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Abstract

This paper studies the feedback between stock market fluctuations and wealth inequality dynamics.

We do so by means of a dynamic consumption-based general equilibrium model with endogenous

asset returns and a non-degenerate wealth distribution for a continuum of households. Households

are heterogeneous in risk aversion and thus choose different expected portfolio returns and portfo-

lio return volatilities, generating time-varying wealth inequality. We show how to solve the model

analytically in terms of a cumulant generating function, which encodes information about all the

moments of the distribution of risk aversion. With this result, we recover the unobservable distri-

bution of risk aversion using time variation in the slope of the observable equity term structure.

We also confront the model with US data on the wealth distribution to recover a second estimate

of the distribution of risk aversion. By comparing the two estimates, we show quantitatively that

there is significant feedback between stock price dynamics and wealth distribution dynamics.

Keywords: wealth inequality, aggregate risk, equity term structure.
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1 Introduction

The wealth distribution changes over time and impacts asset price dynamics through the stochastic

discount factor. Moreover, the dynamic consumption-portfolio choices made by households based

on asset prices impact the dynamics of the wealth distribution. In short, there is a natural feed-

back between wealth inequality and asset prices. Recent work in macroeconomics (see Benhabib

and Bisin, 2018, Fagereng, Holm, et al., 2019, Gabaix et al., 2016, Hubmer et al., 2021, Xavier,

2020) emphasizes the necessity of heterogeneity in rates of return for explaining wealth inequality

dynamics. However, none of these papers endogenizes rates of return, making it impossible to

study the two way feedback between wealth inequality and asset prices. The asset pricing litera-

ture (see e.g. Dumas, 1989, Chan and Kogan, 2002, Bhamra and Uppal, 2009, Bhamra and Uppal,

2014, Gârleanu and Panageas, 2015) has studied theoretically the importance of heterogeneity in

individual’s risky portfolio returns for aggregate stock return dynamics, but rarely considers the

implications for wealth inequality.

In this paper, we develop a theoretical framework to understand the feedback between endoge-

nous stock market fluctuations and the endogenous dynamics of the wealth distribution. Central

to our model is heterogeneity in exposure to aggregate consumption risk driven by heterogeneity

in risk aversion for a continuum of households in a dynamic setting.1 Consequently, households

have different expected portfolio returns and portfolio return volatilities, leading to time-varying

wealth inequality. Empirical work by Bach et al. (2020) stresses the relevance of this channel for

generating dispersion in wealth across households. The distribution of risk aversion across agents

drives their distribution of exposure to aggregate consumption risk and hence both the dynamics of

asset prices and wealth inequality. We solve the model analytically for an arbitrary distribution of

risk aversion by obtaining the distribution of consumption across households in terms of a cumulant

generating function.

1We differ from Gollier (2001), who uses a static two-date framework, where individuals have different wealth levels,
but identical risk preferences. Gomez (2016) studies wealth inequality in a dynamic model, but with two types of
agent who differ in risk aversion; in our model risk aversion varies smoothly across a continuum of agents, giving
rise to a continuous distribution.
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Previous research in finance documents significant time variation in the slope of the dividend-

yield term structure.2 We show that the correlation of this slope with the growth rate of the stock

holdings of the top 1% of individual investors in the US is 34% (see Figure 1). Using dividend yield

data from Giglio et al. (2021) and the closed-form expression for the dividend yield slope from

our model, we recover the distribution of risk aversion and the wealth distribution.3 In contrast

with expected risk premia, which are estimated with considerable error, dividend yields can be

observed. We also use the individual US wealth series from Saez and Zucman (2016) to build

empirical estimates of the distribution of financial wealth and the share of wealth invested in risky

assets to recover the risk aversion distribution from wealth dynamics. The estimates of the risk

aversion distribution based on wealth dynamics overlap considerably with the estimate from asset

price dynamics. Our results thus provide evidence for significant feedback between asset price

dynamics and wealth distribution dynamics.

The model we use to confront the data is a consumption-based asset pricing model with a

continuum of households and dynamically complete financial markets. Individual households have

power utility which loads multiplicatively on the standard of living and depends exogenously on

the time-weighted history of aggregate consumption.4 Households are heterogeneous with respect

to their risk aversion and their sensitivity to the standard of living index, but have identical rates

of time preference. The key determinants of both the dynamics of stock prices and the wealth

distribution are the risk aversion distribution summarized by the social planner’s Pareto weights

together with the model’s state variable: the difference between log aggregate consumption and its

history, which we refer to as the consumption surplus. By assuming that aggregate consumption

is log-normal, we use consumption data to extract the history of consumption shocks, which deter-

mines the path of the consumption surplus. We lack data on individual household consumption,

2Van Binsbergen, Brandt, et al. (2012) are the first to use dividend strips to study the term structure of equity and
Van Binsbergen, Hueskes, et al. (2013) use dividend strips to study the term structure of expected dividend growth
and the dividend yield slope. Gormsen (2021) and Bansal et al. (2021) have recently shown that this slope varies
across time.

3The prior literature has not shown how to recover the wealth distribution solely from asset prices. There is a literature
focusing on recovering the physical distribution of market returns from derivative prices without using a specific
model, initiated by Ross (2015) and developed further by Borovička et al. (2016), Schneider and Trojani (2019).
Our approach uses a specific model to recover the wealth distribution from time variation in the dividend-yield term
structure.

4The individual household utility specification is a generalization of Chan and Kogan (2002) developed in Muraviev
(2013).
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so we cannot use it to determine the density for the social planner’s Pareto weights. Instead, we

recover the density in two distinct ways: (i) by using times series data for the dividend-yield term

structure, and (ii) using household wealth shares.
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Figure 1: Growth rate of stock holdings of top 1% and slope of dividend yield term
structure

Notes: This figure shows the relationship between the growth rate of stock holdings of the top 1% in the US and

the slope of the dividend-yield term structure of the S&P 500 over the period 1974-2019. The annual growth

rate of stock holdings of the top 1% has been calculated using the microfiles of Saez and Zucman (2016) (https:

//gabriel-zucman.eu/usdina/) and ranking the US population by their level of stock holdings. The slope of the

dividend yield term structure data has been computed taking the annual average of the monthly series of dividend

yields (https://www.serhiykozak.com/data) estimated by Giglio et al. (2021). The slope is the difference between

the 15 year dividend strip’s annualized yield and the 1 year dividend strip’s annualized yield for the “sizeS” cross-

sectional portfolio, which corresponds closely to the S&P 500. Both series are shown in units of percentages per

annum. The correlation coefficient between these two series is 34%.

We can obtain an estimate for the social planner’s Pareto-weights using dividend yield data

by using two theoretical results. First, we show how the functional dependence of aggregate risk
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aversion on the consumption surplus pins down the cumulant generating function of a transforma-

tion of the density function of the Pareto weights. Second, we exploit techniques from operator

theory (see e.g. Hansen and Scheinkman, 2008 and Hansen, 2012) to show that the slope of the

dividend yield is directly proportional to the consumption-share weighted aggregate risk aversion

in the economy. By using time series data on the dividend-yield term structure, we can estimate

the functional dependence of aggregate risk aversion on the consumption surplus. We can therefore

identify the cumulant generating function of a transformation of the density function of the Pareto

weights. We turn the empirically estimated cumulant generating function into a moment generating

function and hence use an inverse Laplace transform to recover the density function for the social

planner’s Pareto-weights in closed form.5

A second set of estimates for the density function for the social planner’s Pareto-weights come

from matching the model-implied wealth distribution to the empirical one. When we compare the

dividend-yield implied density function with the wealth-share implied density functions, we find

considerable overlap and quantify its extent via their relative entropy.

This paper is related to a growing theoretical and empirical literature examining the impact of

wealth inequality on asset prices. Gollier (2001) examines how wealth inequality affects the equilib-

rium level of the equity premium and the risk-free rate. Gomez (2016) studies the interplay between

wealth inequality and asset prices both empirically and theoretically using the series of top wealth

shares from Kopczuk and Saez (2004). Eisfeldt et al. (2013) examine the joint relation between

the wealth distribution and asset prices across markets with different expertise and Kacperczyk

et al. (2019) also study the role of investor sophistication in explaining the recent rise in capital

income inequality. Recent theoretical studies emphasize the need of heterogeneity in rates of return

for explaining wealth inequality dynamics (see Benhabib and Bisin, 2018, Fagereng, Holm, et al.,

2019, Gabaix et al., 2016, Hubmer et al., 2021, Xavier, 2020) in light of the recent empirical work

showing that these are indeed features of the data (see Bach et al., 2020, Fagereng, Guiso, et al.,

2020, Kuhn et al., 2020, Mart́ınez-Toledano, 2020). We build upon these partial equilibrium models

5A similar technique is used in astrophysics to infer the density of dark matter (matter which cannot be directly
observed), see e.g. Bernardeau and Kofman (1995).
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and empirical findings and develop for the first time a general equilibrium framework to study the

two-way feedback between endogenous wealth inequality and endogenous asset price dynamics.

Our work is also closely related to the asset pricing literature studying the importance of

heterogeneity in individual’s risky portfolio returns for aggregate stock return dynamics (Dumas,

1989, Chan and Kogan, 2002, Bhamra and Uppal, 2009, Bhamra and Uppal, 2014, Gârleanu and

Panageas, 2015) and the literature relying on dividend yield data to better understand asset prices

(Van Binsbergen, Brandt, et al., 2012, Van Binsbergen, Brandt, et al., 2012, Giglio et al., 2021,

Gormsen, 2021, Bansal et al., 2021). A novel feature of our approach is the use of the dividend

yield to extract the dynamics of the wealth distribution. Taken together, our theoretical and

quantitative results reveal that the current macroeconomics and inequality literatures could benefit

by incorporating insights from asset pricing.

2 Model

We work in an infinite horizon, continuous-time, dynamic general equilibrium economy with ag-

gregate risk and heterogeneous agents. We now describe how we model the dynamics of aggregate

consumption risk and the heterogeneous exposure of agents to this risk.

2.1 The Dynamics of Aggregate Consumption Risk

We assume aggregate consumption flow is exogenous and stochastic. The aggregate consumption

flow at time-t is denoted by Yt and we assume that

dYt
Yt

= µY dt+ σdZt, (1)

where Z = (Zt)t∈[0,∞) is a standard Brownian motion under the physical probability measure P.

The time-t expected consumption growth rate is denoted by µY and is constant. The volatility of

consumption growth is denoted by σ and is constant.

The standard of living index at time-t is denoted by Xt, where xt = lnXt is the mean of past

realizations of the logarithm of the aggregate consumption process, weighted exponentially, so that
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more recent realizations have a greater impact on the current standard of living, i.e.

xt = x0e
−λt + λ

∫ t

0
e−λ(t−u)yu du, (2)

where λ > 0.

We define the logarithm of the ratio of current aggregate consumption to the standard of living

index as the consumption surplus

ωt ≡ yt − xt.

A positive consumption surplus reflects an improvement in current economic conditions relative to

the past and increases the standard of living index – observe that (2) implies dxt = λ(yt−xt)dt, so

that dxt > 0 when ωt > 0. The consumption surplus is mean-reverting and its dynamics are given

by

dωt = λ
(
λ−1µy − ωt

)
dt+ σdZt, (3)

where µy = µY − 1
2σ

2
Y and the long-run mean of the surplus is ω = µy/λ. To understand the role

played by the mean-reversion parameter λ, we observe that

ωt+u = e−λuωt + (1− e−λu)
µy
λ

+ σ

∫ t+u

t
e−λ(s−t)dZs,

which makes is clear that e−λu is the persistence of ω over a time period of length u (measured

in units of years) and limu→∞Et[ωt+u] =
µY − 1

2
σ2

λ is the long-run mean of ω. The half-life of ω is

given by t1/2 = ln 2/λ Increasing λ decreases both the persistence of ω and its long-run mean. For

example, with a value of λ equal to 1.29 (per annum), the annualized persistence of ω is 0.28, the

half life is 0.54 years, and with µy = 3.11% per annum the long-run mean is µy/1.29 = .024. Figure

2.1 shows the time series for US log aggregate consumption, the implied times series for the log

standard of living index and the consumption surplus relative to its long-run mean. From Panel B,

we can see that the consumption surplus tends to fall below its long-run mean around and during

NBER recessions.
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Figure 2: Aggregate Consumption, Standard of Living Index, and Consumption Sur-
plus.

Notes: This figure shows the key aggregate macroeconomic time series used in the model from 1st May 1974 to 1st

March 2020 with NBER recessions as grey bars. Panel A shows log aggregate consumption, y, and the implied log

standard of living index, x. Panel B displays the implied time series of the consumption surplus relative to its long-run

mean, ω − ω. The times series is shown in blue when ω − ω > 0 and red when ω − ω < 0. We construct aggregate

consumption from observations of (Yt+1/12−Yt)/Yt, which is the seasonally adjusted monthly percentage change in US

Real Personal Consumption Expenditures available at https://fred.stlouisfed.org/series/DPCERAM1M225NBEA.

Our estimates µY = 3.15% per annum and σ = 2.92% per annum are based on the full times series which runs from

1st Jan 1959 to 1st Feb 2021 and we set λ = 1.29 per annum.
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2.2 Heterogeneous Agents and Aggregate Consumption Risk

There is a continuum of heterogeneous agents, who are consumers whose utility is influenced by the

standard of living index. They are all infinitely lived, have identical information, the same rate of

time preference, δ, but differ with respect to a single parameter, γ, which determines both relative

risk aversion and an agent’s sensitivity to the standard of living index.

The consumption rate of an agent with relative risk aversion γ at instant u is denoted by

Cγ,u and the instantaneous utility from consumption is given by the following power function that

depends on consumption relative to an agent-specific tracker for the importance of the standard of

living index, Hγ,u:

Uγ(Cγ,u, Hγ,u) ≡ e−δu 1

1− γ

(
Cγ,u
Hγ,u

)1−γ
, (4)

where δ is the constant subjective discount rate (that is, the rate of time preference), and γ is the

degree of relative-risk aversion.6

The quantity Hγ,u in (4) is defined by

Hγ,u = X
hγ
u = ehγxu ,

where hγ is the agent’s sensitivity to the standard of living index, as modeled in Muraviev (2013),

which generalizes the specification in Chan and Kogan (2002) to allow for heterogeneity in the

sensitivity parameter hγ . If hγ = 1, this reduces to the specification in Chan and Kogan (2002),

and if hγ = 0, one gets the standard isoelastic utility function without any dependence on the

standard of living index.

We parameterize hγ as follows

hγ ≡
γ − 1

ψ

γ − 1
,

6See Chan and Kogan (2002) for a discussion of this specification for the utility function, and why it is still appropriate
to interpret γ as the coefficient of relative-risk aversion. For papers in the literature that study the effect of habit
on asset prices in representative-agent models, see Abel (1990) and Abel (1999) and Constantinides (1990).
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where γ ∈ [0,∞) differs across agents, but ψ does not. We can interpret 1
ψ as the sensitivity of the

risk-free rate to the growth rate of aggregate consumption in the steady state when all agents are

identical in the economy without risk.7

We assume markets are dynamically complete. The competitive equilibrium is therefore Pareto

optimal and we can characterize the consumption-sharing rule via three standard steps. First, we

analyze the social planner’s problem. Then we construct an Arrow-Debreu economy to support

the optimal allocation found in the planner’s problem. Finally, we implement the Arrow- Debreu

equilibrium as a sequential-trade economy. We can then determine equilibrium asset prices and the

wealth distribution. In this section, we restrict ourselves to stating the social planner’s problem,

which is to maximize ∫ ∞
0

f(γ)uγ

(
Cγ,t
Hγ,t

)
dγ,

subject to the constraint ∫ ∞
0

Cγ,tdγ = Yt, (5)

where f(γ) defined in γ ∈ [0,∞) is the density function for the social planner’s Pareto-Negishi

weights, which we refer to as the Pareto-Negishi density.

The Pareto-Negishi density f(γ) is a key determinant of both aggregate asset prices and the

wealth distribution. The existing literature on heterogeneous agents assumes a specific functional

form for the Pareto-Negishi density and then proceeds to solve for equilibrium. We show how to

solve for equilibrium without making parametric assumptions about the Pareto-Negishi density.

7We start by considering the marginal utility (MU) of consumption at date t for agent, which is given by

MUγ,t = e−δ tHγ,t
γ−1C−γγ,t .

When all agents are identical, Cγ = Y , and so marginal utility can be written as:

MUγ,t = e−δ te
−
(
γ− 1

ψ

)
ωte
− 1
ψ
yt .

Thus, the instantaneous interest rate in the deterministic version of the economy is rt = − lnMUt = δ +(
γ − 1

ψ

)
dωt
dt

+ 1
ψ
dyt
dt
. From (3), we can see that in the deterministic version of the economy, ω possesses a steady

state. At the steady state, dωt
dt

= 0, so
∂ rt| dωt

dt
=0

∂
(
dyt
dt

) =
1

ψ
.

One might be tempted to think of ψ as the elasticity of intertemporal substitution, but this interpretation would be
accurate only in a model with internal habit.
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By using the converse of this result, we make it possible to recover the Pareto-Negishi density from

equilibrium variables.

3 Distributional Dynamics and the Distribution of Agents

In this section, we show how the Pareto-Negishi density can be recovered from the distributional

dynamics of consumption simply by inverting a cumulant generating function. This result forms the

basis for our methodology for recovering the Pareto-Negishi density from (i) the term structure of

dividend yields and (ii) the wealth distribution. The asset-pricing implied density and the wealth-

distribution implied density will not be identical, but ought to be so if aggregate asset prices and

the wealth distribution are driven by a common set of state variables. Using US data on dividend

yields from Giglio et al. (2021) and on the wealth distribution from Saez and Zucman (2016), we

show that the slope of the dividend yield and the growth in stock holdings of the top 1% individual

equity holders in the US are indeed correlated (see Figure 1).

It is important to understand that in contrast to an economy with a finite number of house-

holds, our model features a continuum of heterogeneous households. The consumption flow of an

individual atomistic household is negligible. Instead of examining the consumption flows of indi-

vidual households, we must therefore look at the cross-sectional consumption flow density, denoted

by Cγ,t. To understand the role of this density function, observe that the date-t consumption flow

of agents with relative risk aversion within the range
(
γ − 1

2ε, γ + 1
2ε
)

is given by∫ γ+ 1
2
ε

γ− 1
2
ε
Cx,tdx.

Naturally, if we compute the date-t consumption flow of all agents,
∫∞

0 Cγ,tdγ, market clearing in

the consumption good market implies this must equal aggregate output flow, i.e. (5). The density

function for the consumption share of agents with relative risk aversion parameter γ is defined by

νγ,t =
Cγ,t
Yt

.

We now present a solution to the social planner’s problem for a general Pareto-Negishi density.

This result is novel, because it expresses the optimal consumption sharing rule, νγ,t, in terms of the
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inverse of a cumulant generating function, which summarizes the distribution of the Pareto-Negishi

weights.

Proposition 1 The cross-sectional consumption share density is given by

νγ(ωt) = f(γ)
1
γ e
−ωt− 1

γ
η(ωt),

where the function η(ωt) is independent of any particular value of γ and defined by

η(ωt) = −m−1(ωt),

where m(·) is the following cumulant generating function

m(x) = ln

(∫ ∞
0

j(u)exudu

)
,

and the density function, j(·), is a transformation of the Pareto-Negishi density, given by

j(u) = u−2
[
f(u−1)

]u
, u ∈ [0,∞).

Proposition 1 starts by giving the cross-sectional consumption share density in terms of an

unknown function of η(ωt) and then shows how to obtain η(ωt) in terms of the Pareto-Negishi

density. The function η(ωt) captures how aggregate shocks impact the cross-sectional consumption

share density.

The converse of the above Proposition 1 will provide us with a recovery theorem, making it

possible to extract the Pareto-Negishi density, given a cross-sectional consumption share density.

To understand the statement of the theorem it will be useful to recall the definition of the Laplace

transform and its inverse.

Definition 1 The Laplace transform of a function h(t), defined for all real numbers t ≥ 0, is the

function H(s), defined by

H(s) = L{h}(s) =

∫ ∞
0

h(t)e−st dt,

where s ∈ C. We denote the inverse Laplace transform by L−1, which is given by the Bromwich

integral

h(t) = L−1{H}(t) =
1

2πi
lim
T→∞

∫ ε+iT

ε−iT
estH(s) ds,

11



where ε is a real number so that the contour path of integration is in the region of convergence of

H(s).

We are now ready to state the recovery theorem for the Pareto-Negishi density.

Theorem 1 Suppose we have a consumption sharing rule

νγ(ωt) = f(γ)
1
γ e
−ωt− 1

γ
η(ωt), (6)

where the function η(ωt) is known. The Pareto-Negishi density f(γ) is given by

f(γ) = [γ−2j(γ−1)]γ ,

where the density j(u) is the inverse Laplace transform of exp(η−1(x)), i.e.

j(u) = L−1{exp(η−1)}(u).

The above theorem comes with a caveat grounded in practical considerations. To apply the theorem,

the cross-sectional consumption share density must be observable as function of ω. In other words,

we would need to observe the time series of the cross-sectional consumption share density with

enough variation in the consumption surplus, ω. Of course, this appears impossible to achieve in

practice.

Fortunately, asset prices and empiricists come to our rescue. Asset prices are observable – if

we can find asset prices that reveal the form of the function η(ωt), we can then use Theorem 1 to

recover the Pareto-Negishi density. Recent empirical work by Saez and Zucman (2016) has made

the wealth distribution observable, which provides us with a second path to recovery.

4 Recovering the Pareto-Negishi Density from the Term Struc-

ture of Dividend Yields

In this section, we use time series data on the slope of the term structure of dividend yields to

recover the Pareto-Negishi density.
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4.1 Pricing Dividend Strips

We price dividend strips using the equilibrium stochastic discount factor for our model and show

how the dividend yield slope is related to aggregate risk aversion.

We start by assuming that dividends are log normally distributed as follows

Dt = AtY
a
t , (7)

where

dAt
At

= µAdt+ σAdZA,t,

and

Et[dZA,tdZt] = ρdt.

The constant a > 1 provides a reduced form way to model leverage as in Abel (1999). The stochastic

process A introduces another shock, so that aggregate dividends and consumption flows are not

perfectly correlated.

Our model provides an equilibrium stochastic discount factor (SDF), Λ, which we use to price

dividend strips and hence compute dividend yields. In the first proposition of this Section, we show

that the volatility of the SDF depends on the aggregate risk aversion in the economy, which is

the negative of the derivative of the function η(ωt), the function which governs how aggregate risk

impacts the consumption distribution. We shall use the following consumption-based definition of

aggregate risk aversion.

Definition 2 The aggregate risk aversion in the economy at time-t is defined to be

R(ωt) =
1∫∞

0
1
γ νγ(ωt)dγ

. (8)

We can see that R(ωt) is the weighted harmonic mean of the consumers’ relative risk aversions,

where the weighting function is the consumption-share density. Aggregate risk aversion depends

on the aggregate state of the economy via ωt.
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Proposition 2 The equilibrium stochastic discount factor is given by Λ, where

dΛt
Λt

= −rtdt−ΘtdZt, (9)

and

rt = δ +
1

ψ
µy +

(
R(ωt)−

1

ψ

)
λ(ω − ωt)−

1

2
R(ωt)

2(1 +R(ωt)V (ωt))σ
2,

Θt = R(ωt)σ,

where

R(ωt) = −η′(ωt),

and V (ωt) is the consumption-weighted variance of relative risk aversion, defined by

V (ωt) =

∫ γ

γ

1

γ2
νγ(ωt)dγ −

(∫ γ

γ

1

γ
νγ(ωt)dγ

)2

,

and given in terms of η(ω) by

V (ωt) = R(ωt)
−3η′′(ωt).

We can see that negative shocks to current consumption growth decrease the consumption

surplus ωt and lead to a greater demand for risk-free bonds which decreases the real risk-free rate,

if aggregate risk aversion is higher than 1/ψ. When the consumption surplus ω is at it’s long run

mean, ω, the risk-free rate is given by

rt|ωt=ω = δ +
1

ψ
µy −

1

2
R(ω)(P (ω)− 1)σ2.

We can now see that when the ωt = ω, the sensitivity of the risk-free rate to changes in the growth

of log consumption is given by 1/ψ. The price of risk, Θt, increases when there are negative shocks

to current consumption growth, because there is a transfer of wealth from the less risk averse to

the more risk averse, leading to an increase in aggregate risk aversion.

A dividend strip is a security which pays the cashflow DT at time T . The time-t price of this

dividend strip is DtpD,T−t(ωt), where

pD,T−t(ωt) = Et

[
ΛTDT

ΛtDt

]
,

14



from which we can obtain the date-t yield, yD,T−t(ωt), via

pD,T−t(ωt) = e−yD,T−t(ωt)(T−t).

We therefore have

yD,T−t(ωt) = − 1

T − t
ln pD,T−t(ωt).

Similarly, we can define the time-t yield-to-maturity for a real zero coupon bond, paying off 1 unit

of consumption at time T :

yB,T−t(ωt) = − 1

T − t
lnEt

[
ΛT
Λt

]
.

The following proposition gives closed form expressions for the short-term and long-term divi-

dend yields.

Proposition 3 The short-term dividend yield is given by

kt = yD,0(ωt) = r(ωt) +R(ωt)Covt

(
dDt

Dt
,
dCt
Ct

)
− µD

and the long-term dividend yield by the constant

k̂ = lim
τ→∞

yD,τ (ωt) = r̂ +
1

ψ
Covt

(
dDt

Dt
,
dCt
Ct

)
− µD,

where r̂ is the long-term risk-free rate, given by

r̂ = δ +
1

ψ
µY −

1

2

1

ψ

(
1 +

1

ψ

)
σ2,

and the covariance between shocks to dividend growth and consumption growth given by

Covt

(
dDt

Dt
,
dCt
Ct

)
= σ(ρσA + aσ),

and

µD =
1

dt
Et

[
dDt

Dt

]
.

Aggregate risk aversion is directly proportional the dividend yield slope, k̂ − kt, as shown below

R(ωt) =
1

ψ
+
−(k̂ − kt) + r̂ − rt
Covt

(
dDt
Dt
, dCtCt

) . (10)

15



Fluctuations in aggregate risk aversion are driven by fluctuations in the slope of the dividend

yield term structure. This result will allow us to estimate R(ωt) as function of ωt, which gives η(ωt)

and hence the Pareto-Negishi density via Theorem 1.

4.2 Asset-Pricing Implied Pareto-Negishi Density

Data for aggregate dividends is obtained from Robert Shiller’s website (http://www.econ.yale.

edu/~shiller/data.htm). The monthly times series data we use for the dividend yield slope is

from Giglio et al. (2021), who estimate the dividend yield based on the universe of stocks from

CRSP and COMPUSTAT and covers the period from September 1974 to August 2020. Our times

series for real bond yields are based on quarterly data from Chernov and Philippe (2012), which

runs from the third quarter of 1971 to the fourth quarter of 2002. For the period from 2002 onwards,

we use daily data from Gürkaynak et al. (2010). In both cases, we convert the real yield data to

monthly frequency. For r̂ we used ten year real yields and for rt two year real yields.

Table 4.2 shows the values of the different parameters that we use in the model. We obtain the

log-consumption volatility σ and the log-consumption drift µy by fitting a monthly discretization

of the following equation

dyt = µydt+ σdZt,

to the logarithm of the consumption time series. We then choose ψ to ensure that the right-hand

side of (10) is positive. We estimate the covariance between dividend growth and consumption

growth to be 0.0049 in annualized units. Finally, λ is chosen to maximize the correlation between

recessions and negative shocks to ωt.

δ ψ σ µy Covt(dDt/Dt, dCt/Ct) λ

0.03 0.0204 0.0292 0.0311 0.0049 1.29

Table 1: Parameter values

Notes: We obtain the log-consumption volatility σ and the log-consumption drift µy by fitting a monthly discretization

of Equation (1) to the logarithm of the consumption time series. We then choose ψ to ensure that the right-hand

side of (10) is positive. Finally, λ is chosen to maximize the correlation between recessions and negative shocks to

ωt. The parameters σ, µy, and λ are given in per annum units.
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We then run a regression of the empirical times series for ln

(
1
ψ + −(k̂−kt)+r̂−rt

Covt
(
dDt
Dt

,
dCt
Ct

)
)

against the

model-implied times series for surplus consumption as shown in Figure 4.2 below.

Figure 3: Log Aggregate Risk Aversion and the Consumption Surplus

Notes: We show a scatterplot of ln

(
1
ψ

+ −(k̂−kt)+r̂−rt
Covt

(
dDt
Dt

,
dCt
Ct

)
)

versus ω from September 1974 to February 2020 (just prior

to the COVID-19 shock). The plot shows the results of a linear regression of ln

(
1
ψ

+ −(k̂−kt)+r̂−rt
Covt

(
dDt
Dt

,
dCt
Ct

)
)

versus ω. The

blue crosses denote the data points to be fitted, the red line is the fitted linear model, and the dotted lines are the

95% confidence bounds. We estimate that lnR(ωt) = b0 − b1ωt where b0 = 3.7 and b1 = 8.9.
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Coefficients Estimate Standard Error t-stat p-value

b0 3.7 0.07 53.6 8× 10−218

b1 8.9 2.7 3.4 0.001

Table 2: Regression Results: Log Risk Aversion and the Consumption surplus

Notes: We run a linear regression of ln

(
1
ψ

+ −(k̂−kt)+r̂−rt
Covt

(
dDt
Dt

,
dCt
Ct

)
)

versus ω using data from September 1974 to February

2020 (just prior to the COVID-19 shock).

This allows us to estimate the log of aggregate risk aversion as a linear function of ω. We find

that a log linear specification for aggregate risk aversion works well and adding higher order terms

does not significantly improve the fit. We therefore assume that

lnR(ωt) = b0 − b1ωt.

The results of our regression are summarized in Table 4.2. We find that b0 = 3.7 and b1 = 8.9. We

can see from Figure 4.2 that a log-linear functional form for aggregate risk aversion in terms of ω

offers a good fit of the data. Using this estimated functional form, we can apply Theorem 1 and

obtain the asset-pricing implied Pareto-Negishi density in closed form, as shown below.

Proposition 4 If

lnR(ωt) = b0 − b1ωt, b1 > 0, (11)

then the asset-pricing implied Pareto-Negishi density is given (up to an arbitrary constant) by

fA(γ) ∝ γ−αγeβγ , (12)

with

α = 1 +
1

b1
,

β = ln

(
e
b0
b1 b
− 1
b1

1 Γ(b−1
1 )

)
,

where Γ(·) is the Gamma function.

The asset-pricing implied consumption sharing rule is given by

νγ(ωt) =
b
− 1
b1

1 γ
− 1
b1
−1
R(ωt)

1
b1 e
−R(ωt)

b1γ

Γ
(

1
b1

) . (13)
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To visualize the above proposition, we start by showing a plot of the asset-pricing implied

Pareto-Negishi density normalized to integrate to one in Figure 4.2. The distribution is positively

skewed with a mean relative risk aversion of 1.5, standard deviation of 0.9, as shown in Table 4.2.

2 4 6 8 10
γ

0.1

0.2

0.3

0.4

fA (γ)

∫0
∞fA (z) z

Figure 4: Asset-pricing implied Pareto-Negishi Density

Notes: This figure shows the asset-pricing implied Pareto-Negishi density normalized to integrate to one, i.e.

fA(γ)/
∫∞
0
fA(z)dz as a function of relative risk aversion γ.
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Panel A: Raw moments

1st moment 1.8
2nd moment 4.2
3rd moment 12.3
4th moment 42.1

Panel B: Standardized moments

mean 1.8
standard deviation 1.1

skewness 0.8
kurtosis 3.6

Table 3: Moments of the Asset-pricing implied Pareto-Negishi Density.

Notes: Panel A shows the raw moments of the normalized asset-pricing implied Pareto-Negishi density and Panel B

shows the standardized moments as described.
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5 Recovering the Pareto-Negishi Density from the Dynamics of

the Wealth Distribution

In this section, we show how to derive the dynamics of the theoretical wealth distribution implied

by our model for a general Pareto-Negishi density. We then use cross-sectional data on the US

wealth distribution to estimate the Pareto-Negishi density.

5.1 Wealth Distribution Dynamics

We derive the cross-sectional density function for the wealth share, ζγ(ωt), which gives the fraction

of aggregate wealth owned by agents with relative risk aversion equal to γ. We first consider the

amount of wealth held by agents with risk aversion equal to γ, i.e. Wγ,t, where

Wγ,t = Et

[∫ ∞
t

Λu
Λt
νγ,uYudu

]

= eytνγ,tEt

[∫ ∞
t

Λu
Λt

νγ,uYu
νγ,tYt

du

]
We define the cross-sectional density for the wealth-consumption ratio

hγ(ωt) = Et

[∫ ∞
t

Λu
Λt

νγ,uYu
νγ,tYt

du

]
.

Hence, we can write the wealth density function as

Wγ,t = eytνγ(ωt)hγ(ωt).

The cross-sectional density function for the wealth share is given by ζγ(ωt), where

ζγ(ωt) =
Wγ,t∫∞

0 Wγ,tdγ
.

The following proposition characterizes the cross-sectional density function for the wealth share in

terms of the cross-sectional density for the consumption share, νγ(ωt), the cross-sectional density for

the wealth-consumption ratio, hγ(ωt), and the wealth-consumption ratio for the aggregate economy,

pC(ωt) =
∫∞

0 Wγ,tdγ/Yt.

Proposition 5 The cross-sectional density function for the wealth share is given by

ζγ(ωt) =
νγ(ωt)hγ(ωt)

pC(ωt)
, (14)
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and the dynamics of the wealth density are given by

d ln ζγ(ω)− Et[d ln ζγ(ω)] = (φγ(ω)− 1)σR(ωt)dZt.

where φγ(ω) is the fraction of personal financial wealth invested in risky assets for agents with

relative risk aversion equal to γ and is given in equilibrium by

φγ(ω) =

R(ω)
γ +

h′γ(ω)

hγ(ω)

1 +
p′C(ω)

pC(ω)

. (15)

We can see immediately from the above proposition that the impact of shocks to the aggregate

state of the economy on the fraction of aggregate wealth held by households is amplified, because

the volatility of stock returns is larger than the volatility of aggregate consumption growth.

We can also see that the fraction of aggregate wealth held by households with levered positions in

risky assets, i.e. the risky share, increases when there is a positive aggregate shock. The risky share

is important along two dimensions. Agents with lower risk aversion will have a higher risky share,

giving them larger exposure to aggregate risk. This generates heterogeneity in portfolio returns,

where less risk averse agents have a greater expected portfolio return, but also more volatile returns.

Over time, if there are more positive aggregate shocks than negative, as is the case empirically, less

risk averse agents will accumulate more wealth, creating positive skewness in the wealth density

ζγ(ω) as a function of relative risk aversion, γ.

Furthermore, time variation in the risky share governs the dynamics of the wealth distribution

in the following way. An increase in financial leverage at a particular point in the distribution will

mean that part of the distribution will change more as aggregate shocks arrive.

5.2 Empirical Evidence: The Wealth Distribution and the Pareto-Negishi Den-

sity

In this section, we build empirical estimates of the wealth distribution and the Pareto-Negishi

Density implied by the wealth data. We focus on the US and rely on three main data sources:

the updated individual wealth data series from Saez and Zucman (2016), the implied equity risk

premium from Damodaran (2020) and the return volatility of S&P 500 from Bloomberg Finance.

All three data sources are available for the period 1968-2019.
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Given that the aim of the paper is to understand the feedback between stock market fluctuations

and the dynamics of wealth inequality, we restrict our empirical analysis to the distribution of

financial wealth. Financial wealth is the sum of equities, fixed-income assets and funded pension

wealth. Since we have the implied equity risk premium, the return volatility and we can calculate

the share of financial wealth in risky assets using the wealth series, we can derive the coefficient

of relative risk aversion for every individual and year in the wealth distribution following Merton

(1969) and inverting the expression for the risky share, given by

φγ(ω) =
1

γ

µR(ω)− r(ω)

σR(ω)2
+
h′γ(ω)

hγ(ω)

σ

σR(ω)
,

where the first term is myopic demand and the second term is hedging demand and σ
σR(ω) is the

covariance between shocks to the risky return and shocks to the consumption surplus ratio.

Figure 5 shows the evolution of the three series used to derive the coefficient of relative risk

aversion: the equity risk premium, the return volatility of the S&P 500 and the share in risky

assets in the US over the period 1968-2019. The equity risk premium has fluctuated between 2%

and 7% over the whole period. In 2019 it reached 4.7% compared to 2.9% in 1968. The return

volatility of S&P 500 has fluctuated from 8% to 50% over the whole period. In 2019 it reached

14.9%, compared to 8.7% in 1968. Finally, the risky share followed a U-shape pattern over the

whole period. In the late 1960s it was more than 40%, it steadily declined during the 1970s and

1980s and it started to increase since 1990s, slightly declined during the early 2000s and the global

financial crisis, reaching 27% in 2019.

Figure 6 shows the evolution of the share of total financial wealth by level of relative risk

aversion in the US in every ten years between 1979 and 2019. In 2019, the share of wealth is highly

concentrated around individuals with a low level of risk aversion (between 2 and 3). The density

varies across time, as the results are based on a cross-section sample of individuals (individuals

leave and enter the sample every year). In 1999 and 2009, the share of financial wealth was more

concentrated at lower levels of risk aversion, as these dates were the ends of economic expansions –

less risk averse individuals would have benefited more from the series of positive aggregate shocks,

leaving them with a greater share of aggregate wealth.
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RISK PREMIUM, RETURN VOLATILITY AND RISKY SHARE IN THE US, 1968-2019

Figure 5: Risk Premium, Return Volatility and Risky Share in the US, 1968-2019

Notes: This figure depicts the equity risk premium, the return volatility and the share in risky assets that we use to

back out the distribution of risk aversion over the period 1968-2019. We rely on the equity risk premium estimates

of Damodaran (2020) and the return volatility of S&P 500 from Bloomberg. To derive the risky share, we use the

microfiles of Saez and Zucman (2016) (https://gabriel-zucman.eu/usdina/). We rank the US population by their

level of financial wealth (deposits, fixed-income securities, stocks and pension funds) and consider as risky asset the

stock holdings. The equity risk premium is depicted in per-annum units and so is the return volatility. The risky

share is graphed as a fraction.
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SHARE OF FINANCIAL WEALTH BY LEVEL OF RISK AVERSION IN THE US, 2019

Figure 6: Share of Financial Wealth by Level of Risk Aversion in the US, 1979-2019

Notes: This figure depicts the share of total financial wealth by the level of risk aversion for different years between
1979 and 2019. We have backed out the coefficient of relative risk aversion using Merton (1969)’s formula above by
relying on data for the equity risk premium, the return volatility and the share in risky assets depicted in Figure 5.
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We now show how our model matches the quantiles of the cross-sectional empirical density

function for the wealth share ζγ(ωt). We define the following wealth-weighted measure of aggregate

risk aversion:

Rwealth(ωt) =

(∫ ∞
0

1

γ
ζγ(ωt)dγ

)−1

. (16)

We note that Rwealth(ωt) is the harmonic mean of relative risk aversion, but weighted via the

wealth-share density ζγ(ωt), as opposed to the consumption-share density used in (8). The p’th

quantile of the wealth-share density, ζγ(ωt), is denoted by γp(ωt) and defined by the integral∫ γp(ωt)

0
ζγ(ωt)dγ =

p

100
, p ∈ [1, 100].

We parametrize the underlying Pareto-Negishi density using Equation (12), leaving the coeffi-

cients b0 and b1 free to be identified from the wealth data.8

We compute the empirical quantiles of the wealth-share density for every year in our sample

period. We then average these quantiles across time to obtain a measure of the average quantiles

of the wealth share density function. These quantities are shown in Table 4.

Table 4: Average Empirical Quantiles of the Empirical Wealth-Share Density

Percentile 70 65 64 63 60 50 40 35 30 10 1

Time Series Mean of γp(ωt) 43.3 36 34.7 33.5 30.3 21.7 15.4 12.9 10.7 4.53 3

Notes: This table shows the quantiles of the empirical wealth share density.

Furthermore, using Equation (16), we compute the average empirical aggregate risk aversion

obtaining a value of 12.08. We then want to find values for the parameters b0 and b1 that define

the wealth-share density function in our model to match the empirical quantiles and empirical

aggregate risk aversion of 12.08. To do so, we proceed as follows: using Equation (14), we compute

the wealth-share density in our model as a function of b0 and b1; for every empirical quantile, we

then pick b0 and b1 so that we best approximate the empirical quantile and the empirical aggregate

risk aversion with the corresponding model-implied values. The exact criterion we minimize is the

8We explored using alternative functional forms for the density, but doing so made little difference to our quantitative
results.
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root mean squared error, defined by

ε(p) =
√

(γp(ω̂)|model − γp|data)2 + (Rwealth(ω̂)|model −Rwealth(ω̂)|data)2, (17)

where ω̂ is the time series mean of ω for our sample. Table 5 shows for selected quantiles p, which

values of b0 and b1 minimize the error, ε(p).

Table 5: Parameter Estimates for Wealth-Distribution implied Pareto-Negishi Density

Percentile, p b0 b1
65 2.6 4.7
64 2.7 9.3
63 2.8 13.8
60 2.8 14.2
50 3.0 22.8
35 3.0 23.0
30 3.0 23.0
10 3.0 22.8
1 3.0 22.8

Notes: Using the parametric form for the Pareto-Negishi Density given in Proposition 4, we estimate b0 and b1 to

minimize ε(p), defined in (17) for the percentiles, p ∈ {65, 64, 63, 60, 50, 35, 30, 10, 1}.

The dynamics of the wealth-share density are governed by the dependence on b1, while the

average form of the density is determined by b0. Both the dividend-yield data and wealth data give

very similar estimates for b0 and hence the average form of the wealth share density. When it comes

to dynamics, the qualitative variations in wealth-share density implied by two approaches are also

very similar –we see that b1 is always positive. The wealth data provides a range of estimates for

the size of the swings in the density, which are centered around the estimate we obtain from the

dividend-yield data. We interpret these results are showing that is strong feedback between the

dynamics of the wealth distribution and asset price dynamics. However, some of the variation must

be driven by factors outside our model and unrelated to the consumption surplus. Measures of

uncertainty and changes in expecations are natural candidates for seeking to further explain the

joint variation in wealth and asset price dynamics.

To more precisely quantity the differences between the asset-price implied Pareto-Negishi den-

sity and the wealth distribution implied densities, we compute the relative entropy of the wealth

distribution density from the asset-price implied density for each percentile we have tried to match.

The relative entropy of the wealth distribution density from the asset-price implied density is given
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by

KL[A|W ] =

∫ ∞
0

f̂A(x) ln
f̂A(x)

f̂W (x)
dx,

where the hat symbolˆdenotes a density that has been normalized so it integrates to one. Table

6 shows our results. We see that for the 64th percentile the relative entropy is particularly small.

Our results suggest that the sensitivity of the wealth-share density to changes in the consumption

surplus ratio is on average very similar, regardless of whether we use dividend yield data or wealth

data. However, the sensitivity of the wealth-share density based on the wealth data to changes

in the consumption surplus ratio varies across risk aversion in way which is not seen when we use

asset prices to recover the wealth-share density. In particular agents holding a share of aggregate

wealth are highly sensitive to aggregate shocks, suggesting that richer households find it easier to

rebalance their portfolios.

Table 6: The Relative Entropy of the Wealth Distribution implied Density from the
Asset-Price implied Density

Percentile, p KL[A|W ]

65 0.6898
64 0.0050
63 0.2283
60 0.2705
50 1.7164
35 1.7577
30 1.7577
10 1.7164
1 1.7164

Notes: This table shows the relative entropy of the wealth distribution implied density from the asset-price implied

density for each percentile we have tried to match for the percentiles, p ∈ {65, 64, 63, 60, 50, 35, 30, 10, 1}.

6 Conclusion

This paper examines the feedback between asset prices and wealth inequality dynamics. First,

we build a dynamic, consumption-based equilibrium model in which heterogeneity in risk aversion

for a continuum of households translates into different exposures to aggregate consumption risk

and this in turn drives the dynamics of both endogenous asset prices and wealth inequality. We

then solve the model analytically for the distribution of consumption across households in terms of
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the social planner’s Pareto weights and the difference between log aggregate consumption and its

history. Finally, we take our model to the data and obtain estimates for the social planner’s Pareto

weights using both data for the US on asset prices (i.e., the dividend yield slope) and individuals’

household wealth from Saez and Zucman (2016). The estimates of the risk aversion distribution

based on asset prices and wealth dynamics considerably overlap. Our results thus provide evidence

for significant feedback between asset price dynamics and wealth distribution dynamics.

The literatures on asset pricing and inequality have remained separate, despite the importance

of the stock market for differences in rates of wealth accumulation and the role of portfolio hetero-

geneity in determining stock prices. This study is a step forward in developing a unified framework

aimed at understanding from a theoretical and quantitative standpoint the interactions between

wealth inequality and asset prices. Central to our paper is the role of heterogeneity in risk exposure

in generating wealth disparities along the business cycle. We hope these findings will open up new

avenues for future empirical and theoretical research on the interactions between wealth inequality

and asset price dynamics.
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A Proofs

Proof of Proposition 1

In this section, we derive consumption-share density, i.e. the density function for the consumption

share of agents with relative risk aversion parameter γ, i.e.

νγ,t =
Cγ,t
Yt

,

where Cγ,t is the consumption density function. Observe that the date-t consumption flow of agents

with relative risk aversion within the range
(
γ − 1

2ε, γ + 1
2ε
)

is given by∫ γ+ 1
2
ε

γ− 1
2
ε
Cx,tdx.

Markets are dynamically complete, so given aggregate output flow, we can use a social planner

to derive optimal allocations. The social planner’s objective function is to maximize∫ γ

γ
f(γ)uγ(Cγ,t)H

−(1−γ)
γ,t dγ,

subject to the constraint ∫ γ

γ
Cγ,tdγ = Yt,

where γ = 0 and we shall let γ →∞.

Defining consumption shares

νγ,t =
Cγ,t
Yt

,

the social planner’s problem becomes∫ γ

γ
f(γ)

Y 1−γ
t ν1−γ

γ,t − 1

1− γ
H
−(1−γ)
γ,t dγ,

subject to the constraint ∫ γ

γ
νγ,tdγ = 1. (A1)
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The Lagrangian for this problem is

L =

∫ γ

γ
f(γ)

Y 1−γ
t ν1−γ

γ,t − 1

1− γ
H
−(1−γ)
γ,t dγ + Ψ̂t

(
1−

∫ γ

γ
νγ,tdγ

)
,

where the Lagrange multiplier Ψ̂t is independent of individual agent type.

The FOC’s are

f(γ)Y 1−γ
t ν−γγ,tH

−(1−γ)
γ,t = Ψ̂t, γ ∈ [γ, γ].

We now simplify the above FOC’s to obtain

f(γ)Y 1−γ
t X

γ−1/ψ
t ν−γγ,t = Ψ̂t, γ ∈ [γ, γ],

and hence

f(γ)e

(
1− 1

ψ

)
yt−

(
γ− 1

ψ

)
ωtν−γγ,t = Ψ̂t, γ ∈ [γ, γ].

Solving for the consumption shares, we obtain

νγ,t = [f(γ)]
1
γ e

1
γ

(
1− 1

ψ

)
yt− 1

γ

(
γ− 1

ψ

)
ωtΨ̂

− 1
γ

t .

The Lagrange multiplier Ψ̂t is determined by the constraint (A1), so we obtain

∫ γ

γ
f(γ)

1
γ e

1
γ

(
1− 1

ψ

)
yt− 1

γ

(
γ− 1

ψ

)
ωtΨ̂

− 1
γ

t dγ = 1.

Therefore

e−ωt
∫ γ

γ
f(γ)

1
γ

(
e
−
[(

1− 1
ψ

)
yt+

1
ψ
ωt
]
Ψ̂t

)− 1
γ

dγ = 1.

We see that Ψt = e
−
[(

1− 1
ψi

)
yt+

1
ψi
ωt
]
Ψ̂t is independent of agent-type. Hence,∫ γ

γ
f(γ)

1
γ Ψ
− 1
γ

t dγ = eωt .

Defining

ηt = ln Ψt,

we obtain ∫ γ

γ
f(γ)

1
γ e
− 1
γ
ηtdγ = eωt . (A2)
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and

νγ(ωt) = f(γ)
1
γ e
−ωt− 1

γ
η(ωt).

From the above integral equation (A2), we can see that ηt is a function of ωt, i.e. ηt = η(ωt),

and so ∫ γ

γ
f(γ)

1
γ e
− 1
γ
η(ωt)dγ = eωt . (A3)

We define

u =
1

γ
,

and so ∫ 1
γ

1
γ

u−2
[
aif(u−1)

]u
e−u η(ωt)du = eωt .

Simplifying further, we obtain∫ 1
γ

1
γ

u−2
[
aif(u−1)

]u
e−u η(ωt)du = eωt .

Define the density function

j(u) = u−2
[
f(u−1)

]u
, u ∈ [1/γ, 1/γ].

Observe that j(u) is not a probability density function, because it does not integrate to one. It

follows that

M(−η(ωt)) = eωt ,

where

M(x) =

∫ ψi

1
γ

j(u)exudu

is the moment generating function of for the density function j(·).

The corresponding cumulant generating function is defined by

m(x) = lnM(x),

and so

m(−η(ωt)) = ωt.
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Inverting the cumulant generating function, we obtain

η(ωt) = −m−1(ωt).

Proof of Theorem 1

Proposition A1 The function η(ωt) is given explicitly in terms of ωt by

η(ωt) = −
∞∑
n=0

Jn
(eωt − I0)n

n!
,

where

J1 =
1

I1

Jn =
1

In1

n−1∑
k=1

(−)kn(k)Bn−1,k

(
Î1, . . . , În−k

)

Îk =
Îk+1

(k + 1)I1
,

and

In =

∫ ψi

1
γ

j(u)undu, n ∈ {0, 1, 2, . . .},

and Bn,k(x1, x2, . . . , xn−k+1) is the exponential Bell polynomial defined as follows

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

, (A4)

where where the sum is taken over all sequences j1, j2, j3, . . . , jn−k+1 of non-negative integers such

that these two conditions are satisfied: j1 + j2 + · · ·+ jn−k+1 = k,j1 + j2 + · · ·+ jn−k+1 = k, and

j1 + 2j2 + 3j3 + · · ·+ (n− k + 1)jn−k+1 = n.

Proof of Proposition A1

Expanding the moment generating function, we have

M(x) =

∞∑
n=0

In
xn

n!
,
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where

In =

∫ 1
γ

1
γ

j(u)undu, n ∈ {0, 1, 2, . . .}.

Hence, we have the explicit expression

∞∑
n=0

In(−η(ωt))
n = eωt . (A5)

We can use (A5) to compute η(ωt) explicitly. We rewrite (A5) as

∞∑
n=1

In(−η(ωt)) = eωt − I0.

We can then use Lagrange’s Inversion Theorem (see Bhamra and Uppal, 2014) to show that

−η(ωt) =
∞∑
n=0

Jn
(eωt − I0)n

n!
,

where

J1 =
1

I1

Jn =
1

In1

n−1∑
k=1

(−)kn(k)Bn−1,k

(
Î1, . . . , În−k

)

Îk =
Îk+1

(k + 1)I1
,

and Bn,k(x1, x2, . . . , xn−k+1) is the exponential Bell polynomial defined in (A4).

Definition A1 The aggregate prudence in the economy at time-t is defined to be

P (ωt) = A(ωt)

∫ γ

γ
(1 + γ)wγ(ωt)dγ, (A6)

where wγ(ωt) is a density function for γ

wγ(ωt) =

(
R(ωt)
γ

)2
νγ(ωt)∫ γ

γ

(
R(ωt)
γ

)2
νγ(ωt)dγ

,

and

A(ωt) =

∫ γ

γ

(
R(ωt)

γ

)2

νγ(ωt)dγ.
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Proposition A2 The dynamics of the consumption-share density are given by

dνγ(ωt) = Et[dνγ(ωt)]−
(

1− 1

γ
R(ωt)

)
νγ(ωt)σdZ1,t,

where

1

νγ(ωt)
Et

[
dνγ(ωt)

dt

]
= −

(
1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
+

1

2

[(
R(ωt)

γ
− 1

)2

− (P (ωt)− 1−R(ωt))
R(ωt)

γ

]
σ2.

Aggregate risk aversion is given by −η′(ωt) and the dynamics of aggregate risk aversion are

given by

dR(ωt) = Et[dR(ωt)]−R3(ωt)V (ωt)σdZ1,t (A7)

where

V (ωt) =

∫ γ

γ

1

γ2
νγ(ωt)dγ −

(∫ γ

γ

1

γ
νγ(ωt)dγ

)2

is the time-t variance of risk tolerance and

Et[dR(ωt)] = −R3(ωt)V (ωt)Et[dωt] +
1

2
R′′(ωt)σ

2dt,

where

R′′(ωt) = R(ωt)− 3R3(ωt)M2(ωt) + 3R5(ωt)M2
2(ωt)−R4(ωt)M3(ωt),

and

Mn(ωt) =

∫ γ

γ

1

γn
νγ(ωt)dγ, n ∈ Z+,

is the n’th moment of risk tolerance.

The following results hold

1. dνγ(ωt)− Et[dνγ,t] > 0 if and only if dZ1,t > 0 and γ < R(ωt) or dZ1,t < 0 and γ > R(ωt)

2. dR(ωt)− Et[dR(ωt)] < 0 if and only if dZ1,t > 0
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Proof of Proposition A2

By differentiating the integral equation (A3) implicitly with respect to ωt, we obtain

−η′(ωt)
∫ γ

γ

1

γ
f(γ)

1
γ e
− 1
γ
η(ωt)dγ = eωt , (A8)

and so

−η′(ωt)
∫ γ

γ

1

γ
νγ(ωt)dγ = 1,

implying that

−η′(ωt) =
1∫ γ

γ
1
γ νγ(ωt)dγ

.

Using (2), we therefore denote −η′(ωt) via R(ωt), i.e.

R(ωt) = −η′(ωt).

Observe that

∂νγ(ωt)

∂ωt
= −

(
1− 1

γ
R(ωt)

)
νγ(ωt),

and νγ(ωt) > 0. We thus see that
∂νγ(ωt)
∂ωt

> 0 if and only if γ < R(ωt). From Ito’s Lemma

dνγ(ωt)− Et[dνγ(ωt)] =
∂νγ(ωt)

∂ωt
σdZt,

where dνγ(ωt) − Et[dνγ(ωt)] is the unexpected change in the consumption-share density. Hence,

for a given positive aggregate shock, dZ1,t > 0, dνγ(ωt)− Et[dνγ(ωt)] > 0 if and only if γ < R(ωt).

Furthermore,

Et

[
dνγ(ωt)

dt

]
=
∂νγ(ωt)

∂ωt
dωt +

1

2

∂2νγ(ωt)

∂ω2
t

(dωt)
2

= −
(

1− 1

γ
R(ωt)

)
νγ(ωt)dωt +

1

2

[
−
(

1− 1

γ
R′(ωt)

)
νγ(ωt)−

(
1− 1

γ
R(ωt)

)
ν ′γ(ωt)

]
σ2dt

= −
(

1− 1

γ
R(ωt)

)
νγ(ωt)dωt +

1

2

[
−
(

1− 1

γ
R′(ωt)

)
νγ(ωt) +

(
1− 1

γ
R(ωt)

)2

νγ(ωt)

]
σ2dt

1

νγ(ωt)
Et

[
dνγ(ωt)

dt

]
= −

(
1− 1

γ
R(ωt)

)
dωt +

1

2

[
−
(

1− 1

γ
R′(ωt)

)
+

(
1− 1

γ
R(ωt)

)2
]
σ2dt.
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We now differentiate (A8) implicitly wrt ω to obtain

−η′′(ωt)
∫ γ

γ

1

γ
f(γ)

1
γ e
− 1
γ
η(ωt)dγ + (η′(ωt))

2

∫ γ

γ

1

γ2
f(γ)

1
γ e
− 1
γ
η(ωt)dγ = eωt ,

and so

−η′′(ωt)R(ωt)
−1 + (R(ωt))

2

∫ γ

γ

1

γ2
νγ(ωt)dγ = 1,

which implies that

η′′(ωt) = R(ωt)
3V (ωt),

where

V (ωt) =

∫ γ

γ

1

γ2
νγ(ωt)dγ −

(∫ γ

γ

1

γ
νγ(ωt)dγ

)2

,

is the variance of 1
γ weighted using the consumption-share density. Therefore,

R′(ωt) = −R(ωt)
3V (ωt). (A9)

Hence,

1

νγ(ωt)
Et

[
dνγ(ωt)

dt

]
= −

(
1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
+

1

2

[
−
(

1 +
1

γ
R(ωt)

3V (ωt)

)
+

(
1− 1

γ
R(ωt)

)2
]
σ2.

From the definition of aggregate prudence in (A6), it follows that

P (ωt) =

∫ γ

γ
(1 + γ)

(
R(ωt)

γ

)2

νγ,tdγ

= R(ωt)
2

∫ γ

γ

1 + γ

γ2
νγ,tdγ

= R(ωt)
2

(∫ γ

γ

1

γ
νγ,tdγ +

∫ γ

γ

1

γ2
νγ,tdγ

)

= R(ωt)
2

(
R(ωt)

−1 +

∫ γ

γ

1

γ2
νγ,tdγ

)

= R(ωt) +R(ωt)
2

∫ γ

γ

1

γ2
νγ,tdγ

= 1 +R(ωt) +R(ωt)
2

∫ γ

γ

1

γ2
νγ,tdγ − 1
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= 1 +R(ωt) +R(ωt)
2

[∫ γ

γ

1

γ2
νγ,tdγ −R(ωt)

−2

]

= 1 +R(ωt) +R(ωt)
2V (ωt)

= 1 +R(ωt)(1 +R(ωt)V (ωt)). (A10)

Therefore,

R(ωt)
3V (ωt) = P (ωt)− (1 +R(ωt)),

Hence,

1

νγ(ωt)
Et

[
dνγ(ωt)

dt

]
= −

(
1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
+

1

2

[(
R(ωt)

γ
− 1

)2

− (P (ωt)− 1−R(ωt))
R(ωt)

γ

]
σ2.

Applying Ito’s Lemma to R(ωt) gives

dR(ωt) = R′(ωt)dωt +
1

2
R′′(ωt)(dωt)

2

= Et[dR(ωt)] +R′(ωt)σdZ1,t

= Et[dR(ωt)]−R3(ωt)V (ωt)σdZ1,t,

where we have used (A9), and

Et[dR(ωt)] = −R3(ωt)V (ωt)Et[dωt] +
1

2
R′′(ωt)σ

2dt.

From (A9) it follows that

R′(ωt) = −R3(ωt)
[
M2(ωt)−R−2(ωt)

]
= R(ωt)−R3(ωt)M2(ωt),

where

Mn(ωt) =

∫ γ

γ

1

γn
νγ(ωt)dγ, n ∈ Z+.

Observe that

M′n(ωt) =

∫ γ

γ

1

γn
ν ′γ(ωt)dγ

=

∫ γ

γ

1

γn

(
R(ωt)

γ
− 1

)
νγ(ωt)dγ
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= R(ωt)Mn+1(ωt)−Mn(ωt).

Therefore

R′′(ωt) = R′(ωt)− 3R2(ωt)R
′(ωt)M2(ωt)−R3(ωt)M′2(ωt)

= R′(ωt)− 3R2(ωt)R
′(ωt)M2(ωt)−R3(ωt)[R(ωt)M3(ωt)−M2(ωt)]

= R′(ωt)− 3R2(ωt)R
′(ωt)M2(ωt)−R4(ωt)M3(ωt) +R3(ωt)M2(ωt)

= R(ωt)−R3(ωt)M2(ωt)− 3R2(ωt)R
′(ωt)M2(ωt)−R4(ωt)M3(ωt) +R3(ωt)M2(ωt)

= R(ωt)− 3R2(ωt)R
′(ωt)M2(ωt)−R4(ωt)M3(ωt)

= R(ωt)− 3R2(ωt)[R(ωt)−R3(ωt)M2(ωt)]M2(ωt)−R4(ωt)M3(ωt)

= R(ωt)− 3R3(ωt)M2(ωt) + 3R5(ωt)M2
2(ωt)−R4(ωt)M3(ωt)

Since the variance of risk tolerance is strictly positive when there is heterogeneity in γ, i.e.

V (ωt) > 0, it follows from (A7) that dR(ωt)− Et[dR(ωt)] < 0 if and only if dZ1,t > 0

Based on Proposition A2, we can think of households as being divided endogenously into two

subclasses: (i) those for whom the benefits of positive aggregate shocks are amplified – the ‘winners’,

and those for whom the benefits of positive aggregate shocks are muted – the ‘left-behind’. We can

then define the proportion of agents consisting of the ‘left-behind’ as follows:

Definition A2

L(ωt) =

∫ γ

R(ωt)
f̂(γ)dγ, (A11)

where f̂(γ) = f(γ)∫ γ
γ f(γ)dγ

.

The following proposition gives the dynamics of the ‘left-behind’ proportion of agents.

Proposition A3 The the proportion of agents consisting of the ‘left-behind’ changes as follows

dL(ωt) = f̂(γ)(−Et[dR(ωt)] +R3(ωt)V (ωt)σdZ1,t). (A12)

We can see that a positive shock to aggregate consumption leads to an unexpected increase in

the proportion of ‘left-behind’ agents. The size of this unexpected increase is larger when aggregate

risk aversion and the variance of risk tolerance are high.
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Proof of Proposition A3

Applying Ito’s Lemma to (A11) gives (A12).

Proof of Proposition 2

Markets are effectively dynamically complete. Therefore, each individual agent’s stochastic discount

factor (SDF) is the same at each time and for each state, and so

Λt = f(γ)e−δtuC(Cγ,t/Hγ,t)

= f(γ)e−δtC−γγ,tH
γ−1
γ,t

= f(γ)e−δtC−γγ,t e

(
γ− 1

ψ

)
xt , (A13)

which reduces to

Λt = f(γ)e−δtνγ(ωt)
−γY −γt e

(
γ− 1

ψ

)
xt .

Substituting in our expression for νγ(ωt) from , we obtain

Λt = f(γ)e
−δt− 1

ψ
yt−

(
γ− 1

ψ

)
ωtνγ(ωt)

−γ ,

and so

Λt = f(γ)e
−δt− 1

ψ
yt−

(
γ− 1

ψ

)
ωtf(γ)−1eγωt+η(ωt)

= e
−δt− 1

ψ
(yt−ωt)+η(ωt) (A14)

Applying Ito’s Lemma, we see that

dΛt
Λt

= −δ − 1

ψ
dyt −

(
R(ωt)−

1

ψ

)
dωt +

1

2
R(ωt)

2σ2dt− 1

2
R′(ωt)σ

2dt−R(ωt)σdZt.

Using (A9) we see that

dΛt
Λt

= −δ − 1

ψ
dyt −

(
R(ωt)−

1

ψ

)
dωt +

1

2
R(ωt)

2σ2dt+
1

2
R3(ωt)V (ωt)σ

2dt−R(ωt)σdZt

= −δ − 1

ψ
dyt −

(
R(ωt)−

1

ψ

)
dωt +

1

2
R(ωt) (P (ωt)− 1))σ2dt−R(ωt)σdZt,

where we have used (A10) in the previous step. Therefore, we obtain the following dynamics for

the SDF

dΛt
Λt

= −
(
δ +R(ωt)µY − λωt

(
R(ωt)−

1

ψ

)
− 1

2
R(ωt)P (ωt)σ

2dt

)
−R(ωt)σdZt.
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Using the fact that

dΛt
Λt

= −rtdt−ΘtdZt,

where rt is the date-t risk-free interest rate and Θt is the date-t price of risk, we see that

rt = δ +R(ωt)µY − λωt
(
R(ωt)−

1

ψ

)
− 1

2
R(ωt)P (ωt)σ

2, (A15)

Θt = R(ωt)σ.

We can rewrite (A15) as

rt = δ +
1

ψ
µy +

(
R(ωt)−

1

ψ

)
λ(ω − ωt)−

1

2
R(ωt)(P (ωt)− 1)σ2.

Proof of Proposition 3

We use the SDF given in (A14) to price a consumption strip, i.e.

PT−t(ωt)

Yt
= Et

[
ΛT
Λt

YT
Yt

]

= e−δ(T−t)Et

[
exp

[(
1− 1

ψ

)
(yT − yt) +

1

ψ
(ωT − ωt) + η(ωT )− η(ωt)

]]

Now observe that

e

(
1− 1

ψ

)
(yT−yt) = e

(
1− 1

ψ

)
[µy(T−t)+σ(ZT−Zt)]

= e

(
1− 1

ψ

)[{
µy+ 1

2

(
1− 1

ψ

)
σ2
}

(T−t)+σ(ZT−Zt)
]
e
− 1

2

(
1− 1

ψ

)2
σ2(T−t)+

(
1− 1

ψ

)
σ(ZT−Zt)

e

(
1− 1

ψ

)
(yT−yt) = e

(
1− 1

ψ

)
[µy(T−t)+σ(ZT−Zt)]

= e

(
1− 1

ψ

)[{
µy+ 1

2

(
1− 1

ψ

)
σ2
}

(T−t)
]MT

((
1− 1

ψ

)
σ
)

Mt

((
1− 1

ψ

)
σ
)

where

Mt(a) = e−
1
2
a2t+aZt ,

is an exponential martingale under the physical measure P. Using this exponential martingale, we

can define the new probability measure Pa. Hence,
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We start with the time-t price of a bond which pay out a unit of consumption at time T > t,

i.e.

BT−t(ωt) = Et

[
ΛT
Λt

]
.

Now we observe that

Λu
Λt

= e−δ(u−t)e
− 1
ψi

(yu−yt)e
1
ψ

(ωu−ωt)+η(ωu)−η(ωt)

= e−δ(u−t)e
− 1
ψi

[(µ− 1
2
σ2)(u−t)+σ(Zu−Zt)]e

1
ψ

(ωu−ωt)+η(ωu)−η(ωt)

= e−δ(u−t)e
− 1
ψi

[(µ− 1
2
σ2)(u−t)]

e
1
ψi

(ωu−ωt)+η(ωu)−η(ωt)e
− 1
ψ
σ(Zu−Zt)

= e−r̂(u−t)e
− 1

2

[(
1
ψ

)2
σ2

]
(u−t)

e
− 1
ψ
σ(Zu−Zt)e

1
ψ

(ωu−ωt)+η(ωu)−η(ωt),

where

r̂ = δ +
1

ψi
µ− 1

2

1

ψi

(
1 +

1

ψ

)
σ2.

We define the following exponential martingale under the physical measure P:

Mt(a) = e−
1
2
a2t+aZt .

Using the exponential martingale, we can define the new probability measure Pa. Therefore,

BT−t(ωt) = e−r̂(T−t)Et

[
M(− 1

ψi
σ)T

M(− 1
ψi
σ)t

e
1
ψi

(ωu−ωt)+η(ωu)−η(ωt)

]
,

where M(− 1
ψi
σ) is the martingale M(a) with a = − 1

ψi
σ. By changing the probability measure

from P to P−
1
ψi
σ
, we obtain

BT−t(ωt) = e−r̂(T−t)EP
− 1
ψi
σ

t

[
e

1
ψi

(ωu−ωt)+η(ωu)−η(ωt)
]
.

We define the real bond yield yT−t(ωt) via

BT−t(ωt) = e−yT−t(ωt)(T−t).

Therefore

yT−t(ωt) = − 1

T − t
lnBT−t(ωt).

Hence

lim
τ→∞

yτ (ωt) = r̂.
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.

From Girsanov’s Theorem it follows that under P
(
− 1
ψi

)
σ
, we have

dωt = λ

ω +

(
− 1
ψi

)
σ2

λ
− ωt

 dt+ σdZ

(
− 1
ψi

)
σ

t ,

where Z

(
− 1
ψi

)
σ

is a standard Brownian motion under P
(
− 1
ψi

)
σ
.

We want to evaluate

pD,T−t(ωt) = Et

[
ΛTDT

ΛtDt

]
.

We do so by a change of probability measure.

Observe that by applying Ito’s Lemma to ΛtDt and integrating the resulting stochastic differ-

ential equation, we can show that

ΛTDT

ΛtDt
= e−

∫ T
t k(ωu)duMD,T

MD,t
,

where

k(ωt) = r(ωt) +R(ωt)σ(ρσA + aσ)− µD,

and MD is an exponential martingale under P, defined by

dMD,t

MD,t
= [a−R(ωt))]σdZt + σAdZA,t.

The new probability measure PD is defined by MD. Therefore,

pD,T−t(ωt) = EPD
t

[
e−
∫ T
t k(ωu)du

]
. (A16)

We now derive the short-term dividend yield yD,0(ωt) = limτ→∞ yD,τ (ωt). It follows from (A16)

that

pD,∆t(ωt) = e−k(ωt)∆t + o(∆t).

Therefore,

yD,∆t(ωt) =
k(ωt)∆t+ o(∆t)

∆t
.
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Letting ∆t→ 0, we obtain

yD,0(ωt) = k(ωt).

Using the Feynman-Kac Theorem, it follows from (A16) that

1

2
σ2∂2

ωpD,τ (ω) + EPD
t

[
dωt
dt

]
∂ωpD,τ (ω)− k(ω)pD,τ (ω)− ∂τpD,τ (ω) = 0, (A17)

where

pD,0(ω) = 1.

To determine EPD
t

[
dωt
dt

]
, we apply Girsanov’s Theorem:

EPD
t [dωt] = Et [dωt] + Et

[
dωt

dMD,t

MD,t

]
.

Therefore

EPD
t

[
dωt
dt

]
= λ

(
µy +

{
[a−R(ω))]σ2 + ρσAσ

}
λ

− ω

)
.

Therefore (A17) reduces to

1

2
σ2∂2

ωpD,τ (ω) + λ(ωD − ω)∂ωpD,τ (ω)− k(ω)pD,τ (ω)− ∂τpD,τ (ω) = 0,

where

ωD = ω +
[a−R(ω))]σ2 + ρσAσ

λ

is the long-run mean of ω under PD.

We also want to evalulate the price-dividend ratio for the aggregate stock market. This is just

the date-t price-dividend ratio on a claim which pays out the dividend flow Du for u ≥ t, i.e.

pD(ωt) = Et

[∫ ∞
t

ΛuDu

ΛtDt
du

]
.

Changing the probability measure from P to PD gives

pD(ωt) = EPD
t

[∫ ∞
t

e−
∫ u
t k(ωs)dsdu

]
.

Using the Feynman-Kac Theorem, we obtain

1

2
σ2p′′D(ωt) + λ

(
µy +

{
[a−R(ωt))]σ

2 + ρσAσ
}

λ
− ωt

)
p′D(ωt)− k(ωt)pD(ωt) + 1 = 0.
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To find the long-term dividend yield, we perform a different change of measure. We observe

that

ΛuDu

ΛtDt

= e−δ(u−t)e
− 1
ψi

(yu−yt)e
1
ψi

(ωu−ωt)+η(ωu)−η(ωt)e(µD−
1
2
σ2
D)(u−t)+σD(ZD,u−ZD,t)

= e−δ(u−t)e
− 1
ψi

[(µ− 1
2
σ2)(u−t)+σ(Zu−Zt)]e(µD−

1
2
σ2
D)(u−t)+σD(ZD,u−ZD,t)e

1
ψi

(ωu−ωt)+η(ωu)−η(ωt)

= e−δ(u−t)e
− 1
ψi

[(µ− 1
2
σ2)(u−t)]

e(µD−
1
2
σ2
D)(u−t)e

1
ψi

(ωu−ωt)+η(ωu)−η(ωt)e
− 1
ψi
σ(Zu−Zt)+σD(ZD,u−ZD,t)

= e−k̂(u−t)e
− 1

2

[(
1
ψi

)2
σ2−2 1

ψi
ρDσσD+σ2

D

]
(u−t)

e
− 1
ψi
σ(Zu−Zt)+σD(ZD,u−ZD,t)e

1
ψi

(ωu−ωt)+η(ωu)−η(ωt),

where

k̂ = δ +
1

ψi
µ− 1

2

1

ψi

(
1 +

1

ψi

)
σ2 +

1

ψi
ρDσσD − µD.

The exponential martingale we use to define the probability measure L is

dML,t

ML,t
= − 1

ψi
σdZt + σDdZD,t.

Therefore, we can write

ΛuDu

ΛtDt
= e−k̂(u−t)ML,u

ML,t
.

Using the new probability measure L, we obtain

pD,τ (ωt) = e−k̂τEL
t

[
e

1
ψi

(ωt+τ−ωt)+η(ωt+τ )−η(ωt)
]
.

From the definition yD,τ (ωt) = − 1
τ ln pD,τ (ωt), it follows that

yD,τ (ωt) = k̂ − 1

τ
lnEL

t

[
e

1
ψi

(ωt+τ−ωt)+η(ωt+τ )−η(ωt)
]

The long-term dividend yield is thus given by

lim
τ→∞

yD,τ (ωt) = k̂

= δ +
1

ψi
µ− 1

2

1

ψi

(
1 +

1

ψi

)
σ2 +

1

ψi
σ(ρσA + aσ)− µD.

We also observe that from Girsanov’s Theorem, we obtain

EL
t

[
dωt
dt

]
= ωL − ωt,
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where

ωL =
µy − 1

ψi
σ2 + ρσAσ + aσ2

λ
.

Proposition A4 Aggregate dividend dynamics are given by

dDt

Dt
= µDdt+ σDdZD,t,

where

µD = µA + a

[
µ+

1

2
(a− 1)σ2 + ρσσA

]
σD =

√
σ2
A + 2aρσAσ + a2σ2

dZD,t =
σA
σD

dZA,t +
aσ

σD
dZt

Et[dZD,tdZt] = ρ
σA
σD

+
aσ

σD
.

Proof of Proposition A4

Aggregate dividends are defined by (7). Using Ito’s Lemma gives

dDt

Dt
=
dAt
At

+
d(Y a

t )

(Y a
t )

+
dAt
At

d(Y a
t )

(Y a
t )

= µAdt+ σAdZA,t + a

[
µ+

1

2
(a− 1)σ2

]
dt+ aσdZt + ρaσσAdt

=

{
µA + a

[
µ+

1

2
(a− 1)σ2

]
+ ρaσσA

}
dt+ σAdZA,t + aσdZt

=

{
µA + a

[
µ+

1

2
(a− 1)σ2 + ρσσA

]}
dt+ σAdZA,t + aσdZt

= µDdt+ σAdZA,t + aσdZt

= µDdt+ σDdZD,t

where µD, σD, and dZD,t are given in the statement of the proposition.
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Proof of Proposition 4

From

R(ωt) = −η′(ωt) =
∂

∂ω
m−1(ωt),

it follows that ∫ ω

ω0

R(x)dx = m−1(ω),

and so

m

(∫ ω

ω0

R(x)dx

)
= ω

We have

R(ω) = exp(b0 − b1ω),

where b0 > 0 and b1 > 0. Therefore,∫ ω

ω0

R(x)dx = A(1− e−b1(ω−ω0)),

where

A =
eb0−b1ω0

b1
> 0.

Hence,

m
(
A(1− e−b1(ω−ω0))

)
= ω.

Now define

z = A(1− e−b1(ω−ω0)),

which implies

ω = ω0 + ln
(

1− z

A

)− 1
b1 .

Hence,

m(z) = ω0 + ln
(

1− z

A

)− 1
b1 .
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Therefore, we obtain the moment generating function

M(z) = exp(m(z)) = eω0

(
1− z

A

)− 1
b1 .

Recall that

M(x) =

∫ ∞
0

j(u)exudu,

which implies that ∫ ∞
0

j(u)e−xudu = eω0

(
1 +

z

A

)− 1
b1

j(u) = u−2
[
f(u−1)

]u
, u ∈ [1/γ, ψ].

Observe that j(u) is not a probability density function, because it does not integrate to one. It

follows that

M(−η(ωt)) = eωt ,

where

M(x) =

∫ ∞
0

j(u)exudu,

which is a Laplace transform. Inverting the Laplace transform gives

j(u) = ω0e
−Au (Au)

1
b1

uΓ
[

1
b1

] .

Hence,

f(u−1) =

u2ω0e
−Au (Au)

1
b1

uΓ
[

1
b1

]
 1

u

Therefore f(x) is given by

f(x) = x
− (b1+1)x

b1 A
x
b1 exω0−AΓ

(
1

b1

)−x
,

where

A =
eb0−b1ω0

b1
> 0.
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Equation (12) follows.

Substituting (12) and (11) into (6) and simplifying gives (13).

As a check, observe that ∫ ∞
0

γ−1νγ(ωt)dγ =
1

R(ωt)
.

Proof of Proposition 5

From (A13), we see that

Cγ,t =

(
eδte

−
(
γ− 1

ψ

)
xtΛt

)− 1
γ

.

Therefore

ΛtCγ,t =

(
eδte

−
(
γ− 1

ψ

)
xt

)− 1
γ

Λ
1− 1

γ

t .

Taking logs, we obtain

ln(ΛtCγ,t) = − δ
γ
t+

1

γ

(
γ − 1

ψ

)
xt +

(
1− 1

γ

)
ln Λt.

We now apply Ito’s Lemma and use the result (9) to obtain

d ln(ΛtCγ,t) = −
{

1

γ

[
δ +

(
γ − 1

ψ

)
ωt

]
+

(
1− 1

γ

)(
rt +

1

2
R2
tσ

2

)}
−
(

1− 1

γ

)
RtσdZt.

Therefore,

d(ΛtCγ,t)

ΛtCγ,t
= d ln(ΛtCγ,t) +

1

2
(d ln(ΛtCγ,t))

2

= −
{

1

γ

[
δ +

(
γ − 1

ψ

)
ωt

]
+

(
1− 1

γ

)(
rt +

1

2γ
R2
tσ

2

)}
−
(

1− 1

γ

)
RtσdZt.

We now define the following exponential martingale under P:

dMγ,t

Mγ,t
= −

(
1− 1

γ

)
R(ωt)σdZt.

Therefore, we can write

d(ΛtCγ,t)

ΛtCγ,t
= −lγ,tdt+

dMγ,t

Mγ,t
,
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where

lγ,t =
1

γ

[
δ +

(
γ − 1

ψ

)
ωt

]
+

(
1− 1

γ

)(
rt +

1

2γ
R2
tσ

2

)
.

From

hγ(ωt) = Et

[∫ ∞
t

ΛuCγ,t
ΛtCγ,t

du

]
,

we obtain

hγ(ωt) = EPγ
t

[
e−
∫ u
t l(ωu)dsdu

]
,

where Pγ is the probability measure defined by the exponential martingale Pγ .

Under the measure Pγ , we have

dωt = λ

µy +
(

1− 1
γ

)
R(ωt)σ

2

λ
− ωt

 dt+ σdZt,

It follows from the Feynman-Kac Theorem that

0 =
1

2
σ2h′′γ(ω) + λ

µy +
(

1− 1
γ

)
R(ωt)σ

2

λ
− ω

h′γ(ω)− lγ(ω)hγ(ω) + 1.

Using hγ(ω), we can obtain

Wγ,t = Wγ,t(yt, ωt) = eytνγ(ωt)hγ(ωt).

Note that

Cγ,t
Wγ,t

=
1

hγ(ωt)
.

An individual agent faces the following stochastic optimal control problem.

Jγ,t = sup
(Cγ,t)t∈[0,∞),(φγ,t)t∈[0,∞)

Et

∫ ∞
t

e−δ(u−t)
C1−γ
γ,u

1− γ
X
γ− 1

ψ
u du,

subject to

dWγ,t = Wγ,t[rtdt+ φγ,t(dRt − rtdt)]− Cγ,tdt,
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where dRt is the return on the claim to aggregate consumption over the interval [t, t+ dt) and φγ,t

is the fraction of wealth Wγ,t invested in this claim at time t. We know that

dxt = ωtdt,

where

dωt = λ(ω − ωt)dt+ σdZt,

so we can see that the exogenous state variables for this problem are x and ω.

The Hamilton-Jacobi-Bellman equation for an individual agent’s problem is

0 = sup
C,φ

C1−γ

1− γ
X
γ− 1

ψ − δJ + JWEt[dW ] + JωEt[dω] + Jxdx

+
1

2
JWWEt[(dW )2] + JWωEt[dWdω] +

1

2
JωωEt[(dω)2],

where we omit the index γ for ease of notation. We use the Ansatz

J = V (W,ω)X
γ− 1

ψ

to reduce the Hamilton-Jacobi-Bellman equation to

0 = sup
C,φ

C1−γ

1− γ
+ λω

(
γ − 1

ψ

)
V − δV + VWEt[dW ] + VωEt[dω]+

1

2
VWWEt[(dW )2] + VWωEt[dWdω] +

1

2
VωωEt[(dω)2].

We now use the standard Ansatz

V = g(ω)γ
W 1−γ
γ

1− γ

to further reduce the Hamilton-Jacobi-Bellman equation to

0 = sup
C,φ

C1−γ

1− γ
+ (1− γ)V

[
r + φ

(
µR + γσσR

gω
g

)
− C

W

]
+ λ(ω − ω)γ

gω
g
V−

1

2
σ2
Rφ

2γ(1− γ)V +
1

2
σ2γV

[
gωω
g

+ (γ − 1)

(
gω
g

)2
]
,

where

µR = Et

[
dR

dt

]
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σR = Et

[
(dR)2

dt

]

The FOC for consumption is

C−γ = (1− γ)
V

W
,

which implies that

Wγ,t

Cγ,t
= gγ(ωt),

where we have reintroduced the γ index for clarity. The above equation implies that

gγ(ωt) = hγ(ω).

The optimal portfolio choice problem reduces to

sup
φ
φ

(
µR + γσσR

gω
g

)
− 1

2
σ2
Rφ

2γ,

which has the unique solution

φγ(ω) =
1

γ

µR(ω) + γσσR(ω)
g′γ(ω)

gγ(ω) − r(ω)

σR(ω)2
.

Therefore

φγ(ω) =
1

γ

µR(ω) + γσσR(ω)
h′γ(ω)

hγ(ω) − r(ω)

σR(ω)2
.

From

PC,t = pC,tYt,

and using Ito’s Lemma, we obtain

dRt =
dYt
Yt

+
p′C(ωt)

pC(ω)
dωt +

1

2

p′′C(ωt)

pC(ω)
σ2dt+

1

pC(ω)
dt.

Therefore,

σR(ω) =

(
1 +

p′C(ω)

pC(ω)

)
σ.
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From the basic asset pricing equation

Et [dRt − rtdt] = −Et
[
dΛt
Λt

dRt

]

=

(
1 +

p′C(ω)

pC(ω)

)
R(ω)σ2dt,

and so

µR(ω)− r(ω) =

(
1 +

p′C(ω)

pC(ω)

)
R(ω)σ2.

Therefore, we obtain (15).

The amount of wealth held in risky assets by agents with relative risk aversion γ is given by

Wγ,tφγ,t. Their amount of wealth held in the risk-free bond is Wγ,t(1 − φγ,t). The fraction of

aggregate wealth held by agents with relative risk aversion γ in risky assets is φγ,tζt.

Define γ∗(ω) via

φγ∗(ω)(ω) = 1.

Households with γ < γ∗(ω) have levered positions in the risky asset, i.e. φγ,t > 1 and are borrowers

in the bond market. Households with γ > γ∗(ω) have φγ,t < 1 and are lenders in the bond market.

Open interest in the bond market is given by

−
∫ γ∗(ω)

0
Wγ,t(1− φγ,t)dγ,

which is equal to
∫∞
γ∗(ω)Wγ,t(1− φγ,t)dγ by virtue of bond market clearing, because the bond is in

zero net-supply. Open-interest in the bond market relative to aggregate wealth is given by

O(ωt) = −
∫ γ∗(ωt)

0
ζγ,t(1− φγ,t)dγ.

Define γ̂(ω) via

φγ̂(ω)(ω) = 0.

Households with γ < γ̂(ω) have short positions in the risky asset. The total value of these short

positions is ∫ ∞
γ̂(ω)

Wγ,tφγ,tdγ.
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The value of short positions in the risky asset relative to aggregate wealth is given by

S(ωt) =

∫ ∞
γ̂(ωt)

ζγ,tφγ,tdγ.

Observe that

ln ζγ(ωt) = ln νγ(ωt) + lnhγ(ωt)− ln pC(ωt),

and so

d ln ζγ(ωt) = d ln νγ(ωt) + d lnhγ(ωt)− d ln pC(ωt).

Hence,

d ln ζγ(ωt) = d ln νγ(ωt) +
dhγ(ωt)

hγ(ωt)
− 1

2

(
dhγ(ωt)

hγ(ωt)

)2

− dpC(ωt)

pC(ωt)
+

1

2

(
dpC(ωt)

p′C(ωt)

)2

.

Observe that

dpC(ωt) = p′C(ωt)dωt +
1

2
p′′C(ωt)(dωt)

2

= p′C(ωt)dωt +
1

2
p′′Cσ

2dt

= p′C(ωt)dωt − λ
(
µy + (1−R(ω))σ2

λ
− ωt

)
p′C(ωt)dt+ k(ω)pC(ω)dt− dt

= p′C(ωt)[λ
(
λ−1µy − ωt

)
dt+ σdZt]− λ

(
µy + (1−R(ω))σ2

λ
− ωt

)
p′C(ωt)dt+ k(ω)pC(ω)dt− dt

= [(R(ω)− 1)σ2p′C(ωt) + k(ω)pC(ω)− 1]dt+ p′C(ωt)σdZt

where

k(ω) = r(ω) +R(ω)σ2 − µY .

Similarly, we have

dhγ(ω) =

[(
1

γ
− 1

)
R(ω)σ2h′γ(ωt) + lγ(ω)hγ(ω)− 1

]
dt+ h′γ(ωt)σdZt,

where

k(ω) = r(ω) +R(ω)σ2 − µY .

Also,

d ln νγ(ωt) = −
(

1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
− 1

2
(P (ωt)− 1−R(ωt))

R(ωt)

γ
σ2dt−

(
1− 1

γ
R(ωt)

)
σdZt
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Therefore,

d ln ζγ(ωt) = −
(

1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
− 1

2
(P (ωt)− 1−R(ωt))

R(ωt)

γ
σ2dt−

(
1− 1

γ
R(ωt)

)
σdZt

+

[(
1

γ
− 1

)
R(ω)σ2

h′γ(ωt)

hγ(ωt)
+ lγ(ω)− 1

hγ(ωt)

]
dt+

h′γ(ωt)

hγ(ωt)
σdZt −

1

2
σ2

(
h′γ(ωt)

hγ(ωt)

)2

dt

−
[
(R(ω)− 1)σ2 p

′
C(ωt)

pC(ω)
+ k(ω)− 1

pC(ω)

]
dt−

p′C(ωt)

pC(ω)
σdZt +

1

2
σ2

(
p′C(ωt)

pC(ω)

)2

dt

= −
(

1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
− 1

2
(P (ωt)− 1−R(ωt))

R(ωt)

γ
σ2dt

+

[(
1

γ
− 1

)
R(ω)σ2

h′γ(ωt)

hγ(ωt)
+ lγ(ω)− 1

hγ(ωt)

]
dt− 1

2
σ2

(
h′γ(ωt)

hγ(ωt)

)2

dt

−
[
(R(ω)− 1)σ2 p

′
C(ωt)

pC(ω)
+ k(ω)− 1

pC(ω)

]
dt+

1

2
σ2

(
p′C(ωt)

pC(ω)

)2

dt

−
(

1− 1

γ
R(ωt)

)
σdZt +

h′γ(ωt)

hγ(ωt)
σdZt −

p′C(ωt)

pC(ω)
σdZt

= −
(

1− 1

γ
R(ωt)

)
Et

[
dωt
dt

]
− 1

2
(P (ωt)− 1−R(ωt))

R(ωt)

γ
σ2dt

+

[(
1

γ
− 1

)
R(ω)σ2

h′γ(ωt)

hγ(ωt)
+ lγ(ω)− 1

hγ(ωt)

]
dt− 1

2
σ2

(
h′γ(ωt)

hγ(ωt)

)2

dt

−
[
(R(ω)− 1)σ2 p

′
C(ωt)

pC(ω)
+ k(ω)− 1

pC(ω)

]
dt+

1

2
σ2

(
p′C(ωt)

pC(ω)

)2

dt

+ (φγ(ωt)− 1)σR(ωt)dZt
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