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Abstract

We compare the market quality of centralized crypto exchanges (CEXs) such

as Binance and Kraken to decentralized blockchain-based venues (DEXs) such as

Uniswap v2 and v3. After discussing the microstructure of such exchanges, we

analyze two key aspects of market quality: transaction costs and deviations from

the no-arbitrage condition. We find that CEXs and DEXs operate on roughly

equal footing in terms of transaction costs, particularly in light of recent innova-

tions in DEX protocols. Moreover, while CEXs provide superior price efficiency,

DEXs eliminate custodian risk. These complementary advantages may explain

why both market structures coexist.
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I. Introduction

In his seminal paper, Glosten (1994) outlines the advantages of electronic limit order

books (LOB) and concludes that they were likely to lead to widespread adoption. His

prediction has been essentially fulfilled in the past three decades, as many asset classes

are currently traded on centralized exchanges (CEXs) relying on an electronic LOB

that matches end-user orders in a reasonably transparent, efficient, and centralized

way. Glosten’s prediction also applies to new financial instruments such as cryptocur-

rencies. Indeed, LOB markets have been widely adopted for trading cryptocurrencies

off-chain on centralized exchanges. Recently, however, fueled by the wave of innova-

tion brought about by blockchain technology, decentralized exchanges (DEXs) have

emerged as an alternative market structure for crypto assets. These venues are based

on smart-contract implementations of automated market makers (AMM) that enable

on-chain trading.1 Given that the new AMM-based DEX markets have been attracting

increasing trading volumes, the question posed by Glosten should be raised again. We

tackle this issue by empirically assessing two key aspects of the market quality of CEXs

and DEXs: market liquidity and price efficiency.

Our research highlights three main issues: First, while cryptocurrency traders benefit

from the advantages of LOB efficiency deployed in CEXs, they are exposed to unique

types of risk. These encompass custodian risk and potential mismanagement of client

funds. To provide visual evidence on the material implications of such risks, Figure

1 shows the sharp decrease in CEX trading volumes in both absolute and relative (to

DEXs) terms in reaction to the collapse of FTX, which was one of the largest LOB-

based CEXs for cryptocurrency. Second, we quantify market liquidity by conducting

a thorough empirical analysis of transaction costs. We show that DEXs operate with

similar transaction costs to CEXs, and recent innovations have further reduced DEX

1Throughout the paper, we refer to LOB-based centralized exchanges as CEXs and AMM-based decentralized ones as

DEXs. CEXs rely on proprietary IT infrastructure, while DEXs utilize smart contracts and blockchain technology. They

significantly differ in liquidity provision methods; LOB uses market-maker quoted order books, while AMM depends on

participant-contributed liquidity pools with a mathematical pricing model.

2



transaction costs, making them highly competitive. Third, we assess price efficiency by

analyzing deviations from the law of one price implied by the triangular no-arbitrage

condition. Despite recent improvements, we find that DEX prices are significantly less

efficient than CEX prices. This is due to the crucial role of gas fees in restoring no-

arbitrage conditions, reflecting the cost of recording every transaction on the blockchain.

While academic research on the topic is growing fast, we are the first to quantitatively

assess the market quality of DEXs, which is important for at least two reasons. First,

DEXs represent a novel market structure that could, in the future, be applied to tra-

ditional financial securities. By studying the unique characteristics of DEXs, we can

identify potential solutions to improve the quality of conventional markets, including

those based on the LOB system. For instance, the fact that DEXs rely on AMM rather

than LOB has at least three important implications:2 (i) Regarding market participa-

tion, anyone, no matter who they are and what degree of sophistication they have, has

the option to offer liquidity to the exchange in a passive fashion through liquidity pools.

(ii) Regarding welfare distribution, transaction fees are redistributed between market

participants rather than collected by the exchange. (iii) Regarding risk, the custody

of assets remains entirely with the user, thus ensuring the highest level of security and

censorship resistance. Second, political discourse has primarily focused on the impera-

tive need for regulatory measures within the realm of cryptocurrency markets, with the

aim to provide safeguard measures for users and uphold financial stability. This issue is

particularly relevant, given the severe market corrections cryptocurrency experienced

in 2022. A thorough analysis of the quality of DEXs is desirable so as to address these

issues properly.

We proceed in three steps. First, we outline the crucial aspects of trading in CEX and

DEX markets, breaking down the components of transaction costs (exchange fees, bid-

2It is often asked whether it is possible to envision a LOB-based DEX. Current technical constraints of blockchain

technology, namely, limited transaction speed and high gas costs, make an on-chain order book unviable. However,

future iterations could make this possible, as exemplified by the range orders feature in Uniswap v3, which allows for

specific limit orders. Meanwhile, an AMM-based CEX is technically possible but, to the best of our knowledge, remains

unexplored by major exchange providers.
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ask spreads, and gas fees), and point out that delegating the custody of crypto-assets

to a CEX involves risk (e.g., hacking and bankruptcy risk) and settlement issues, while

DEX users keep their assets in non-custodial wallets. The collapse of FTX gives us an

ideal laboratory to analyze the effects of these risks. A difference-in-differences analysis

reveals that trading volume on CEXs has significantly decreased while remaining essen-

tially stable on DEXs. This indicates that the realization of such risks led to an erosion

of trust in CEXs. Next, we describe the trade-off faced by liquidity providers (LPs) in

DEXs, that is, the remuneration earned from exchange fees and the risk of incurring

what is known as impermanent loss (IL; also referred to as divergence loss), the AMM

analog to adverse selection cost in LOB markets. We also discuss the structural features

of DEXs, including the innovations recently brought by the new version of Uniswap

v3, which offers a Multiple Fee Tiering (MFT) system and Discretionary Price Ranges

(DPR). The MFT system grants LPs the autonomy to determine the transaction fees

for which they will be compensated. Concurrently, the DPR mechanism enables LPs to

designate the specific price ranges within which they allocate their liquidity, effectively

controlling their capital leverage.

The second step is to assess market liquidity by examining transaction costs in CEXs

and DEXs. To do this, we investigate a unique and very granular data set that com-

prises three elements: (i) high-frequency LOB snapshots for two of the most liquid

centralized crypto exchanges (Binance and Kraken), (ii) liquidity pool levels and trans-

action fees for the most prominent DEXs (Uniswap v2, and Uniswap v3), and (iii)

historical gas prices for the Ethereum blockchain, computed as the median gas price

over the transactions contained in each validated block.3 This rich information allows

us to accurately reconstruct quoted prices and all main transaction cost components

for a representative set of exchange pairs of cryptocurrencies.4 For CEXs, we measure

transaction costs as the volume-weighted quoted half-spread based on the available

3Since the average time between consecutive blocks on the Ethereum blockchain is 12 seconds, the historical gas price

series is available at a relatively high frequency. However, most of the empirical analysis is carried over at the hourly or

daily frequency; therefore, gas prices are averaged across multiple blocks.
4Namely, we analyze the following pairs: ETH-USDC, ETH-USDT, ETH-BTC, LINK-ETH, and USDC-USDT.
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limit orders plus the percentage transaction fees charged by the exchange. Further-

more, we consider that the settlement of a CEX trade involves withdrawal fees charged

by the exchange and deposit costs in the form of gas fees paid to miners. For DEXs,

we consider the sum of the quoted half-spread (based on the available liquidity in the

pools),5 the percentage transaction fees charged by the protocol and the gas fees paid

to miners operating the Ethereum blockchain.

Two main findings stand out: First, DEXs generally feature similar total transaction

costs to CEXs. For example, the total transaction costs of trading 100, 000$ in one of

the exchange pairs we study, range from 40$ to 67$, from 13$ to 68$, and from 39$ to

80$ in Uniswap v2, Binance, and Kraken, respectively. Importantly, our difference-in-

differences analysis centered on the introduction of Uniswap v3 provides causal evidence

that the most recent DEX system considerably reduces DEX transaction costs. For the

same amount and pairs above, Uniswap v3 trading costs range from 9$ to 52$. Our

analysis indicates that the MFT system represents the most significant contribution to

lowering trading costs. For stablecoin pairs, transaction costs additionally benefit from

the DPR system. Second, the analysis of the cost components shows that exchange

and gas fees weigh relatively heavily on DEX’s total transaction costs, making DEX

costs less predictable.

As the final step, we study price efficiency by examining “triangular” price deviations,

that is, the difference between the price of exchanging one currency for another directly

(e.g., buying USDC against ETH) and the “synthetic” price that replicates this position

by switching from another currency, implying two additional trades (e.g., selling ETH

for USDT and then selling the latter to obtain USDC). In addition to being nearly

risk-free, this arbitrage condition is the ideal metric for comparing exchanges, as it

captures the unique frictions within each market, rather than across multiple markets

or related to other instruments like interest rates and FX derivatives, as is the case with

5There are no standing limit orders in AMM-based DEXs, so the concepts of “ask price” and “bid price” are not

well defined. As explained in detail in Section V, we define the “Bid/Ask spread” for those exchanges resembling the

concept of “quoted half-spread”, that is, as the percentage difference between the average execution price and the quoted

mid-price.
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the covered interest rate parity condition. Our empirical analysis of exchange triplets

uncovers that no-arbitrage conditions are violated more prominently in DEXs. Our

results also show that the deployment of Uniswap v3 has improved DEX price efficiency

by roughly two-thirds. Despite this substantial improvement, price deviations remain

significantly higher than those observed on CEXs. This discrepancy is primarily driven

by the pronounced impact of gas fees on transaction costs and arbitrage activity.

The rest of the paper is organized as follows. Section III introduces CEX and DEX

systems and a simple mathematical treatment of AMM markets. Section IV describes

our dataset and provides some preliminary results. Section V analyses transaction

costs. Section VI studies triangular price deviations. Section VII concludes.

II. Related Literature

We contribute to the nascent but growing literature on cryptocurrencies by providing a

comprehensive analysis of two main dimensions of market quality: price efficiency and

market liquidity. Concerning price efficiency, prior research provides evidence against it,

focusing on Bitcoin. For instance, Makarov and Schoar (2020) analyzes trading activity

and arbitrage deviations using tick data for 34 exchanges across 19 countries. They

find arbitrage deviations of Bitcoin prices that are (i) large, persistent, and recurring,

(ii) different across countries and regions, and (iii) demand-driven. Krückeberg and

Scholz (2020) provide a detailed analysis of arbitrage spreads among global Bitcoin

markets and show that arbitrage spreads concentrate during certain periods, such as

the early hours of the day and for new exchange market entries.6 Hautsch et al. (2018)

stress that consensus protocols generate settlement latency, exposing arbitrageurs to

price risk. Our contribution is to provide a systematic analysis of price efficiency by

studying the triangular no-arbitrage conditions based on a unique and comprehensive

6Other papers focusing on Bitcoin include Urquhart (2016), Bariviera (2017), and Nadarajah and Chu (2017)).

Nadarajah and Chu (2017) explore a large set of cryptocurrencies documenting wide price variation. Dyhrberg et al.

(2018) assess whether and when Bitcoin is investible and at what trading costs.

6



set of cryptocurrency triplets traded on CEXs and DEXs.

Regarding market liquidity, Brauneis et al. (2021) perform a horse-race comparison

among low-frequency transactions-based liquidity measures. A few other studies use

LOB data to study the market liquidity of cryptocurrencies. For instance, Marshall

et al. (2019) find that Bitcoin endures substantial variation in liquidity across different

exchanges. Considering daily data on Bitcoin prices from 109 exchanges, Borri and

Shakhnov (2018) show that temporal variation of Bitcoin returns increases with illiq-

uidity.7 We add to the literature by studying liquidity in centralized and decentralized

crypto exchanges.

Finally, we contribute to the new literature on decentralized exchanges. So far, theo-

retical studies have primarily focused on DEXs based on constant-function automated

market makers akin to Uniswap v2 (e.g., Angeris et al., 2019; Capponi and Jia, 2021;

Evans, 2020; Evans et al., 2021; Hasbrouck et al., 2022; Lehar and Parlour, 2021; Park,

2021).8 Among them, Aoyagi and Ito (2021) examine the conditions for the coexistence

of such CEX and DEX exchanges. Rather than the trader’s endogenous choice between

CEX and DEX trading venues as in Aoyagi and Ito (2021), we empirically assess the

market quality of DEX and CEX, thus analyzing the coexistence of DEXs and CEXs

in equilibrium.9 Some more recent work also considers DEXs allowing LPs to set DPR

or range orders akin to Uniswap v3 (e.g., Lehar et al., 2023; Heimbach et al., 2022).

On the empirical side, the work of Lehar and Parlour (2021) compares Uniswap v2 and

Binance.10 Regarding Uniswap v3, Lehar et al. (2023) document fragmented liquidity

7Although liquidity is not the focus of their study, Brauneis and Mestel (2018) assess the market efficiency of a set of

cryptos using unit root tests and by computing some liquidity proxies, finding that less liquid cryptos are less efficient.
8For instance, Capponi and Jia (2021) model the impact on utility for LPs and traders of the curvature of the pricing

function on Uniswap and Park (2021) provides conditions under which ”sandwich attacks” (akin to front-running) can

be profitable when AMM relies on the constant product rule.
9To conduct empirical research on the endogenous choice of traders, one would ideally need data revealing the

identity of market participants on both CEX and DEX, which to the best of our knowledge, are inaccessible. Thus, it

is not possible to carefully examine what features prevent participants from simultaneously and efficiently exchanging

between DEX and CEX, including aspects of interoperability. In recent work, Han et al. (2021) analyze a quasi-natural

experiment and establish the causal impact of Uniswap liquidity provision on the trading activity on Binance.
10O’Neill (2022) also examines Uniswap v2 showing that it leans toward being efficient as liquidity flows into more

profitable pools while Fukasawa et al. (2022) examine how to hedge against impermanent losses. The Impermanent Loss

is analyzed in other papers (e.g., Aigner and Dhaliwal, 2021; Khakhar and Chen, 2022; Heimbach et al., 2022, 2021).
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in the sense that large LPs prevail in high-fee pools while small LPs populate low-fee

pools. To avoid the burden of gas fees for each update, Caparros et al. (2023) show

that LPs reposition themselves in less costly trading environments (e.g., Polygon).

To sum up, we add to the literature by jointly analyzing multiple CEXs and DEXs.

For each exchange, we carry out a comprehensive analysis of the three transaction

cost components (i.e., exchange fees, bid-ask spreads, and gas fees) and price efficiency

measured as triangular arbitrage deviations. The main message of our study is that

the DEX system represents a viable and competitive microstructure.

III. AMM Markets

A. High-level description of AMM Markets

Contemporary financial markets primarily employ a central LOB system, wherein a cen-

tral institution records buy and sell orders, with market prices set by the latest matched

orders. The main advantage of the LOB systems is the ability to provide a transparent

and efficient price discovery process and liquidity clustering even in extreme situations

(Glosten, 1994). However, implementing a LOB exchange on the blockchain is challeng-

ing due to the costly and slow validation process, gas fees, and limited throughput – a

crucial resource for order-based exchanges. Crypto exchanges like Binance or Kraken,

which use LOB mechanisms, are thus forced to operate off -chain as centralized entities,

sacrificing the benefits of decentralized networks.

In contrast, AMMs use an algorithm to establish transaction and market prices based

on liquidity provided by participants, relying on a conservation function. The predom-

inant conservation function, known as constant product, mandates that the product of

the available liquidity for the two currencies, x and y, remains constant. In AMMs,

such liquidity is provided by liquidity providers (LPs) who deposit assets into a smart

contract representing a specific currency pair’s liquidity pool. Thanks to the conserva-
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tion function, these reserves establish the assets’ relative price, enabling users to trade

without interacting with a third party. A trade on a DEX is also referred to as a swap

transaction. To encourage users to supply liquidity to the pools, LPs earn exchange

fees from each swap transaction. These fees are equal to 30 basis points of the traded

amount for Uniswap v2, while are variable for Uniswap v3 as discussed in Section B.2.

More precisely, each LP is rewarded with a fraction of the fee proceeds proportional to

the share of liquidity she owns. However, providing liquidity also carries risks. Price

divergence between provision and withdrawal can cause economic loss, as LPs receive

more of the depreciating asset and less of the appreciating one. The impermanent loss

represents the relative loss compared to the holding return, gross of transaction fee

revenues. Such risk is akin to adverse selection faced by market makers in markets

with information asymmetry, where losses occur only when flows generate a permanent

price impact.

We now discuss the main advantages and inconveniences of DEXs compared to order-

book-based CEXs, which boil down to a user’s trade-off between retaining control over

funds and benefiting from LOB operational efficiency. Indeed, an important drawback

of CEXs is that traders have to deposit their crypto assets into the exchange to trade.

Deposits and withdrawals are costly, as they are associated with fees charged by the

exchange, and gas costs required to submit the transaction to the blockchain. Further,

to lower the risk of potential double-spending attacks, exchanges require several block

confirmations (12 on Binance and 20 on Kraken) for deposits to be accepted, leading

to delays of two to four minutes. Moreover, since CEXs are not tightly regulated, an-

other risk that has arisen in informal discussions with crypto-asset investors is that the

CEX operators themselves engage in arbitrage activities by leveraging their privileged

position and inside information. Finally, if exchanges mix their own funds with user

funds, this exposes clients to bankruptcy risk.11

11More generally, CEXs are subject to at least three sources of risk: (i) unauthorized access to crypto wallets by

hackers (e.g., the cases of Poly Network and Japan-based Liquid (Ryder and ORX, 2022)); (ii) misappropriation of

client funds by CEX managers, see e.g., Thodex and BitConnect (ORX, 2021); (iii) inefficient security management, for

example, in the case where a coin exchange executive, such as Gerry Cotten of QuadrigaCX, unexpectedly dies, leaving
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On DEXs, instead, the custody of assets remains fully with the user, as no third party

is required to execute the trade. This benefit arising from the decentralized trust

provided by blockchain technology has several important implications. First, users

can take full advantage of the censorship-resistant and trustless nature of their crypto

assets (Pagnotta and Buraschi, 2018). Second, it allows users to make use of their

crypto assets in a variety of protocols and to benefit from their utilities.12 Third, it

neutralizes the risk of hackers attacking the exchange and stealing assets. Fourth, it

allows users to save on the fees commonly associated with depositing and withdrawing

assets in CEXs. Finally, but very importantly, in DEXs trade and settlement coincide.

Another major innovation brought by DEXs is that their users have the option of passive

liquidity provision. This renders the market fairer, given that anyone can provide

liquidity, including agents with any degree of sophistication and level of endowment

(Lehar et al., 2023), and does not necessarily require investing in expensive hardware

or developing complex algorithms. By contrast, in LOB-based exchanges, LPs are

usually highly specialized, and entry costs are high in terms of both sophistication and

capital. Market makers need high-speed computers and state-of-the-art algorithms to

update their quotes as quickly as possible and avoid being picked off by high-frequency

traders (Foucault et al., 2017).13

The DEX market design implies that platform fees charged to each transaction are

distributed to LPs in proportion to their shares (Adams et al., 2020). There is thus

no welfare reduction stemming from profits accrued by the exchange itself, as there is

no limited liability company associated with it. This may translate into economically

significant gains for both traders and LPs.

In DEXs, the market can rapidly adapt and evolve according to participants’ needs.

the digital vault locked (Mance, 2019).
12For instance, ERC20 tokens can be staked to earn interest, used as a means of payment, posted as collateral in

decentralized lending protocols, and can provide access to airdrop events.
13Market quality is a broad concept that includes concepts such as price efficiency, liquidity, and fairness in the sense

that each agent has an equal chance of participating and obtaining a market price that reflects the fundamental value

of financial security. This study focuses on the first two aspects, but given the aforementioned aspects, one can argue

that the DEX setting is fairer.
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Users can instantly quote any pair of ERC20 tokens without screening procedures. As a

result, new tokens tend to become tradeable sooner on DEXs, while CEX approval pro-

cesses can be time-consuming. Moreover, DEXs may enable trading tokens unavailable

on CEXs. This advantage expands investment opportunities, enhances diversification,

and accelerates market completeness. However, it also exposes users to potentially

malicious assets.

Finally, since DEX transactions are processed by smart contracts and directly recorded

on the blockchain, users bear the non-trivial cost of gas fees required to compensate

miners. This fact implies that transactions are subject to an execution delay, the

duration of which depends on the speed of the underlying blockchain, the chosen gas

price, and the level of network congestion. It is important to highlight, however, that

for DEX trades, execution and settlement coincide, meanwhile, trades on CEXs cannot

be considered settled as long as the funds are inside the exchange. Thus, if settlement

issues are taken into account, trading on CEXs involves even higher fees, longer delays,

and risks.

B. Mathematical Foundations of AMM Markets

During both our sample period and at the time of writing, the majority of AMMs relied

on the constant product rule, which enables an algebraic determination of market price

and transaction price based on the available reserves (Adams et al., 2021).14 The leading

example is Uniswap, developed and deployed on November 2018 by Hayden Adams, a

former mechanical engineer at Siemens. In subsequent sections, we first offer a concise

overview of the math underpinning pure constant-product AMMs, which underlines

Uniswap v2, Sushiswap, Pancakeswap, and numerous other DEXs. Next, we outline

the functioning of the more recent Uniswap v3, which can be viewed as a generalization

14There exist AMMs based on similar algebraic rules (e.g., constant sum). Nevertheless, according to monthly

historical snapshots of the CoinGecko DEX ranking, the market share of constant-product AMMs has been above

60% in the period from January 2021 and June 2023. We include Uniswap v3 in such a category even though, formally,

the constant-product rule applies only locally within each tick (Adams et al., 2021).
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of the former. Finally, we introduce and formalize the concept of impermanent loss.

B.1. Uniswap v2

Let X and Y be two crypto tokens. Consider the exchange pair X ↔ Y , and the

associated liquidity pool containing x units of X and y units of Y . The amount of

tokens in the pool determines the current market price PXY of X in terms of Y and its

inverse PY X , which can be expressed as

PXY =
y

x
and PY X =

x

y
(1)

Let us denote as f the percentage exchange fees charged by the DEX, and let φ = 1−f .

These fees are immediately applied to the traded amount ∆x > 0, so that the net

quantity of token X that goes into the swap transaction is φ∆x. Each trade (swap

transaction) is automatically regulated by the constant product rule, which states that

the product of the reserves must remain constant before and after any transaction.

Hence, when trading an amount ∆x > 0 of token X in exchange for token Y , the

output quantity ∆y is mathematically determined by the following equation

xy = k = (x+ φ∆x)(y −∆y) ,

where k is the constant product invariant. Solving for ∆y, one obtains that the output

amount is given by

∆y = y
φ∆x

x+ φ∆x
. (2)

The transaction price is, therefore, lower than the quoted price and is given by

TXY (∆x) =
∆y

φ∆x
=

y

x+ φ∆x
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and the quoted half-spread (as a percentage of the quoted price) can be computed as

SXY (∆x) =
PXY − TXY

PXY

=
φ∆x

x+ φ∆x
. (3)

Note that the above is an increasing but concave function of the transaction volume

∆x, implying that larger volumes have a larger impact on prices but with a marginally

decreasing effect. Ceteris paribus, a purchase could have a greater impact than a sale,

as showed in Aoyagi and Ito (2021). Throughout the paper, we compute the quoted

half-spread for both directions (X → Y and Y → X) for the same traded amount in

terms of dollars and consider the average of the two measures. In the following, we

refer to this metric as Bid/Ask Spread or B/A Spread for short.

B.2. Uniswap v3

Uniswap v3, released on May 5th, 2021, is based on a generalization of the constant-

product AMM model. The upgrade, deployed through a new set of smart contracts,15

includes two innovations that are highly relevant to our market quality analysis, namely:

(i) the Multiple Fee Tiering (MFT) system, that is, the possibility for LPs to choose

the level of exchange fees; (ii) the Discretionary Price Ranges (DPR) system, allowing

LPs to post liquidity on a specific price interval.

The MFT system is based on the capability of the new protocol to deploy several

liquidity pools for the same exchange pair, each with a different level of exchange fees

attached to it. More specifically, the available fee levels – in basis points – have support

in the discrete set {1, 5, 30, 100}. This implies, in particular, that there can be at most

four liquidity pools for the same exchange pair. LPs are free to decide their allocation

of liquidity across pools, and, likewise, traders can decide in which pool they want

to trade.16 Each of those pools works as a standard v2 pool and is independent of

15A comprehensive list of the address of each deployed contract is available on the official Uniswap documentation at

https://docs.uniswap.org/protocol/reference/deployments
16Given a trade size and a trading pair, The Uniswap v3 interface automatically suggests the best possible route to

follow to minimize transaction costs. The optimal solution may be achieved by splitting the trade across different pools.
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its siblings. It is endowed with pool-specific levels of liquidity xf and yf , aggregating

the liquidity supplied by LPs at fee level f . This implies that different pools for

the same currency pair may display different quoted prices and Bid/Ask spreads. In

equilibrium, however, arbitrage activity should limit price deviations from the law of

one price. From a theoretical standpoint, liquidity allocation depends on the risk-return

trade-off faced by LPs, as described in the simple model of liquidity provision proposed

in Section A of the Internet Appendix. In particular, relevant factors determining

the allocation of liquidity across different fee levels should include: (i) the expected

volatility of the exchange rate, proportional to the expected impermanent loss. For

pairs with a higher expected impermanent loss, LPs should require higher exchange

fees as a risk compensation; (ii) the expected trading volume in the pair, proportional

to the expected profit from liquidity provision. For pairs with a larger expected volume,

LPs should accept lower exchange fees; (iii) the level of liquidity already present in the

pool, since less crowded pools provide higher returns on capital to the marginal LP.

Further, the allocation of liquidity between high- and low-fee pools may depend on the

heterogeneity of capital endowment across LPs, as theorized by Lehar et al. (2023).

MFT can enhance market quality by lowering the effective transaction costs for traders.

With the support of Uniswap’s automatic router, traders can select the optimal pool

for a specific trade size by balancing the trade-off between Bid/Ask spreads and fees.

The second innovative feature of v3 is DPR, which opens up the possibility for LPs

to confine their liquidity provision to a specific price interval, allowing LPs to offer

liquidity in a more proactive manner. Technically, the protocol uses a discrete set of

price ticks to divide the full price range of a trading pair into a discrete number of

intervals. An LP can provide liquidity to a custom range, opening a so-called liquidity

position, by specifying the lower and upper ticks in addition to the supplied quantity.

Aggregating over all LPs’ positions, one obtains the distribution of liquidity over the

entire price range, which can take any arbitrary shape.

To convey some intuition, let us briefly discuss the case of a single liquidity position
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delimited by two subsequent ticks. Formally, consider a liquidity pool for the exchange

pair X ↔ Y and a liquidity position concentrated on the interval [Pa, Pb]. Following

Adams et al. (2021), the quantities x̃ and ỹ supplied to the pool are referred to as real

reserves. Let x and y be the corresponding virtual reserves, defined on the current

interval as

x = x̃+ L/
√
Pb and y = ỹ + L

√
Pa (4)

where L =
√
xy is referred to as the virtual liquidity attached to the interval.17 Locally

on the interval, all relevant quantities are defined similarly as in Uniswap v2, but in

terms of virtual reserves rather than real reserves. In particular, the quoted price is

P = y/x, and the constant product rule reads xy = k.18

In other words, when a swap transaction occurs within a single price interval, the

pricing rule is exactly the same as in Uniswap v2, driven by the constant-product

formula applied to the virtual liquidity available on that interval. If the price impact

of the trade pushes the quoted price across one or multiple ticks, the constant-product

formula applies locally based on the virtual liquidity attached to each interval.

The exchange fees collected on each interval are divided among LPs based on the

share of liquidity they deposited in that specific interval. In particular, a liquidity

position earns fees only if swap transactions are performed on its support. The DPR

system aims at reducing transaction costs mainly for stable-coins pairs, enjoying very

low levels of exchange-rate volatility. For instance, on the USDC-USDT pair, where

both stablecoins are pegged to the US dollar, LPs are incentivized to concentrate their

liquidity within a few intervals around the price of 1, thus leading to lower Bid/Ask

spreads in that region.

The Bid/Ask spread formula for Uniswap v3 is less straightforward than its v2 counter-

17Note that real and virtual reserves coincide in Uniswap v2, where liquidity can be allocated only on the full price

range, that is, Pa → 0 and pb → ∞.
18This implies that, differently from Uniswap v2, the dollar values of the real reserves x̃ and ỹ are not necessarily equal

but depend on the relative position of the quoted price within the interval [Pa, Pb]. If the quoted price is outside of the

interval, the supplied liquidity is composed of only one of the two tokes. In this case, the liquidity position constitutes

a range order, similar to a traditional limit order (Adams et al., 2021).
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part, described in (3), as it depends on the liquidity distribution across price intervals.

To derive it, consider a liquidity pool for the exchange pair X ↔ Y with quoted price

P . Assume the trade size is ∆x and denote by P ′ the final quoted price after the trans-

action. Let us start with the simple case where a trade of size ∆x is fully executed

within a single price interval. To make the notation lighter, we ignore exchange fees

in this derivation. Recall that the liquidity of the interval is L =
√
xy, where (x, y)

are the virtual reserves for the interval before the trade, and (x′, y′) denote the virtual

reserves after the trade. Since L is invariant to trades, we have

x = L/
√
P , y = L

√
P , x′ = L/

√
P ′, y′ = L

√
P ′. (5)

It thus follows that the relationships between ∆x, ∆y, and the quoted prices are

∆x = L
(
1/
√
P ′ − 1/

√
P
)

and ∆y = L
(√

P −
√
P ′

)
(6)

The transaction price can therefore be written as ∆y/∆x =
√
PP ′, showing that it

equals the geometric mean of P and P ′.

To derive a general expression for the transaction price in the case of a trade spanning

multiple intervals, define the price intervals It = [Pt, Pt−1] for t ∈ Z such that P ∈ I0 and

let τ be a positive integer such that P ′ ∈ Iτ . Further, let ∆xt denote the amount traded

within It, and let Tt be the corresponding transaction price. The effective transaction

price can thus be written as the volume-weighted average of the local transaction prices

for each of the relevant intervals as a function of the trade size and the distribution of

liquidity:

T =
1

∆x

[
∆x0T0 +

τ−1∑
t=1

∆xtTt +∆xτTτ

]
(7)

=
1

∆x

[
L0

(√
P −

√
P0

)
+

τ−1∑
t=1

Lt

(√
Pt−1 −

√
Pt

)
+ Lτ

(√
Pτ−1 −

√
P ′

)]
(8)
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Finally, the spread equals the percentage deviation from the quoted price, that is

SXY (∆x) =
P − T

P
(9)

B.3. Impermanent Loss

Similarly to liquidity provision in LOB markets, providing liquidity to AMM-based

DEXs involves a trade-off between expected profits and adverse selection risk. On the

one hand, LPs are compensated by pocketing the transaction fees applied to the trading

volume generated by liquidity takers through swaps. On the other hand, a permanent

price change leads to an impermanent loss (IL) for the LP. This loss arises from the

fact that, gross of fees, providing funds to a liquidity pool is less profitable than simply

holding the tokens (Loesch et al., 2021). In the following, we derive a mathematical

expression for the IL in Uniswap v2, followed by a brief discussion of the same issue in

the context of Uniswap v3.

Consider a liquidity pool on Uniswap v2 for the exchange pairX ↔ Y , containing x and

y units of the two tokens at time t = 0. Assume an LP owns a share ψ of the pool, and

the current quoted price is P = y/x. At t = 0, the value of her position in units of y is

W = ψ(xP+y) = 2ψy. Denote the new reserves at t = 1 as (x′, y′) and the new price as

P ′, so that the value of her position in units of y changes to W ′ = ψ(x′P ′ + y′) = 2ψy′.

The gross percentage change in the value of the deposited liquidity can therefore be

expressed as RLP = W ′/W = y′/y. Given the constant product rule xy = k = x′y′ and

the definition of the quoted price, we can write y =
√
kP and y′ =

√
kP ′ . Hence, the

change in value of the LP’s liquidity position depends solely on the square root of the

gross price change ∆P = P ′/P between t = 0 and t = 1:

RLP =
y′

y
=

√
kP ′

√
kP

=
√
∆P .

On the other hand, the gross return RH from holding the tokens is simply the average
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of the returns arising from holding each individual token. This equals to 1 for Y – the

accounting unit – and ∆P for X. The total holding return is thus

RH =
1

2
(∆P + 1) .

The impermanent loss, that is, the net opportunity cost from providing liquidity in

Uniswap v2 instead of holding the tokens, is therefore given by19

IL2 = RH −RLP =
1

2
(∆P + 1)−

√
∆P . (10)

By taking the first order derivative with respect to ∆P , one can easily see that IL has

a global minimum of 0 for ∆P = 1, while it is strictly positive otherwise. Hence IL

represents a cost and highlights that, gross of pocketing the fees, LPs providing liquidity

are always worse off than token holders. We note that IL can be seen as a measure of

the level of adverse selection faced by LPs, similar to that faced by market makers in

LOB markets. In fact, for any given horizon, IL = 0 if the order flow is uninformed and

gives only rise to a temporary price impact (∆P = 1), while it increases in magnitude

in the presence of informed order flow, causing a permanent price change (∆P ̸= 1).

Intuitively, the provision of liquidity in the AMM framework can be remunerative if the

LP provides immediacy primarily to liquidity traders while, at the same time, it may

involve net losses when facing a higher fraction of informed traders. Quantitatively,

Fukasawa et al. (2022) show that the IL in constant-product AMMs can be hedged

through weighted variance swaps.

The introduction of the DPR system in Uniswap v3 complicates the calculation of IL for

a liquidity position, as it hinges on the position’s price range. Although a comprehensive

discussion is beyond this paper’s scope, we provide a derivation of IL in a special case,

assuming liquidity is provided on a single interval centered on the quoted price and

19We define the IL as the difference between RLP and RH , as in Aigner and Dhaliwal (2021) and Fukasawa et al.

(2022). The IL can alternatively be defined in percentage terms (Khakhar and Chen, 2022; Heimbach et al., 2022, 2021)

by IL2 = RLP /RH − 1 = 2
√
∆P/(∆P + 1)− 1.

18



that the final price stays in the interval. Formally, consider a liquidity position on

the interval [Pa, Pb], with virtual reserves (x, y) corresponding to real reserves (x̃, ỹ).

Assume the initial quoted price P0 equals the geometric mean of the interval so that

the dollar value of the real reserves is balanced. It follows that the initial value of the

position in units of Y is given by W = x̃P + ỹ = 2ỹ and the t = 1 value resulting from

holding the two tokens is W ′
H = x̃P ′ + ỹ = (1 +∆P )ỹ. Hence, the return from holding

the tokens is RH = (1+∆P )/2, as in Uniswap v2. Assuming the new price P ′ does not

exit the interval, we can easily find the new real reserves (x̃′, ỹ′) and the resulting value

of the liquidity position at t = 1, which is given by W ′
LP = x̃′P ′ + ỹ′. Applying the

constant product rule to virtual reserves and transforming them back to real reserves,

using the relation expressed in (4), we get

x̃′ = L(1/
√
P ′ − 1/

√
Pb) and ỹ′ = L(

√
P ′ −

√
Pa). (11)

Similarly, the initial value of the position can be re-written as 2ỹ0 = 2L(
√
P0 −

√
Pa).

Hence, with some algebraic manipulations, IL in Uniswap v3 can be expressed as

IL3 = RH −RLP =
(1 + ∆P )

2
− x̃′P ′ + ỹ′

2ỹ
(12a)

=
(1 + ∆P )

2
− L(2

√
P ′ − (1 + ∆P )

√
Pa)

2L(
√
P −

√
Pa)

(12b)

=

√
P√

P −
√
Pa

(
1

2
(∆P + 1)−

√
∆P

)
(12c)

= λ IL2 (12d)

where λ =
√
P/(

√
P −

√
Pa) can be interpreted as a leverage factor that increases as

the interval narrows. Note that the impermanent loss in Uniswap v3 converges to that

of Uniswap v2 if the interval covers the entire price range and λ → 1. In summary,

the introduction of the DPR system in Uniswap v3 opens the possibility for LPs to
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take leveraged liquidity position, where both the earned exchange fees and the IL are

increasing in the leverage factor.

IV. Data and Preliminary Results

Because DEXs are based on smart contracts deployed on blockchains, records of every

interaction with those contracts are available to the public. This rich dataset includes,

as primitives, the creation of exchange pairs, the addition and removal of liquidity by

LPs, and swap transactions between two quoted tokens. Building on those, one can

reconstruct liquidity levels, quoted prices, transaction prices, and trading volume at

the pair level at any time. We leverage the application programming interface of The-

Graph.com, an indexing protocol enabling efficient querying of data from blockchains,

to obtain data for Uniswap v2 from the Ethereum Mainnet. Equivalent data regarding

Uniswap v3 is collected using custom queries on Dune.com, a community-driven plat-

form that facilitates querying of public blockchain data. For CEXs, by contrast, data

are proprietary. We obtain minute-frequency full LOB snapshots and Open, High, Low,

Close, and Volume data from Kaiko, a data provider specialized in cryptocurrencies,

for all pairs quoted on the highest-volume crypto exchanges, such as Binance Interna-

tional and Kraken. For both CEXs and DEXs, our sample period spans from March

2021 to February 2023. Specifically, Uniswap v2 data ends in February 2022, while

Uniswap v3 data is available from its introduction, in May 2021, to February 2023. For

our main empirical analysis of market quality, we focus on five of the most liquid and

traded cryptocurrency pairs.20 To select these pairs, we first consider the intersection

of trading pairs present in Uniswap v2, Binance, and Kraken at the beginning of our

sample. We then compute percentile rankings of average daily volumes in USD over

our sample period on each of the three exchanges and take their average. Finally, we

select the first five pairs ranked by the resulting metric.21

20Namely ETH-USDC, ETH-USDT, ETH-BTC, LINK-ETH, and USDC-USDT
21This method excludes currencies that are not simultaneously traded on the two types of markets. However, it allows

to compare the same cryptocurrencies with the same fundamental value using high-frequency and granular data.
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There are two important moments during our sample period that allow us to carry out

insightful difference-in-differences analyses. The first event is the collapse, on November

10th, 2022, of FTX, one of the largest LOB-based centralized exchanges for cryptocur-

rency. The bankruptcy was triggered by a liquidity crisis pertaining to the exchange’s

proprietary token, FTT, and led to significant market volatility and multibillion-dollar

losses. Some evidence suggests the misuse of its clients’ assets. Specifically, it has been

reported that FTX allocated $10 billion from its client accounts to bolster Alameda

Research, a cryptocurrency trading entity operated by Sam Bankman-Fried, who is also

the founder of FTX. Such an action contravenes the stipulated terms of service of FTX,

which explicitly maintain that clients’ funds should not be appropriated for purposes

beyond trading on the FTX platform. Furthermore, allegations have emerged contend-

ing that FTX employed a Ponzi-like scheme to misappropriate funds, involving the

transfer of customer resources among different entities. These claims, if substantiated,

highlight a serious breach of fiduciary duty, underscoring the custody risks associated

with centralized cryptocurrency exchanges. Hence, this event provides us with an ideal

laboratory to analyze the effects of custodian risks embedded in LOB-based CEX mar-

kets. The second event is the inception of Uniswap v3 which occurred on May 5th,

2021. This event allows us to compare the market quality of the new Uniswap v3 and

its previous iteration, v2, and that of CEX markets.

A. Trading Volume

Figure 3 showcases the cumulative traded volumes for the CEXs (Binance and Kraken)

and DEXs (Uniswap v2 and Uniswap v3) included in our sample, expressed in billion

USD. The data reveals two main patterns: First, while a temporary drop following

the collapse of FTX at the end of 2022 is visible, the trading volume for both CEXs

and DEXs has generally remained relatively steady. Second, trading volumes in CEXs

are approximately 10 times larger than those in DEXs throughout the period. Table

II presents the daily average trading volume for the pairs we consider in millions of

21



USD, broken down by exchange. These pairs provide a representative sample, as they

generate between 14% and 33% of the volume on each exchange. Figure 5 presents the

distribution of trade sizes for swap transactions executed in Uniswap v2 and Uniswap

v3 based on blockchain data, while we do not have access to the equivalent information

from CEXs. The histogram reveals that the bulk of trades ranges between 1 and 10,000

USD, accounting for approximately 70% of all recorded transactions. Yet, there are

instances of significantly large trades surpassing 1 million USD, making up for 0.5% of

the observations.

B. Self-Custody and FTX Collapse

The collapse of FTX gives us an ideal laboratory to analyze the effects of the risks

in granting centralized exchanges the custody of assets, discussed in Section III. FTX

was one of the world’s largest cryptocurrency exchanges. It filed for bankruptcy on

November 11, 2022, jeopardizing around 740$ million worth of crypto assets deposited

on the FTX platform (Huang, 2022). We posit that this event may have triggered

an erosion of trust due to the increased saliency of deposit risks and mismanagement

of users’ assets by CEX system operators. The hypothesis we test is whether the

FTX downfall has decreased trading volumes in other CEX markets (like Binance and

Kraken) relative to DEXs. In addition, a simultaneous increase (decrease) in trading

volumes on DEXs would suggest a substitution (negative spill-over) effect from CEXs

to DEXs.

To test these hypotheses, we perform difference-in-differences regression analyses of

the trading activity on CEX and DEX exchanges around the time when FTX filed

for bankruptcy. The sample encompasses a period of two months before (September

9, 2022) and after (January 9, 2023) the event. The dependent variable is the daily

trading volume (both in billion US Dollars and in logarithm terms) on CEXs (Binance

and Kraken) and DEXs (Uniswap v2 and v3), which is regressed on a treatment dummy

(DEX) indicating DEXs, a time dummy (FTX) indicating the period after the FTX
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collapse, and their interaction. We check and confirm the validity of the parallel trend

assumption.

The time series evolution of aggregate trading volumes on CEXs and DEXs in Figure

2 clearly illustrates a sharp decrease in CEX volumes. The regression results reported

in Table VII shed more light on what happened in reaction to that event, indicating

a significant collapse in trading volumes on CEXs and a stable holding of volumes on

DEXs. Thus, these findings suggest that CEX’s users reacted to the materialization of

risks inherent in centralized systems, reducing the trading volume allocated to CEXs in

the two months following the FTX bankruptcy. In contrast, DEX transaction volumes

remained stable, discarding the idea of positive or negative spill-over effects.

C. Gas Prices

The term gas refers to the unit of measure of the computational effort required to

execute transactions on the Ethereum network. The aggregate gas fees for a given

block, summing over all transactions, are paid in the network’s native currency (ETH

for Ethereum) and collected by the miner validating the block. To trade on a DEX,

as for any on-chain transaction, more generally, the user has to pay a number of gas

units proportional to the computational complexity of the transaction. The resulting

dollar cost is the product between the units of gas used and the gas price, which the

user can choose to control the priority of execution. Miners select, among the set of

pending transactions, those to include in the new block, prioritizing the most profitable

transactions, that is, those with the highest gas price. Wallet interfaces automatically

suggest an optimal gas price, depending on the current level of network activity and

based on the trade-off between the probability of execution within the next few blocks

and the cost. While users can edit the gas price according to their preferences, our

data reveals that most transactions are executed at the median gas price of the block.

Gas costs are undoubtedly important in the study of trading in fully decentralized AMM

markets since all interactions are on-chain. Every trade is triggered by a transaction
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submitted by the user to the blockchain, representing a function call on the protocol’s

smart contracts. Further, on closer inspection, gas fees also matter in CEX trading.

In fact, a CEX-based trade is only settled when the trader transfers the asset from the

exchange wallet back to her non-custodial wallet. The settlement process thus involves

the gas fees paid to miners for the deposit of funds (“deposit fees”) and fees charged

by the exchange for the withdrawal (“withdraw fees”). The transaction representing

the deposit is executed by the user, who has to pay the gas directly to the network,

while the withdrawal operation is executed by the exchange, which pays for the gas

and requires compensation from the user.

Figure 4 plots the evolution of the gas fees (in USD) required to execute a swap trans-

action on Uniswap, equal to the product between gas units and gas price, in USD.

The figure is based on an estimate of the gas units required for a swap on Uniswap

v2, constant over time, and an estimate of the prevailing gas price on each day. We

estimate the former for each pair by sampling swap transactions every 100 blocks over

the entire sample period using a local Ethereum node and Infura APIs, resulting in

roughly 330,000 transactions. While, in principle, those could vary across specific trad-

ing pairs depending on the implementation of the ERC-20 contracts for the two tokens,

we empirically find only minor variations across pairs. We hence use the median value of

118,340 gas units for the plot. We separately repeat the estimation for swaps performed

on Uniswap v3, based on roughly 200,000 transactions, finding that the required gas

amounts are also homogeneous across pairs and roughly 10% more costly with respect

to Uniswap v2. Throughout the paper, we use the median values of 118,340 gas units

for Uniswap v2 and 130,889 gas units for Uniswap v3. Finally, we estimate the gas

price attached to swaps using the above-mentioned set of Uniswap v2 and Uniswap v3

swap transactions by taking the median gas price on an hourly basis.22

Since the amount of required gas for such an operation is constant over time, the

observed time-series variation arises from two factors: (i) the price of ETH relative to

22In a previous version, we used hourly mean values of gas prices across all transactions, even those unrelated to

Uniswap. While the new conditional estimate is more precise and slightly lower, the difference is immaterial.
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the USD and (ii) the prevailing gas price of the network, depending on the level of

network congestion. The series presents substantial variability, ranging from less than

10$ in the first part and last part of the sample to 300$ between April and May 2022.23

The two vertical lines mark the period from March 2021 to February 2023, the period

in which our primary analysis of market quality is conducted.

V. Transaction Costs

Now that we possess a comprehensive understanding of the operational mechanisms

of CEXs and DEXs, and have access to the relevant data, we can proceed to analyze

the first key aspect of market quality - market liquidity. A common definition of

market liquidity is the ease with which an asset can be traded at a price close to its

consensus value (Foucault et al., 2013). We employ a widely accepted measure of market

illiquidity, that is, the effective transaction cost associated with a single trade. It is

expressed as a percentage of the traded amount. Transaction costs account for both the

price impact associated with a given trade size and any kind of commissions charged

by the protocol or the exchange. Due to their fundamentally different mechanics, CEX

and DEX transaction costs are modeled using distinct methodologies. Nevertheless,

the two measures are based on the same conceptual framework, as they are meant

to capture the effective costs incurred by a trader transacting a given amount (in US

Dollar terms), including slippage, fees, and settlement costs.

Empirically, we estimate transaction costs TCXY (∆x) for a trade X ↔ Y at an

hourly frequency for the five pairs in our sample and different trade sizes ∆x ∈

(103, 104, 105, 106) expressed in USD, separately for DEXs and CEXs.

23The exceptional average gas price observed between April 30th and May 1st, 2022, was likely caused by the NFT

drop of the “Otherside”. The highly awaited launch of the collection by “Yuga Labs” the company behind Bored Ape

Yacht Club and ApeCoin, resulted in more than $150 million spent on gas fees and a network-wide increase in gas prices.
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A. CEX Transaction Costs

For CEXs based on LOB, we measure transaction costs of a market order of a given

dollar amount by considering four distinct components: (i) the Bid/Ask spread implied

by the depth of the LOB, (ii) the exchange fees charged by the platform (taker fees),

(iii) the gas fees paid to transfer crypto tokens to the exchange, and (iv) withdrawal

fees charged by the exchange. The third and fourth components constitute a measure

of settlement costs, motivated by the assumption that the trader does not delegate

the ownership of its funds to the exchange.24 Rather, we assume that the trader

originally holds the crypto tokens in her non-custodial wallet and transfers token X to

the exchange whenever she wants to trade. After the transaction X → Y occurs inside

the exchange, she withdraws the resulting units of the Y token by transferring them

back to her wallet. These deposit and withdrawal operations are expensive and will be

discussed below.

We start with the Bid/Ask spread associated with a market order which, since we

observe the full depth of ask and bid quotes present in the order book at any point in

time, can be computed directly using the volume-weighted bid and ask prices. More

specifically, we define the volume-weighted bid price BXY for a sell order of size ∆x as

BXY (∆x) =

∑
i vibi
∆x

such that
∑
i

vi = ∆x ,

where vi and bi represent the volume and the price of each filled bid limit order i,

respectively. The volume-weighted ask price AXY for a buy order of size ∆x is defined

symmetrically as

AXY (∆x) =

∑
j vjaj

∆x
such that

∑
j

vj = ∆x ,

where vj and aj represent the volume and the price of each filled ask limit order j,

24As argued in Section I, centralized crypto exchanges are exposed to several operational risk factors. Hence, a trade

cannot be considered settled as long as the assets are held by the exchange.
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respectively. We then define the Bid/Ask spread25 as

SXY (∆x) =
AXY (∆x)−BXY (∆x)

AXY (∆x) +BXY (∆x)
. (13)

Next, the deposit of funds involves the trader paying an amount of gas fees to submit

the transaction on the blockchain. The cost of such an operation is fixed in terms of

the required gas units (21,000 for the native token ETH and 65,000 for ERC20 tokens).

Its dollar value depends on the prevailing gas price on the network.26 Consequently,

we calculate deposit fees as the product of the gas units needed for the transaction,

contingent on whether X is the native currency and the prevailing gas price (in USD)

at the trade time. Moreover, withdrawing from the exchange to a personal wallet incurs

a fee charged in the withdrawn currency units. We gather these fees for each token of

interest from Binance and Kraken, converting them to USD based on the token’s value

at the trade time. Finally, we define the total transaction costs by adding up the four

components defined above. For the sake of simplicity, we condense the deposit and

withdrawal fees into one term DWX,Y /∆x representing the entirety of settlement costs

as a percentage of the traded amount, while we leave the percentage exchange fees f

as a separate entity. We thus have

TCXY (∆x) = SXY (∆x) + f +
DWXY

∆x
, (14)

Notice that the first and last terms in the above expression are time-varying, while

exchange fees are constant.27

25Note that our definition agrees with the standard “volume-weighted quoted half-spread”.
26While the trader can choose a custom value for the gas price for each transaction, determining execution priority,

we assume that the trader uses the gas price suggested by her wallet, that is, the prevailing gas price in the network.
27CEXs may periodically revise their withdrawal fees. Using the WayBackMachine, we reconstruct the fee time series

for Binance and Kraken based on the available snapshots. Although this approach isn’t flawless, given the infrequent

updates to these fees, we contend that our methodology is sufficiently accurate. A similar examination of exchange fees

reveals that they remained constant throughout our sample period on both Binance and Kraken.
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B. DEX Transaction Costs

For DEXs based on AMM, we measure transaction costs of a trade of a given dollar

amount by considering three distinct components: (i) the Bid/Ask spread implied by

the depth of the liquidity pools; (ii) the exchange fees charged by the exchange; (iii)

the gas fees paid to submit the blockchain transaction. As previously explained, the

dollar value of gas fees depends on the computational complexity of the smart-contract

function being called, the execution priority chosen by the trader, and the prevailing

gas price at the execution time. For our purposes, we are interested in the gas required

to execute a swap transaction; For instance, in Uniswap v2, this involves invoking the

swapExactTokensForTokens function of the relevant router contract.28 We assume

that the quantity of gas required to execute a swap transaction is constant across all

currency pairs at Γ = 118,340 gas units for Uniswap v2 and 130,889 for Uniswap v3,

as discussed in Section C.29 We then approximate the gas cost g of a swap during

each hour of our sample period multiplying Γ by the median gas price paid across all

Uniswap v2 and Uniswap v3 transactions recorded during that hour in dollar terms.

The transaction costs for Uniswap v2 are thus computed as the sum of the Bid/Ask

spread SXY , defined in (3) and averaged across both directionsX → Y and Y → X, the

constant exchange fee f = 30 bps for Uniswap v2, and the gas fee g as a fraction of the

trade size. When it comes to Uniswap v3 we apply a similar methodology, even though

the calculation differs slightly due to the MFT system and the existence of multiple

pools for any given exchange pair. Specifically, we compute transaction costs for each

pool separately, using the Bid/Ask spread derived in (9), and considering the unique

exchange fees of the pool. For each trade size and each hour, we then identify the

most cost-effective pool for executing the trade, that is, the one resulting in the lowest

28Depending on the nature of the token, the exact router function may be different. For instance, for tokens featuring

fee re-distribution like SafeMoon, the swapExactTokensForTokensSupportingFeeOnTransferTokens function must be

used. Nevertheless, the amount of gas required is not significantly different.
29Note that these figures are significantly larger than the gas required by a simple transfer function on an ERC20

contract which costs 65,000 gas units, or a transfer of ETH (the native currency of the Ethereum blockchain), which

costs 21,000 gas units.
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overall transaction costs, including gas fees. Our approach considers that traders can

effortlessly select the most advantageous pool, since the Uniswap interface, through

its router contract, automatically recommends it.30 Note that, as the optimal pool

depends on both the offered fees and the available liquidity, it can vary across different

trade sizes and over time. We will assess the degree of such variation empirically in

Section V.

Hence, the transaction costs for the two DEXs can be summarized as

TCXY (∆x) = SXY (∆x) + f +
g

∆x
. (15)

As in the CEX case, the first and last terms in the above expression are time-varying.

The exchange fees f are constant for Uniswap v2, while in Uniswap v3 they depend on

the optimal pool selected, as discussed above.

C. Descriptive Analyses of Transaction Costs

Our analysis begins by examining the average transaction costs (TCs) across different

trade sizes on DEXs (Uniswap v2 and v3) and CEXs (Binance and Kraken). The

results, presented in Figure 6 , illustrate log TCs calculated at an hourly frequency using

equations (15) and (14) and then averaged over the entire sample period. Additionally,

Table III offers a detailed breakdown of the total TCs into their three components

(bid-ask spread, gas or deposit-withdrawal fees, and exchange fees) across different

trade sizes. Finally, Table IV provides statistics on the time-series variance of each cost

component, focusing on a $10, 000 trade.

Four main findings stand out: First, upon comparing the overall TCs, we find that

Uniswap v3 and Binance perform significantly better than Uniswap v2 and Kraken,

providing lower TCs for most exchange pairs and trade sizes (19 out of 20). Uniswap

30In fact, the Uniswap v3 router allows for the trade to be split across multiple pools, in case routing would result in

the lowest possible transaction costs. Since we force a trade to be fully executed in a single pool, our measure should

be considered as an upper bound for the real transaction costs.
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v3 performs marginally better than Binance, offering the lowest TCs in 13 out of 20

cases. All in all, these two exchanges offer similar levels of TCs to their users, showing

that the leading CEX and DEX are in the same ballpark regarding this dimension of

market quality.

Second, Table IV indicates that most of the variability in TCs for a $10, 000 trade comes

from gas fees (DEXs) and DW fees (CEXs). While Uniswap v3 exhibits variations in

the Bid/Ask spread component similar in magnitude to those of Binance, it suffers

from a higher sensitivity to gas prices, leading to a significantly higher variation in

total TCs. Moreover, the estimates in Table III indicate that costs related to gas fees

and DW fees are roughly of the same magnitude across all exchanges, trading pairs,

and trade sizes.

Third, as displayed in Figure 6 , there is an observable convexity in the total cost rela-

tive to trade size across both DEXs and CEXs for most trading pairs. Total costs peak

for smaller transactions ($1,000), drop to their lowest for medium transactions ($10,000

to $100,000), then rise again for larger transactions ($1 million). This pattern aligns

with expectations as, according to Table III, gas fees on DEXs represent a substantial

proportion of the traded amount for $1,000 transactions. Similarly, deposit and with-

drawal fees are the most influential component on CEXs for this trade size, although

they are lower in absolute terms. As the size of the transaction increases, however, the

exchange fees and gas costs become marginal while the spread plays a more predomi-

nant role. When the trade size becomes very large relative to the available liquidity, as

for $1 million, spreads become even more pronounced, leading to an increase in TCs.

Fourth, TCs for the stablecoin pair USDT-USDC in Uniswap v3 exhibit a consistent

monotonic decrease with trade size, reaching a remarkably low rate of 2 basis points for

a $1 million transaction. Such low cost in traditional financial securities is attributable

to the most liquid securities, for example, the EURUSD or USDJPY foreign exchange

(FX) rates (see, e.g. Karnaukh et al., 2015). This competitive figure – significantly lower

than 11 bps on Binance, 147 on Kraken, and 370 on Uniswap v2 – can be attributed to
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the innovative DPR and MFT systems and the stable nature of the assets. Since both

tokens are pegged to the US Dollar, the exchange pair volatility is minimal, thereby

implying a negligible expected impermanent loss for LPs. Referring to equation (12a),

it is logical for LPs to amplify their position by focusing liquidity around the 1 price

point, resulting in extremely narrow spreads for trades around this price. Moreover,

the MFT system fosters a reduction of exchange fees for this pair. Indeed, considering

the high trading volume and the minimal expected losses, LPs can opt for the lowest

fee tier of 1 bps while still anticipating a positive return.

In summary, DEXs present competitive TCs, particularly when considering the latest

AMM model of Uniswap v3. Among the four trading venues analyzed, Uniswap v3

and Binance consistently offer the lowest average TCs across the examined pairs and

trade sizes. A notable exception is the stablecoin pair USDT-USDC, where Uniswap v3

significantly outperforms Binance. This improvement can be credited to the innovative

DPR and MFT systems, highlighting the advancements brought about by the latest

iteration of the AMM model.

Our analysis is rounded off with two additional investigations to ensure the robustness

of our findings. First, to acknowledge the possibility for CEX users to perform multiple

trades while keeping their capital in the exchange, we re-run the analysis by remov-

ing DW fees for Binance and Kraken. Results, reported in Figure 12 of the Internet

Appendix, show that ignoring DW fees significantly reduces CEX TCs associated with

smaller trade sizes. For medium and large transactions, instead, removing DW fees has

an immaterial effect on TCs. Therefore, for large enough trade sizes, our previously

discussed findings remain robust under different assumptions regarding the deposit and

withdrawal fees imposed by CEXs, ultimately leading to similar qualitative conclusions.

Second, as Uniswap v3 was launched in May 2021, its TCs are averaged over a smaller

sample size compared to other DEXs, which could potentially result in an imbalanced

comparison. To address this issue, we re-run our analysis on the v3 subsample starting

from May 2021. The outcomes of this exercise, detailed in Figure 13 of the Inter-
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net Appendix, exhibit no significant discrepancy compared to our previously reported

results.

D. Introduction of Uniswap v3

The previous analysis shows that the introduction of Uniswap v3 coincided with a

reduction in DEX transaction costs. To provide more causal evidence of enhanced

market quality, we run difference-in-differences regressions concerning transaction costs.

The idea is to test whether the introduction of v3 led to a significant decrease in

trading costs on DEXs, using the corresponding CEX metrics as the control group.

This approach naturally controls for potential confounding factors, contemporaneous

to the introduction of v3, that may have caused a global improvement in the quality

of cryptocurrency markets.

After ensuring that the Parallel Trend Assumption is met, we consider a window of six

months around the deployment of Uniswap v3 (May 5th, 2021), and constructing an

hour-pair-level panel of the best transaction costs offered by DEXs and CEXs. Those

are constructed by taking the minimum between Uniswap v2 and v3, and Binance

and Kraken, respectively. The first result is graphically presented in the top panel of

Figure 9, illustrating the temporal progression of the monthly average DEX and CEX

transaction costs, averaged across all pairs. This visualization suggests that the launch

of v3 operating the DPR and MFT systems has brought DEX transaction costs down

to a level that matches those of CEXs, thereby making DEXs highly competitive in

this dimension.

We then advance towards a more structured analysis, implementing a difference-in-

differences regression of transaction costs at the hour-pair-exchange level. In this con-

figuration, the treatment group comprises each pair quoted on DEXs, while the control

group includes the same pairs quoted on CEXs. Table V report results from the ex-

ercise, where the dependent variable is regressed on a time dummy ”V3” indicating

the period following v3’s deployment, and a treatment dummy ”DEX” indicating de-
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centralized exchanges, and their interaction. The coefficient on the interaction term

from specification (1) is negative and highly statistically significant, suggesting that v3

caused a decline in DEX transaction costs. The estimated coefficients also indicate that

the effects are economically significant, with a 82% reduction of DEX transaction costs

relative to CEXs. Specification (2) shows that these results are robust to the inclusion

of weekly and pair fixed effects.

E. Time Series Properties

In this subsection, we focus on the time-series variation of transaction costs (TCs) of

centralized and decentralized exchanges as well as their spread. To guide our analysis,

we draw on the hypotheses tested in traditional financial securities and in the discussion

formalized above, specific to cryptocurrencies and their exchange systems. First, it is

well established that the transaction costs of many financial securities, including equities

and FX rates, are persistent. Therefore, we test whether this is true for cryptocurrencies

but distinguishing between the persistence of transaction costs in CEXs and DEXs.

Second, previous literature has documented a significant commonality in liquidity of

stocks (Chordia et al., 2000) that is even stronger for FX markets (Karnaukh et al.,

2015). Here, we refine these tests for cryptocurrencies. Specifically, we test whether

there is liquidity commonality between currency pairs within CEX and DEX exchanges,

and across CEXs and DEXs. Third, transaction costs typically increase with the

intensity of exchange activity, as documented recently in FX markets (Ranaldo and

Santucci de Magistris, 2022). In our context, this can be captured by the total trading

volume for ETH/USD across all markets and the appreciation of ETH against the

U.S. Dollar. Finally, we have demonstrated in Section III that the gas price affects

transaction costs, especially for DEXs systems.

To test these correlations, we start by constructing a panel of TCs on DEXs and CEXs,

sampled at an hourly frequency by trading pair, taking for DEXs the minimum between

the TCs on Uniswap v2 and v3, and for CEXs the minimum between those of Binance
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and Kraken. We then augment the panel with a set of explanatory variables, including

the lagged values of TCs, hourly cross-sectional average TCs by exchange category,

hourly percentage changes of ETH price relative to USD, total trading volume for

ETH/USD across all markets, and the hourly average gas price on Ethereum Mainnet.

Table VI displays results from a number of panel regressions, in which the dependent

variables are DEX TCs, CEX TCs, or the difference between DEX and CEX TCs. All

regression models are saturated with pair fixed effects. In specifications (1) and (5)

TCs are regressed on their first auto-regressive lag. The positive coefficients on the

lags and the sizeable R2s, above 67%, show that both DEX and CEX TCs are fairly

persistent relative to what is found in FX markets (Ranaldo and Santucci de Magistris,

2022). A similar consideration applies to the predictability of TCs.

Specifications (2) and (7) focus on the commonality of TCs across pairs within the same

exchange type. In the former, the regressor is the hourly average TCs across CEX ex-

changes, excluding the target pair, while in the latter the regressor is the hourly average

TCs across DEX exchanges, excluding the target pair. The estimated coefficients are

highly significantly positive in both cases withR2 above 87% for CEX and above 95% for

DEX, suggesting a high degree of within-exchange commonality, particularly marked in

the case of DEX. Specifications (3) and (6) are aimed at capturing the cross-exchange

commonality in liquidity, regressing CEX TCs on the DEX average and, vice-versa,

DEX TCs on the CEX average. The estimated positive coefficients and the high co-

efficients of determination, above 75%, indicate the presence of a strong commonality

between DEXs and CEXs. Again, the commonality in liquidity of cryptocurrencies

appears to be stronger than that documented in FX markets (Karnaukh et al., 2015)

both within the same exchange and across different exchange systems.

Specifications (4) and (8) include a set of regressors related to market conditions, in-

cluding the total trading volume of the ETH token across CEX and DEX exchanges,

in US Dollars; the ETH percentage return versus the US Dollar during the previous

24 hours; and the average gas price for Ethereum transactions recorded in the blocks

34



validated during the same hour. The resulting estimates indicate that TCs of both

CEX and DEX are positively correlated to ETH returns and trading volume and, me-

chanically, are increasing in the Ethereum gas price. In general, these results confirm

that transaction costs increase when trading activity is more intense.

Finally, in specification (9), the TC differential between DEX and CEX is linked to the

aforementioned market-condition variables, with the resulting coefficients exhibiting

positivity and statistical significance. These findings suggest that TCs on DEXs have

greater responsiveness to ETH returns and trading volumes. Furthermore, consistent

with the previously discussed substantial role of gas fees in DEXs, TCs on DEXs exhibit

a stronger sensitivity to fluctuations in the Ethereum gas price.

To gain deeper insight into the impact of gas fees on our findings, we conduct the

regressions again, this time excluding gas fees from the TCs calculation. The general

picture is confirmed but some differences are noteworthy, as reported in Table VIII of

the online appendix. First, we notice an enhanced degree of persistence for both CEXs

and DEXs, confirming that changes in gas prices account for a substantial portion of

the time-series variation. Moreover, we still find indications of within-exchange-type

commonality, albeit diminished. It is intriguing that the decrease in CEX commonality

is far more significant, suggesting that gas prices contribute sensitively to common

movements of market liquidity in CEXs. Ultimately, the gas price still exhibits a

positive and highly significant correlation with DEX TCs but not with CEX TCs, both

purged of gas fees. This suggests that the time-series variation in gas price accounts

for other underlying factors affecting the quoted spread in DEXs.

VI. Price Efficiency

Finite liquidity and transaction fees constitute frictions limiting arbitrage forces, al-

lowing deviations from efficient prices to persist and blurring the informativeness of

transaction prices. We explore deviations from the law of one price by focusing on
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triangular arbitrage and relating it to liquidity levels. Performed in only one specific

market and nearly risk-free, this arbitrage condition is the ideal laboratory for identi-

fying market-specific frictions and for comparing the price efficiency of different market

venues. A triangular arbitrage opportunity arises when the law of one price is violated

for a closed triplet of currency pairs X ↔ Y , Y ↔ Z, and Z ↔ X. A direct measure

of the deviation from the law of one price is

θ = PXY PY Z PZX − 1 , (16)

where PAB is the quoted price of A in units of B. A triangular trade is profitable

only if the magnitude of θ is sufficiently large or, more precisely, the net expected

profits θ of a triangular trade must be higher than the costs of executing the three

associated transactions. Hence, assuming profitable arbitrage opportunities do not

arise in equilibrium, the observed distribution of | θ | is positively related to transaction

costs and, potentially, other frictions impeding arbitrage activity.

We consider five exchange triplets, namely ETH-USDC-USDT, BTC-ETH-USDC, BTC-

USDC-USDT, BTC-ETH-USDT, and ETH-LINK-USDT. For each triplet, we sample

θ at an hourly frequency and by exchange, employing distinct definitions for quoted

prices, depending on the exchange. For CEXs, we use the mid-price, that is, the aver-

age between the best ask and the best bid; For Uniswap v2, we use the ratio between

the reserves of the two tokens, as in (1); For Uniswap v3 we retrieve historical quoted

prices from Dune.com31. We then average the resulting hourly deviations over the

sample period from March 2021 to February 2023.

A. Results on Price Efficiency

Figure 7 presents the results, displaying the average log levels of price deviations. It

is evident that DEXs are far less price-efficient than their centralized counterparts.

31These have been obtained by calling the slot0 function of the relevant liquidity pool contract and saving the response

in an archive database.
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For most triplets, Uniswap v2 price deviations average between 10 and 60 bps, while

they rise above 200 bps for the less liquid ETH-LINK-USDT. Uniswap v3 performs

significantly better than its predecessor, with average deviations ranging between 6

and 30 bps. These estimates are significantly higher than those for CEXs, which are

below 3 bps for all triplets. Binance dominates regarding price efficiency, with average

deviations below 1 basis point.

Figure 8 displays the time-series evolution of hourly price deviations for the ETH-

USDC-USDT triplet, with each dot representing an observation. The top panel presents

the series for CEXs, defined as the price deviation with the minimum absolute value,

on each hour, between those of Binance and Kraken. Similarly, the bottom panel plots

the hourly price deviation with the minimum absolute value among those recorded on

Uniswap v2 and Uniswap v3. To visualize the introduction of v3 in May 2021, dots on

this panel are colored in pink when the minimum is achieved in v2, and in violet when

the minimum is achieved in v3. On both panels, the solid lines represent the top decile

of the distribution of absolute deviations, estimated on a 7-day rolling window. The

main takeaway of the figure is that the dominance of DEXs regarding price efficiency

is stable across the sample period, with deviations an order of magnitude smaller than

in DEXs. It also shows, however, that the introduction of Uniswap v3 is followed by

a significant improvement in DEX price efficiency, decreasing by more than 50% from

the beginning of the sample.

We argue that the under-performance of DEXs in terms of price efficiency is not sur-

prising, as it can be explained by the absence of delegated custody. To see this, note

that CEX arbitrageurs are likely to have their capital readily available in the exchange.

The reason is that moving capital from a non-custodial wallet to a CEX is costly and

takes a significant amount of time.32 Given a competitive environment, arbitrageurs

are thus incentivized to delegate the custody of their arbitrage capital to the exchange

32Deposits from a non-custodial wallet to a CEX take one to five minutes to be executed. The reason is that the

exchange initially freezes the assets and requires the user to wait for a predefined number of blocks to be validated on

the blockchain (12 for Binance, 20 for Kraken) before the funds are accessible. This measure is in place to decrease the

probability of a double-spending attack that would result in a net loss for the exchange.
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at the expense of counterparty risk exposure. Consequently, their transactions are not

subject to deposit and withdrawal fees which, as we saw in Section V, constitute a

sizeable cost. Moreover, since gas-related costs are independent of trade size, avoiding

those allows arbitrageurs to transact any amount of capital – even of very small dollar

amounts – whenever an arbitrage opportunity is available.

DEX arbitrageurs, on the contrary, do not have the option to deposit their arbitrage

capital in the exchange to avoid gas costs. As a first-order consequence, they are forced

to cover the gas cost of each transaction, thus making their arbitrage trades more costly.

Further, a second-order implication is that, as is the case with models that have entry

costs, arbitrageurs face a trade-off between the gas costs and price impact. The former

is reduced (in %) by increasing ∆x, while the latter increases with ∆x. Therefore,

DEX arbitrageurs do not profit from trading small dollar amounts and only act when

the available liquidity allows for larger enough transactions.

Another factor that may contribute to the superior price efficiency of CEXs, is related

to the effective exchange fees. While on DEXs fees apply to all market participants,

CEXs can offer lower fees to arbitrageurs generating large trading volume. Further,

a CEX may perform arbitrage activity itself, avoiding exchange fees altogether. As

triangular arbitrages require three transactions, the exchange fees add up to a significant

determinant of the net profitability of the trade.

All in all, these institutional differences between CEXs and DEXs, together with rel-

atively high gas prices, play an important role in explaining the significant difference

in price efficiency between the two categories of exchanges. Although advancements

in blockchain technology will likely result in lower gas prices in the future, the current

architecture of DEXs, centered around AMM, makes it challenging to achieve price

efficiency levels comparable to that of CEXs.

To conclude this section, we note that, while CEXs enjoy higher levels of price efficiency,

they may not offer the best experience from an operational point of view. In fact, taking

the perspective of a CEX user keeping her funds in a non-custodial wallet, the significant
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time delay affecting deposits induces a trade-off between price efficiency and speed of

execution. Conversely, even if DEX quoted prices are further away from their efficient

levels, the user can settle a transaction with a significantly shorter time delay.33

B. Introduction of Uniswap v3

As we have already done above by studying market liquidity, we perform a difference-

in-differences regression to assess whether the introduction of Uniswap v3 led to an

improvement in market quality. This time, however, we take advantage of this quasi-

natural laboratory to observe a causal effect on our measure of price efficiency.

Similarly to the previous setting, this approach uses the corresponding CEX metrics as

the control group and it naturally controls for potential confounding, common factors.34.

We construct an hour-triplet-level panel with the minimum absolute deviations by

exchange category.

A preliminary result is provided graphically in the bottom panel of Figure 9, which

displays the time series of the average monthly price deviations, averaged across pairs.

This suggests that, while the price efficiency gains from v3 are substantial, they are not

sufficient to eliminate the gap with CEXs. Table V report results from the difference-in-

differences, where the dependent variable measuring price errors is regressed on a time

dummy ”V3” indicating the period following v3’s deployment, and a treatment dummy

”DEX” indicating decentralized exchanges, and their interaction. The coefficient on the

interaction term from specifications (2) is negative and highly statistically significant,

suggesting that v3 caused a decline in price deviations. The estimated coefficients

indicate that the effects are economically significant, with a 48% reduction in DEX

price deviations relative to CEXs. Specification (4) shows that these results are robust

to the inclusion of weekly and triplet fixed effects.

33Assuming the chosen gas price is reasonable compared to the one prevailing on the network, the transaction is settled

in a block, which is significantly less than the 12 blocks required by Binance or the 20 blocks required by Kraken.
34As before, we consider a window of six months around the deployment of Uniswap v3 (May 5th, 2021), and construct

an hour-pair-level panel of the best transaction costs offered by DEXs and CEXs
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All in all, this analysis provides evidence of an increase in price efficiency fostered by

the implementation of the DPR and MFT systems, making it possible for LPs to take

leverage on their liquidity positions and to choose the level of exchange fees. However,

this improvement is still not enough to surmount the bar of market quality set by CEX

systems.

VII. Conclusion

We describe the institutional nuances of decentralized exchanges (DEXs) utilizing Au-

tomated Market Making (AMM), contrasting these with centralized exchanges (CEXs)

employing limit order books (LOBs). Furthermore, we discuss the AMM price forma-

tion mechanism, regulated by an algorithm that autonomously sets transaction prices

based on the liquidity contributed by market participants; the concept of self-custody,

and the risks faced by CEX users when depositing crypto-assets into a centralized

exchange; and the array of advantages DEXs offer in terms of accessibility, security,

resistance to censorship, and settlement.

Central to our study is an examination of two vital facets of market quality: (i) market

liquidity, whereby we measure all cost components associated with trading on CEXs and

DEXs, and (ii) price efficiency, through an analysis of deviations from the triangular no-

arbitrage condition. The ensuing image portrays a DEX landscape that is competitive

in terms of transaction costs, particularly in the wake of the introduction of Uniswap v3.

Conversely, CEXs enjoy higher levels of price efficiency by adhering more closely to the

law of one price. In this context, we identify elevated gas prices and exchange fees as the

main frictions harming DEX price efficiency. This is especially pertinent to triangular

price deviations, which necessitate the execution of three separate transactions.

Subsequently, we offer causal evidence that Uniswap v3, the most recent DEX upgrade,

has significantly enhanced DEX market quality. We propose that this beneficial impact

is spurred by two novel mechanisms, namely, the Discretionary Price Range (DPR) and
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Multiple Fee Tiering (MFT) systems. The former enables liquidity providers (LPs) to

employ leverage by concentrating their liquidity within a custom price range, resulting

in narrower spreads for less-volatile exchange pairs, in particular for stablecoin pairs.

The latter introduces multiple pools for each exchange pair, with distinct fee levels,

providing traders the option to choose the most convenient venue.

Given these insights, we assert that the innovative market structure of decentralized

crypto exchanges holds promise, though it has yet to fully realize its potential. Our

analysis suggests that substantial enhancements could stem from a reduction in gas

prices facilitated by advancements in blockchain technology, and from prospective up-

grades to the AMM system in the future. We posit that the AMM system may be

applied to other asset classes in the near future. It could then rival existing LOB-

based exchanges in terms of market quality, thereby answering the Glosten (1994)’s

long-standing question that the electronic LOB system is not inevitable after all.
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Karnaukh, N., Ranaldo, A., and Söderlind, P. (2015). Understanding FX liquidity. Review
of Financial Studies, 28(11):3073–3108.

Khakhar, A. and Chen, X. (2022). Delta hedging liquidity positions on automated market
makers. arXiv preprint arXiv:2208.03318.
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Tables and Figures

Table I. Summary Statistics. The first two panels display statistics on the 5 exchange pairs analyzed in
our study, reporting the total value of deposited liquidity (in million USD), the total traded volume (in
million USD), and the total number of swap transactions (in thousands). Panel A focuses on Uniswap
v2, with figures based on data from March 2021 to February 2022. Panel B focuses on Uniswap v3, with
figures based on data from June 2021 to February 2023. In Uniswap v3 the MFT system, described
in Section B.2, allows for multiple liquidity pools per exchange pair. We thus aggregate at the pair
level by taking the sum of liquidity, volume, and swaps across sibling pools. Panel C reports statistics
for gas prices on the Ethereum blockchain over the period from March 2021 to February 2023 at the
hourly frequency.

N Mean Std 1% 10% 50% 90% 99%

Panel A: Uniswap v2 Exchange Pairs

Liquidity (Million USD) 5 33.79 31.35 1.69 9.97 23.85 60.86 72.55
Volume (Million USD) 5 16.62 16.43 1.84 3.85 8.57 34.00 34.83
Swaps (Thousands) 5 1.57 1.67 0.36 0.36 0.38 2.99 3.75

Panel B: Uniswap v3 Exchange Pairs

Liquidity (Million USD) 5 180.29 160.38 18.52 71.99 106.39 338.49 366.04
Volume (Million USD) 5 125.75 165.74 5.15 57.71 64.75 83.52 417.64
Swaps (Thousands) 5 1.74 1.96 0.16 0.59 0.69 2.33 4.92

Panel C: Gas Prices

Gas Price (GWEI) 17,497 68.473 99.755 8.447 15.433 44.848 148.192 287.456
Cost of a Swap (USD) 17,497 20.466 34.367 1.013 2.048 10.817 50.585 100.510

Table II. Trading Volume by Pair. The table reports the daily average trading volume, denoted in
millions of USD, for the five trading pairs considered in our empirical analysis. To select these pairs,
we start by considering the intersection of trading pairs available in Binance, and Kraken, Uniswap v2,
and Uniswap v3. We then compute percentile rankings of average daily volumes in USD for each of the
three exchanges available at the beginning of our sample, take their average, and select the first five
pairs ranked by the resulting metric. The fraction of the total volume represented by the five trading
pairs combined is reported below. The estimates are based on data from March 2021 to February 2023
for Binance and Kraken, on data from March 2021 to February 2022 for Uniswap v2, and on data from
June 2021 to February 2023 for Uniswap v3.

Pair Binance Kraken Uniswap v2 Uniswap v3

ETH-USDT 1,578.891 84.572 56.429 122.113
ETH-BTC 302.811 16.052 8.877 97.319
USDC-USDT 188.407 10.733 3.427 86.131
ETH-USDC 57.720 3.410 58.584 212.024
LINK-ETH 5.281 0.297 5.290 7.287

Fraction of Total Volume 13.828% 18.453% 29.901% 33.186%
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Table III. Transaction Costs – Breakdown by Trade Size. The table displays the average transaction
costs for each exchange pair in our sample, for different trade sizes denominated in USD, for Uniswap
v2, Uniswap v3, Binance, and Kraken. The figures are based on equation (15) for DEX and equation
(14) for CEXs and are expressed in basis points. They are first computed at the hourly frequency
and then averaged from March 2021 to February 2023. For each pair, we present a breakdown of
total transaction costs by their individual components: exchange fees, B/A spread, and gas fees or
deposit-withdrawal fees. For Uniswap v3, daily and for each trade size, we consider the liquidity pool
offering the lowest transaction costs among those available for the specific exchange pair.

Pair ETH-USDC ETH-USDT ETH-BTC LINK-ETH USDC-USDT

Panel A: Uniswap v2

Exchange Fees 30.000 30.000 30.000 30.000 30.000

B/A Spread

1,000 0.077 0.093 0.103 0.303 0.347
10,000 0.774 0.925 1.032 3.030 3.466
100,000 7.739 9.249 10.313 30.252 34.594

1,000,000 77.115 92.090 102.597 298.139 340.027

Gas Fees

1,000 260.717 260.717 260.717 260.689 260.717
10,000 26.072 26.072 26.072 26.069 26.072
100,000 2.607 2.607 2.607 2.607 2.607

1,000,000 0.261 0.261 0.261 0.261 0.261

Total TCs

1,000 290.795 290.810 290.820 290.992 291.064
10,000 56.846 56.997 57.104 59.099 59.537
100,000 40.347 41.856 42.920 62.859 67.201

1,000,000 107.376 122.350 132.858 328.400 370.288

Panel B: Uniswap v3

Exchange Fees Variable Variable Variable Variable Variable

B/A Spread

1,000 0.270 0.219 0.112 2.817 0.002
10,000 0.457 1.816 0.474 2.689 0.007
100,000 1.738 9.567 3.540 22.170 0.028

1,000,000 10.672 53.996 16.553 86.390 0.124

Gas Fees

1,000 196.299 196.299 196.299 196.299 196.299
10,000 19.630 19.630 19.630 19.630 19.630
100,000 1.963 1.963 1.963 1.963 1.963

1,000,000 0.196 0.196 0.196 0.196 0.196

Total TCs

1,000 200.763 201.518 201.591 224.431 198.329
10,000 24.616 26.657 25.481 50.659 21.667
100,000 8.676 20.354 11.196 51.808 4.025

1,000,000 14.994 69.437 30.527 95.404 2.346
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Pair ETH-USDC ETH-USDT ETH-BTC LINK-ETH USDC-USDT

Panel C: Binance

Exchange Fees 10.000 10.000 10.000 10.000 10.000

B/A Spread

1,000 0.230 2.201 0.137 5.137 0.501
10,000 0.404 3.089 0.319 9.654 0.504
100,000 2.552 8.519 1.437 120.037 0.526

1,000,000 24.644 111.019 7.621 790.367 1.059

DW Fees

1,000 192.263 203.699 148.538 174.739 225.417
10,000 19.226 20.370 14.854 17.474 22.542
100,000 1.923 2.037 1.485 1.747 2.254

1,000,000 0.192 0.204 0.149 0.175 0.225

Total TCs

1,000 202.494 215.900 158.676 189.876 235.918
10,000 29.630 33.459 25.172 37.128 33.046
100,000 14.475 20.556 12.922 131.785 12.780

1,000,000 34.836 121.222 17.770 800.542 11.284

Panel D: Kraken

Exchange Fees 26.000 26.000 26.000 26.000 26.000

B/A Spread

1,000 1.611 3.537 2.008 11.002 0.860
10,000 2.253 4.639 2.622 19.954 1.092
100,000 4.028 15.360 5.689 111.066 2.859

1,000,000 23.713 321.179 75.670 781.425 121.095

DW Fees

1,000 137.640 172.690 222.693 165.577 278.939
10,000 13.764 17.269 22.269 16.558 27.894
100,000 1.376 1.727 2.227 1.656 2.789

1,000,000 0.138 0.173 0.223 0.166 0.279

Total TCs

1,000 165.250 202.226 250.701 202.579 305.799
10,000 42.017 47.908 50.891 62.512 54.986
100,000 31.405 43.087 33.916 138.722 31.648

1,000,000 49.851 347.352 101.892 807.590 147.374
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Table IV. Transaction Costs – Breakdown by Component. The table displays the time-series
distribution of transaction costs for each exchange pair in our sample, for Uniswap v2, Uniswap v3,
Binance, and Kraken, expressed in basis points. The figures are based on equation (15) for DEX and
equation (14) for CEXs. They are computed at the hourly frequency from March 2021 to February
2023, assuming a transaction size of 10, 000$. For each pair, we present a breakdown of total transaction
costs by their individual components: exchange fees, B/A spread, and gas fees or deposit-withdrawal
fees. For Uniswap v3, each day we consider the liquidity pool with the lowest transaction costs among
those available for the specific exchange pair.

Pair ETH-USDC ETH-USDT ETH-BTC LINK-ETH USDC-USDT

Panel A: Uniswap v2

Exchange Fees 30.000 30.000 30.000 30.000 30.000

B/A Spread
Mean 0.774 0.925 1.032 3.030 3.466
Std 0.159 0.207 0.376 0.970 1.326

Gas Fees
Mean 26.072 26.072 26.072 26.069 26.072
Std 22.906 22.906 22.906 22.906 22.906

Total TC
Mean 56.846 56.997 57.104 59.099 59.537
Std 22.897 22.895 22.772 22.477 22.862

Panel B: Uniswap v3

Exchange Fees 4.529 5.211 5.378 28.341 2.030

B/A Spread
Mean 0.457 1.816 0.474 2.689 0.007
Std 0.862 2.751 1.237 3.189 0.105

Gas Fees
Mean 19.630 19.630 19.630 19.630 19.630
Std 37.529 37.529 37.529 37.529 37.529

Total TC
Mean 24.616 26.657 25.481 50.659 21.667
Std 37.616 37.224 37.504 38.308 37.884

Panel C: Binance

Exchange Fees 10.000 10.000 10.000 10.000 10.000

B/A Spread
Mean 3.089 0.319 0.404 9.654 0.504
Std 1.994 0.461 0.576 4.033 0.132

DW Fees
Mean 20.370 14.854 19.226 17.474 22.542
Std 15.910 15.269 18.331 16.349 21.801

Total TC
Mean 33.459 25.172 29.630 37.128 33.046
Std 16.308 15.333 18.376 15.605 21.807

Panel D: Kraken

Exchange Fees 26.000 26.000 26.000 26.000 26.000

B/A Spread
Mean 4.639 2.622 2.253 19.954 1.092
Std 5.084 2.610 1.631 15.618 1.104

DW Fees
Mean 17.269 22.269 13.764 16.558 27.894
Std 14.352 14.352 15.035 16.180 20.282

Total TC
Mean 47.908 50.891 42.017 62.512 54.986
Std 15.156 14.579 14.784 19.356 20.352

48



Table V. Introduction of Uniswap v3. The table reports results from a difference-in-differences
regression around the introduction of Uniswap v3, deployed on the Ethereum Mainnet on May 5th,
2021. In specifications (1) and (2) the dependent variable is the hourly average transaction costs, as
defined in (14) and (15), and the regression model is estimated on a panel at the exchange-pair-hour
level, meaning that we include hourly observations for the 5 pairs in our sample, separately for each
exchange. In specifications (3) and (4) the dependent variable is the hourly average price deviations
from the law of one price, as defined in (16), and the regression model is estimated on a panel at
the exchange-triplet-hour level, meaning that we include hourly observations for the 5 triplets in our
sample, separately for each exchange. The treatment dummy ”DEX” is equal to 1 for pairs and triplets
on Uniswap v2 and v3, while it equals zero for Binance and Kraken. The post dummy ”V3” equals
zero before the introduction of Uniswap v3, and one afterwards. We saturate the regression model
with triplet and week fixed effects. T-stats are reported in parentheses and are based on standard
errors double-clustered by week and pair or by week and triplet. Asterisks denote significance levels
(***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dep. Variable Transaction Transaction Price Price
Costs Costs Deviations Deviations

DEX× V3 -25.941*** -25.941*** -14.251*** -13.753***
(-4.673) (-4.671) (-4.947) (-4.722)

DEX 31.677*** 31.677*** 28.919*** 29.033***
(16.961) (16.956) (7.629) (7.711)

V3 -4.270* -0.909**
(-1.899) (-2.002)

Intercept 32.936*** 1.648***
(18.741) (3.757)

Observations 45,042 45,042 42,971 42,971
R-squared 0.313 0.595 0.067 0.092

Week FEs Yes Yes
Pair/Triplet FEs Yes Yes
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Table VI. Transaction Costs – Time Series. The table presents the findings of panel regression
analyses on transaction costs, sampled at an hourly frequency by trading pair, and their relationship
with various explanatory factors. The first four specifications focus on the transaction costs (TC) of
CEXs, as outlined in equation (14). The dependent variable is determined by selecting the minimum
value between Binance and Kraken at the pair-hour level. The subsequent four specifications con-
centrate on the transaction costs of DEXs, as defined in equation (15), with the dependent variable
derived from the minimum value between Uniswap v2 and Uniswap v3 at the pair-hour level. The
final specification’s dependent variable is the difference in transaction costs between DEXs and CEXs
at the pair-hour level. In specifications (1) and (5) the dependent variable is regressed on its first
auto-regressive lag. In specification (2) the regressor is the hourly average transaction costs across
CEX exchanges, excluding the target pair. Similarly, in specification (7) the regressor is the hourly
average transaction costs across DEX exchanges, excluding the target pair. In specification (3) and
(6) we regress CEX transaction costs on the DEX average and, vice-versa, DEX transaction costs on
the CEX average. Specifications (4) and (8) include a set of regressors related to market conditions,
including (i) the total trading volume of the ETH token across CEX and DEX exchanges, in US Dol-
lars; (ii) the ETH percentage return versus the US Dollar during the previous 24 hours; and (iii) the
average gas price for Ethereum transactions recorded in the blocks validated during the same hour.
Finally, in specification (9) the difference between DEX and CEX transaction costs is regressed onto
the aforementioned set of market condition-related regressors. The regression models are saturated
with pair fixed effects. T-stats are reported in parentheses and are based on standard errors double-
clustered by week and pair. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dep. Variable CEX CEX CEX CEX DEX DEX DEX DEX DEX - CEX

Lagged CEX TC 0.810***
(15.128)

Lagged DEX TC 0.808***
(8.185)

Average CEX TCs 1.015*** 2.287***
(21.249) (21.670)

Average DEX TCs 0.376*** 1.001***
(22.065) (95.879)

ETH Volume in USD 0.068 0.608*** 0.472***
(1.123) (5.100) (3.167)

ETH Return 5.892*** 26.668*** 13.233***
(2.909) (7.060) (4.021)

Gas Price 0.144*** 0.360*** 0.007
(19.006) (37.172) (0.835)

Observations 85,485 85,485 85,485 85,485 85,485 85,485 85,485 85,485 85,485
R-squared 0.675 0.873 0.754 0.754 0.671 0.836 0.958 0.889 0.748
Pair FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table VII. FTX Event Study. The table presents findings from difference-in-differences regression
analyses of the trading activity on CEX and DEX exchanges around the collapse of the FTX exchange
on November 10th, 2022. The sample encompasses a period of two months before and after the
event, ranging from September 9th, 2022 to January 9th, 2023. The dependent variable, that is the
trading volume sampled at the daily frequency broken down by CEXs (Binance and Kraken) and
DEXs (Uniswap v2 and v3), is regressed on a treatment dummy (DEX) indicating DEXs, a time
dummy (FTX) indicating the period after the FTX collapse, and their interaction. In the first two
specifications the trading volume is expressed in billion US Dollars, while the next two specifications
employ the logarithm of the trading volume as the dependent variable. In specifications (2) and (4)
we saturate the regression model with month fixed effects. T-stats are reported in parentheses and are
based on robust standard errors. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dep. Variable Volume Volume log(Volume) log(Volume)

DEX × FTX 5.550*** 5.550*** 0.308*** 0.308***
(5.951) (6.753) (3.908) (4.714)

DEX -14.720*** -14.720*** -1.788*** -1.788***
(-20.182) (-23.127) (-32.957) (-38.418)

FTX -5.779*** -6.282*** -0.405*** -0.416***
(-6.267) (-5.059) (-6.434) (-5.176)

Intercept 16.587*** 2.814***
(22.919) (63.114)

Observations 236 236 236 236
R-squared 0.760 0.816 0.884 0.922
Month FE Yes Yes
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Figure 1. FTX Bankruptcy. The figure shows the average daily volume of CEXs and DEXs during
the two-month periods preceding and following the FTX bankruptcy, filed on November 10th, 2022.
The vertical lines represent 95% confidence intervals. The plot shows that CEX average daily volume
decreased significantly by 35%, from 16.69 to 10.86 million USD. On the contrary, the 13% decrease
in DEX daily volume from 1.88 to 1.63 million USD is not statistically significant.
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Figure 2. FTX Event Study. The figure displays the time-series evolution of daily trading volumes
on CEXs (Binance and Kraken) and DEXs (Uniswap v2 and Uniswap v3), around the collapse of the
FTX exchange on November 10th, 2022 (depicted by a dotted vertical line). The CEX trading volume
is measured on the left axis, while DEX volume is measured on the right axis. Both series are presented
in billion US Dollars.
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Figure 3. Aggregate Trading Volume. The figure presents aggregate traded volumes for the CEXs
(Binance, and Kraken) and DEXs (Uniswap v2, and Uniswap v3) in our sample. from March 2021 to
February 2023. The plotted volume is the aggregate trading volume across all listed pairs, including
those not appearing in our main analysis. The vertical axes use the log scale and are expressed in
million USD.
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Figure 4. Gas Fees. The figure presents the time series evolution of the gas costs of a swap transaction
in our sample in USD. This is computed at the hourly frequency, multiplying the units of gas required
to execute a swap, numbering roughly 120,000, by the average gas price associated with transactions in
the blocks validated during each hour in USD. Since the number of gas units is constant over time, the
time series variation comes from oscillating gas prices in ETH and the fluctuation of the USD/ETH
exchange rate. The two orange vertical lines indicate the period on which our main market quality
analysis is conducted, that is, from the beginning of March 2021 to the end of February 2023.
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Figure 5. Distribution of DEX Trade Sizes. The figure presents the frequency distribution of trade
sizes in US Dollars for swap transactions executed on Uniswap v2 ad Uniswap v3, during our sample
period (from March 2021 to February 2023) and restricting to the five pairs featured in our study,
namely ETH-USDC, ETH-USDT, ETH-BTC, LINK-ETH, and USDC-USDT. Swap transactions with
a Dollar value below 1 are excluded, and gas costs are not included. The data is retrieved using a custom
query in Dune Analytics based on the ‘uniswap v2 ethereum.trades’ and ‘uniswap v3 ethereum.trades’
tables.
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Figure 6. Transaction Costs. The figure presents transaction costs, computed as in equation (14)
for the LOB-based Binance and Kraken and on equation (15) for the AMM-based Uniswap v2 and
Uniswap v3. The transaction costs are computed at the hourly frequency for the five pairs in our
sample and for different trade sizes (103, 104, 105, and 106 US dollars), then averaged from March 2021
to February 2023. As discussed in Section V, the displayed transaction costs include B/A spreads,
exchange fees (30 basis points for Uniswap v2, 10 basis points for Binance, and 26 basis points for
Kraken), and settlement fees (gas fees for Uniswap v2 and Uniswap v3, and deposit and withdraw
fees for the two CEXs). For Uniswap v3, daily and for each trade size, we consider the liquidity pool
offering the lowest transaction costs among those available for the specific exchange pair. The vertical
axis employs a logarithmic scale and is reported in basis points.
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Figure 7. Average Price Deviations. The figure displays price inefficiency levels, proxied by the
absolute value of price deviations from the law of one price, defined by equation (16). These are
computed separately for each trading triplet and for each exchange, namely for CEXs Binance and
Kraken, and for DEXs Uniswap v2 and Uniswap v3. Absolute price deviations are first estimated at
the hourly frequency for the five triplets in our sample, then averaged from March 2021 to February
2023. For Uniswap v3 the estimation is based on a shorter sample starting on May 5th, 2021, when
the exchange was launched. For the pairs involving USDC in Binance, the estimation is based on a
truncated sample that ends on September 29th, 2022, when the exchange ceased quoting trading pairs
in USDC. The vertical axis employs a logarithmic scale and is reported in basis points.
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Figure 8. Price Deviations. The figure displays the estimated price deviations from the law of one
price θ for the triplet USDC-USDT-ETH, at an hourly frequency over the period from March 2021 to
February 2023. The top panel illustrates deviations for CEXs. The time series is derived by selecting
the minimum deviation (in absolute value) between Binance and Kraken for each hour. The bottom
panel displays the deviations for DEXs. This time series is generated by selecting the smallest absolute
deviation between Uniswap v2 and Uniswap v3 at each hourly interval. If the minimum deviation is
found in v2, the corresponding data point is marked in pink, whereas if v3 has the minimum deviation,
the data point is highlighted in violet. Please note that the vertical axes of the two panels have
different scales. On both panels, the solid lines represent the top decile of the distribution of absolute
deviations, estimated on a 7-day rolling window.
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Figure 9. Introduction of Uniswap v3. The figures present two event studies around the deployment
of Uniswap v3 on the Ethereum MainNet, on May 5th, 2021. In the top panel, we plot the average
transaction cost across the five pairs in our sample, on a monthly basis, separately for DEXs and CEXs.
The transaction cost measures are defined in (14) and (15). To construct the two time series, for each
pair-hour, we select the lowest transaction costs among Uniswap v2 and Uniswap 3 (for DEXs), and
among Binance and Kraken (for CEXs). We then take, for each month, the equally weighted average
of these values across the five pairs. Similarly, in the bottom panel, we plot the average price deviation
across the five triplets in our sample, on a monthly basis, separately for DEXs and CEXs. The price
deviation measure is defined in (16). To construct the two time series, for each triplet-hour, we select
the lowest transaction costs among Uniswap v2 and Uniswap 3 (for DEXs) and among Binance and
Kraken (for CEXs). We then take, for each month, the equally weighted average of these values across
the five triplets.

58



Kraken v3 Binance v2
0.0

0.2

0.4

0.6

0.8

Autocorrelation

Kraken v3 Binance v2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
R-Squared

Figure 10. Predictability of Transaction Costs. The figure presents the degree of predictability of
transaction costs on different exchanges. For each exchange-pair couple, considering hourly transaction
costs for a 10,000$ transaction, we compute the auto-correlation coefficient ρ and run the time series
regressions TC(t) = α + β TC(t − 1) + ε(t). We then plot the average auto-correlation coefficient ρ
(left panel) and the average R2 from the time-series regressions (right panel).
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Internet Appendix

A. A Model of Liquidity Provision

We model a marginal LP in Uniswap v2, who faces the problem of providing the optimal
quantity of liquidity to the exchange pair X/Y . We assume that the LP is risk-neutral and
that the market is perfectly competitive as in, e.g., Glosten and Milgrom (1985). At time
t = 0 the total liquidity in the pools is equal to x, and the LP can add or remove a quantity
ξ of liquidity. At time t > 0, users start to trade on the pair until the trading stops at
t = 1. Let the random variables V denote the total traded volume (in units of X) and let
∆P = P1/P0 denote the gross percentage change in the quoted price, respectively, between
t = 0 and t = 1. As discussed in Section III, the profits and losses of the LP depend on two
factors: the fees arising from liquidity takers’ trading volume and the impermanent loss due
to changes in quoted prices.

Let E[V ] denote the expected unsigned trading volume and let E[IL] denote the expected
IL, both estimated at time t = 0.35 The expected fees paid by liquidity takers amount to
the product of the exchange fees f and the expected volume E[V ], expressed in units of X.
Since this amount is distributed by the protocol to the participating LPs on a pro-rata basis,
the marginal liquidity provider depositing ξ units of additional liquidity gains in expectation
ξ

x+ξf E[V ] units of X, corresponding to a percentage profit of f E[V ]
x+ξ . Hence, accounting for

both fees and the expected impermanent loss, the net expected percentage profit E[R] from
providing an additional amount ξ of liquidity is equal to

E[R] =
f

x+ ξ
E[V ]− E[IL] .

The assumption of perfect competition results in zero expected profits for the LP, hence the
equilibrium level of total liquidity x∗ = ξ + x is given by

x∗ =
f E[V ]

E[IL]
(17)

showing that total liquidity increases with the expected trading volume and (percentage)
exchange fees remunerating the LP, while it decreases with the expected IL. The equilibrium
condition (17) has a clear economic interpretation that is conceptually related to standard
microstructure models featuring market makers. First, the level of liquidity x∗ provided by
LPs determines the quoted spread available to traders, as in (3). Second, as noted above, the
expected IL can be thought of as a proxy for the level of adverse selection risk faced by LPs.
Thus (17) says that spreads are increasing in the level of adverse selection; in other words,
LPs require compensation for the losses caused by informed trading.

We use daily liquidity data to test the predictions of our model, proxying for E[V ] with the
rolling average of daily traded volume and for E[IL] with the rolling average of the daily IL,

35For the sake of simplicity, we take E[V ] as exogenous, abstracting from its potential correlation with volatility and

impermanent loss.
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estimated over the previous two weeks. We regress daily log values of empirically observed
liquidity on the ones predicted by (17), for 100 exchange pairs from February 2021 to February
2023. Results are reported in Table IX and Figure 11, showing a highly significant positive
correlation between predicted and observed liquidity levels, with a remarkable R2 coefficient
equal to or higher than 92%. The results are robust to the inclusion of pair- and time-
fixed effects. Our results are also robust to changing the size of the rolling windows used
to estimate E[IL] and E[V ]. In particular we use 5 days and 20 days, corresponding to the
median and average duration of liquidity positions reported in O’Neill (2022), and we find
that the resulting R-squared for the baseline specification is 91.38% and 92.50%, respectively.
We thus conclude that our partial equilibrium model is empirically relevant, as it is able to
capture the main economic trade-off faced by LPs in AMM-based DEXs. At the same time,
our findings suggest that LPs behave rationally in the aggregate.
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B. Tables and Figures

Table VIII. Transaction Costs – Time Series (Excluding Gas Costs). The table presents the findings
of panel regression analyses on transaction costs, sampled at an hourly frequency by trading pair, and
their relationship with various explanatory factors. These regressions are similr to those displayed
in VI, with the difference that the transaction costs used as dependent variables do not include gas-
related costs (gas fees for DEXs, and DW fees for CEXs). The first four specifications focus on the
transaction costs (TC) of CEXs, as outlined in equation (14). The dependent variable is determined
by selecting the minimum value between Binance and Kraken at the pair-hour level. The subsequent
four specifications concentrate on the transaction costs of DEXs, as defined in equation (15), with
the dependent variable derived from the minimum value between Uniswap v2 and Uniswap v3 at
the pair-hour level. The final specification’s dependent variable is the difference in transaction costs
between DEXs and CEXs at the pair-hour level. In specifications (1) and (5) the dependent variable
is regressed on its first auto-regressive lag. In specification (2) the regressor is the hourly average
transaction costs across CEX exchanges, excluding the target pair. Similarly, in specification (7) the
regressor is the hourly average transaction costs across DEX exchanges, excluding the target pair. In
specification (3) and (6) we regress CEX transaction costs on the DEX average and, vice-versa, DEX
transaction costs on the CEX average. Specifications (4) and (8) include a set of regressors related
to market conditions, including (i) the total trading volume of the ETH token across CEX and DEX
exchanges, in US Dollars; (ii) the ETH percentage return versus the US Dollar during the previous 24
hours; and (iii) the average gas price for Ethereum transactions recorded in the blocks validated during
the same hour. Finally, in specification (9) the difference between DEX and CEX transaction costs is
regressed onto the aforementioned set of market condition-related regressors. The regression models
are saturated with pair fixed effects. T-stats are reported in parentheses and are based on standard
errors double-clustered by week and pair. Asterisks denote significance levels (***= 1%, **= 5%,
*= 10%).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dep. Variable CEX CEX CEX CEX DEX DEX DEX DEX DEX - CEX

Lagged CEX TC 0.954***
(30.659)

Lagged DEX TC 0.998***
(1372.515)

Average CEX TCs 0.803* -0.585***
(1.931) (-3.509)

Average DEX TCs -0.158*** 1.037***
(-3.127) (5.451)

ETH Volume in USD -0.023 0.449*** 0.540***
(-0.348) (4.258) (3.507)

ETH Return -1.586 11.647*** 20.776***
(-0.854) (3.806) (6.065)

Gas Price 0.004 0.011*** 0.216***
(0.693) (2.625) (18.797)

Observations 85,485 85,485 85,485 85,485 85,485 85,485 85,485 85,485 85,485
R-squared 0.933 0.381 0.272 0.257 0.998 0.568 0.873 0.586 0.315
Pair FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table IX. Model Fit. The table reports results from a panel regression of log-observed liquidity levels
onto log liquidity levels predicted by the equilibrium model outlined in Section A and computed as in
equation (17). Both the dependent and independent variables are computed at the pair-day level for
100 exchange pairs from February 2021 to February 2022. We saturate the regression model with day-
and pair fixed effects. T-stats are reported in parentheses, based on robust standard errors double-
clustered at the pair- and day-level. Asterisks denote significance levels (***= 1%, **= 5%, *= 10%).

(1) (2) (3) (4)

Dependent Variable Log(Liquidity) Log(Liquidity) Log(Liquidity) Log(Liquidity)

Log(Predicted Liquidity) 0.89*** 0.61*** 0.89*** 0.53***
(29.94) (12.39) (30.14) (10.24)

Constant 5.92***
(21.71)

Observations 42,293 42,293 42,293 42,293
R-squared 0.92 0.97 0.92 0.98
Pair Fixed Effects - Yes - Yes
Date Fixed Effects - - Yes Yes
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Figure 11. Model Fit. The figure presents a scatter plot of The observed levels of liquidity (y-axis)
and those predicted by our model and computed as in equation (17) (x-axis), based on 42, 299 daily
observations of 100 exchange pairs quoted in Uniswap v2. from February 2021 to February 2022.
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Figure 12. Transaction Costs (Excluding Deposit and Withdrawal Fees). The figure presents
average transaction costs, similar to Figure 6. For Uniswap v2 and Uniswap v3, these are computed
as in equation (15). For Binance and Kraken, instead, the figures are based on equation (14), but
setting the deposit-withdrawal fees DWX,Y to zero. The transaction costs are computed at the hourly
frequency for the five pairs in our sample and for different trade sizes (103, 104, 105, and 106 US dollars),
then averaged from February 2021 to February 2023. For Uniswap v3, daily and for each trade size, we
consider the liquidity pool offering the lowest transaction costs among those available for the specific
exchange pair. The vertical axis employs a logarithmic scale and is reported in basis points.
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Figure 13. Transaction Costs (Uniswap v3 Period). The figure is similar to 6, but based on the
subsample in which Uniswap v3 is present. It presents transaction costs, computed as in equation
(14) for the LOB-based Binance and Kraken and on equation (15) for the AMM-based Uniswap v3.
The transaction costs are computed at the hourly frequency for the five pairs in our sample and for
different trade sizes (103, 104, 105, and 106 US dollars), then averaged from May, 2021 to February,
2023. As discussed in Section V, the displayed transaction costs include B/A spreads, exchange fees,
and settlement fees (gas fees for Uniswap v3, and deposit and withdraw fees for the two CEXs). For
Uniswap v3, daily and for each trade size, we consider the liquidity pool offering the lowest transaction
costs among those available for the specific exchange pair. The vertical axis employs a logarithmic
scale and is reported in basis points.
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