∗

(498) (1,050) (336) (.012) (956) (2.7) (2.3)

Ind 788 366 422 366 337 322 322
N 11,768 5,458 6,310 5,458 4,458 3,800 3,800

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on labor
income. Labor income (columns 1 to 3) equals to the pre-tax salary if an individual is working and to zero
otherwise. Working (column 4) is an indicator whether the individual had non-zero pre-tax salary in the
given year. Salary (column 5) stands for pre-tax salary (set to missing if zero). FTE days (column 6) are
the number of full-time equivalent days the individual worked in the given year (set to missing if zero).
Daily wage (column 7) is Salary divided by FTE days. The row DiD reports the coefficient β from Model
2a, which is the average treatment effect after genetic testing. The rows t=0-4, t=5-9, and t=10-14 report
the coefficients βs, βm, βl from Model 3a, receptively. These coefficients represent the treatment effects in
different years after genetic testing. Cons reports the constant, N stands for the number of individual-year
observations, while Ind represents the number of unique individuals in the sample. All samples include
individuals who underwent genetic testing at the age of 60 or younger and individual-year observations when
the individual is between 25 and 64 years old. Standard errors clustered at the level of the individual are
reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

a partner to account for the previously documented negative treatment effect on the probability

of having a partner.30 Partner’s labor income equals the labor income of the individual’s

partner if they have one, otherwise it equals zero. The table presents two sets of estimates.

Columns (1) to (3) consider the whole sample, while columns (4) to (6) exclude person-year

observations where disposable household income is above the 99th percentile across the whole

sample.31 Both sets of estimates present evidence that the household income of males are more

negatively affected than the household income of females. This is mostly due to the previously

discussed larger negative effect on male labor income. The results also suggest that not only

30A further difference from Table 7 is that for each model I restrict my sample to individuals who are the
household heads of their household or the partners thereof. This additional sample selection criterium, and
controlling for having a partner, explain the slight differences in the treatment effect estimates on labor income
in Tables 7 and 8.

31This exclusion mostly concern instances of high non-labor income (e.g. capital income) and/or the highest
income households, and substantially reduces the volatility of the dependent variable (and the standard error of
the estimates).
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tested individuals’ own labor income are negatively impacted but also the labor income of their

partners. However, treatment effects on the partners’ labor income are mostly not statistically

significant. Restricting our attention to columns (4) to (6), Table 8 also illustrates that the

drop in household income is approximately equal to the sum of the negative effects on own

labor income and on the partner’s labor income (while keeping in mind that a unit decrease

in gross labor income will decrease disposable household income by less than a unit due to

taxation).

Table 8: Treatment effects on household income and its components

Full sample < 99pctl household income

(1) (2) (3) (4) (5) (6)

All Male Female All Male Female

Household income (EUR) -9,770∗∗ -12,733∗∗ -8,262 -3,821∗∗ -6,068∗∗ -2,459
(4,184) (6,201) (6,226) (1,542) (2,734) (1,839)

Own labor income (EUR) -3,402∗∗ -7,706∗∗ -847 -3,446∗ -7,128∗ -1,456
(1,671) (3,478) (1,196) (1,953) (4,203) (1,349)

Partner’s labor income (EUR) -5,129∗ -873 -7,805 -2,039 -752 -2,346
(2,961) (1,472) (4,945) (1,580) (1,824) (2,378)

Ind 761 350 410 761 350 410
N 9,784 4,468 5,316 9,684 4,436 5,248

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on household
income, the tested person’s labor income, and the labor income of the tested person’s partner. Household
income refers to disposable income, which is the sum of all labor, and non-labor income (including transfers
and capital income) of the household minus taxes paid. Labor income equals to the pre-tax salary if the
individual is working and to zero otherwise. Partner’s labor income is recorded as zero if the tested person
had no partner in the given year or if the partner was not working. All cells report the coefficient β, which is
the average treatment effect after genetic testing, from independent regression models 2a. N stands for the
number of individual-year observations, while Ind presents the number of unique individuals in the sample.
Both values refer to the row Household income. The samples of columns (1) to (3) include individuals who
underwent genetic testing at the age of 60 or younger and individual-year observations when the individual
was between 25 and 64 years old and was the household head or partner. The samples of columns (4) to (6)
exclude individual-year observations when the tested person’s household income was in the top 1 percentile
across the whole sample. Standard errors clustered at the level of the individual are reported in parentheses,
* p < 0.1, ** p < 0.05, *** p < 0.01

Effects on wealth accumulation – The estimated negative effects on disposable house-

hold income are far from negligible. In relative terms, they are equal to an 18.5% (whole sample)

or an 8% (restricted sample) reduction in annual disposable household income. On the other

hand, it is unlikely that this lower household income, ceteris paribus, substantially contributed

to the reduced financial wealth accumulation documented in Section 4. This is because Dutch

households save a low share of their disposable household income: The Dutch Bureau for Eco-

nomic Policy Analysis estimates that between 2006 and 2017 Dutch household saved on average

-0.3% of their annual household income (this refers to private savings, households saved a much
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larger share of their income directly in the pension system).32 I estimate similarly low savings

rates in my sample, with a mean of 0% and a median of 2%. Finally, I also estimate a regres-

sion model where I augment the baseline model in column (1) of Table 2 with the cumulative

disposable household income of the individual’s household since 1995.33 The results (available

upon request) reveal that cumulative household income is a highly statistically significant de-

terminant of financial assets (with a coefficient of 0.23); however, the treatment effect estimate

is hardly affected (EUR -58,000).

5.3 Financial Investments and Savings

Besides changing household composition and reduced household income, lower financial wealth

accumulation may also be explained by a more conservative portfolio allocation and by a lower

savings rate.

Portfolio allocation – Panel (a) of Figure 7 presents the dynamic effects of testing positive

on the risky share of financial assets. The risky share equals Financial Securities divided by

total Financial Assets.34 As the figure illustrates, the treatment effects on the risky share

are immediate and rather persistent. In the year after testing, households of positive-tested

individuals hold an about 6 pp. lower share of their financial assets in financial securities

compared to households of negative-tested individuals and the year before testing. This is a

substantial reduction in comparison with the mean risky share of 12% in the sample. The

negative effect largely persists in the first 15 years after genetic testing.

Table 9 further studies the treatment effects on the risky share. Column (1) summarizes the

effects presented in panel (a) of Figure 7, based on Models 2b and 3b. The results show that

households of positive-tested individuals hold on average a 9 pp. lower share of their financial

assets in financial securities in the period after testing, compared to households of negative-

tested individuals and the period before testing. Columns (2) and (3) split the treatment

effect into an extensive margin (having any financial securities) and an intensive margin (risky

share conditional on having financial securities) component, respectively. The estimates suggest

that the negative effect on the risky share arises from a large negative effect on stock market

participation (not having any financial securities).35

Notwithstanding the large negative treatment effect on the risky share, a back-of-the-

32Kerngegevens voor Nederland, 1970-2017, Centraal Planbureau.
33I replace household income with 0 in the years when it is missing or if the individuals is not classified as the

household head or the partner thereof.
34Financial securities might also include direct bond holdings and investment in mutual funds that partially

invest in safe assets, although the share of these assets are likely very limited. See the discussion in footnote 19
in Section 3.

35Table A7 in Appendix A presents various robustness tests on the treatment effect on the risky share.
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(b) Savings rate out of disposable income

The figure shows the dynamic effects of testing positive on the risky share of financial assets (panel a) and on
the savings rate out of disposable income (panel b). Coefficient estimates from Model 1b are presented. The
x-axis shows the year relative to the year of the genetic test. The figure presents 95% confidence intervals
based on standard errors clustered at the individual level.

Figure 7: Dynamic treatment effects on the risky share of financial assets and on the savings
rate

envelope calculation suggests that a reduced risky share can only account for a small part

of the lower financial asset accumulation documented in Section 4. Multiplying the average

financial assets of households in my sample (EUR 77,000) by the negative treatment effect on

the risky share (9 pp.) and by an equity risk premium of 6% yields an estimate of EUR 415

annual returns foregone due to the lower risky share. This is a small amount compared to the

total negative effects on financial assets (about EUR 50,000 five years after genetic testing).

Savings rate – The previous analyses suggest that although changing household composi-

tion, reduced household income, and a lower risky share may all contribute to the documented

negative effects on financial asset accumulation, the role of these channels is likely limited. This

suggests that the most important channel through which genetic testing affects the wealth accu-

mulation of tested individuals is altered consumption and savings behavior. In this sub-section,

I present some direct evidence that households of positive-tested individuals indeed save a lower

share of their disposable income in the period after genetic testing compared to households of

negative-tested individuals and the period before testing.

Panel (b) of Figure 7 presents the dynamic effects of testing positive on the savings rate

out of disposable household income. I define the savings rate as the ratio of savings and

household disposable income. Savings refer to active savings, i.e., change in net wealth less

unrealized capital gains or losses. Disposable income does not include unrealized capital gains.

As I do not directly observe unrealized capital gains or losses, I need to make some (possibly

strong) assumptions to calculate my savings rate measure, the details of which are presented
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Table 9: Treatment effects on the risky share of financial assets and on the savings rate

Risky share Savings rate

(1) (2) (3) (4)

All
Extensive
margin

Intensive
margin

All

DiD -.09∗∗ -.15∗∗ -.02 -.12∗∗∗

(.038) (.077) (.061) (.039)

t=0-4 -.083∗∗ -.12 -.037 -.15∗∗∗

(.036) (.073) (.062) (.042)

t=5-9 -.1∗∗ -.16∗∗ -.041 -.1∗∗

(.039) (.08) (.064) (.043)

t=10-14 -.084∗∗ -.17∗∗ .021 -.13∗∗∗

(.042) (.085) (.071) (.042)

Cons .14∗∗∗ .37∗∗∗ .37∗∗∗ .034∗∗∗

(.013) (.027) (.022) (.012)

Ind 807 807 368 690
N 7,723 7,723 2,500 5,703

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on risky
financial investments and on savings out of disposable household income. Risky share (columns 1 to 3) is
risky financial securities divided by total financial assets. Risky financial securities comprise mostly stocks
and investments in mutual funds but might also include bonds. In column (1) the dependent variable is the
risky share. In column (2) the dependent variable is an indicator of having a non-zero risky share. In column
(3) the dependent variable is the risky share conditional that it is non-zero. Savings rate (4) is defined as
savings divided by disposable household income. Savings is imputed from year-on-year changes in household
wealth corrected for capital gains on housing and financial investments. Disposable household income is the
sum of all labor and non-labor income (including transfers and capital income) of the household minus taxes
paid. The row DiD reports the coefficient β from Model 2b, which is the average treatment effect after genetic
testing. The rows t=0-4, t=5-9, and t=10-14 report the coefficients βs, βm, βl from Model 3b, receptively.
These coefficients represent the treatment effects in different years after genetic testing. Cons reports the
constant, N stands for the number of individual-year observations, while Ind represents the number of unique
individuals in the sample. The sample includes individual-year observations when the individual was at least
25 years old and when they were classified by Statistics Netherlands as the household head or the partner
thereof. Columns (1) to (3) include only observations when the individual had at least EUR 2,500 in bank
deposits or savings. Column (3) include only observations where the risky share is non-zero. Standard errors
clustered at the level of the individual are reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01
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in Section 3 and in Appendix B. Consequently, the results presented in this sub-section should

be interpreted with caution. As the figure illustrates, the treatment effects on the savings

rate are immediate and rather persistent, although in many cases long-term effects cannot be

statistically distinguished from zero. The strongest effects appear to take place during the first

four years after genetic testing. During this period, households of positive-tested individuals

save on average a 15 to 20 pp. lower share of their disposable income compared to households of

negative-tested individuals and the year before testing. This is a very large reduction in saving

(or increase in dis-saving) given the mean savings rate in the sample (0%). Column (4) of Table

9 summarizes the effects presented in panel (b) of Figure 7. The results suggest that in the

period after genetic testing, households of positive-tested individuals save on average a 12 pp.

lower share of their disposable income compared to households of negative-tested individuals

and the period before testing. This is a very substantial effect, although the magnitude of

this estimate should be treated with caution as it is sensitive to the trimming applied when

constructing the savings rate. For example, trimming the savings rate below at -100% (instead

of the baseline -150%) reduces the estimate to -8 pp. (statistically significant at the 5% level).36

5.4 Mental Health

Although Lynch Syndrome has no negative impact on the physical health of positive tested

individuals before developing cancer, a positive test result might still cause mental distress.

Aktan-Collan et al. (2013) evaluate the long-term psychosocial consequences of predictive ge-

netic testing in LS and report that 7 years following testing, most of the psychosocial variables

remain unchanged, regardless of mutation status. Nevertheless, the authors find a moderate

increase in fear of death among positive tested individuals relative to those who tested negative.

Galiatsatos et al. (2015) conduct a literature review on the psychosocial impact of LS testing

and conclude that LS mutation carriers suffer a transient increase in depression and anxiety

scores post-disclosure, which seem to normalize by 6-12 months. I also study the effects of

testing positive for a Lynch Syndrome mutation on the mental health of the individuals in my

sample (Table A1 in Appendix A). As the results in columns (1) and (2) of Table A1 show,

positive-tested individuals if anything are slightly less likely to consume antidepressants and

anti-anxiety medication following genetic testing.

Despite the evidence on the limited prevalence of mental health problems among LS-affected

people, it is well possible that genetic testing for LS leads to some forms of mental distress. It is

unlikely that people update their beliefs on mortality and cancer risks without being emotionally

36Table A6 in Appendix A presents various robustness tests on the treatment effect on the savings rate.
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affected. However, the cause of such mental distress would likely be the increased risk of cancer

and the reduced life expectancy in Lynch Syndrome. In other words, while mental health

problems may moderate the responses that individuals give to genetic testing, these mental

problems, if present, are likely an integral part of the channel of changing life expectancy.

6 The Effects of Genetic Testing

Finally, I study how positive- and negative-tested individuals react to learning their mutation

carrier status compared to a counterfactual where they do not receive this information. Esti-

mating the effects of undergoing genetic testing is important to determine the costs and benefits

of testing. Nevertheless, this exercise is hindered by endogeneity problems. Genetic testing is

a choice: demographic factors (age, gender, parenthood, level of education, employment, par-

ticipation in medical studies), psychological factors (lack of depressive symptoms), and family

history (greater number of relatives with cancer) are positively associated with the uptake of

genetic testing (Hampel, 2016).

Contrary to my baseline study, I lack a natural experiment that randomizes people into

tested and non-tested groups. Instead, I apply a matching strategy and use individuals from

the general Dutch population as a control group of untested individuals. Although matching

on observables cannot alleviate all endogeneity concerns, the rich administrative data enables

me to match on a broad range of characteristics, including the year of birth, gender, having a

partner, the number of children, and homeownership.37 As for the main analysis, I also include

individual (or group) fixed effects in my regression models, which control for time-invariant

unobservable differences between positive-tested, negative-tested, and untested individuals.

Results in Table 10 reveal that compared to the benchmark of the untested general Dutch

population, both positive- and negative-tested individuals change their behavior following ge-

netic testing. For example, the previously documented negative treatment effects on the prob-

ability of having a partner and having any children arise as a difference between positive effects

on those who test negative and negative effects on those who test positive (columns 1 and 2).

In some cases negative-tested individuals appear to react stronger (financial assets, risky share,

37Table A2 in Appendix A compares tested individuals in my sample to the Dutch general population. Panel
A only matches on birth year and gender. As discussed in footnote 8, tested individuals are more likely to have
children and a partner, earn a somewhat higher household income, and have higher financial and non-financial
wealth. Also, tested individuals are much more likely to have at least one parent who has already passed away.
Panel B further matches on having a partner, the number of children, and homeownership in the year before
testing. After matching, several characteristics that I do not match on also appear to be better balanced, such as
financial assets, household income, or the indicator for working. On the other hand, tested individuals are still
substantially more likely to have at least one parent who has already passed away. Given this, and potentially
other, imbalances, the results in this section should be interpreted cautiously.
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Table 10: Treatment effects compared to a matched sample of the Dutch general population

(1) (2) (3) (4) (5) (6) (7)

Has
partner

Has
children

Male
labor inc.

Financial
assets

Financial
assets

Risky
share

Savings
rate

(binary) (binary) (EUR) (EUR) (logs) (ratio) (ratio)

Positive -.02 -.031 -3,124 -12,760 -.12 -.023 -.071∗∗

(.02) (.031) (2,711) (9,420) (.17) (.029) (.03)

Negative .023 .045 1,060 28,153∗ .19 .046∗∗ .028
(.016) (.03) (2,108) (15,069) (.14) (.018) (.027)

Cons .77∗∗∗ .23∗∗∗ 38,610∗∗∗ 59,912∗∗∗ 9.8∗∗∗ .1∗∗∗ .0058∗∗∗

(.00043) (.00073) (62) (903) (.013) (.0017) (.0014)

Ind 11,301 4,328 7,500 17,460 17,385 16,581 14,822
N 209,803 81,959 117,022 186,741 180,720 154,581 121,710

The table presents the effects of testing positive or negative for the suspected Lynch syndrome gene mutation
compared to a baseline formed by a matched sample of the general Dutch population. Difference-in-differences
estimates from models 2a or 2b are presented, with the models augmented to include two levels of treatment
(positive-tested and negative-tested). Has partner (1) is a binary indicator if the individual had a (married
or non-married) partner. Has children (2) is a binary indicator if the individual had any children. Male labor
income (3) represents labor income, which equals the pre-tax salary if the individual was working and zero
otherwise. Financial assets (4-5) refers to financial assets, which are the sum of bank deposits and savings,
and risky financial securities (stocks, investments in mutual funds, and rarely bonds). Risky share (6) stands
for the share of risky financial securities among total financial assets. Savings rate (7) is the savings rate,
defined as savings divided by disposable household income. Cons reports the constant, N stands for the
number of individual-year observations, while Ind presents the number of unique individuals in the sample.
The sample inclusion criteria are the same as for previous tables where these variables appear. Standard
errors clustered at the level of the individual are reported in parentheses, * p < 0.1, ** p < 0.05, *** p <
0.01

having children), whereas for other outcomes positive-tested individuals might be more affected

(male labor income, savings rate). However, most estimates are not statistically significantly

different from zero (from the outcomes of the benchmark group), therefore it is difficult to judge

the magnitude of the relative effects.

Figure 8 illustrates the dynamic effects of genetic testing on financial assets (panel a) and

log financial assets (panel b). Before testing, the financial assets of both positive- and negative-

tested individuals evolve similarly to those of the benchmark group. On the other hand, fol-

lowing testing positive-tested (negative-tested) individuals accumulate lower (higher) financial

assets. These dynamics are as expected: Positive-tested individuals receive bad news about

their life expectancy, while negative-tested individuals receive good news.
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The figure shows the dynamic effects of testing positive (solid red line) or negative (dashed blue line) on
financial assets (panel a) and log financial assets (panel b), compared to a benchmark formed by a matched
sample of the untested Dutch population. Coefficient estimates from Model 1b are presented. The x-axis
shows the year relative to the year of the genetic test. The figure presents 95% confidence intervals based on
standard errors clustered at the individual level.

Figure 8: Effects of genetic testing on financial assets

7 Conclusion

I merge genetic testing data and rich administrative data from the Netherlands to study the

causal effects of life expectancy on individuals’ financial, economic, and demographic decisions.

My sample consists of people who start their life at a 50% risk of having inherited a gene

mutation that causes Lynch Syndrome in their families. Lynch Syndrome is a hereditary disorder

that substantially reduces life expectancy by increasing lifetime cancer risks. Individuals in my

sample decide to undergo genetic testing to learn if they have indeed inherited the bad gene.

Genetic testing randomizes tested persons into two groups. Those who test positive learn that

they face a high risk of cancer and a shorter life expectancy. Those who test negative learn that

their cancer risks are not elevated. Both groups may react to genetic testing: The differences

in their reactions identify the causal effects of the life expectancy reduction in LS.

I find that reduced life expectancy has a negative effect on wealth accumulation: in the

decades following testing, individuals who turn out to carry the gene mutation accumulate

lower financial assets than those who learn that they are not affected by Lynch Syndrome.

These findings are consistent with standard life-cycle models of savings and consumption, and

provide evidence that lower (higher) life expectancy does prompt less (more) savings. Lower

labor supply, changing household composition, and more conservative financial portfolios explain

part of the negative effect on financial wealth accumulation, although the majority of the effect

is due to lower savings rates.
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In a supplementary analysis, I find that both positive- and negative-tested individuals react

to genetic testing. For example, those who test positive and experience a drop in life expectancy

start to accumulate fewer financial assets. On the contrary, those who test negative and experi-

ence an increase in life expectancy start to accumulate more financial assets. I observe similar

reactions for most of the other outcomes that I study, including having a partner and having

children. These findings provide evidence that both bad and good news of life expectancy affect

economic decisions.

The primary goal and contribution of my work is to understand the effects of life expectancy

on economic behavior. However, I argue that my findings also contribute to the medical liter-

ature and can have direct policy implications. Understanding how people react to the results

of genetic testing may be an important consideration for clinical geneticists and other medical

professionals. This is especially true since predictive genetic testing might soon be offered for

the general population38, and many private providers (e.g., 23andMe) already offer testing for

some of the more frequent single-gene genetic disorders (e.g., hereditary breast cancer). My

results also highlight the potential benefits of genetic testing on negative-tested individuals:

by alleviating health and mortality risks, genetic testing can help improve the socio-economic

outcomes of these people.

My work also faces limitations. First, my results on the negative effects of reduced life ex-

pectancy on wealth accumulation provide qualitative but not necessarily quantitative support

for standard life-cycle models. I am working on a realistically calibrated life-cycle model to

compare the magnitude of my estimates to the model-implied ones. Second, due to data limi-

tations, I cannot observe the effect of genetic testing on tested individuals’ subjective mortality

beliefs. Changes in mortality beliefs could help to estimate how tested individuals perceive the

risks in Lynch Syndrome. This is an important input for any life-cycle model. In May 2023,

I will conduct a survey among 1,500 people affected by Lynch Syndrome in collaboration with

the Netherlands Foundation for the Detection of Hereditary Tumors. This survey may help

shed light on how genetic testing affects the subjective beliefs of tested individuals.

38In late 2022, a nationally collaborative project was launched in Australia that will screen at least 10,000
people aged 18-40 for genes that increase risk of certain types of cancers (including Lynch Syndrome) and heart
disease. Source: https://www.monash.edu/news/articles/world-first-preventative-dna-screening-for-cancer-and-
heart-disease-risk2
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A Additional Figures and Tables
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Figure A1: Distribution of positive- and negative-tested individuals by age at testing and year
of testing
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RESULT: The pathogenic MSH2 gene mutation (variant:...) documented in this family

was excluded by two independent sequence analyses.

CONCLUSION: The tested individual is not a carrier of the family mutation in the MSH2

gene. As a result, the risk of colon and endometrial cancer of the person seeking advice

and her progeny (descendants) has been reduced to that of the general population

Figure A2: Extract from a letter of a clinical geneticist to a tested individual explaining
the negative test result

You were referred for genetic advice because several of your family members had colon

cancer that DNA testing had shown is of a hereditary form. The DNA test shows that you

also have this predisposition for HNPCC (also referred to as Lynch syndrome). People

who have the predisposition (= the gene) for HNPCC have a high chance of developing

colon cancer between the ages of 20 and 70. The age of cancer occurrence varies. Some

people get colon cancer more than once. In rare cases, someone who has the HNPCC

gene may still not have developed colon cancer by age 70. However, this chance is small,

estimated at 5% (= 1 in 20). The other 95% of people with the gene will develop colon

cancer sooner or later.

This means that it is necessary to regularly examine the intestine of people with this

predisposition. This is can be done with a colon photo, or with a viewing device that is

mounted in a flexible tube (colonoscopy). We recommend performing this examination

once every 2 years...

The risk of uterine (endometrial) cancer is clearly increased in women. This risk is not

known exactly, but it is estimated at 30%. Women with a predisposition to HNPCC

are therefore advised to have an annual gynaecological examination with an ultrasound

examination of the uterus...

The predisposition to HNPCC is inherited in an autosomal dominant manner. Autosomal

means that both boys and girls can develop this condition. Dominant means that the

altered aptitude is stronger than the normal aptitude... if one of the parents has the altered

predisposition, they have a 50% (1 in 2) chance of having a child with this condition with

each pregnancy. We therefore advise that children also have a DNA test after their 20th

year to examine whether they have the predisposition.

Figure A3: Extract from a letter of a clinical geneticist to a tested individual explaining
the positive test result
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Legend: squares represent male, circles female family members; diagonal lines mark individuals who have
passed away; the plus (+) signs identify tested mutation carriers, the minus (-) signs tested non-carriers;
birth (and death) years, and the age of cancer diagnosis/cancer type are marked below the squares/circles.
The roman numbers (I., II., and III.) refer to generations, the Arabic numbers identify individuals.
Notes: The figure presents cancer and genetic testing status in an actual family with some details altered
to preserve privacy. In 1998, the gynecologist of family member III/7 referred the family to the attention of
the DHCR due to suspected hereditary cancer in the family based on family history of cancer. The mother
of the individual (II/5) had been previously diagnosed with endometrial cancer, her aunt (II/2) passed away
following ovarian cancer, and her grandfather had colon cancer. Family members II/5, III/1, III/3, III/4 (but
not III/2), and III/5-6-7 opted to register with the DHCR and undergo regular colonoscopy but decided not
to undergo genetic testing (yet). In 2000, III/2 was diagnosed with colon cancer at the age of 38. Genetic
testing identified a pathological MSH2 mutation, and this finding prompted other family members to undergo
genetic testing. The three siblings of III/2 faced a 50% risk of inheriting the mutation as their brother was
a proven mutation carrier, and eventually one of them tested positive (III/4). The surviving aunt of III/2
(II/5) faced a close to 100% probability of carrying the mutation given that III/2 most probably inherited
it from the maternal side and II/5 had been diagnosed with endometrial cancer at a relatively young age.
Following the positive test outcome of II/5, her children (III/5-6-7), who were now at 50% risk, were also
offered the opportunity of genetic testing, and one of them (III/6) proved to carry the MSH2 mutation present
in the family. Both positive and negative genetic test results were retained by the DHCR. The Lynch-affected
individuals of the third generation, III/4, and III/6, undergo regular cancer screening and have not (yet)
developed cancer.

Figure A4: Pedigree (family tree) of a Lynch-affected family
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The figure shows the average annual value of a binary indicator of undergoing cancer screening (colonoscopy or
gynaecological check-up) for positive-tested (solid red line) and negative-tested (dashed blue line) individuals.

Figure A5: Probability of undergoing colonoscopy or gynaecological cancer screening
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The figure shows the excess probability that positive-tested individuals are excluded from the sample com-
pared to negative-tested individuals. Regression coefficients are plotted based on Model 1a, where the de-
pendent variable is an indicator of exclusion for death (solid red line), death or cancer (short-dashed blue
line), and death, cancer or preventive surgeries (long-dashed blue line).

Figure A6: Excess attrition among positive-tested people due to death, cancer diagnosis and
preventive surgeries
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Table A1: Treatment effects on health outcomes

(1) (2) (3) (4)

Antidepr. Tranq. Disabled
Cancer
screening

DiD -.031 -.023 .019 .41∗∗∗

(.038) (.028) (.017) (.015)

Cons .095∗∗∗ .062∗∗∗ .059∗∗∗ .09∗∗∗

(.015) (.011) (.0044) (.0035)

Ind 818 818 854 889
N 8,206 8,206 12,894 16,499

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on health
outcomes. In column (1) the dependent variable is a binary indicator of being reimbursed for any antide-
pressants under the mandatory Dutch health insurance scheme. In column (2) the dependent variable is
being reimbursed for any anti-anxiety medications. In column (3) the dependent variable is an indicator of
receiving disability benefits. In column (4) the dependent variable is an indicator of participating in any
cancer screenings (colonoscopies or gynaecological check-ups). The row DiD reports the coefficient β from
Model 2b, which is the average treatment effect after genetic testing. Cons reports the constant, N stands
for the number of individual-year observations, while Ind represents the number of unique individuals in the
sample. Standard errors clustered at the level of the individual are reported in parentheses, * p < 0.1, ** p
< 0.05, *** p < 0.01
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Table A2: Tested individuals and the Dutch population

Panel A: Compared to a population matched on birth year and gender

Variable Tested S.e. Mean Tested Population
Has child 0.04 0.01 0.68 875 42,002
Number of children 0.19 0.04 1.49 871 41,841
At least 1 parent died before testing 0.14 0.01 0.48 877 42,146
Has partner 0.06 0.01 0.73 866 41,557
Personal income (EUR) 313 1,051 31,188 397 18,345
Working 0.05 0.02 0.74 589 28,067
Disposable household income (EUR) 2,035 1,183 44,246 393 18,208
Financial assets (EUR) 9,098 7,399 51,136 204 9,420
Homeowner 0.09 0.02 0.65 551 25,976

Panel B: Additionally matched on having a partner, children and homeownership

Variable Tested S.e. Mean Tested Population
Has child* 0.00 0.00 0.72 873 16,925
Number of children* -0.02 0.02 1.71 870 16,907
At least 1 parent died before testing 0.14 0.01 0.48 874 16,954
Has partner* 0.00 0.00 0.80 865 16,838
Personal income (EUR) -361 1,050 31,814 395 7,536
Working 0.03 0.02 0.75 589 11,270
Disposable household income (EUR) -679 1,173 46,613 391 7,485
Financial assets (EUR) 2,091 7,357 60,372 205 3,883
Homeowner* 0.00 0.00 0.75 551 10,561

The table compares the pre-testing characteristics of tested individuals and two matched samples of the
general Dutch population. In panel A, tested individuals are (exact) matched to similar individuals from the
Dutch population based on birth year and gender. In panel B, (exact) matching also incorporates additional
characteristics, having a partner, the number children and a binary indicator of homeownership. Both panels
report coefficient estimates of regression models where individual and household characteristics (measured in
the year before genetic testing) are regressed on an indicator of being in the tested sample. The regression
controls for ’pair fixed effects’, i.e., it compares tested individuals with their matched pairs. Robust standard
errors are presented in the column ’S.e.’. The unconditional mean in the sample is presented in the column
’Mean’. ’Tested’ refers to the number of tested individuals, which varies between variables due to the different
sample periods (e.g., wealth variables for most individuals are only available from 2006) and the differences
in the sample selection criteria. The same sample selection criteria apply as for Table 1. * p < 0.1, ** p <
0.05, *** p < 0.01
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Table A3: Main treatment effects under different sample selection criteria

Financial
assets

Financial
assets

Has partner
(under 46)

Has child
(under 46)

Household
income

Male
labor inc.

Savings
rate

Risky
share

(EUR) (logs) (binary) (binary) (EUR) (EUR) (ratio) (ratio)

Panel A: Baseline sample

DiD -60,126∗∗∗ -.52∗∗ -.048∗ -.064 -10,463∗∗ -8,412∗∗ -.12∗∗∗ -.09∗∗

(19,829) (.21) (.027) (.044) (4,221) (3,513) (.039) (.038)

Panel B: No attrition due to preventive surgeries

DiD -59,356∗∗∗ -.5∗∗ -.046∗ -.062 -8,996∗∗ -7,802∗∗ -.13∗∗∗ -.089∗∗

(19,794) (.21) (.027) (.044) (4,095) (3,464) (.039) (.038)

Panel C: No attrition due to cancer or preventive surgeries

DiD -56,061∗∗∗ -.51∗∗ -.048∗ -.061 -8,421∗∗ -7,501∗∗ -.12∗∗∗ -.083∗∗

(19,325) (.21) (.027) (.044) (4,005) (3,500) (.039) (.036)

Panel D: Individuals certainly at 50% risk of mutation inheritance at birth

DiD -55,775∗∗∗ -.6∗∗ -.047∗ -.06 -9,320∗∗ -9,745∗∗∗ -.11∗∗∗ -.096∗∗

(21,077) (.26) (.027) (.045) (4,212) (3,544) (.04) (.039)

The table presents the main treatment effect estimates of the paper under different sample selection criteria. Panel A repeats the baseline estimates. The samples in
panel B do not exclude observations in the year of preventive surgeries and thereafter. The samples in panel C extend the samples in Panel B, as they also do not drop
observations in the year of cancer diagnoses and thereafter. Panel D shows treatment effect estimates in a sample of individuals who were almost certainty at a 50% risk
of inheriting Lynch Syndrome at birth. See footnote 9 for a discussion. DiD reports the coefficient β from Model 2a or 2b, which is the average treatment effect after
genetic testing. Cons reports the constant, N stands for the number of individual-year observations, while Ind represents the number of unique individuals in the sample.
The same sample restrictions apply as in the relevant tables in the main text. Standard errors clustered at the level of the individual are reported in parentheses, * p <
0.1, ** p < 0.05, *** p < 0.01
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Table A4: Treatment effects on female labor income and its components

(1) (2) (3) (4) (5)

Labor
income

Working Salary FTE days Daily wage

(EUR) (binary) (EUR) (days) (EUR)

DiD -654 -.057∗ -91 3.5 6.2
(1,166) (.032) (1,416) (11) (4.8)

t=0-4 -668 -.046 -60 2.4 7.7∗

(1,072) (.032) (1,264) (11) (4.7)

t=5-9 -776 -.085∗∗ -279 2.3 3.7
(1,407) (.039) (1,679) (12) (5.7)

t=10-14 -430 -.037 149 9.4 5.8
(1,963) (.049) (2,293) (15) (6.6)

Cons 17,322∗∗∗ .71∗∗∗ 24,683∗∗∗ 229∗∗∗ 104∗∗∗

(336) (.0092) (424) (3.5) (1.6)

Ind 421 421 345 333 333
N 6,310 6,310 4,393 3,790 3,790

The table presents the effects of testing positive for the suspected Lynch syndrome gene mutation on labor
income for females. Labor income (columns 1) equals to the pre-tax salary if an individual is working and
to zero otherwise. Working (column 2) is an indicator whether the individual had non-zero pre-tax salary
in the given year. Salary (column 3) stands for pre-tax salary (set to missing if zero). FTE days (column 4)
are the number of full-time equivalent days the individual worked in the given year (set to missing if zero).
Daily wage (column 5) is Salary divided by FTE days. The row DiD reports the coefficient β from Model
2a, which is the average treatment effect after genetic testing. The rows t=0-4, t=5-9, and t=10-14 report
the coefficients βs, βm, βl from Model 3a, receptively. These coefficients represent the treatment effects in
different years after genetic testing. Cons reports the constant, N stands for the number of individual-year
observations, while Ind represents the number of unique individuals in the sample. All samples include
individuals who underwent genetic testing at the age of 60 or younger and individual-year observations when
the individual is between 25 and 64 years old. Standard errors clustered at the level of the individual are
reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A5: Treatment effects on male labor income by age groups

(1) (2) (3) (4)

Labor
income

Working Salary FTE day

(EUR) (binary) (EUR) (days)

20-34 -2,762 -.069 2,069 4
(4,268) (.055) (3,703) (14)

35-49 -9,419∗∗ -.037 -7,150∗ -20∗∗

(4,358) (.041) (4,023) (10)

50-59 -7,203∗ -.024 -5,297 -18∗

(3,831) (.055) (3,329) (9.8)

60-64 -10,509∗ -.0082 -9,560∗ -42∗∗

(6,124) (.085) (5,467) (20)

Cons 42,801∗∗∗ .83∗∗∗ 51,088∗∗∗ 341∗∗∗

(1,033) (.011) (908) (2.8)

Ind 365 365 336 320
N 5,458 5,458 4,458 3,800

The table presents the effects of testing positive for the suspected Lynch mutation on male labor income
and its constituents over the life-cycle, based on Model 2a where the difference-in-differences indicator is
interacted with age groups. Labor income (columns 1) equals to the pre-tax salary if an individual is working
and to zero otherwise. Working (column 2) is an indicator whether the individual had non-zero pre-tax salary
in the given year. Salary (column 3) stands for pre-tax salary (set to missing if zero). FTE days (column 4)
are the number of full-time equivalent days the individual worked in the given year (set to missing if zero).
Cons reports the constant, N stands for the number of individual-year observations, while Ind represents the
number of unique individuals in the sample. All samples include individuals who underwent genetic testing
at the age of 60 or younger and individual-year observations when the individual is between 25 and 64 years
old. Standard errors clustered at the level of the individual are reported in parentheses, * p < 0.1, ** p <
0.05, *** p < 0.01

54



Table A6: Robustness tests on the treatment effects on the savings rate

(1) (2) (3) (4)

Baseline
Partner
control

Including
inheritance

Individual
f.e.

DiD -.12∗∗∗ -.12∗∗∗ -.1∗∗∗ -.09∗∗

(.039) (.039) (.038) (.044)

t=0-4 -.15∗∗∗ -.14∗∗∗ -.12∗∗∗ -.11∗∗

(.042) (.042) (.041) (.045)

t=5-9 -.1∗∗ -.1∗∗ -.078∗ -.058
(.043) (.042) (.041) (.049)

t=10-14 -.13∗∗∗ -.13∗∗∗ -.11∗∗∗ -.088∗

(.042) (.042) (.041) (.052)

Cons .034∗∗∗ .033∗∗∗ .022∗ .022
(.012) (.012) (.012) (.013)

Ind 690 690 691 679
N 5,703 5,702 5,719 5,703

The table presents robustness tests on the effects of testing positive for the suspected Lynch syndrome gene
mutation on savings out of disposable household income. The dependent variable in all columns is the
Savings rate, which is defined as savings divided by disposable household income. Savings is imputed from
year-on-year changes in household wealth corrected for capital gains on housing and financial investments.
Disposable household income is the sum of all labor and non-labor income (including transfers and capital
income) of the household minus taxes paid. Column (1) repeats the baseline estimate from Table 9. Column
(2) in addition controls for an indicator of having any children and an indicator of having a partner. Column
(3) deducts gifts and inheritances received from the calculated savings. Data on gifts and inheritance are
only available from 2007 on. Column (4) repeats the baseline but controls for individual fixed effects instead
of group (positive-tested) fixed effects. The row DiD reports the coefficient β from Model 2b, which is the
average treatment effect after genetic testing. The rows t=0-4, t=5-9, and t=10-14 report the coefficients βs,
βm, βl from Model 3b, receptively. These coefficients represent the treatment effects in different years after
genetic testing. Cons reports the constant, N stands for the number of individual-year observations, while Ind
represents the number of unique individuals in the sample. The sample includes individual-year observations
when the individual was at least 25 years old and when they were classified by Statistics Netherlands as the
household head or the partner thereof. Standard errors clustered at the level of the individual are reported
in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A7: Robustness tests on the treatment effects on the risky share

(1) (2) (3) (4)

Baseline
Individual

f.e.
Partner
control

No minimum
deposits

DiD -.09∗∗ -.085∗∗∗ -.083∗∗ -.072∗∗

(.038) (.031) (.037) (.035)

t=0-4 -.083∗∗ -.083∗∗∗ -.087∗∗ -.066∗∗

(.036) (.031) (.035) (.033)

t=5-9 -.1∗∗ -.091∗∗∗ -.086∗∗ -.082∗∗

(.039) (.033) (.038) (.037)

t=10-14 -.084∗∗ -.073∗∗ -.077∗ -.065
(.042) (.035) (.041) (.04)

Cons .14∗∗∗ .14∗∗∗ .14∗∗∗ .14∗∗∗

(.013) (.009) (.013) (.013)

Ind 806 778 823 806
N 7,723 7,723 8,809 7,675

The table presents robustness tests on the effects of testing positive for the suspected Lynch syndrome gene
mutation on the risky share of financial assets. The dependent variable in all columns is the Risky share,
which equals risky financial securities divided by total financial assets. Risky financial securities comprise
mostly stocks and investments in mutual funds but might also include bonds. Column (1) repeats the baseline
estimate from Table 9. Column (2) repeats the baseline but controls for individual fixed effects instead of
group (positive-tested) fixed effects. Column (3) in addition controls for an indicator of having any children
and an indicator of having a partner. Column (4) repeats the baseline but does not impose the requirement
of having at least EUR 2,500 in bank deposits or savings. The row DiD reports the coefficient β from Model
2b, which is the average treatment effect after genetic testing. The rows t=0-4, t=5-9, and t=10-14 report
the coefficients βs, βm, βl from Model 3b, receptively. These coefficients represent the treatment effects in
different years after genetic testing. Cons reports the constant, N stands for the number of individual-year
observations, while Ind represents the number of unique individuals in the sample. The sample includes
individual-year observations when the individual was at least 25 years old and when they were classified by
Statistics Netherlands as the household head or the partner thereof. Standard errors clustered at the level
of the individual are reported in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01
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B Summary Statistics, Data Sources, and Variable Definitions

Variable Age range Age at test Other sample criteria N Mean S.d. 10th pctl. Median 90th pctl.

Has a partner (0/1) 20≤ 9,816 0.78 0.41 0.00 1.00 1.00

Has any children (0/1) 20≤ 10,419 0.69 0.46 0.00 1.00 1.00

Number of children 20≤ 10,327 1.48 1.22 0.00 2.00 3.00

Working (0/1) 25-64 ≤60 11,768 0.75 0.43 0.00 1.00 1.00

Labor income (EUR) 25-64 ≤60 11,768 27,993 30,049 0 24,196 59,706

Salary (labor income) (EUR) 25-64 ≤60 working 8,851 37,218 29,278 9,114 33,406 65,043

Fulltime equivalent (FTE) days worked 25-64 ≤60 working 7,590 283 103 120 338 366

Wage (EUR) 25-64 ≤60 working 7,590 126 70 66 109 200

Patner labor earnings (0 if no partner) (EUR) 25-64 ≤60 adult∗ 11,387 24,125 55,054 0 15,326 54,756

Disposable household income (EUR) 25-64 ≤60 adult 9,794 52,646 52,368 23,625 45,108 79,552

Financial assets 25≤ adult 8,752 76,771 196,046 2,050 23,856 166,721

Deposits 25≤ adult 8,752 48,080 84,557 1,777 20,170 113,418

Financial securities 25≤ adult 8,752 24,530 110,710 0 0 33,458

Primary residence 25≤ adult 8,752 256,871 205,202 0 237,792 488,678

Other real estate 25≤ adult 8,752 24,180 109,421 0 0 0

Financial assets scaled by disposable household income 25≤ adult 8,676 1.22 2.02 0.05 0.52 3.06

Homeowner (0/1) 25≤ adult 12,501 0.78 0.42 0.00 1.00 1.00

Share of risky financial assets 25≤ adult

≥EUR 2500 in deposits

7,565 0.12 0.23 0.00 0.00 0.50

Has any risky financial assets (0/1) 25≤ adult

≥EUR 2500 in deposits

7,565 0.32 0.47 0.00 0.00 1.00

Savings rate (active) 25≤ adult∗∗ 5,703 0.00 0.35 -0.38 0.02 0.37

Table B1: Summary statistics of the main dependent variables

∗ Adult refers to being a household head or partner as defined in table Table B3
∗∗ Additional sample selection criteria apply, see Table B3
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Name in English SN dataset Description

Dutch Hereditary Cancer Registry External dataset Data on genetic testing, cancer diagnoses, and preventive surgeries for individuals in Lynch syndrome-

affected families.

Qualitative characteristics of em-

ployment relationships

BAANKENMERKENBUS Qualitative data on jobs and wages of employees at Dutch companies for a specific reporting year or part of a

reporting year, including the start and end date of the employment relationship, type of employment (e.g.,

regular employee, on-call, outsourcing, manager-large shareholder), social security insurance indicators

(e.g., insured for unemployment benefits).

Quantitative characteristics of em-

ployment relationships

BAANSOMMENTAB Qualitative data on jobs and wages of employees at Dutch companies for a specific reporting year or part

of a reporting year, including taxable salary, calendar days worked, and payroll tax withheld.

Jobs and wages according to the ad-

ministration of the Employee Insur-

ance Agency

S/POLISBUS Quantitative and qualitative data on jobs and wages of employees at Dutch companies for a specific

reporting year or part of a reporting year.

Regional Income Distributions RIO Annual data on the income of persons and households for a sub-sample of the Dutch population including

about 2 million households.

Income of People / Households IPI / IHI Annual income components (such as labor income, subsidies, income from entrepreneurship) of people

resident in the Netherlands on the 1st of January of the statistical year. Information on the position of

the person within the household with respect to the head of the household.

Income of People / Households INPATAB / INHATAB Revised version of IPI/IHI

Income Panel Cohort IPOREVE Cohort study of approximately 90 thousand households, annual data on income and wealth components,

harmonized with VEHTAB and INPATAB/INHATAB definitions.

Wealth of households VEHTAB Annual wealth components (assets and liabilities) of households in the Netherlands on the 1st of January of

the statistical year. SN compiles this dataset from a broad range of sources, including income tax returns

(tax on the primary residence/box 1, substantial interests/box 2, wealth tax/box 3), information directly

supplied by financial institutions on asset holdings and loans, data on house values estimated for municipal

taxation (WOZ-value), student loans, etc.

Extract from the Municipal Per-

sonal Records Database

GBAPERSOONTAB Demographic background data (that do not or hardly change) of all persons who appear in the Municipal

Personal Records Database from 1 January 1995 (e.g., gender, year of birth, migration background).

Date of death of persons registered

in the Municipal Personal Records

Database

GBAOVERLIJDENTAB Contains the date of death of all persons who have died since 1 October 1994 and who were registered in

the Personal Records Database (BRP) on the date of death.
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Name in English SN dataset Description

Persons with a partner with an ad-

dress

PARTNERBUS Contains all persons registered in the Personal Records Database (BRP) from 1 October 1994 who (ever)

formed a cohabiting couple at one address for a continuous period. A cohabiting couple includes both

married (or in registered partnerships) and unmarried couples. Non-married couples form a cohabiting

couple if they have a child in common, ever move to a new address together, or are considered as partners

for taxation or social subsidies.

Persons and their legal parents KINDOUDERTAB Contains all persons registered in the Municipal Personal Records Database (BRP) and the identifying

numbers of their parents insofar as the parent(s) could be identified.

Annual dispensations of medicines

per ATC-4 code per person

MEDICIJNTAB All dispensed medicines that are reimbursed under the basic health insurance policy to persons who are

registered in the Municipal Personal Records Database (GBA). No quantities are recorded; merely the

4-digit ATC codes (e.g., N06A) are listed that were dispensed for a given person in the statistical year.

Address of people GBAADRESOBJECTBUS (Encrypted) address of people registered in the Municipal Personal Records Database (BRP) with starting

and ending date of validity

Table B2: Data sources
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Variable name Description Data sources / variables

Lynch Syndrome-related

Year of genetic test Year when a person underwent genetic testing for Lynch syndrome. For about 50 individuals,

the DHCR could not obtain the details of the genetic test from the clinical geneticist. How-

ever, the test outcome (positive/negative) is recorded, as this was shared with the DHCR

by the tested person (or relatives) orally, or the test outcome was recorded in medical doc-

uments shared with the DHCR (e.g., colonoscopy results). In these cases, I impute the year

of DNA test as the median year of DNA tests of the siblings of the concerned person, and

set the suspected gene mutation the same as the mutation of the siblings.

DHCR

Suspected gene mutation The gene mutation which leads to Lynch Syndrome in the individual’s family, the gene the

individual is tested for. One of MLH1, MSH2, MSH6, EPCAM, or PMS2. The MLH1/MSH2

genes are responsible for about 80% of the mutations in the sample

DHCR

Genetic test outcome Mutation carrier (positive-tested) or non-carrier (negative-tested) DHCR

Prophylactic (preventive) surgeries Prophylactic surgeries listed with the date of operation and type of the operation (e.g.,

colectomy, hysterectomy)

DHCR

Cancer diagnoses Cancer diagnoses listed with the diagnosis date and the International Classification of Dis-

eases (ICD) code

DHCR

Labor market and income

Pre-tax labor income (salary) The salary that serves as a base for payroll taxes and national insurance premia; aggregated

over all jobs of a person in a given year. Includes overtime pay, pay in nature (e.g., company

car’s tax value), and bonuses as well

1995-1998: RIO/LOONFIB

1999-2016: BAANS./FISCLOON

2017-2019: S/POLISBUS/LNLBPH

Labor income Equals to Pre-tax labor income if an individual is working, otherwise 0 derived

Days worked Number of calendar days that a person was employed in a given year. Overlapping periods

of employment are aggregated, maximum 365 (366) days per year

1999-2016: BAANS./KALDG

2017-2019: S/POLISBUS/BAANDAGEN

FTE days worked The number of days worked corrected for part-time employment. For the 2001-2016 period

(BAANSOMMENTAB), full-time equivalent days are calculated by multiplying the part-

time factor with the number of days worked. Winsorized at 366 per year

2001-2016: BAANS./DEELTIJDFACT.

2017-2019: SPOLIS./VOLTIJDDAGEN

Wage = Pre-tax labor income / Full-time equivalent days worked. Winsorized at the 99th percentile derived

Working (indicator) = Pre-tax labor income > 0 derived

Partner’s labor income Defined as ’Labor income’ but for the partner. In case the individual has no partner it takes

the value 0

as above
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Variable name Description Data sources / variables

Disposable household income = Gross personal income (pre-tax labor income, entrepreneurial income, transfers such as

unemployment, sickness, disability insurance benefits, pension benefits, social security bene-

fits, housing allowance, alimony) of all household members (-) income insurance premia (paid

by employer or employee) (+) household-level income (income from wealth, and some subsi-

dies received at the household level such as child-related subsidies) (+/-) alimony and other

transfers paid/received at the household level (-) taxes on income and wealth. Winsorized

at EUR -500,000 and EUR 1,000,000, following the winsorization in the IHI dataset.

1992-2002: IPOREV/INHBESTINKH

1995-2000: RIO/BIHH94E

2001-2002: RIO/BESTINKH

2003-2010: IHI/BVRBESTINKH

2011-2019: INHATAB/INHBESTINKH

Wealth

Net wealth Balance of assets and liabilities 1992-2005: IPOREV/VEHW1000VERH

2006-2020: VEHTAB/VEHW1000VERH

Assets Bank deposits/savings, financial securities, real estate, enterprise capital, substantial inter-

est, and other assets

1992-2005: IPOREV/VEHW1100BEZH

2006-2020: VEHTAB/VEHW1100BEZH

Financial assets Sum of bank deposits/savings and financial securities. In my baseline specification, I win-

sorize financial assets at the 1st and 99th percentiles.

1992-2005: IPOREV/VEHW1110FINH

2006-2020: VEHTAB/VEHW1110FINH

Bank deposits/savings All money kept in a bank account, including foreign deposits. Winsorized variable at the 1st

and 99th percentiles

1992-2005: IPOREV/VEHW1111BANH

2006-2020: VEHTAB/VEHW1111BANH

Financial securities Sum of bonds and shares (excluding substantial interest). Bonds relate to the market value

of negotiable instruments serving as evidence for debt. Shares relate to the market value

of shares in corporations, mutual funds, and other investment funds. Investments in risky

financial securities (shares and equity mutual funds) dominate financial securities. Using

detailed survey data, Gaudecker (2015) finds that only 5% of Dutch households with financial

securities do not own any shares or mutual funds but instead own only bonds or options,

and that the majority of mutual funds held are equity funds. Using data from Statistics

Netherlands, I estimate that only 17% of households with financial securities in 2011 received

any interest payments from bonds. Winsorized variable at the 1st and 99th percentiles

1992-2005: IPOREV/VEHW1112EFFH

2006-2020: VEHTAB/VEHW1112EFFH

Primary residence Property owned and used as the main residence. Based on the WOZ value determined for

municipal taxes

1992-2005: IPOREV/VEHW1121WONH

2006-2020: VEHTAB/VEHW1121WONH

Other real estate Includes second homes, holiday homes, investment properties, and such. Based on the WOZ

value determined for municipal taxes

1992-2005: IPOREV/VEHW1122OGOH

2006-2020: VEHTAB/VEHW1122OGOH
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Variable name Description Data sources / variables

Enterprise capital Balance of assets and liabilities belonging to the business of self-employed (own unincorpo-

rated enterprise)

1992-2005: IPOREV/VEHW1130ONDH

2006-2020: VEHTAB/VEHW1130ONDH

Substantial interests Substantial share (>5%) in equity in incorporated businesses (e.g., family firms) 1992-2005: IPOREV/VEHW1140ABEH

2006-2020: VEHTAB/VEHW1140ABEH

Additional assets Includes cash, movable property leased or used as investment, trust assets, shares in undi-

vided estate, assets encumbered with usufruct, or limited ownership

1992-2005: IPOREV/VEHW1150OVEH

2006-2020: VEHTAB/VEHW1150OVEH

Liabilities Sum of primary residence loans, education loans, and other loans 1992-2005: IPOREV/VEHW1200STOH

2006-2020: VEHTAB/VEHW1200STOH

Primary residence loans Loans for the purpose of constructing, purchasing, or improving the primary residence. The

saving money intended to repay the mortgage is partly included

1992-2005: IPOREV/VEHW1210SHYH

2006-2020: VEHTAB/VEHW1210SHYH

Education loans Loans to cover study expenses. Only completely recorded since 2011, previously part of

’Other loans’ (if declared on income tax form)

1992-2005: IPOREV/VEHW1220SSTH

2006-2020: VEHTAB/VEHW1220SSTH

Other loans Includes bank account overdrafts, consumer durable loans, other real estate loans, financial

asset loans, tax debts. Until 2011, other loans were only recorded for households who were

obliged to pay a wealth tax (box 3)

1992-2005: IPOREV/VEHW1230SOVH

2006-2020: VEHTAB/VEHW1230SOVH

Net real estate = Primary residence + Other real estate - Primary residence loans. Winsorized at the 1st

and 99th percentiles

derived

Other assets = Enterprise capital + Substantial interests + Additional assets. Winsorized variable at the

1st and 99th percentiles

derived

Other debt = Education loans + Other loans. Winsorized variable at the 1st and 99th percentiles derived

Financial assets scale to income Financial assets divided by the mean disposable household income in the sample period.

Winsorized variable at the 1st and 99th percentiles

derived

Share of risky financial assets = Financial securities / Financial assets. Trimmed below 0 and above 1 (in very rare cases

Bank deposits can take negative values).

derived

Stock market participation = Financial securities > 0 derived

62



Variable name Description Data sources / variables

Savings rate =1-(Consumption/Disposable household income)

Household-level consumption is derived from the accounting identity that total household

spending is equal to income plus capital gains minus the change in wealth over the period

(Eika, Mogstad, and Vestad, 2020). I correct for capital gains on Financial securities using

national account data on the mutation in financial securities due to financial transactions

and due to changing prices, following Ji, Teulings, and Wouterse (2019).

For the Primary residence, if a homeowner household does not change address and continues

to own its home, I assume that all value changes are from capital gains. In case a homeowner

household moves but stays a homeowner, I assume that capital gains for the whole year are

proportional to the growth rate of home values in the municipality of origin. If a homeowner

household becomes a renter or a renter household becomes a homeowner, I assume that it

earns capital gains for the fraction of the year it was a homeowner based on the growth rate

of home values in the municipality of origin.

For Other real estate, I assume zero capital gains if the households moves from not owning

any other real estate to owning any, or vice-versa. If the household continues to own other

real estate, I assume all year-on-year value changes up to 15% of the base year value to

be capital gains, following Ji, Teulings, and Wouterse (2019). I assume that capital gains

on savings accounts, entrepreneurial wealth, substantial interests, and other assets can be

neglected.

Following Ji, Teulings, and Wouterse (2019), I exclude individual-year observations if (1) the

household composition (household head or partner) changes, (2) disposable household income

is below 75% of the yearly social welfare level for a single household in 2009 (EUR 5760),

(3) consumption is negative or average annual consumption over time is lower than EUR

5760, (4) average annual consumption over time is at least EUR 120,000 higher than average

household disposable income. Following Ji, Teulings, and Wouterse (2019), I also winsorize

consumption at the bottom, at EUR 5760, and at the top, at one million. Furthermore, I

exclude all 2010 observations where the household had Education loans in 2011 (due to a

break in the Education loans series) and all 2010 observations where the household had no

Other loans in 2010 but had Other loans in 2011 (due to a break in the series). I also exclude

(7) individuals who ever had Substantial interests due to changing coverage of these assets

in the wealth statistics.

In the baseline specification, I trim the resulting savings rate at the lower limit of -1.5, but

I also implement robustness tests with other trimming thresholds.

derived
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Variable name Description Data sources / variables

Home owner Binary indicator of home ownership 1992-2002: IPOREV/INPPERSBRUT

1999-2002: OBJECTW./HUURKOOP

2003-2010: IPI/PERSBRUT

2011-2019: INPATAB/INPPERSBRUT

Demographic / other

Has partner Has partner, including married and non-married partnerships, on the 1st of January of a

given year. Statistics Netherlands considers all couples within an ’official’ partnership (e.g.,

marriage, civil partnership and cohabitation agreements) as partners. Furthermore if two

people change addresses together they are also considered as partners

PARTNERBUS

Adult Household head or partner of the household head. The position within the household is

determined relative to the household head (the household head is the person with the most

important socio-economic position, largely determined by personal income and the source of

income)

1992-2002: IPOREV/INPPOSHHK

2001-2002: RIO/POSHH

2003-2010: IPI/POSHHK

2011-2019: INPATAB/INPPOSHHK

Number of children Number of children that were born in or before a given year 1985 - 2020: KINDOUDERTAB

Year of birth, gender Year of birth and gender for people registered in the Municipal Personal Records Database 1995 - 2020: GBAPERSOONTAB

Address on 1st of January (Anonymized) address on the 1st of January 1995- 2020: GBAADRESOBJECTBUS

Number of siblings Number of siblings on the maternal side (if the mother of the individual is known) 1985 - 2020: KINDOUDERTAB

Table B3: Variable definitions
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C Data Cleaning of the Dutch Hereditary Cancer Registry

The following describes the data collection and cleaning steps I undertook at the Leiden site of

the Dutch Hereditary Cancer Registry before importing the DHCR data to the secure environ-

ment of Statistics Netherlands.

Most of the information on Lynch families in the DHCR is stored digitally in a relational

database. These include data on demographic characteristics (date of birth, sex, family rela-

tions), genetic test results (type of mutation tested for, test result, date of test), cancer history

(type of tumor, diagnosis date), and preventive surgeries (type of operation, date). On the

other hand, some information had to be hand-collected from the scanned dossiers of registered

individuals. The dossier of an individual always includes the registration (consent) form, and all

relevant correspondence (letters, emails) between the DHCR and the registered individual, their

general practitioners, medical specialists, and clinical geneticists. The dossier also includes the

medical documents on genetic tests, preventive surgeries, cancer diagnoses, and medical screen-

ings (e.g., colonoscopy results). These documents are collected from the registered individuals

and/or their physicians.

First, to be able to match registered individuals to the microdata files offered by Statistics

Netherlands, I collected identifying information from the dossiers, including social security num-

bers (BSN numbers) and if the social security number was not available, address information

(latest address and year of validity of that address). Identifying information is stored at the

computers of the DHCR and was never shared with me outside the Leiden offices of the DHCR.

Second, I have also collected information on the year of registering with the DHCR, and whether

the individual had registered before undergoing genetic testing. Finally, I have cross-checked the

genetic testing data stored in the DHCR’s database with the medical dossiers. This resulted in

several updates to the DHCR’s database. In some cases, the database indicated that a genetic

test took place, but it did not record the details of the test. These details I could often locate

in the dossiers. In other cases, the test date was missing or incorrectly filled. Seldom, the test

result was incorrectly recorded.

C.1 Individuals almost certainly at 50% risk of inheriting LS

I collect data on the cancer history of tested individuals’ parents from the family trees recorded

by the DHCR. Family trees contain family linkages (parents), birth and death years (with several

missing observations), and information on cancer diagnoses (cancer type, age at diagnosis).

First, I determine if a person is suspected to having inherited the LS gene mutation from

their mother (maternal side) or father (paternal side). I do so by verifying the presence of the

maternal and paternal grandparents in the family tree (DHCR family trees do not record the

non-affected side of the family). Next, I link to each individual the birth year, death year, and

age at first recorded cancer diagnosis of both of their parents. Besides information on family

trees, for registered patients the DHCR contains data on cancer histories and DNA testing

histories. For each person in my sample, I use this dataset and merge information on DNA

testing and cancer diagnoses of their siblings and parents. I consider an individual to have 50%
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at-birth risk of inheriting LS if any of the following criteria is met:

� maternal (paternal) inheritance is suspected and the person’s mother (father) was still

alive in the DNA test year,

� maternal (paternal) inheritance is suspected and the person’s mother (father) had been

diagnosed with cancer before the DNA test year, at an age not older than 65 years,

� maternal (paternal) inheritance is suspected and the person’s mother (father) had passed

away before the DNA test year, at an age not older than 60 years,

� the side of inheritance cannot be determined (from the DHCR’s records) but both parents

were still alive in the DNA test year,

� the side of inheritance cannot be determined (from the DHCR’s records) but one of the

parents had been diagnosed with cancer before the DNA test year, at an age not older

than 55 years,

� any siblings of the tested person had a DHCR-registered colorectal or endometrial cancer,

or had tested positively for LS before the DNA test year,

� one of the tested person’s parents had tested positively for LS before the DNA test year.
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