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Bart Zhou Yueshen, Sean Foley, Tālis Putnin, š, Marius Zoican, and seminar participants at the Microstruc-
ture Exchange (Asia-pacific edition), Hong Kong Baptist University, Luohan Academy, Oxford University
DeFi Working Group, for helpful comments.



Abstract

Price Discovery on Decentralized Exchanges

In contrast to centralized exchanges (CEXs) which match orders continuously following a price-
time priority rule, decentralized exchanges (DEXs) process orders in discrete time and require
traders to bid a blockchain priority fee to determine the execution priority of their orders. We em-
ploy a structural vector-autoregressive (structural VAR) model to provide evidence that blockchain
fees attached to DEX trades reveal their private information, contributing to price discovery. We
show that informed traders bid higher fees not only to avoid execution risk resulting from blockchain
congestion but also to compete with each other. Using a unique dataset of Ethereum mempool
orders, we further demonstrate that informed traders mostly compete on DEXs through a jump
bidding strategy.



1 Introduction

Price discovery, the process in which market participants reach a consensus about the fundamental

value of an asset, is a key function of financial markets. How such a process realizes has been a

central topic in market microstructure, and it largely depends on various aspects of asset trading

including market structure (e.g., dark pools, centralized market versus OTC market as in Zhu

(2014); Hagströmer and Menkveld (2019)), transparency rule (e.g., pre-trade transparency versus

post-trade transparency, as in Bloomfield and O’Hara (1999); Boehmer, Saar, and Yu (2005)), and

trading constraints (e.g., short sell ban as in Boehmer and Wu (2013)).

Decentralized exchanges (DEXs) are trading venues built on public blockchains. They enable

trading of digital assets without the need for centralized intermediaries and have gained a siz-

able trading volume and market share since their inception.1 In contrast to centralized exchanges

(CEXs), which typically execute orders continuously based on a price-time priority rule, DEXs

execute orders in discrete time and traders bid a blockchain fee to determine the execution prior-

ity of their orders.2 Given the unique trading mechanism, price discovery on DEXs might have

distinct features. For example, does blockchain fee, a new trade characteristic, convey any infor-

mation? How does blockchain fee bidding affect informed trading, and what does it imply for price

discovery? The objective of our paper is to provide answers to the above questions.

To do so, we construct a data set consisting of trades from Uniswap (the largest DEX) and

Binance (the largest CEX) and mempool orders data on the Ethereum blockchain. We focus on the

six most traded token pairs during our sample period between November 18, 2020, and February

10, 2021. With the trade data, we use a structural vector-autoregressive (structural VAR) model

to investigate the information content of DEX trade flows with different levels of fee (Hasbrouck,

1991). The tick-by-tick mempool data tracks all orders submitted to the Ethereum network, as

1For the spot trading of cryptocurrencies, the aggregated trading volume on DEXs hovers between 50 billion USD
and 200 billion USD, which correspond to a market share between 10% and 20%. See https://www.theblock.co/
data/decentralized-finance/dex-non-custodial.

2For example, for DEXs on the Ethereum blockchain, orders are executed by blockchain validators in block time
or every 12 seconds, and their execution priority is determined by what’s called gas price bid by traders.
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well as the blockchain fee (gas price) bids by traders. Thus, it allows us to investigate the bidding

strategy of competing traders on DEXs.

Our main findings are summarized below. We find that DEX trades with high fees reveal private

information, and more so compared to DEX trades with low fees: for token pairs involving a non-

stablecoin (e.g., Ethereum and Bitcoin), a shock to a high-fee DEX trade flow leads to a much

larger permanent impact on market price than that to a low-fee trade flow. For example, a positive

shock of one standard deviation to the high-fee DEX trade flow results in a permanent increase of

about 8.16 basis points in market price. In contrast, a shock of the same size to low-fee DEX trade

flow permanently moves the market price by only about 0.83 basis points.

High-fee DEX trade flow is more informative, indicating that informed traders bid high fees to

execute their orders on DEXs. What can be the economic channels? One possible channel is that

they bid high fees to avoid execution risk due to blockchain congestion. Such a motive naturally

arises as informed traders on DEXs have to compete with other blockchain users for limited block

space. As the blockchain becomes congested and the marginal blockchain fee increases, informed

traders will increase their bids in order to execute their orders in time. However, we show that it is

not the only channel. We find that informed traders can bid excessively high fees for their trades,

which is less likely to be driven by them merely avoiding execution risk. Rather, it is more likely

to result from them competing with each other.

How do informed traders compete on DEXs? Our analysis of tick-by-tick mempool order

data shows that even for DEX trades with excessively high fees, only a small fraction of them are

likely to result from priority gas auctions (PGAs) where traders competitively bid up fees (Daian

et al., 2020). Instead, they start by bidding a rather high fee, discouraging competition from other

traders. Such a pattern fits the jump bidding strategy documented in the auction theory (Avery,

1998), which can be rationalized by a high bidding cost on DEXs and the winner’s curse problem.

Our paper relates to several streams of literature. Past studies in market microstructure have

linked the private information contained in trades to their public characteristics3, e.g., block trades

3Brogaard, Hendershott, and Riordan (2014) use proprietary data to investigate the information content of private
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versus non-block trades (Easley and O’Hara, 1987), odd-lot trades versus round-lot trades (O’Hara,

Yao, and Ye, 2014), trades executed on ECNs versus the NASDAQ exchange (Barclay, Hender-

shott, and McCormick, 2003).4 We contribute to the literature by studying the information content

of blockchain fees, a featuring characteristic of trades executed on DEXs besides price and trade

size. As informed traders on DEXs have to bid fees to get their orders executed, blockchain fees

can potentially serve as a new public signal revealing the private information contained in DEX

trades.

Our paper also contributes to the nascent yet rapidly growing literature on decentralized ex-

changes, and the role of blockchain fees in the provision of trading and liquidity incentives. Park

(2021) focuses on the unintended consequence of public blockchain order processing, which ex-

poses all pending DEX transactions to the risk of a “sandwich attack”. He argues that, in the-

ory, liquidity demanders are able to prevent frontrunning by choosing a very high blockchain fee.

Capponi and Jia (2021) investigate how the choice of DEX pricing rules affects welfare and liq-

uidity provision incentives. They show that arbitrageurs can always outbid liquidity providers,

in blockchain fee auctions, to exploit the price discrepancy between CEXs and DEXs, which in

turn reduces incentives for liquidity provision. Barbon and Ranaldo (2021) compare the price ef-

ficiency of CEX and DEX. They argue that the low price efficiency of Uniswap can be partially

attributed to high fees which are fixed costs for traders. Parlour (2021) contrast DEXs running an

automated market maker (AMM) with CEXs running a central limit order book (CLOB) and focus

on the different trade-offs faced by liquidity providers. Aoyagi and Ito (2021) instead model the

coexistence of an AMM-based DEX and a CLOB-based CEX and study the resulting equilibrium

in liquidity provision. The main contribution of our work relative to this literature is highlight-

ing how blockchain fees convey both private and public information. On DEXs where the market

price can only be revised through trading, we show that trades with high fees make DEX prices

trade characteristics e.g., HFT trades versus non-HFT trades.
4A related literature is on the trading strategy of the informed trader(s) in various settings, e.g., a monopolistic

informed trader (Kyle, 1985) or competition among multiple privately informed traders (Holden and Subrahmanyam,
1992; Foster and Viswanathan, 1996; Back, Cao, and Willard, 2000) or impatience of informed traders due to uncertain
timing of the public announcement of the private information (Caldentey and Stacchetti, 2010) or short information
horizon (Kaniel and Liu, 2006).
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informationally efficient.

The paper proceeds as follows. In Section 2, we introduce institutional details of DEXs and

their unique characteristics. In Section 3, we describe our dataset. We present the empirical

methodology in Section 4, and discuss the results in Section 5. We conclude in Section 6.

2 Institutional background

We introduce institutional features of DEXs in Section 2.1, and characteristics of trade execution on

DEXs in Section 2.2. We focus our discussion primarily on the blockchain fee-setting mechanism.

2.1 DEXs

DEXs are peer-to-peer marketplaces, which facilitate trading through automated smart contracts.

They operate on blockchain and thus execute trades without an intermediary. As of July 2022,

about 15% of crypto spot trading occurred on DEXs. Uniswap is currently the largest DEX by

trading volume and accounts for more than half of the total DEX trading volume. The remaining

85% of crypto spot trading is executed on CEXs. The largest one by daily trading volume is

Binance, which accounts for more than 75% of the CEX market share. Different from CEXs which

utilize limit order books, most DEXs are in the form of Automated Market Makers (AMM). In

AMMs, liquidity providers deposit token pairs to the pool, and the pricing schedule is determined

by an exogenously specified bonding curve, which is pre-coded in the smart contract. We refer to

Capponi and Jia (2021) for additional details about DEXs.

2.2 Trade execution on DEXs and blockchain fees

DEXs rely on blockchain networks (e.g., Ethereum) to receive, process, and execute orders. To

execute a trade on a DEX, a trader has to first broadcast the transaction details in the network and

bid a fee for her order. The transaction details reveal trade information even before the trade is
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executed, such as the address of the DEX and the intended trade size and price. Once a transaction

is received by a validator, it will be pending in its mempool. If that validator is chosen to append

the next block to the chain, then she will execute transactions in her mempool in decreasing order

of fees. Since blocks are produced at discrete times, DEX orders are also processed discretely in

batches. Because each block has a maximum capacity, transactions with too low fees will not be

included in the block, or they need to wait for a long time before being executed.

Every transaction broadcast by a trader is associated with a number called “nonce”. Each nonce

can only be used once and in increasing order. In other words, the first order of a trader is assigned

nonce “0”, her second order has a nonce “1”, and her N th order has a nonce “N”. If a trader wants

to modify her pending order or increase the fee bid, she has to broadcast a new transaction with

the same nonce as the pending one and increase the bid fee. A validator who receives the new

transaction will not execute the old one because she prioritizes transactions with higher fees. For

the same reason, a transaction with the same nonce as a previously submitted transaction but with

a lower fee will not be executed, because the validator would assign a lower priority to it.

In the Ethereum blockchain, the blockchain fees are referred to as “gas fees”. The execution of

each transaction requires a fixed amount of computational resources, measured by the “gas used”.

More complicated transactions need more computational work, so they require a higher amount

of gas than simple transactions such as payment transfers. For example, a standard ETH transfer

requires a gas amount of 21,000 units. Upon bidding blockchain fees, Ethereum users specify the

“gas price”, i.e., how much they are willing to pay per unit of gas. The total gas fee paid by users

is equal to the gas used multiplied by the gas price bid. Note that Ethereum validators sort and

execute transactions in mempools in decreasing order of gas price.

3 Data

We describe the dataset used for our empirical analysis. We introduce the executed trade data in

Section 3.1, and the tick-by-tick mempool order data in Section 3.2.
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3.1 Executed trade data

Our dataset covers trades executed on Binance, the largest CEX, and Uniswap, the largest DEX, for

six actively traded token pairs during our sample period, November 18, 2020, through February 10,

2021. Note that our sample period starts after Uniswap’s staking reward program was terminated

so that we avoid including a structural break in token liquidity as the termination resulted in large

token outflows and smaller pool sizes. In addition, our sample period ends before the first block

including Flashbots trades was mined. Flashbots allow traders to directly send their orders to

miners through private channels to avoid exposing them in the mempool. Our six token pairs

are USDC-USDT, DAI-USDT, ETH-USDT, WBTC-ETH, LINK-ETH, and AAVE-ETH, and they

fall into two types: “Stable” and “NonStable”. “Stable” pairs include two stablecoins pegged to

one US Dollar (USDC-USDT, ETH-USDT). “NonStable” pairs include at least one non-stable

token, i.e., which is not pegged to any fiat currency (ETH-USDT, WBTC-ETH, LINK-ETH, and

AAVE-ETH). Binance trades are publicly available and collected from the Binance website5, while

Uniswap trades are collected through a proprietary node. Below. we provide a detailed description

for each of the two datasets.

Uniswap trades Each Uniswap trade contains the hash, the address of the trader, the timestamp

of the block in which the trade is included (to the precision of a second), the number of the block

in which the trade is included, the execution position of the trade in that block, gas price, gas used,

trade direction indicating whether it is a buy trade or sell trade in terms of the base token6, the

amount of tokens in the liquidity pool before and after the trades, and the amount of tokens that

the trader deposits in and takes out from the liquidity pool.

Using the amount of tokens in the liquidity pool before a trade, we can compute the prevailing

“midquote” just before the trade. For example, if there is an amount y of tokens Y and an amount

5We refer to https://data.binance.vision/?prefix=data/spot/monthly/ for details.
6We follow the convention used for currency pairs in the foreign exchange market and label the first token appear-

ing in a pair as the base token and the second token as the quote token. For example, for the token pair ETH-USDT,
ETH is the base token and USDT is the quote token.
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x of tokens X before the trade, the prevailing midquote is simply the ratio of the amount of two

tokens in the pool, x/y. Note that on AMMs like Uniswap, there are no quotes. Thus, we define

“midquote” as the hypothetical price for an infinitesimal trade. In addition, based on the amount

of tokens that the trader deposits in and takes out from the liquidity pool, we can compute the

transaction price of the trade. For example, if ∆y amount of token Y is swapped for x amount of

token X, then the transaction price is simply the ratio of the amount of two tokens swapped, i.e.,

∆x/∆y. Last, we use the amount of the base token swapped as the transaction size of the trade, that

is, |∆y|.

Binance trades Each Binance trade record includes a unique identifier for the trade, the times-

tamp (to the precision of millisecond), the transaction price, the transaction size in terms of the

base token, and an indicator for whether the buyer uses a limit order or a market order, which tells

us the direction of a trade: if the buyer uses a market order, then it is classified as a buy trade;

otherwise, it is a sell trade.

In addition to executed trades, we obtain event updates of Binance’s limit order book (to the

precision of second). With order book event updates, we are able to reconstruct the order book

states and calculate the best bid, best ask, and the midquote on Binance, which we use to calculate

token pair returns.

3.2 Mempool order data

In addition to executed trade data, we obtain tick-by-tick Ethereum mempool order data from

amberdata7. The dataset includes every new order submission received in the mempool of nodes

maintained by amberdata, which either ends up with being executed or left unexecuted. Each order

comes with the following information: the hash, the timestamp when the order is received by the

node (to the precision of millisecond), the address of the trader, nonce, gas price, and gas limit (i.e.

the maximum gas allowed to be used).

7amberdata is a US data company specializing in market data in decentralized finance.
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Our mempool data covers the same sample period of November 18, 2020, through February

10, 2021. With the mempool data, we can track the complete history of order revisions, if they

occur, before the final order is executed and recorded as a trade. Hence, we are able to see whether

the trader increases the gas price attached to her order to get it executed.

3.3 Summary statistics of executed trades

To provide an overview of trading in our sample token pairs, in Table 1, we report summary statis-

tics of their daily trading volume and daily number of trades on Uniswap and Binance respectively.

Several notable observations are in order. First, trading in all six token pairs is fairly active. For

instance, the average daily number of trades (daily trading volume) on Uniswap is 997 (≈ 3.4 mil-

lion USDT), 8,560 (73,489 ETH ≈ 66 million USD) and 1,371 (31,644 ETH ≈ 28 million USD)

for USDC-USDT, ETH-USDT and WBTC-ETH respectively.

Second, trading activity on Uniswap and Binance differs significantly across token pairs. For

the two Stable token pairs, USDC-USDT and DAI-USDT, trading is much more active on Binance

than Uniswap. For example, the average daily trading volume on Binance is about 96 million

USDT for USDC-USDT, more than an order of magnitude larger than that on Uniswap. It is

because trading is cheaper on Binance than Uniswap, as the latter imposes a larger price impact

due to the convexity of the bonding curve, and requires an additional blockchain fee. Importantly,

the transaction cost is a relatively large factor when trading Stable token pairs as transactions in

them are not information but liquidity driven. In contrast, for NonStable token pairs, trading is in

general more active on Uniswap than Binance. Take WBTC-ETH as an example. Its average daily

trading volume is about 31644 ETH on Uniswap, much larger than 2023 ETH on Binance.

In Table 2, we further report summary statistics of the execution price, gas price and trade size

of Uniswap trades for our six sample token pairs. First, the average trade size of a Uniswap trade

is fairly large and is about 4,360 USDT (≈ 4,360 USD), 8.59 ETH (≈ 7,661 USD), and 23.07

ETH (≈ 20,577 USD) for USDC-USDT, ETH-USDT, and WBTC-ETH respectively. Second,
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Table 1. Summary statistics of daily trading statistics on Uniswap and Binance. This table reports, for each token
pair, summary statistics of daily trading volume (TradingVolume) and number of trades (TradeCount) on Uniswap and
Binance respectively. N refers to the number of days in our sample period.

(a) Stable token pairs. Trading volume is denominated in thousand USDT.

N Mean SD Min Med Max
Pair

USDC-USDT

TradingVolume-Uniswap 85 3426 1747 646 3456 7577
TradeCount-Uniswap 85 997 397 504 884 3085
TradingVolume-Binance 85 96681 59806 22936 82593 276362
TradeCount-Binance 85 51403 21583 15724 47647 116379

DAI-USDT

TradingVolume-Uniswap 85 1494 1361 56 1155 5830
TradeCount-Uniswap 85 658 403 174 570 2068
TradingVolume-Binance 85 11575 10451 2224 9210 77831
TradeCount-Binance 85 9174 7925 1525 7341 58558

(b) NonStable token pairs. Trading volume is denominated in ETH.

N Mean SD Min Med Max
Pair

ETH-USDT

TradingVolume-Uniswap 85 73489 37752 36923 62131 263356
TradeCount-Uniswap 85 8560 1700 6311 8155 16419
TradingVolume-Binance 85 1444426 709203 493012 1281734 4245010
TradeCount-Binance 85 994231 524099 272746 915584 2577496

WBTC-ETH

TradingVolume-Uniswap 85 31644 17748 9014 27141 87965
TradeCount-Uniswap 85 1371 592 646 1127 3338
TradingVolume-Binance 85 2023 1993 135 1258 9984
TradeCount-Binance 85 7886 7529 289 5332 35191

LINK-ETH

TradingVolume-Uniswap 85 10779 6295 3437 9406 42520
TradeCount-Uniswap 85 1054 380 574 961 2682
TradingVolume-Binance 85 4387 2687 1071 3856 13598
TradeCount-Binance 85 10459 6793 2223 9391 29514

AAVE-ETH

TradingVolume-Uniswap 85 7368 4177 1766 6366 29936
TradeCount-Uniswap 85 609 253 261 551 1514
TradingVolume-Binance 85 2135 1510 408 1627 10143
TradeCount-Binance 85 6829 5410 1131 5511 36964

the gas price attached to Uniswap trades varies considerably across trades. Take WBTC-ETH as

an example. While a Uniswap trade in WBTC-ETH has an average gas price of 126.13 Gwei

(1Gwei = 10−9ETH), its standard deviation is 220.12, which is about twice the size of the mean.

Such a large variation can result from either change in the overall congestion of the Ethereum

network, or from traders’ bidding high fees to trade on the information.
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Table 2. Summary statistics of Uniswap trades. This table reports, for each token pair, summary statistics of the
transaction price (TxPrice), transaction size (TxSize), and gas price (GasPrice). Gas price is denominated in Gwei,
which equals to 10−9 ETH. N refers to the number of trades for each token pair during our sample period.

(a) Stable token pairs. Transaction size is denominated in thousand USDT.

N Mean SD 1% 10% Median 90% 99%
TokenPair Variable

USDC-USDT
TxPrice 84779 1.00 0.00 0.99 1.00 1.00 1.00 1.01
GasPrice 84779 90.91 81.52 16.00 33.00 71.00 164.00 400.00
TxSize 84779 3.43 8.51 0.01 0.11 1.04 7.66 40.05

DAI-USDT
TxPrice 55919 1.00 0.00 0.99 1.00 1.00 1.01 1.01
GasPrice 55919 91.08 121.44 18.00 35.00 73.00 155.00 397.82
TxSize 55919 2.27 5.15 0.01 0.08 0.76 5.05 26.02

(b) NonStable token pairs. Transaction size is denominated in ETH.

N Mean SD 1% 10% Median 90% 99%
TokenPair Variable

ETH-USDT
TxPrice 727600 891.94 379.26 474.95 546.93 653.14 1397.87 1751.67
GasPrice 727600 99.77 189.92 15.30 30.00 70.00 181.00 530.00
TxSize 727600 8.59 34.08 0.01 0.13 1.37 15.34 124.89

WBTC-ETH
TxPrice 116520 30.48 5.44 22.56 23.88 31.44 38.28 42.33
GasPrice 116520 126.13 220.12 17.00 37.00 88.00 240.00 652.00
TxSize 116520 23.07 59.40 0.02 0.23 3.99 64.76 235.89

LINK-ETH
TxPrice 89630 0.02 0.00 0.01 0.01 0.02 0.02 0.03
GasPrice 89630 114.48 242.18 16.00 34.00 78.89 205.70 669.82
TxSize 89630 10.22 24.36 0.02 0.19 2.82 27.20 86.39

AAVE-ETH
TxPrice 51811 0.16 0.05 0.09 0.11 0.15 0.27 0.31
GasPrice 51811 110.91 177.61 15.56 30.72 80.00 203.00 565.62
TxSize 51811 12.08 19.93 0.03 0.20 4.85 29.95 88.13

4 Methodology

To examine whether DEX trades with a higher fee are more informative, we follow Hasbrouck

(1991) and estimate a structural vector-autoregressive (structural VAR) model. In the structural

VAR model, we include CEX return and DEX trade flows with different fee levels as endogenous

variables. Hence, we can compute the cumulative impulse response of return to a trade flow vari-

able, i.e., its permanent price impact, which is regarded as a measure of its private information

content. Barclay, Hendershott, and McCormick (2003) and O’Hara, Yao, and Ye (2014) apply the

same approach to examine the informativeness of odd-lot trades versus round-lot trades and ECN
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trades versus market-maker trades respectively.

4.1 Baseline structural VAR specification

A general structural VAR model can be specified as follows:

Ayt = α + Φ1yt−1 + · · · + Φpyt−p + εt (1)

where Φ1 . . .Φp are standard system matrices of the VAR model. εt is the vector of structural

innovations and satisfies the following conditions: E(εt) = 0; E(εtε
′
t) = Σε; E(εtε

′
s) = 0 for

s , t. Observe that yt is the endogenous variable vector, and A is the structural matrix capturing

the contemporaneous correlations between the endogenous variables. In our specifications below,

we specify the endogenous variables included in yt and the kind of contemporaneous correlations

assumed between the endogenous variables.

Our baseline specification for the structural VAR model is as follows:

yt =

(
rCEX

t xLowFee-DEX
t xMidFee-DEX

t xHighFee-DEX
t

)′
, A =



1 a12 a13 a14

0 1 0 0

0 a32 1 0

0 a42 a43 1


(2)

where t indexes block time, and rCEX
t is the Binance midquote return from block time t− 1 to t. We

use xLowFee-DEX
t , xMidFee-DEX

t and xHighFee-DEX
t to denote Uniswap trade flows in block t, respectively

with low, mid and high blockchain fee levels, as specified in blockchain fee level classification

below. Note that we define the trade flow to be the sum of signed trades. For example, the trade

flow at a given fee level i in a block t is computed as:

xi
t =

∑
k

di
ksi

k. (3)
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where k indexes trades with fee level i in block t, dk is the trade direction indicator (+1 for buys

and -1 for sells), and sk is the trade size.

Timestamp convention Because Binance runs a continuous central limit order book while Uniswap

executes trades in batches based on block time, it is necessary to specify a timestamp convention

that encompasses both Binance returns and Uniswap trade flows. In Figure 1, we provide a visual

illustration of the chosen convention. Specifically, rCEX
t is the log difference between the price

of the last Binance trade before block time t − 1 and that of the last Binance trade before block

time t.8 Then all Uniswap trade flows, xLowFee-DEX
t , xMidFee-DEX

t and xHighFee-DEX
t , are computed based

on trades executed in batch at block time t. Next, we detail our timestamp convention and our

blockchain fee-level classification scheme.

Figure 1. Timestamp convention. This figure illustrates our time convention. t is block time. rCEX
t is the log return

from Binance defined over the time interval between t−1 and t. Note that we do not have quote updates from Binance.
The return is calculated based on trade prices, not midquotes. xCEX

t is the trade flow on Binance obtained by summing
the trades executed between block time t−1 and t (See Equation 3). xDEX

t is the signed trade flow on Uniswap at block
time t.

• xDEX
t . Note that DEX orders

submitted during the block
time interval of (t − 1, t] and
picked by validators are all
executed at the same block
time t, in descending order by
their fees.

t − 1 t

xCEX
t , rCEX

t

Blockchain fee level classification We specify the classification scheme used in the structural

VAR specification above, where we include DEX trade flows with three different levels of gas price,

the blockchain fee traders bid on the Ethereum network. We adopt a rolling-window approach to

calculate the benchmark blockchain fee. Specifically, to classify trades in the current block t, we
8Note that we do not have quote updates, but only trades data, from Binance. Hence, the return is calculated based

on trade prices, and not midquotes.
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first sort them together with all trades within the last 20 non-empty blocks9, i.e., block t − 20 to

block t − 1 based on their blockchain fee in descending order. Then trades in block t which fall in

the top quartile (i.e., above 75% quantile) are labeled as high-fee trades, xHighFee-DEX
t ; Trades which

fall in the bottom quartile (i.e., below 25% quantile) are labeled as low-fee trades, xLowFee-DEX
t ;

All other trades are labeled as mid-fee trades (i.e., between 25% and 75% quantile), xMidFee-DEX
t .

Hence, for each block, we construct three DEX trade flows. For some blocks, we might only have

observations for one or two types of trades, in which case trade flows for the remaining type(s) are

set to zero.

Resolution of the contemporaneous correlations Last, the structural matrix A is specified to

only allow for the following contemporaneous relations: (1) all three DEX trade flow variables

cause CEX return but not vice versa10; (2) low-fee DEX trade flow causes mid-fee and high-fee

DEX trade flows; (3) mid-fee DEX trade flow causes high-fee DEX trade flow. We impose such a

recursive structure so to obtain a lower bound of the price impact of high-fee DEX trade flow.11

Permanent price impact of trade flows After estimating the structural VAR model, we can

easily obtain the vector moving average (VMA) representation to compute the impulse responses

of return and trade variables to shocks in the structural innovations:

yt = Θ(L)εt = Θ0εt + Θ1εt−1 + Θ2εt−2 + · · · (4)
9As a robustness check, we have repeated the classification based on trades within the last 10 or 40 blocks instead,

and all results are qualitatively the same. In Appendix A.1, we report the structural VAR results based on alternative
window lengths.

10Such restriction is normally made in empirical market microstructure literature: trades/trade flows are assumed
to affect return contemporaneously but not vice versa. The economic intuition is that market makers will only revise
their quotes after seeing the incoming trades and updating their beliefs about the new equilibrium price. We refer to
Hasbrouck (1991) for detailed explanations.

11The economic intuition is as follows. Including contemporaneous low-mid and mid-mid DEX trade flows in the
equation of high-fee DEX trade flow equation means that there will possibly be some positive correlation between the
trade flows. A similar approach is used in, for example, O’Hara, Yao, and Ye (2014) where they assume odd-lot trades
are caused by round-lot and mixed-lot trades in one of their specifications to obtain a lower bound of the price impact
of odd-lot trades.
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where Θ(L) is the polynomial of the lag operator Θ(L) = Θ0+Θ1L+Θ2L2+· · · . Then the permanent

price impact (PPI) of a trade flow variable k is defined as the cumulative impulse response of the

midquote return to a unit shock in the trade flow, that is,

PPIk =

∑∞
j=0 ∂rCEX

t+ j

∂εk,t
= [Θ(1)]1,k, k > 1 (5)

where [Θ(1)]1,k denotes the (1, k)-th entry of Θ(1), the impulse response of return to trade flow

variable k.

Information share of trade flows In addition to permanent price impact, we can compute the

information shares of trade flow variables via the approach of random walk decomposition (See

Hasbrouck, 1991, for detailed proofs). The information share measure weighs the permanent price

impact of the CEX return or a trade flow variable [Θ(1)]1,k by its own structural innovation variance,

σ2
εk

. Hence, if two trade flow variables have the same permanent price impact, the one with a larger

innovation variance will have a larger information share. Formally, the information share (IS) of

the CEX return or a trade flow variable k to price discovery is computed as:

ISk =
[Θ(1)]2

1,kσ
2
εk∑

k[Θ(1)]2
1,kσ

2
εk

(6)

Implementation details We implement the structural VAR estimation in the following ways: (1)

the model is estimated at block-by-block frequency, although the blockchain fee level classification

is based on a 20-block rolling window; (2) we set the number of lags in the structural VAR model

to 512; (3) As the base currency varies across token pairs, to ease comparison and aggregation

across token pairs, we standardize all trade flow variables such that they have zero mean and unit

variance. Hence, the impulse responses reported below should be interpreted as permanent price

impacts in basis points per standard deviation increase in the trade flow.

12In Appendix A.2, we change the number of lags included in the structural VAR model to 10 and 20, and show
that estimation results remain qualitatively the same.
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5 Empirical results

In what follows, we present the main results from our empirical analysis. First, in Section 5.1 we

report results from our structural VAR analysis and show our key finding: high-fee DEX trade flow

contains more private information than low-fee DEX trade flow. Then, in Section 5.2, we conduct

several robustness checks for our key finding. Last, in Section 5.3, we provide plausible economic

channels behind our key finding.

5.1 Priority fees and price discovery

Below we examine whether blockchain fees play an important role in the price discovery process

through DEX trade flows. To do so, we estimate a structural VAR model as in Equation 2 where

we include CEX return and DEX trade flows with different fee levels. In Section 5.1.1, we provide

summary statistics of the CEX return, DEX trade flows, and CEX trade flow, variables used in

the structural VAR model. We then analyze the impulse response analysis and report the perma-

nent price impact and information shares of DEX trade flows in Section 5.1.2 and Section 5.1.3

respectively. In Section 5.1.4, we examine the speed of price discovery through DEX trade flows.

5.1.1 Summary statistics of CEX return and DEX trade flows

Before discussing the estimation results from the structural VAR model, for each token pair, we

report summary statistics of the return and trade flow variables in Table 3. Several observations are

in order. First, as expected, returns of NonStable token pairs are much more volatile. For instance,

per-block-time (≈12 seconds) standard deviation of Binance return, rCEX
t , is about 0.79, 10.27,

and 9.12 basis points for USDC-USDT, ETH-USDT and WBTC-ETH respectively. These results

are expected because NonStable pairs consist of risky tokens such as Bitcoin and Ethereum and

thus their prices respond to both short-term liquidity shocks and long-term information shocks. In

contrast, Stable token pairs are only affected by short-term liquidity shocks as both of their tokens
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Table 3. Summary statistics of CEX return, CEX trade flow and DEX trade flow variables. This table reports,
for each token pair, summary statistics of the return and trade flow variables used in the structural VAR estimation.
rCEX

t is Binance return from block time t−1 to t. xCEX
t is Binance trade flow. xDEX

t is Uniswap trade flows. xLowFee-DEX
t ,

xMidFee-DEX
t and xHighFee-DEX

t are Uniswap trade flows consisting of trades from the low-, mid- and high-fee category in
block t. Both rCEX

t and rDEX
t are in basis point. N refers to the number of blocks for each token pair during our sample

period.

(a) Stable token pairs. All trade flow variables are denominated in thousand USD.

N Mean SD Min 50% Max

USDC-USDT

rCEX
t 66949 -0.00 0.79 -52.68 0.00 37.12

xCEX
t 66949 1.58 112.29 -3892.72 0.00 3277.79

xDEX
t 66949 0.01 7.95 -268.57 -0.02 227.86

xLowFee-DEX
t 66949 0.02 2.62 -118.09 0.00 85.00

xMidFee-DEX
t 66949 0.03 4.82 -145.88 0.00 150.00

xHighFee-DEX
t 66949 -0.04 5.75 -268.57 0.00 227.86

DAI-USDT

rCEX
t 45868 -0.00 1.45 -46.36 0.00 40.56

xCEX
t 45868 -1.20 33.79 -1162.58 0.00 778.95

xDEX
t 45868 0.01 5.14 -142.20 -0.00 141.16

xLowFee-DEX
t 45868 0.02 1.90 -60.01 0.00 50.65

xMidFee-DEX
t 45868 -0.00 3.12 -81.14 0.00 64.00

xHighFee-DEX
t 45868 -0.01 3.55 -142.20 0.00 94.93

are pegged to the US Dollar.

Second, consistent with the liquidity summary statistics in Table 1, the magnitude of trade

flows on Uniswap versus Binance differs significantly across token pairs. For the two Stable token

pairs, USDC-USDT and DAI-USDT, the magnitude of trade flow is much larger on Binance than

on Uniswap. For example, the standard deviation of per-block-time trade flow of USDC-USDT

on Binance is about 112 thousand USD, more than an order of magnitude larger than that of about

eight thousand USD on Uniswap. In contrast, for the rest of the token pairs except for ETH-USDT,

absolute trade flow is larger on Uniswap than on Binance. For example, the standard deviation of

per-block-time trade flow of WBTC-ETH is about 56 ETH on Uniswap compared with 10 ETH on

Binance.

Third, for all token pairs on Uniswap, trade flows with high fees are larger in magnitude than

flows with middle and low gas fees. For example, the standard deviation of ETH-USDT high-fee

trade flow is 33.18 ETH, which is more than three times larger than that of low-fee trade flow.
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(b) NonStable token pairs. All trade flow variables are denominated in ETH.

N Mean SD Min 50% Max

ETH-USDT

rCEX
t 370291 0.03 10.27 -476.61 0.00 368.22

xCEX
t 370291 -0.32 221.19 -7370.94 0.11 10152.33

xDEX
t 370291 0.15 40.76 -3111.34 0.04 2154.22

xLowFee-DEX
t 370291 -0.03 10.29 -2345.49 0.00 1241.70

xMidFee-DEX
t 370291 -0.06 21.37 -1897.53 0.00 2147.57

xHighFee-DEX
t 370291 0.23 33.18 -3498.28 0.00 2217.48

WBTC-ETH

rCEX
t 81892 -0.05 9.12 -269.32 0.00 245.93

xCEX
t 81892 -0.02 9.93 -395.21 0.00 1991.97

xDEX
t 81892 -0.25 56.17 -2750.21 0.22 2331.24

xLowFee-DEX
t 81892 0.07 15.87 -475.92 0.00 698.13

xMidFee-DEX
t 81892 0.07 36.64 -2750.21 0.00 726.66

xHighFee-DEX
t 81892 -0.40 39.13 -771.15 0.00 2331.24

LINK-ETH

rCEX
t 72951 -0.07 16.10 -494.76 0.00 467.55

xCEX
t 72951 -0.47 16.73 -2047.56 0.00 432.04

xDEX
t 72951 -0.08 22.57 -1187.08 0.00 652.36

xLowFee-DEX
t 72951 -0.04 5.32 -202.07 0.00 161.16

xMidFee-DEX
t 72951 -0.10 14.47 -1187.08 0.00 652.36

xHighFee-DEX
t 72951 0.06 16.11 -432.35 0.00 541.94

AAVE-ETH

rCEX
t 42975 0.14 29.89 -509.77 0.00 582.37

xCEX
t 42975 -0.31 10.83 -676.27 0.00 239.78

xDEX
t 42975 0.14 19.59 -417.79 0.10 374.95

xLowFee-DEX
t 42975 0.07 5.51 -150.28 0.00 225.81

xMidFee-DEX
t 42975 0.02 12.78 -417.79 0.00 192.39

xHighFee-DEX
t 42975 0.05 13.75 -221.06 0.00 374.95

5.1.2 Permanent price impacts of DEX trade flows

If DEX trade flows with high fees contain more private information than those with low fees, we

should expect the former to have a larger permanent price impact. In a structural VAR framework,

the permanent price impact of a particular trade flow is estimated by the cumulative impulse re-

sponses of return to its unexpected component, as specified in Equation 5. In Table 4, we report

the cumulative impulse responses of CEX return to DEX trade flows with different fee levels. The

results show that high-fee DEX trade flow has a larger permanent price impact and thus contains

more private information than low-fee DEX trade flow.

We begin by discussing the results for pairs of the NonStable token pairs. These token pairs

consist of at least one non-stable coin, and should thus experience frequent private information
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shocks. The results show that the cumulative impulse response of CEX return, rCEX
t , to high-

fee DEX trade flow, xHighFee-DEX
t , is statistically significant. In addition, the cumulative impulse

responses of CEX return to high-fee DEX trade flow are much larger in magnitude compared with

the responses to mid- and low-fee DEX trade flows. A positive shock to high-fee DEX trade flow

equal to one standard deviation of that flow leads to an 8.16 basis points increase in CEX return

while a similar size shock applied to the low-fee trade flow leads to a much smaller increase of

0.83 basis points.

Next, we discuss the estimation results for pairs of Stable tokens, which are consistent with our

expectations. Stable token pairs carry little private or public information because both tokens of the

pair are stable coins pegged to the US Dollar. Hence, without short-term liquidity shocks, token

pairs should always be priced at one. As a result, traders of Stable pairs are either liquidity traders

who would like to exchange one stablecoin for the other or arbitrageurs who respond to public

information such as transitory price discrepancy of the token pairs between CEXs and DEXs.

Both types of trades can only impose a transitory impact on the prices, but not a permanent one.

These results are consistent with intuition: the cumulative impulse responses of DEX trade flows

are statistically insignificant, regardless of fee levels.

In addition, the results show that, for NonStable token pairs, the cumulative impulse responses

of DEX trade flows to CEX return shocks are statistically significant, and their magnitudes increase

with fees. For instance, a one-basis point shock to CEX returns of NonStable token pairs leads to

an increase of high-fee DEX trade flow of about 0.03 standard deviations, which is much larger

than the response of medium-fee and low-fee DEX trade flow. While CEX price can quickly

adjust through quote revisions upon the release of new public information. In most DEXs prices

are determined by a pre-coded pricing function and cannot be immediately adjusted. Rather, they

can only be updated through trades executed in subsequent blocks. The large response of high-fee

DEX trade flow to the CEX price shocks help update the DEX price towards the efficient price.
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Table 4. Cumulative impulse responses between CEX return and DEX trade flows with different blockchain
fee levels. This table reports the impulse responses between the CEX return and DEX trade flows with different
blockchain fee levels, cumulative over 20 blocks. Impulse responses are obtained by estimating the structural VAR
model specified in Equation 2. The estimation is done for each pair-day and statistical inference is based on pair-day
estimates. Row variables are response variables and column variables are shock variables. CEX return is in basis
point. DEX trade flows are standardized and thus in their standard deviations. *, ** and *** indicate significance levels
at 1%, 5% and 10% respectively.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.8*** 0.01 0.0 0.0
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.01 0.96*** −0.03*** −0.03***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01 −0.08*** 0.89*** −0.08***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.01 −0.08*** −0.2*** 0.81***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.06*** 0.83*** 3.8*** 8.16***
(0.01) (0.12) (0.27) (0.37)

xLowFee-DEX 0.0*** 1.01*** −0.02*** −0.02***
(0.0) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01*** −0.05*** 1.02*** 0.05***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.03*** −0.09*** −0.18*** 1.15***
(0.0) (0.01) (0.01) (0.01)

5.1.3 Information shares of DEX trade flows

Table 5. Information shares of DEX trade flows with different gas price levels. This table reports the information
shares of the CEX return and DEX trade flows with different blockchain fee levels. Information shares are computed
using the formula in Equation 6. The estimation is done for each pair-day and statistical inference is based on pair-day
estimates. Numbers in brackets are standard errors.

PairType Stable NonStable
Variable

rCEX 97.28 77.09
(0.24) (0.79)

xLowFee-DEX 1.05 0.75
(0.14) (0.06)

xMidFee-DEX 1.0 4.09
(0.14) (0.29)

xHighFee-DEX 0.66 18.06
(0.1) (0.67)
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In Table 5, we compute the information share of DEX trade flows associated with different

fee levels. The information share approach considers both the permanent price impact of a trade

flow variable and its own (unexpected) variance (See Equation 6). For example, if two trade flow

variables have the same permanent price impact, the one with a larger (unexpected) variance will

have a larger information share.

The results show that, for NonStable token pairs, CEX return contributes the largest share to

price discovery, which reflects public information, and high-fee DEX trade flow has a much larger

information share than low-fee DEX trade flow: the high-fee DEX trade flow contributes about

18.06% to price discovery, which is much larger than 4.09% of the mid-fee trade flow, and 0.75%

of the low-fee DEX trade flow. In contrast, for Stable token pairs, CEX return itself contributes to

almost all (97.28%) price discovery, and DEX trade flows contain barely any private information.

5.1.4 DEX trade flows and speed of price discovery

In previous sections, we have shown that high-fee DEX trade flow has a much larger permanent

price impact than low-fee DEX trade flow, contributing more to price discovery. However, as

the permanent price impact is defined as the cumulative impulse responses of CEX return, it can

not speak to the speed of price discovery. How quickly does the CEX price adjust to the private

information revealed through DEX trade flows? To examine it, we turn to the dynamics of impulse

responses of CEX return to DEX trade flows.

Panel (a) of Figure 2 indicates that the impulse responses of CEX return to DEX trades for

Stable token pairs are statistically insignificant over all periods, regardless of the bid fees. These

results are consistent with the cumulative return impulse responses tabulated in Table 4. Moreover,

the impulse responses of DEX trade flows to CEX returns, are statistically insignificant for all

periods and all fee groups.

In Panel (b) of Figure 2, we plot the impulse responses for NonStable token pairs. While the

return impulse response is significant and large in the contemporaneous (t = 0) and the next block

(t = 1), it becomes much smaller in magnitude from the second block (t = 2) on. It indicates
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that CEX return responds significantly and quickly to DEX trade flows and most price discovery

through DEX trade flow is realized within two blocks. Hence, traders are able to learn the private

information contained in the high-fee DEX trade flow quickly and update their beliefs on the new

price. In contrast, the impulse responses of high-fee and mid-fee trade flows to CEX returns are

significant and large for about five blocks (t = 1 to t = 5). This suggests that the response of DEX

trade flows to public information is more sticky and takes several blocks of time.
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Figure 2. Impulse response functions between CEX return and DEX trade flows with different fee levels. This figure plots the impulse responses between
the CEX return and DEX trade flows with different fee levels over a horizon of 20 blocks. Impulse responses are obtained by estimating the structural VAR model
specified in Equation 2. CEX return is measured in basis points and DEX trade flows are standardized and thus measured in standard deviation units. We perform
the estimation for each pair-day, and the statistical inference is based on pair-day estimates. Dashed black lines represent 95% confidence bands.

(a) Stable token pairs.
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(b) NonStable token pairs.
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5.2 Robustness checks

5.2.1 Robustness: Accounting for CEX trade flow

Traders execute their trades both on centralized and decentralized exchanges. To control for cross-

venue arbitrage trades between Uniswap and Binance, we include Binance trade flows in the en-

dogenous variable vector and consider the robustness of the results against the following alternative

specification:

yt =

(
rCEX

t xCEX
t xLowFee-DEX

t xMidFee-DEX
t xHighFee-DEX

t

)′
, A =



1 a12 a13 a14 a15

0 1 0 0 0

0 a32 1 0 0

0 a42 a43 1 0

0 a52 a53 a54 1



(7)

xCEX
t is the signed trade flow on Binance aggregated between block time t − 1 and t. The variables

rCEX
t , xLowFee-DEX

t , xMidFee-DEX
t and xHighFee-DEX

t have all been introduced above, and we recall that they

represent CEX return and Uniswap trade flows with low, mid and high gas fee levels respectively.

Similarly, we specify the structural matrix A in such a way that we only allow CEX trade flow to

contemporaneously affect DEX trade flows, but not vice versa. In terms of economics, we impose

such structural restrictions in order to control informed traders splitting their trades on both CEXs

and DEXs. The idea is intuitive: assuming traders trade their private information on both CEXs

and DEXs, we should expect CEX and DEX trade flows to be highly correlated. Hence, after the

CEX trade flow is controlled, if CEX prices still respond to DEX trade flows, it must be the case

that the DEX trade flows contain other private information. In addition, as in the first specification,

we maintain the following assumptions on the contemporaneous relations: (1) low-fee DEX trade

flow causes mid-fee and high-fee DEX trade flows; (3) mid-fee DEX trade flow causes high-fee

DEX trade flow.
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Table 6 and 7 indicate that the results remain qualitatively the same as the baseline model:

high-fee DEX trade flow has a much larger permanent price impact and information share than

mid- and low-fee DEX trade flows. Adding CEX trade flow only slightly reduces the economic

magnitude of the permanent price impacts of high-fee DEX trade flow. For example, for NonStable

token pairs, the cumulative CEX return impulse response to one positive standard deviation shock

in high-fee DEX trade flow is 7.76 basis points when CEX trade flow is controlled for, which is

marginally smaller than 8.16 basis points when CEX trade flow is not controlled for. In addition,

the permanent price impact of high-fee DEX trade flow is larger than that of CEX trade flow:

for NonStable token pairs, one standard deviation of a positive shock to the high-fee DEX trade

flow leads to an increase of about 4.38 basis points in the CEX price, compared to one standard

deviation of a positive shock to the high-fee DEX trade flow which yields an increase of 7.76 basis

points.

In summary, high-fee DEX trade flow continues to have a large permanent impact on CEX

prices even after controlling for CEX trade flow, which strengthens our claim that DEX trade flow

captures private information not contained in CEX trade flow.

5.2.2 Robustness: Resolution of the contemporaneous correlations between CEX return

and DEX trade flows

In our baseline specification for the structural VAR model, we assume DEX trade flows contem-

poraneously affect CEX return, but not vice versa. Accordingly, we specify the causality matrix A
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Table 6. Cumulative impulse responses between CEX return, CEX trade flow, and DEX trade flows with dif-
ferent gas prices. This table reports the impulse responses between the CEX return, CEX trade flow, and DEX trade
flows with different gas price levels, cumulative over 20 blocks. Impulse responses are obtained by estimating the
structural VAR model specified in Equation 9. The estimation is done for each pair-day and statistical inference is
based on pair-day estimates. Row variables are response variables and column variables are shock variables. CEX
return is in basis point. CEX trade flow and DEX trade flows are standardized and thus in their standard deviations. *,
** and *** indicate significance levels at 1%, 5% and 10% respectively.

rCEX xCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.72*** 0.37*** 0.01 0.0 0.0
(0.01) (0.02) (0.01) (0.01) (0.01)

xCEX −0.23*** 1.21*** 0.0 0.01 0.01
(0.03) (0.02) (0.01) (0.01) (0.01)

xLowFee-DEX 0.02* 0.0 0.96*** −0.04*** −0.03***
(0.01) (0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.0 0.0 −0.08*** 0.89*** −0.08***
(0.01) (0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.02** 0.0 −0.08*** −0.2*** 0.81***
(0.01) (0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.03*** 4.38*** 0.78*** 3.64*** 7.76***
(0.01) (0.23) (0.12) (0.26) (0.37)

xCEX 0.01*** 1.24*** −0.01 0.03*** 0.17***
(0.0) (0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.0*** 0.02*** 1.01*** −0.02*** −0.02***
(0.0) (0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01*** 0.09*** −0.05*** 1.02*** 0.04***
(0.0) (0.01) (0.01) (0.01) (0.01)

xHighFee-DEX 0.03*** 0.22*** −0.09*** −0.19*** 1.14***
(0.0) (0.01) (0.01) (0.01) (0.01)

as below:

yt =

(
rCEX

t xLowFee-DEX
t xMidFee-DEX

t xHighFee-DEX
t

)′
, A =



1 a12 a13 a14

0 1 0 0

0 a32 1 0

0 a42 a43 1


. (8)

However, the causality can go in the other direction. For example, market makers for deriva-

tives need to constantly execute hedging trades in the underlying security in response to price
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Table 7. Robustness: Information shares of CEX trade flow and DEX trade flows with different blockchain fee
levels. This table reports the information shares of the CEX return, CEX trade flow, and DEX trade flows with different
gas price levels. Information shares are computed based on Equation 6. The estimation is done for each pair-day and
statistical inference is based on pair-day estimates. Numbers in brackets are standard errors.

PairType Stable NonStable
Variable

rCEX 70.5 67.34
(1.33) (0.94)

xCEX 26.96 12.51
(1.35) (0.83)

xLowFee-DEX 0.97 0.73
(0.13) (0.06)

xMidFee-DEX 0.93 3.77
(0.14) (0.28)

xHighFee-DEX 0.63 15.65
(0.09) (0.64)

shocks. Besides, CEX return and DEX trade flows are both defined at block-time frequency, which

on average lasts 12 seconds on the Ethereum blockchain. Thus, the timestamp is too coarse to de-

cide the right ordering between the CEX return and DEX trade flows, which might result in a large

contemporaneous correlation between the two. In Table 8, we report the contemporaneous corre-

lations between CEX return and DEX trade flows from the estimation results of the reduced-form

VAR model. It shows that while the correlations between CEX return and low-fee and medium-

fee DEX trade flow are rather small, that between CEX return and high-fee DEX trade flow are

moderate at about 0.18 for NonStable and token pairs.

Given that the magnitude of the correlation between CEX return and high-fee DEX trade flow

is not negligible, changing the ordering between the two can affect the estimation results of the

structural VAR model. To assess the sensitivity of our results to the ordering, we flip the causality

assumption and allow CEX return to contemporaneously affect DEX trade flows but not vice versa.

Specifically, we impose the causality matrix A as follows and re-implement the structural VAR
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Table 8. Contemporaneous correlations between CEX return and DEX trade flows. This table reports the con-
temporaneous correlations between the CEX return and DEX trade flows. We obtain the contemporaneous correlations
by estimating the correlation matrix of the innovation terms from the reduced-form VAR. We estimate the reduce-form
VAR for each token pair and day pair and report the average correlations by token pair type.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

Pair Variable

Stable

rCEX 1.00 0.01 0.00 -0.00
xLowFee-DEX 0.01 1.00 0.00 0.00
xMidFee-DEX 0.00 0.00 1.00 0.00
xHighFee-DEX -0.00 0.00 0.00 1.00

NonStable

rCEX 1.00 0.01 0.07 0.18
xLowFee-DEX 0.01 1.00 -0.01 -0.01
xMidFee-DEX 0.07 -0.01 1.00 -0.00
xHighFee-DEX 0.18 -0.01 -0.00 1.00

estimation.

A =



1 0 0 0

a21 1 0 0

a31 a32 1 0

a41 a42 a43 1


(9)

Table 4 reports the cumulative impulse responses between CEX return and DEX trade flows

under the alternative causality matrix A. There are two key observations. First, the magnitude of

the cumulative impulse responses of CEX return to DEX trade flows drops for all three fee levels.

Such a drop is expected as we now impose the restriction that the contemporaneous price impact

of DEX trade flows is zero. In reality, traders can monitor pending orders in mempool and adjust

their quotes on CEXs in real time. So what we obtain here are the lower bounds of the price impact

of DEX trade flows. Second, although the overall magnitude of DEX trade flows’ price impact

drops, our key results hold. For NonStable token pairs, the price impact of high-fee DEX trade

flow remains larger than that of medium-fee and low-fee DEX trade flows.
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Table 9. Cumulative impulse responses between CEX return and DEX trade flows with different blockchain
fee levels. Alternative causality matrix A. This table reports the impulse responses between the CEX return and
DEX trade flows with different blockchain fee levels, cumulative over 20 blocks. Impulse responses are obtained by
estimating the structural VAR model specified in Equation 2. The estimation is done for each pair-day and statistical
inference is based on pair-day estimates. Row variables are response variables and column variables are shock vari-
ables. CEX return is in basis point. DEX trade flows are standardized and thus in their standard deviations. *, ** and
*** indicate significance levels at 1%, 5% and 10% respectively.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.8*** 0.0 0.0 0.01
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.02 0.96*** −0.03*** −0.03***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01 −0.08*** 0.89*** −0.08***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.02* −0.08*** −0.2*** 0.81***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.13*** 0.41*** 1.94*** 4.41***
(0.01) (0.1) (0.17) (0.22)

xLowFee-DEX 0.0*** 1.01*** −0.02*** −0.03***
(0.0) (0.01) (0.01) (0.01)

xMidFee-DEX 0.02*** −0.05*** 1.0*** 0.01
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.05*** −0.1*** −0.23*** 1.08***
(0.0) (0.01) (0.01) (0.01)

5.2.3 Robustness: Controlling for the confounding effect of trade size

Blockchain fee is a fixed cost regardless of the trade size. Thus, traders are willing to pay a higher

blockchain fee for large trades as it is relatively cheaper. So, trade size and fee are positively

correlated. In addition, it is a well-known fact that large trades tend to have a larger price impact

than small trades (Easley and O’Hara, 1987). Thus, trade size has a potential confounding effect

on the price impact of fees.

To alleviate the concern, we further partition DEX trades based on their size in addition to

fees and examine whether, within the same size group, trades with higher fees have a larger price

impact. Specifically, we classify DEX trades into two size groups: a large-size group consisting

of trades with a size above its 90% quantile and a small-size group consisting of trades with a size
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below its 90% quantile. Thus, our large-size group captures very large trades on the right tail of

the size distribution. We choose 90% quantile as the cutoff point so that for the large-size group,

the average trade size is similar across our three fee levels as shown in Table 10. For some token

pairs such as WBTC-ETH, LINK-ETH, and AAVE-ETH, within the large-trade group, the average

trade size of the mid-fee group is even larger than the high-fee group.

Table 10. Average trade size by trade size group and blockchain fee level. N refers to the number of trades in our
sample.

GasPriceLevel LowFee MidFee HighFee
TokenPair TxSizeLevel

USDC-USDT
Below Q90(TxSize) 1.23 1.48 2.01
Above Q90(TxSize) 17.55 19.93 21.72

DAI-USDT
Below Q90(TxSize) 0.87 1.02 1.31
Above Q90(TxSize) 12.19 12.87 13.90

ETH-USDT
Below Q90(TxSize) 1.65 2.12 3.16
Above Q90(TxSize) 55.44 63.57 68.60

WBTC-ETH
Below Q90(TxSize) 5.79 9.27 17.04
Above Q90(TxSize) 148.94 151.65 126.60

LINK-ETH
Below Q90(TxSize) 2.86 4.63 9.31
Above Q90(TxSize) 50.90 62.22 49.73

AAVE-ETH
Below Q90(TxSize) 3.74 6.86 12.67
Above Q90(TxSize) 55.44 58.84 48.02

Based on our size and fee grouping above, we construct six DEX trade flows: small-size and

low-fee DEX trade flow (xS-L-DEX), small-size and medium-fee DEX trade flow (xL-M-DEX), small-

size and high-fee DEX trade flow (xL-H-DEX), large-size and low-fee DEX trade flow (xL-L-DEX),

large-size and medium-fee DEX trade flow (xL-M-DEX), and large-size and high-fee DEX trade flow

(xL-H-DEX). Then we estimate a structural VAR model based on the six DEX trade flows.

Table 11 reports the cumulative impulse responses between the CEX return and the six DEX

trade flows by trade size and fee level. Focusing on the NonStable token pairs, the results show

that, consistent with the literature, large trades contain more private information. We see that DEX

trade flows in the large-trade group have larger price impacts than flows in the small-trade group.

More importantly, the results further show that, within the same trade size group, high-fee DEX
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trade flow has a larger price impact than medium-fee and low-fee flows. It is worth noting that the

difference between the price impact of high-fee and low-fee DEX trade flows is more pronounced

for the large-trade group, which reflects the positive interaction effect between blockchain fees and

trade size. In summary, the above results show that blockchain fee contains additional information

content not captured by the trade size.
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Table 11. Cumulative impulse responses between CEX return and DEX trade flows by trade size and fee level. This table reports the cumulative impulse
responses between CEX return and DEX trade flows by trade size and fee level. Impulse responses are obtained by estimating the structural VAR model. The
estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row variables are response variables and column variables are shock
variables. CEX return is in basis point. CEX trade flow and DEX trade flows are standardized and thus in their standard deviations. *, ** and *** indicate significance
levels at 1%, 5% and 10% respectively.

rCEX xS-L-DEX xS-M-DEX xS-H-DEX xL-L-DEX xL-M-DEX xL-H-DEX

PairType Variable

Stable

rCEX 0.79*** −0.01 0.0 0.01 0.01 0.0 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xS-L-DEX 0.01 1.07*** 0.06*** 0.02*** −0.09*** −0.06*** −0.04***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xS-M-DEX 0.01 0.0 1.08*** 0.09*** −0.07*** −0.13*** −0.11***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xS-H-DEX 0.0 −0.01 0.02*** 1.04*** −0.06*** −0.08*** −0.13***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xL-L-DEX 0.01 0.01 0.02** 0.0 0.97*** −0.04*** −0.03***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xL-M-DEX 0.0 0.01 0.0 0.02*** −0.07*** 0.9*** −0.07***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xL-H-DEX −0.01* −0.01** −0.02*** −0.01 −0.08*** −0.21*** 0.83***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.06*** 0.1 0.59*** 1.51*** 0.81*** 3.7*** 7.82***
(0.01) (0.12) (0.11) (0.16) (0.12) (0.27) (0.38)

xS-L-DEX 0.0*** 1.04*** 0.03*** 0.01*** −0.03*** −0.04*** −0.03***
(0.0) (0.01) (0.0) (0.0) (0.01) (0.01) (0.0)

xS-M-DEX 0.01*** 0.02*** 1.09*** 0.06*** −0.03*** −0.06*** −0.05***
(0.0) (0.01) (0.01) (0.01) (0.0) (0.01) (0.01)

xS-H-DEX 0.01*** 0.01* 0.03*** 1.1*** −0.03*** −0.07*** −0.03***
(0.0) (0.0) (0.01) (0.01) (0.0) (0.01) (0.01)

xL-L-DEX 0.0*** −0.03*** 0.02*** 0.0 1.02*** −0.01*** −0.02***
(0.0) (0.01) (0.0) (0.0) (0.01) (0.01) (0.0)

xL-M-DEX 0.01*** −0.01*** −0.03*** 0.03*** −0.04*** 1.02*** 0.04***
(0.0) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

xL-H-DEX 0.03*** 0.01 0.02*** 0.08*** −0.09*** −0.18*** 1.12***
(0.0) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
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5.3 Blockchain fees and information: Economic channels

In the above section, we have shown that high-fee DEX trade flow contains more private infor-

mation than low-fee DEX trade flow, suggesting that privately informed traders bid high fees to

execute their orders on DEXs. Next, we provide plausible economic channels to explain the results

and use mempool order data to test them.

5.3.1 Two potential economic channels

Channel #1: Execution risk due to blockchain congestion Trading on DEXs is not the only

activity on a blockchain. Other non-DEX activities such as payment transfer, borrowing and lend-

ing, non-fungible token (NFTs) auctions, and initial coin offerings (ICOs) take up limited block

space as well. In particular, if there is a surge of non-DEX activities which make blocks congested,

the marginal blockchain fee needed to execute a transaction increases, driving up the transaction

cost for traders on DEXs.

During such times, in contrast to a patient and uninformed trader, a trader who possesses short-

lived private information, e.g, over the next several blocks, might bid a high fee to avoid execution

risk if the gain from her trade is large.13 Ideally, she would like to set her bid to the marginal fee to

guarantee execution in the next block. However, the marginal fee of the next block is not perfectly

predictable. For example, even if the informed trader actively monitors all pending orders received

by its mempool, due to network latency, pending orders seen by her can be different from the ones

seen by the validators. As a result, she will bid a fee higher than the expected marginal fee to

reduce her execution risk.

What this implies is that, if an informed trader only faces execution risk, she will choose a

high, but not too high blockchain priority fee for her trades, compared with other transactions in

the same block. In terms of the block position, her trades will likely be located around the middle

13We note that impatient and uninformed traders (e.g., liquidity traders who receive marginal calls and have to
liquidate their positions) can bid high blockchain fees to avoid execution risk as well. However, their trades contain no
private information and thus can not drive our findings in the above section that high-fee trades are more informative.
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of the block, but not at the very top.

Channel #2: Competition among informed traders An informed trader will bid a high fee if

the blockchain network is congested. However, this may not be the only channel; she might bid a

high fee if she faces competition from other traders.

It is unclear ex-ante whether such a channel exists as theoretical literature has mixed predictions

about informed trading and its implications on price discovery. Competition arises when private

information is not only possessed by one informed trader; instead, there are multiple traders who

receive either the same or highly correlated private signals (See, e.g., Holden and Subrahmanyam,

1992; Foster and Viswanathan, 1996; Back, Cao, and Willard, 2000).

Another possibility is that there are “back-runners” (Yang and Zhu, 2020) or “predators” (Brun-

nermeier, 2005) who are not endowed with private signals but infer them from public signals such

as order imbalance or blockchain fees in the context of DEXs. However, informed traders can

select the timing of their trades. For example, they might trade when the liquidity of the target

token pairs is high such that their trades lead to a lower price impact and can not be easily detected

(Collin-Dufresne and Fos, 2015).

When facing competition from other traders with the same or similar information, an informed

trader might have to bid a blockchain fee much higher than the rest of non-DEX transactions in the

same block, especially when the potential profit from the information is high. In such cases, we

might observe DEX trades with excessively high fees and located at the very top of the block.

5.3.2 Do privately informed traders compete on DEXs?

Identify “excessively-high-fee trades” As explained above, competition among informed traders

can lead to excessively high blockchain fees for DEX trades compared with other non-DEX trans-

actions executed in the same block. How high a fee needs to be in order to be regarded as “exces-

sive”? To choose the right threshold for the blockchain fee, we use the inter-quartile range (IQR)
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method, a commonly used outlier detection approach in statistics.14 Specifically, for each block,

we first calculate the 25% quantile (Q25) and 75% quantile (Q75) of the blockchain fees of all

executed transactions in the block15, including both DEX trades and non-DEX transactions. Then

we calculate the IQR, defined as the difference between the 75% quantile and 25% quantile, that

is, IQR = Q75−Q25. Finally, we obtain the threshold Q75 + 1.5× IQR and label DEX trades with

a blockchain fee higher than the threshold as “excessively-high-fee trades”.16

Information content of “excessively-high-fee trades” Note that DEX trades with excessively

high fees or located at the very top of the block can include three different types of trades: (1)

trades driven by competition among privately informed traders; (2) trades driven by competition

among arbitrageurs on public information (e.g., price discrepancies between CEXs and DEXs); (3)

trades by impatient and uninformed traders (e.g., liquidation trades triggered by marginal calls).

However, only the first type of trades, which are driven by competition among privately informed

traders, contain private information and thus can have permanent price impacts on the CEX returns.

To examine whether our identified trades include the first type of trades with private informa-

tion, we reconstruct DEX trade flows with different blockchain fee levels excluding all “excessively-

high-fee” trades and then re-implement the structural VAR analysis. The idea is that if a signifi-

cant share of high-fee trades result from competition among privately informed traders, we should

see their permanent price impact become significantly smaller in magnitude after we exclude the

“excessively-high-fee trades”.

Table 12 reports the cumulative impulse responses between the CEX return and DEX trade

flows when “excessively-high-fee trades” are excluded. It shows that, compared with the baseline

14We prefer the IQR method, a quantile-based approach, over other outlier detection methods based on standard
deviations as the blockchain fee distribution is not normal but right-skewed.

15We obtain the executed transactions data on the Ethereum blockchain from Blockchair
(https://gz.blockchair.com/ethereum/transactions/).

16Alternatively, one can identify such trades based on their block position. As transactions executed in the same
block are ranked based on their blockchain fees in descending order. Thus, transactions with higher blockchain fees
will be placed more at the front of the block. Specifically, one can choose a threshold for the block position, say top
10%, and then label DEX trades located more before the threshold. We tested the alternative approach and the results
are qualitatively the same.
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results where all trades are included in Table 4, the cumulative impulse response of CEX return to

a unit standard deviation shock to high-fee DEX trade flow drops significantly in magnitude from

8.16 to 5.36 basis points for NonStable token pairs. The results illustrate that our key results—

high-fee DEX trade flow is more privately informed —are driven by competition among privately

informed traders in addition to them avoiding execution risk.

Table 12. Cumulative impulse responses between CEX return and DEX trade flows: Excluding “excessively-
high-fee trades”. This table reports the impulse responses between the return and trade flow variables, cumulative
over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified in Equation 2. The
estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row variables are response
variables and column variables are shock variables. CEX return is in basis point. DEX trade flows are standardized
and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and 10% respectively.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.79*** 0.01 0.0 0.0
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.01 0.96*** −0.04*** −0.03***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01 −0.08*** 0.88*** −0.06***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.02** −0.05*** −0.15*** 0.88***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.07*** 0.95*** 3.94*** 5.36***
(0.01) (0.14) (0.28) (0.31)

xLowFee-DEX 0.0*** 1.01*** −0.02*** −0.01***
(0.0) (0.01) (0.01) (0.0)

xMidFee-DEX 0.01*** −0.04*** 1.02*** 0.03***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.02*** −0.05*** −0.07*** 1.06***
(0.0) (0.01) (0.01) (0.01)

5.3.3 How do informed traders compete on DEXs?

In the above section, we have shown that competition among privately informed traders on DEXs

is a significant driving force of our key results: high-fee DEX trade flow contains more private

information. Next, we investigate what fee bidding strategy informed traders use to compete with

each other on DEXs.
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Identify trades from priority gas auctions (PGAs) As pending orders in the mempools are

publicly visible to all traders who actively monitor them, one natural bidding strategy is that in-

formed traders competitively bid up their blockchain fees, a process known as the priority gas

auction (PGA) in the literature (Daian et al., 2020). But is it the dominant bidding strategy? For

an executed trade to quality as a PGA trade, we require the following criteria:

1. The executed trade has at least two matched mempool orders with the same submission

address and nonce. Recall that a trader on DEX needs to attach a number called “nonce” to

each of her orders. The most important property of a nonce is that each number can only be

used once and it must be used in a consecutively increasing order. For example, a new order

broadcast by a trader needs to have a new nonce increased by 1 compared with the previous

order. More importantly, a trader’s order with a larger nonce cannot be executed before one

with a smaller nonce. This implies that if a trader wants to modify her pending order, e.g.,

increase the fee, she needs to broadcast a new order with the same nonce as the pending

one. Hence, the first criterion on submission address and nonce guarantee that the matched

mempool orders are previous revisions of the final executed order.

2. The gas price of the executed trade must be higher than that of its matched order(s). We

observe the gas price attached to both mempool orders and the executed trade. The second

criterion requires that the executed trade must have a higher gas fee than its matched order(s)

(i.e., those with the same submission address and nonce) so that we capture trades associated

with gas fee competition.

3. All matched orders of the executed trade must arrive at the mempool between block time t−1

and t. Specifically, to be matched with a trade executed at block time t, orders must arrive

in the mempool during the block time interval of (t − 1, t]. We believe gas bidding due to

competition should happen within a fairly short time window. If the window is too long, the

bid update is more likely to result from patient liquidity traders revising their fees to reduce

the waiting time.
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Fraction of PGA trades We implement the foregoing identification strategy above and Table 13

reports, for each token pair, the fraction of PGA trades for both trades with excessively high fees

(“excessively-high-fee trades”) and other trades (“other trades”). There are two notable observa-

tions. First, the overall fraction of executed trades identified as PGA trades is very small. For

example, for the group of “Other trades”, less than 1% of them are identified as PGA trades across

the six token pairs.

Table 13. Percentages of priority gas auction (PGA) trades. This table shows the fraction of trades identified as
priority gas auction (PGA) trades, for “excessively-high-fee trades” and other trades.

ExplicitCompetition Non-PGA trades PGA trades
TokenPair ExcessiveGas

USDC-USDT Other trades 99.95 0.05
Excessively-high-fee trades 99.40 0.60

DAI-USDT Other trades 99.95 0.05
Excessively-high-fee trades 99.45 0.55

ETH-USDT Other trades 99.87 0.13
Excessively-high-fee trades 96.05 3.95

LINK-ETH Other trades 99.35 0.65
Excessively-high-fee trades 90.24 9.76

WBTC-ETH Other trades 99.74 0.26
Excessively-high-fee trades 95.15 4.85

AAVE-ETH Other trades 99.46 0.54
Excessively-high-fee trades 93.55 6.45

Surprisingly, even if we zoom in on the “excessively-high-fee trades” which include trades

likely driven by competition, only a minority of them are identified as PGA trades. Across the six

token pairs, the fraction of PGA trades out of “excessively-high-fee trades” varies between 0.55%

for DAI-USDT and 9.76% for LINK-ETH. The result suggests that PGA type of bidding strategy

is not the dominant one used by informed traders. Instead of competitively bidding up the fee, they

start with bidding a very high fee, which resembles the jump bidding strategy in auction theory

(Daniel and Hirshleifer, 1998; Avery, 1998).

The motivation for adopting such a bidding strategy is that, by bidding a high fee in the first

place, an informed trader can discourage competition from other traders. First, by bidding a high
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fee, she can signal that her valuation of the information is high, and if bidding is costly, it is optimal

for potential competitors to drop out. Second, even if all traders value the information the same

and there is no bidding cost, it remains optimal for others to drop out as winning over an aggressive

bid from the jump bidder subjects one to a greater Winner’s Curse.

6 Conclusion

Decentralized exchanges (DEXs) have gained a significant market share in crypto trading since

their inception. Unlike centralized exchanges (CEXs) which continuously execute incoming trans-

actions based on their arrival time, DEXs process transactions in batches and prioritize their exe-

cutions based on fees bid by users. Thus, the blockchain fee is an important choice variable for

informed traders on DEXs.

In this paper, we study the price discovery process on DEXs. Using a structural VAR model,

we show that, compared with low-fee trades, high-fee trades reveal more private information. We

further test possible economic channels using a unique data set of Ethereum mempool orders. We

find that informed traders not only bid high fees to avoid execution risk arising from blockchain

congestion, but also to compete with each other. In addition, we show that informed traders com-

pete with each other by following a jump bid strategy.
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A Other robustness checks

In this appendix, we conduct two other robustness checks.

A.1 Blockchain fee level classification

In our baseline structural VAR specification, we include (signed) DEX trade flows with high, mid,

and low-fee levels respectively. Specifically, high-fee (low-fee) DEX trade flow is computed based

on trades with a gas price above 75% (below 25%) quantile of the gas prices of all trades in the

past 20 blocks on a rolling window basis.17 On the one hand, a too-short window makes our

quantile estimates noisy. For example, if we only use trades in the current block to implement

the classification, two trades with very similar gas prices will fall into different categories. On the

other hand, a too-long window might include trades with gas prices too distant to reflect the current

congestion level of the blockchain. Thus, we set the window length to 20 in the baseline results to

strike a balance.

As a robustness check, we try two different window lengths, 5 blocks, and 10 blocks, to classify

DEX trades and then redo the structural VAR estimation. Table A1 reports the estimation results

of the cumulative return impulse responses based on DEX trade flows from the two alternative gas

level classifications. It shows that the results are largely unchanged compared with the baseline

results in Table 4.

A.2 Lag order choice

In our baseline specification for the structural VAR model, we include lagged return and trade flow

variables of the last five blocks. As a robustness check, we vary the number of lags included in

the structural VAR specification. Table A2 report the return impulse responses when the number

of lags is set to 10 and 20 respectively. It shows that the results are qualitatively the same as the

17See Section 4 for details of our classification scheme.
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Table A1. Cumulative impulse responses between CEX return and DEX trade flows: Gas price level classi-
fication based on a rolling window of alternative numbers of blocks. This table reports the impulse responses
between the CEX return and DEX trade flows with different gas price levels based on the alternative classification
rule, cumulative over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified in
Equation 2. The estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row
variables are response variables and column variables are shock variables. CEX return is in basis point. DEX trade
flows are standardized and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and
10% respectively.

(a) Gas level classification based on a rolling window of 10 blocks.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.8*** 0.01 0.0 0.01
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.01 0.98*** −0.03*** −0.02***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01 −0.08*** 0.89*** −0.1***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.01 −0.11*** −0.2*** 0.82***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.06*** 0.96*** 4.0*** 8.04***
(0.01) (0.14) (0.26) (0.37)

xLowFee-DEX 0.0*** 1.0*** −0.01** −0.02***
(0.0) (0.01) (0.01) (0.01)

xMidFee-DEX 0.02*** −0.05*** 1.01*** 0.08***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.03*** −0.09*** −0.17*** 1.13***
(0.0) (0.01) (0.01) (0.01)

baseline results.
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(b) Gas level classification based on a rolling window of 40 blocks.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.79*** 0.01 −0.01* 0.01**
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.01 0.95*** −0.05*** −0.02***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.02* −0.08*** 0.89*** −0.06***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.01 −0.07*** −0.19*** 0.79***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.06*** 0.97*** 3.53*** 8.19***
(0.01) (0.13) (0.25) (0.38)

xLowFee-DEX 0.0*** 1.01*** −0.02*** −0.02***
(0.0) (0.01) (0.01) (0.0)

xMidFee-DEX 0.01*** −0.05*** 1.02*** 0.03***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.03*** −0.08*** −0.18*** 1.16***
(0.0) (0.01) (0.01) (0.01)

42



Table A2. Cumulative impulse responses of CEX return and DEX trade flows with different gas price levels:
Alternative number of lags in the structural VAR specification. This table reports the impulse responses between
the CEX return and DEX trade flow variables based on alternative numbers of lags included in the structural VAR esti-
mation, cumulative over 20 blocks. Impulse responses are obtained by estimating the structural VAR model specified
in Equation 2. The estimation is done for each pair-day and statistical inference is based on pair-day estimates. Row
variables are response variables and column variables are shock variables. CEX return is in basis point. DEX trade
flows are standardized and thus in their standard deviations. *, ** and *** indicate significance levels at 1%, 5% and
10% respectively.

(a) 10 lags of CEX return and DEX trade flows included in the structural VAR.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.69*** 0.02*** 0.01 −0.01
(0.01) (0.01) (0.01) (0.01)

xLowFee-DEX 0.0 0.95*** −0.08*** −0.08***
(0.01) (0.01) (0.01) (0.01)

xMidFee-DEX 0.01 −0.13*** 0.83*** −0.16***
(0.01) (0.01) (0.01) (0.01)

xHighFee-DEX −0.02* −0.11*** −0.27*** 0.75***
(0.01) (0.01) (0.01) (0.01)

NonStable

rCEX 1.03*** 1.04*** 4.15*** 8.69***
(0.01) (0.17) (0.3) (0.41)

xLowFee-DEX 0.0*** 1.02*** −0.02** −0.05***
(0.0) (0.01) (0.01) (0.01)

xMidFee-DEX 0.02*** −0.06*** 1.02*** 0.06***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.04*** −0.11*** −0.23*** 1.17***
(0.0) (0.01) (0.01) (0.01)
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(b) 20 lags of CEX return and DEX trade flows included in the structural VAR.

rCEX xLowFee-DEX xMidFee-DEX xHighFee-DEX

PairType Variable

Stable

rCEX 0.54*** 0.04*** 0.01 −0.01
(0.02) (0.01) (0.01) (0.01)

xLowFee-DEX 0.0 0.92*** −0.14*** −0.17***
(0.02) (0.02) (0.02) (0.02)

xMidFee-DEX 0.01 −0.18*** 0.75*** −0.24***
(0.02) (0.02) (0.01) (0.02)

xHighFee-DEX 0.0 −0.14*** −0.33*** 0.68***
(0.02) (0.01) (0.02) (0.02)

NonStable

rCEX 0.98*** 1.24*** 4.15*** 8.7***
(0.01) (0.23) (0.33) (0.45)

xLowFee-DEX 0.0*** 1.02*** −0.02* −0.06***
(0.0) (0.01) (0.01) (0.01)

xMidFee-DEX 0.03*** −0.05*** 1.0*** 0.06***
(0.0) (0.01) (0.01) (0.01)

xHighFee-DEX 0.06*** −0.14*** −0.29*** 1.13***
(0.0) (0.01) (0.02) (0.01)
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