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1 Introduction

Stochastic discount factors are the cornerstone of modern asset pricing. They allow to compute

asset prices as the expected discounted value of future cashflows. Asset pricing theory ordinarily

focuses on the demand of securities, and derives a stochastic discount factor from the optimizing

behavior of an investor who decides over consumption and portfolio allocations. This paper instead

focuses on the supply of securities. I build upon corporate finance theory to show that, under some

assumptions, a valid stochastic discount factor to price the equity claims of a firm can be backed

out from its optimal financial contracting behavior. This leads to an asset pricing model, which I

refer to as the Contracting Asset Pricing Model. I take a step in empirically evaluating the model

in the cross section of expected equity returns. My results suggest that the financial contracting

approach goes a long way in rationalizing observed cross-sectional differences in average returns.

The empirical appeal of the contracting approach to cross-sectional asset pricing lies in its

ability to link unobservable state-contingent prices to observable firms’ quantity choices. In this

perspective, this work mainly relates to the papers of Jermann (2010) and Belo (2010), who recover

a stochastic discount factor from firm’s real investment decisions on the production side of the

economy. Instead, I recover a stochastic discount factor from firms’ contracting behavior. In

corporate finance, financial contracting is not only a pivotal economic mechanism to raise external

financing, but also a fundamental channel through which firms transfer resources across states of

the world. As the very large literature that has developed over the last fifty years shows, financial

contracting is first order to study corporate policies. External financing contracts are practically

implemented with common financial instruments including credit lines, financial derivatives, equity

issuance, and portfolios of bonds with different maturities.1

Hart (2001) describes financial contracting as ”the theory of what kinds of deals are made

between financiers and those who need financing”. A firm that optimally arranges a financing

contract with an external lender issues promises to pay in some states of the world. I interpret

firms broadly, as production entities that may represent individual establishments, entire industries,

1In particular, credit lines appear to be a prominent implementation of state-contingent debt contracts. Sufi
(2009) reports that credit lines constitute more than 80 percent of bank debt for public firms in the US. Colla,
Ippolito, and Li (2013) report that the drawn part of credit lines accounts for 22 percent of their total debt.
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market segments, or sectors. I show that the state-contingent nature of the contract is informative

of the stochastic discount factor the firm responds to. By trading off the costs and benefits of

a given promise to pay in a specific state, a firm reveals information on the importance of that

state for its own value. The value of each state is also measured by the stochastic discount factor

the firm responds to. Therefore, the stochastic discount factor can be identified through observed

firms’ decisions, and used to price firms’ equity claims. In the model, the key friction that restricts

firms’ access to external financing and firms’ promises to repay is collateral constraints. Collateral

constraints that arise from limited enforcement restrict credible promises to repay, and hence the

amount of resources firms can effectively transfer across states.2

The Contracting Asset Pricing Model relates the stochastic discount factor a certain firm re-

sponds to the growth rate of the marginal value of its net worth.3 The economic mechanism driving

this result can be interpreted through the lens of firms’ optimal contracting decisions. Firms have

a motive to engage in financial contracting to transfer resources (net worth) to states that are most

important to maximize their shareholder market value. The optimal lending contract increases net

worth and lowers its marginal value in states in which the stochastic discount factor is presumably

high, such as — as conventional wisdom suggests — bad times. Importantly, collateral constraints

limit firms’ ability to achieve this goal. The more financially constrained firms are, the less their

effective ability to transfer resources to most important states, in spite of their motives.4 Thus,

the contracting model does not predict that one should empirically observe net worth growing in

high-value states. Rather, high-value states can be identified as those to which firms, coping with

their borrowing constraints, actively transfer net worth and lower its marginal value more than in

low-value future states.

Any contracting model relies on a series of possibly restrictive assumptions. To empirically

assess how far the contracting approach goes in pricing equity claims in the cross section of expected

returns, I show that, while the growth of the marginal value of net worth is inherently unobservable,

2See also Rampini and Viswanathan (2013). The quantitative implications of contracting models with collateral-
ized financing have been examined by Li, Whited, and Wu (2016), and Nikolov, Schmid, and Steri (2019).

3As standard in the dynamic contracting literature, net worth is the firm’s counterpart of household’s wealth,
and captures how constrained a company is with respect to funds to allocate to investment, and distributions.

4Rampini and Viswanathan (2013), Li, Whited, and Wu (2016), and Nikolov, Schmid, and Steri (2019) show that
financially constrained firms engage less in risk management because their immediate financing needs override their
hedging concerns.
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the model structure imposes restrictions on its dependence on the dynamics of observable variables.

In the model, firms make optimal investment, financing, and payout decisions to maximize their

equity market value. Firms have valuable investment opportunities that arise stochastically over

time. However, they have limited funds, and they sign contracts with external lenders to aid external

financing of profitable investments. Contracts have limited enforcement. This friction captures the

difficulties of enforcing contracts that involve transfers of resources backed only by promises to repay.

In equilibrium, the limited commitment problem endogenously imposes a collateral constraint, and

firms implicitly borrow constrained against their equity value. The riskfree borrowing rate reflects

variations in aggregate funding costs that external lenders are exposed to. In this context, value

maximization provides a rationale to transfer resources to more valuable states, in a tradeoff with

their funding needs for current investment and distributions. Firms’ external financing capacity is

limited, and firms can preserve it for specific future states by optimally contracting state-contingent

repayments with the lender. A firm can therefore transfer net worth to any future state by promising

a low repayment in the case that state occurs. Hence, firms can in effect transfer resources (net

worth) across states. In this setting, the stochastic discount factor reflects which state must have

led a firm to optimally make its observed decisions, and can be backed out from the firms’ state-by-

state first-order conditions with respect to contractual repayments. Conditional on how financially

constrained they are, firms implement investment and financing policies to transfer resources to

most important states, where the stochastic discount factor is high.

Given the model structure described above, the Contracting Asset Pricing Model ultimately

relates the stochastic discount factor firms respond to, to three observable variables. In the model,

every firm takes actions as best responses to all the relevant information required about its value

maximization problem to make the current decisions. This information is summarized by a collection

of state variables, whose dynamics in turn affect the growth of the marginal value of net worth and

the stochastic discount factor. It is important to notice that all the state variables of the problem

— net worth, profitability, and the interest rate — determine firm policies, and in turn affect

firms’ contracting behavior. The dynamics of the state variables therefore drive the dynamics of

the stochastic discount factor, which depends on the growth rate of net worth, the growth rate of

profitability, and the growth rate of the market riskfree rate. The three variables have an intuitive

interpretation. They measure the amount of resources available to the firm in a certain future state.
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These resources (net worth) can be either actively transferred by arranging financial contracts (net

worth growth), originate from existing profitable investments (profitability growth), or be raised at

a cost through external financing (interest rate growth).

Table 1
Contracting Model: Predictions and Evidence.

Model Predictions

Net Worth Growth Profitability Growth Interest Rate Growth

Most Important States High Low/High Low/High

Expected Return Spreads Negative Positive if Low NA
Negative if High

Empirical Evidence

Net Worth Growth Profitability Growth Interest Rate Growth

Most Important States High Low High

Expected Return Spreads Negative Positive NA

The top panel of Table 1 summarizes the key testable predictions of the Contracting Asset Pric-

ing Model. First, as the model predicts that most important states for equity prices of any firm

are inversely related to the growth rate of the marginal value of net worth given the severity of

its financial constraints, net worth growth is expected to load positively on the stochastic discount

factor. Instead, for both profitability growth and interest rate growth, two contrasting forces de-

termine the ultimate dominating effect on the backed-out stochastic discount factor. This is due to

the persistence in the stochastic processes governing the profitability of investment opportunities

and borrowing costs.5 The contracting model also imposes restrictions on the observed spreads in

cross-sectional average returns in accordance to the states that are most important for firms. As in

5Empirically, there is ample evidence that productivity and interest rates exhibit positive persistence. As I discuss
in Section 5, when productivity is high, persistent shocks reduce the marginal value of net worth because the expected
profitability and net worth going forward are high too. However, high current profitability increases investment needs
because of the higher expected conditional profitability of investment. The second effect increases the marginal value
of net worth. Similarly, persistence in interest rates raises the borrowing cost for the firm and its marginal value
of net worth when interest rates are high. Vice versa, high interest rates increase the conditional expected cost of
borrowing, and contribute to reduce the demand for debt to be otherwise optimally repaid. This increases preserved
future net worth and reduces its marginal value.
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textbook consumption-based models, securities that pay out in most important states are a hedge

against sustained downturns and earn higher expected returns. The only difference is that most

important states are not directly linked to aggregate consumption risk, but are now backed out from

the optimal firm responses.6 Recall that the most important states can be backed out as those in

which, in the presence of borrowing constraints, firm’s net worth increases the most. Thus, shares

of firms whose net worth grows are a hedge in that they pay out more in most important states, in

which the stochastic discount factor is high. Accordingly, high net worth growth stocks provide a

hedge in more important states and require lower expected returns. Similarly, if reductions in prof-

itability identify most important states, shares of firms whose profits grow provide higher payoffs in

less important states and earn higher expected returns. Finally, if most important states are those

that occur in times when interest rates spike, interest rate increases are associated with lower stock

prices, and higher expected equity returns.

I test the asset pricing implications of the model in the cross section of average equity returns.

The results are summarized in the bottom panel of Table 1. First, I document that the two

aforementioned firm characteristics, namely the growth rate of firm’s net worth and the growth

rate of firm’s profitability, generate sizeable spreads in cross-sectional equity returns. Second, I

implement asset pricing tests with the Generalized Method of Moments (GMM) to assess the

empirical performance of the model. As the recent empirical literature recommends (Lewellen,

Nagel, and Shanken (2010), Daniel and Titman (2012)), I consider different test assets in empirical

tests, namely the 25 Fama-French portfolios sorted by size and book-to-market equity, the 30 Fama-

French industry portfolios, and 25 portfolios sorted by the growth rates of net worth and profitability.

Overall, the Contracting Asset Pricing Model finds support in the data. The model prices the test

assets well, and delivers low pricing errors even in comparison to leading asset pricing models, as the

CAPM, the Consumption CAPM, and the Fama and French three-factor model. Historically, asset

pricing models obtained from consumption-based stochastic discount factors have not succeeded

in accounting for the variation of expected returns across stocks. One important reason for their

empirical failure is the smoothness of consumption data. This prevents expected returns to line

up with covariances with consumption aggregates, as these models predict. On the contrary, the

6Observe that, even in the case of complete markets, firms in general respond differently to the same aggregate
state because they are heterogeneous, for example with respect to size or financial constraints.
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Contracting Asset Pricing Model gets traction because it links the relevant stochastic discount factor

for firms’ equity prices responds to the firm’s characteristics, which exhibit larger fluctuations.

The Contracting Asset Pricing Model is not a multifactor model, as it is derived at the firm level.

Thus, it is not suited to derive direct aggregate implications. However, this does not necessarily

imply an inconsistency with the existence of aggregate risk factors that price the equity of large

public firms, such as reduced-form factor models, or with the consumption-based paradigm. To

empirically explore this relationship, I construct two ad-hoc empirical factors using net worth growth

and profitability as sorting variables, following the approach in Fama and French (2016), to obtain a

projection on the space of traded stocks. The results indicate that the variables that the Contracting

Asset Pricing Model predicts to generate cross-sectional spreads in average returns can be used to

construct factors the relate to those that both Hou, Xue, and Zhang (2015) and Fama and French

(2016) show to be essential for pricing the equity of large listed firms. In particular, the aggregate

factor constructed using net worth growth as a sorting variable very closely relates to both the

investment and the value factors in the two aforementioned studies. In this context, the contracting

approach offers an alternative interpretation of the anomalies that arise in the cross section of

equity returns. Through the lens of the Contracting Asset Pricing Model, anomaly variables can

be regarded as possibly omitted determinants of the growth of the marginal value of net worth that

are not captured by differences across firms in loadings on macroeconomic factors in benchmark

asset pricing models.

Related Literature. This paper lies at the intersection of three lines of research. First, this

work is closely related to Jermann (2010), Belo (2010), Jermann (2013), and Chen, Cooper, Ehling,

and Xiouros (2017), who propose models in which the pricing kernels that drive firms’ decisions can

be recovered from observed investment and capital choices. The key difference with these works is

the economic mechanism that allows to recover the stochastic discount factor from firms’ decisions.

Belo (2010) relies on a representation of production sets in which firms can affect idiosyncratic pro-

ductivity shocks, while Jermann (2010), Jermann (2013) and Chen, Cooper, Ehling, and Xiouros

(2017) investigate the equity premium, the term structure of interest rates, and the comovements

between consumption and investment, by taking advantage of state-contingent production tech-

nologies. Here, the relevant state-contingent action that allows to identify the stochastic discount
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factor is based on the corporate finance theory, in the context of dynamic contracting. Unlike these

studies, which rely on reduced-form for state-contingent production functions and parameteriza-

tions of firms’ production possibility frontiers, in this study I rely on microfoundations based on

the financial contracting literature. Second, this paper is linked to studies that analyze the as-

set pricing implications of endogenous borrowing and solvency constraints. These papers include

Alvarez and Jermann (2000), Alvarez and Jermann (2001), Lustig and Van Nieuwerburgh (2005),

Krueger, Lustig, and Perri (2008), Chien and Lustig (2010), Krueger and Lustig (2010), Lustig and

Van Nieuwerburgh (2010), Chien, Cole, and Lustig (2011), Chien, Cole, and Lustig (2012). While

the previous papers focus on the aggregate implications of households’ borrowing constraints, the

present work considers the implications of firms’ collateral constraints for the cross-sectional differ-

ences in the risk and return tradeoff of securities. Finally, more broadly, this work also expands on

the large literature that develops quantitative production models to investigate the cross section

of equity returns. Recent contributions include Zhang (2005), Livdan, Sapriza, and Zhang (2009),

Gomes and Schmid (2010), Garlappi and Yan (2011), and Bazdrech, Belo, and Lin (2013). With

respect to these papers, my focus is to obtain a stochastic discount factor, instead of rationalize

observed spreads in returns with respect to specific firms’ characteristics.

The paper is organized as follows. Section 2 introduces the key insights of the paper in a

stylized general equilibrium economy. This illustration highlights that the stochastic discount factors

backed out from firms’ optimal financing contracts bypasses, under some conditions, structural

considerations associated with the consumption-based asset pricing, which poses challenges related

to preferences (e.g., Campbell and Cochrane, 1999; Bansal and Yaron, 2004), intermediaries (e.g.,

He and Krishnamurthy, 2013), measurement issues (e.g., Bansal and Yaron, 2004; Barro, 2006;

Savov, 2011; Kroencke, 2017), heterogeneity and constraints (e.g., Alvarez and Jermann, 2000;

Koijen and Yogo, 2019). Section 3 builds on this insights and lays out the dynamic contracting

model. Section 4 derives the Contracting Asset Pricing Model and its properties. Section 5 presents

the empirical asset pricing tests and analyses. Section 6 concludes.
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2 An Illustration in General Equilibrium

This section conveys the main insights of this work and sets the groundwork for the subsequent

analysis. I build upon the exchange economy with borrowing constraints by Alvarez and Jermann

(2000), in which I introduce production and financial contracting. I show that asset prices can

be computed using stochastic discount factors backed out from firms’ optimal financing contracts.

This approach independent from structural considerations associated with the consumption side

of the economy. In contrast, the consumption-based asset pricing approach within this context is

significantly more intricate. The complexity arises from the necessity to keep track for the state-

contingent intertemporal rates of substitution among heterogeneous investors.

Time and Uncertainty. There are two dates, t = 0 (today) and t = 1 (tomorrow). Uncertainty

is represented by a finite number S of distinct states of nature, indexed by ω ∈ Ω, with probability

density π(ω). Uncertainty is realized at the beginning of t = 1, when the state ω is revealed.

Investors trade securities at t = 0. Their payoffs are realized at t = 1. Firms invest and arrange

external financing contracts at t = 0, while firms’ cash flows realize at t = 1.

2.1 Consumption Side: Investors

The economy is populated by a set I = {1, 2, ..., I} of investors, indexed by i ∈ I. Investors

consume one homogeneous good. We denote their exogenously-given endowments as ei = {ei,0;

ei,1(ω)} ∈ RS+1
+ , at t = 0 and in each state at t = 1. This formulation enables endowments to

be a generic function of the state, providing a versatile representation that can accommodate both

idiosyncratic and aggregate shocks.

Investor preferences are identical and have a time-separable expected utility representation over

their consumption choices ci = {ci,0; ci,1(ω)} ∈ RS+1
+ . The expected utility of an investor is

U(ci) ≡ u(ci,0) + β
∑
ω∈Ω

π(ω) · u(ci,1(ω)),

where the period utility u : R+→ R is strictly increasing, concave, and continuously differentiable,

and β ∈ (0, 1) is a time discount factor.
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Investors have access to a complete set of S Arrow-Debreu securities that pay off one unit of

consumption exclusively if state ω occurs. I denote the portfolio holdings of investor i in these

securities at t = 0 as ai,1(ω), and their prices as pa,1(ω). Arrow-Debreu securities exist in zero net

supply, that is,
∑

i∈I ai,1(ω) = 0. Investors can also trade the claims to the cash flows of J firms,

indexed by j ∈ J ={1, 2, ..., J}. I denote the stock holdings by investor i as nFi,j,0, and their prices

as pFj,0. Firms’ shares distribute dividends dFj,0 ≥ 0 at t = 0, and dFj,1(ω) ≥ 0 in each state at t = 1.

Dividend payouts are the result of firms’ investment and contracting decisions, as described below.

Firms’ shares are in unit net supply, that is
∑

i∈I n
F
i,j,0 = 1. Investors have initial endowments of

firms’ shares nFi,j,0 ≥ 0.

Investors are subject to the following budget constraints:

ei,0 +
∑
j∈J

pFj,0n
F
i,j,0 = ci,0 +

∑
ω∈Ω

pa,1(ω)ai,1(ω) +
∑
j∈J

(pFj,0 + dFj,0)nFi,j,0, (1)

ci,1(ω) = ai,1(ω) + ei,1(ω) +
∑
j∈J

dFj,1(ω)nFi,j,0,∀ω ∈ Ω, (2)

which equalize sources and uses of funding in each date and state.

Investors also face state-contingent borrowing constraints as follows:

ai,1(ω) +
∑
j∈J

dFj,1(ω)nFi,j,0 ≥ Bi,1(ω),∀ω ∈ Ω. (3)

In Equation (3), Bi,1(ω) ∈ [−∞, 0] represents the borrowing limit for investor i in state ω. This

constraint limits negative positions in Arrow-Debreu securities, with the inclusion of −∞ allowing

for the possibility of unrestricted borrowing in certain states.

In their infinite-horizon economies, Alvarez and Jermann (2000) and Alvarez and Jermann (2001)

endogenize the borrowing limits in (3) as those that render investors with financial wealth pre-

cisely equal to the limit indifferent between remaining active in the economy or defaulting on

their repayment obligations, with the latter decision leading to their permanent exclusion from

asset markets in the future. Formally, in this context, Bi,1(ω) satisfies the participation constraint

u(ci,1(ω)) ≥ u(ei,1(ω)) with equality.
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While not critical to the central theme of this illustration, it is worth noting that, with a finite

horizon, ”not too tight” constraints imply autarchy if all securities are in zero net supply. This

is because, in the final period, investors have no incentives to fulfill their commitments to close

out short positions. Formally, this implies ai,1(ω) ≥ 0, ∀ i ∈ I. However, if only Arrow-Debreu

securities are traded, market clearing can only be attained when ai,1(ω) = 0, ∀ i ∈ I. Thus, although

firms’ shares are redundant for investors’ risk sharing when Arrow-Debreu claims are complete, they

are useful to support the endogenous determination of borrowing limits of Alvarez and Jermann

(2000).7

Investors solve the following portfolio and consumption problem:

max
ci,0,ci,1(ω),ai,1(ω),nF

i,j,0

U(ci),

subject to (1), (2), (3), and the following market clearing conditions in the good and security

markets:

∑
i∈I

ei,0 =
∑
i∈I

ci,0,

e1(ω) =
∑
i∈I

ci,1(ω),∀ω ∈ Ω ,∑
i∈I

ai,1(ω) = 0,∑
i∈I

nFi,j,0 = 1,∀j ∈ J ,∑
i∈I

nFi,j,0 = 1,∀j ∈ J .

Let βπ(ω)λi,1(ω) ≥ 0, ∀ω ∈ Ω, be the Lagrange multipliers on the borrowing constraints (3).

The following results hold:

7”Not-too-tight” borrowing constraints have been introduced by Kehoe and Levine (1993). Despite their elegance,
several studies have documented less appealing properties, such as the indeterminacy of equilibria (e.g., Bloise,
Reichlin, and Tirelli, 2013; Bethune, Hu, and Rocheteau, 2018), and the existence of bubbles (Kocherlakota, 2008).
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Proposition 1 (Marginal Investor(s) and Asset Prices) i) The prices of Arrow-Debreu se-

curities and of firms’ shares are given by

pa,1(ω) = π(ω)m1(ω), (4)

and

pFj,0 = E0[m1(ω)dFj,1(ω)], (5)

where

m1(ω) ≡ β(u′(ci,1(ω)) + λi,1(ω))

u′(ci,0)
,∀i ∈ I. (6)

ii) A unique marginal investor does not exist, that is, the stochastic discount factor mi,1(ω) does

not, in general, correspond to any individual investor’s marginal rate of substitution. In particular:

MRSi,1(ω) ≡ βu′(ci,1(ω))

u′(ci,0)
≤ m1(ω), ∀i ∈ I. (7)

iii) Unconstrained investors equalize their marginal rates of substitutions, i.e., ∀l ∈ I such that

al,1(ω) +
∑

j∈J d
F
j,1(ω)nFl,j,0 > Bl,1(ω),

MRSl,1(ω) = max
i∈I

MRSi,1(ω) = m1(ω).

iv) Prices are ”too high for everyone”, that is, ∀i ∈ I

pa,1(ω) ≥ MRSi,1(ω)

π(ω)
,

and

pFj,0 ≥ E0[MRSi,1(ω)dFj,1(ω)].

Part i) of Proposition 1 establishes that state prices pa,1(ω) and stock prices pFj,0 can be computed

using a stochastic discount factor m1(ω), which is equalized across investors who need to agree on

market prices. The term λi,1(ω) in the numerator of m1(ω) indicates that payoffs in a given state are
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more valuable for investors that are more constrained in that state. However, Part ii) shows that,

departing from textbook complete-market economies without borrowing constraints, the stochastic

discount factor does not generally coincide with the marginal rate of substitution MRSi,1(ω) of

any investor. Part iii) asserts that this is the case only when investors are unconstrained in a

certain state. When investors are unconstrained, they engage in risk-sharing and harmonize their

marginal rates of substitution. A critical observation is the identification of the relevant pricing

kernel for asset pricing as the stochastic discount factor m1(ω), which embodies complexity due

to its dependence on various factors, including agents’ preferences, consumption patterns, and

borrowing restrictions. Even in scenarios where an unconstrained investor is present in every state,

there remains no assurance that the same investor l ∈ I remains unconstrained across all possible

states ω ∈ Ω. Thus, the notion of a singular ”marginal investor” dissolves, as the marginal rates of

substitutions from various investors across different states are required to compute asset prices. Part

iv) formalizes an asset pricing implication of this property. Since borrowing constraints increase

the stochastic discount factor m1(ω), asset prices generally attain levels exceeding the marginal

valuation E0[MRSi,1(ω)dFj,1(ω)] of any investor.

Although asset prices are greater or equal than all investors’ marginal valuations, the market is

free of arbitrage opportunities, as the following proposition establishes.

Proposition 2 (No Arbitrage) The market is arbitrage free, that is, for any feasible i ∈ I, @

θi ≡ (ai,1(ω), nFi,j,0) ∈ RS+J such that one of the following holds:

� pθi ≤ 0, and xθi ≥ 0 with at least one strict inequality; or

� pθi < 0, and xθi ≥ 0,

where p ≡ (pa,1(ω), pFj,0) ∈ RS+J is a price vector, and x is a S × (S + J) payoff matrix defined as

x = [IS|dF ], where IS is a S × S identity matrix, dF is a S × S matrix with elements dFj,1(ω), and

the operator | stands for horizontal matrix concatenation.

Proposition 2 establishes that investors are unable to devise a trading strategy, denoted as θi,

involving Arrow-Debreu securities and firm stocks such that a positive payoff is attainable with
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non-zero probability through a self-financing strategy, or a non-negative future payoff is feasible via

a cash inflow originating from short sales.8 The absence of arbitrage opportunities can be intuitively

understood by agents being unable to short sell securities in quantities that are sufficiently large. In

a manner analogous to the foundational work by Harrison and Kreps (1979), the absence of arbitrage

in this context is congruent with a linear pricing rule. However, the presence of borrowing constraints

implies that the stochastic-discount factor m1(ω) does not coincide with investors’ marginal rate of

substitution as in standard consumption-based models.9

2.2 Production Side: Firms

I define production entities — henceforth referred to as firms — as units that may represent

individual establishments, entire industries, market segments, or sectors. Firms can operate a

production technology that delivers a stochastic output in terms of the consumption good. This

consumption good, besides fulfilling consumption demands, is used for investment. In each state,

realized output in state ω at t = 1 is Aj,1(ω)̇f(kj,0), where kj,0 ≥ 0 is capital investment at t = 0,

Aj,1 : Ω→ R+ is a productivity shock, and f : R+ → R+ is a strictly increasing, strictly concave,

differentiable production function, which satisfies the Inada conditions (i.e., f(0) = 0, f ′(0) = ∞,

f(∞) =∞, f ′(∞) = 0).

Firms begin period 0 with a wealth endowment wj,0 in cash. Firms can obtain external financ-

ing through financing contracts with specialized external lenders, to which I refer equivalently as

”lenders”, ”bankers”, or ”financiers”. Lenders are perfectly competitive and have deep pockets.

Financing contracts include state-contingent transfers bj,1(ω) from the borrower to the lender in

state ω at t = 1, and an upfront transfer pBj,0 at t = 0 from the lender to the borrower, which is

determined given the promised transfers bj,1(ω).

Firms maximize their market value, that is the expected discounted value at t = 0 of their cash

flows to equityholders, taking the stochastic discount factor m1(ω) as given.

8It is straightforward to extend the investor’s problem by allowing trading of additional ”complex” securities,
which can be valued as portfolios of Arrow-Debreu securities.

9For example, Jouini and Kallal (1995), Jouini and Kallal (1999), and Jouini and Kallal (2001) study arbitrage
and equilibrium in markets with frictions.
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V (wj,0) ≡ max
kj,0,bj,1(ω)

dFj,0 +
∑
ω∈Ω

π(ω)m1(ω)dFj,1(ω),

subject to

dFj,0 = wj,0 − kj,0 + pBj,0, (8)

dFj,1(ω) = Aj,1(ω)̇f(kj,0)− bj,1(ω), ∀ω ∈ Ω, (9)

dFj,0 ≥ 0, (10)

dFj,1(ω) ≥ 0, ∀ω ∈ Ω. (11)

Equations (8) and (9) are budget constraints, which equalize sources and uses of funds. Con-

straints (10) and (11) restrict dividends to be positive and rule out that firms have access to

additional funding. Thus, firms are financially constrained. Observe that (10) and (11) can be

rearranged as follows

pBj,0 ≥ kj,0 − wj,0, (12)

bj,1(ω) ≤ Aj,1(ω)̇f(kj,0), ∀ω ∈ Ω, (13)

to underline the borrowing constraints that the firms face. In particular, the promised repayments

bj,1(ω) are limited and fully secured by realized output in each state, while the current funds raised

pBj,0 must suffice to cover external financing needs kj,0 − wj,0. Notice that the constraint kj,0 ≥ 0 is

never active because of the properties of the production function.

2.3 Lenders

The initial contractual transfer pBj,0 depends on the structure of the primary lending markets.

Lenders have a large endowment of funds in all dates and states, as for example in Dávila and

Korinek (2018), in which lenders’ borrowing constraints are never binding. For simplicity, and

following the literature on collateralized financing (e.g., Rampini and Viswanathan, 2010; Rampini

14



and Viswanathan, 2013), I assume lenders are risk neutral with time discount factor β. Under this

assumption:

pBj,0 = β
∑
ω∈Ω

π(ω)bj,1(ω). (14)

The risk neutrality assumption is convenient as it does not require to impose additional structure on

the lenders’ possible stochastic discount factor. One possible rationalization of risk-neutral financing

is competition among lenders with heterogeneous risk aversion.

Suppose a continuum of deep-pocket lenders, indexed by their risk aversion b ∈ B = [0,∞), that

compete for offering a financing contract with promised transfers bj,1(ω) to firm j. Let ub : R → R

be a strictly increasing, weakly concave, and continuously differentiable utility function, with an

Arrow-Pratt coefficient of risk aversion increasing in b, and pBj,b,0 the initial transfer from lender b

to firm j. Profit-maximizing lenders solve

max
pBj,b,0

ub

(
eb,0 −

∑
j∈J

pBj,b,0

)
−
∑
ω∈Ω

βπ(ω)ub

(
eb,1(ω) +

∑
j∈J

bj,1(ω)

)
,

where eb,0 and eb,1(ω) are large endowments, subject to the following participation constraints:

∑
ω∈Ω

βπ(ω)ub(bj,1(ω)) ≥ ub(p
B
j,b,0), ∀j ∈ J ,

which state that the utility of promised repayments exceeds those of the funds provided. Because of

competition in credit markets, participation constraints always bind. Any firm j always chooses to

arrange external financing contracts from risk-neutral lenders as pBj,0,0 ≥ pBj,b,0, ∀b ∈ B = [0,∞). For

risk-neutral lenders,
∑

ω∈Ω βπ(ω)u0(bj,1(ω)) = u0

(
β
∑

ω∈Ω π(ω)bj,1(ω)
)
,which pins down pBj,0,0 = pBj,0

as in (14) from the participation constraint. For any other risk-averse lender b, as ub is increasing

and weakly concave,

ub(p
B
j,b,0) =

∑
ω∈Ω

βπ(ω)ub(bj,1(ω)) ≤ ub

(∑
ω∈Ω

βπ(ω)bj,1(ω)

)

which implies pBj,b,0 ≤
∑

ω∈Ω βπ(ω)bj,1(ω) = pBj,0,0.10 Expected utility theory also suggests that

10The same conclusions hold with a discrete set of bankers, B ={1, ...B}, as long as at least one of them is risk-
neutral. This is because lenders compete to give external financing to firms in a first-price auction.
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risk neutrality can capture the evidence for which wealthy individuals behave as if they were risk

neutral with respect to small risks (Rabin, 2000). In models with large investors, the latter are often

modeled as risk neutral, or are endogenously risk neutral when they have deep pockets. Several

utility functions, such as log utility, imply wealth-dependent absolute (Arrow-Pratt) risk aversion,

which converges to risk neutrality for sufficiently high wealth.

2.4 Production Side: Asset Prices and Corporate Policies

Let λj,0 ≥ 0 and π(ω)m1(ω)λj,1(ω) ≥ 0 be, respectively, the Lagrange multipliers on firm j’s

borrowing constraints (10) and (11). In this setup, the following result holds.

Proposition 3 (Asset Prices: SDF Recovery) The stochastic discount factor m1(ω), ∀ω ∈ Ω,

can be recovered from firm j’s optimal policies as

m1(ω) = β
1 + λj,0

1 + λj,1(ω)
. (15)

Equation (15) recovers the stochastic discount factor from firm policies, irrespective of the structure

of the consumption side of the economy, such as preferences, endowments, and short sale constraints.

The multipliers λj,0 and λj,1(ω) are endogenous entities that depend on firm investment and con-

tracting decisions. They reflect the adjustments of firm policies to the value of each state ω, as

gauged by m1(ω).11 The economic interpretation of the representation in (15) is the following.

Firm maximize their market value by arranging state-contingent financing contracts. These con-

tract trade off dividend distributions today (i.e., thereby raising λj,0), against resource transfers to

most valuable states (i.e., thereby reducing λj,1(ω)). At the optimum, the tradeoff between today’s

marginal values (1 +λj,0) and those of state ω tomorrow (1 +λj,1(ω)) equates the ratio between the

marginal investors’ stochastic discount factor m1(ω) and lenders’ time discount factor β. There-

fore, states with high m1(ω) can be identified as those to which firms allocate the most resources,

relative to their current financial constraints, which are captured by their current marginal value of

funds λj,0. Given that the solution to firm j’s problem is contingent on its wealth, two firms with

11Clearly, one can equivalently recover state prices, as Equation (4) shows.

16



different initial wealth in general implement different policies. In the dynamic model of Section 3,

I operationalize the theory by mapping unobservable Lagrange multipliers to an econometrician’s

information set via the state variables of the firm’s problem.

The following corollary establishes that, in the special case where contracts are incomplete,

meaning lenders only offer state-uncontingent financing, i.e., bj,1(ω) = bj,1, ∀ω ∈ Ω, as in corpo-

rate investment and financing models with exogenous contracts (e.g., Hennessy and Whited, 2005;

Hennessy and Whited, 2007), the optimal financing choices of firms would not allow the recovery

of the stochastic discount factor m1(ω) in each state. Instead, they would only impose an ex-ante

restriction in expectation.

Corollary 1 (Special Case: No Contracting) Assume bj,1(ω) = bj,1. Then the stochastic dis-

count factor m1(ω), ∀ω ∈ Ω cannot be recovered from firms’ optimal policies if S > 2. Then, the

following holds

E0 [m1(ω)(1 + λj,1(ω))] = β(1 + λj,0). (16)

Intuitively, firms are unable to redistribute resources across all states tomorrow, given that they only

have two independent decision variables at their disposal: capital kj,0 and uncontingent financing

bj,1. Consequently, firms’ decision cannot span dividend payouts across all states, unless only two

states of nature exist (S = 2). This limitation arises because, by adjusting investment and financing

decisions within the feasible set, firms influence the joint payoffs in future states, as opposed to the

individual ones, as would be the case with state-contingent contracts. The optimality condition (16)

equalizes the expected discounted cost of an additional dollar to be repaid in all future states (on

the left-hand side) with the marginal benefit of an additional dollar raised today (on the right-hand

side).

Finally, I characterize optimal corporate policies.

Proposition 4 (Corporate Policies) i) The optimal capital stock is

kj,0 = f−1
k

(
1

β
∑

ω∈Ω π(ω)Aj,1(ω)̇

)
.
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ii) Define the most valuable state ωM as ωM = maxω∈Ω m1(ω). If m1(ωM) > β, the firm never pays

dividends at t = 0, i.e., dFj,0 = 0.

iii) Assume m1(ωM) > β. Firms exhaust their financing capacity at t = 0 and at t = 1,

∀ω ∈ Ω\ωM , i.e.

λj,0 > 0,

λj,1(ω) > 0, ∀ω ∈ Ω\ωM ,

λj,1(ωM) = 0.

In particular

bj,1(ωM) =
kj,0 − wj,0 −

∑
ω∈Ω\ωM

π(ω)βAj,1(ω)f(kj,0)

βπ(ωM)
,

bj,1(ω) = Aj,1(ω)f(kj,0),∀ω ∈ Ω\ωM ,

with

λj,0 =
m1(ωM)− β

β
,

λj,1(ω) =
m1(ωM)−m1(ω)

m1(ω)
, ∀ω ∈ Ω\ωM ,

λj,1(ωM) = 0.

Part i) shows that, within this economy, firms are unrestricted in their investment choices, and are

always capable of financing kj,0, which is increasing in expected discounted productivity. Borrowing

constraints do not restrict investment decisions because the state-contingent borrowing limits in

(13) bound promised repayments precisely by the output Aj,1(ω)̇f(kj,0). Part ii) reveals that firms

forfeit dividend payments at t = 0 to reallocate resources to the ”most valuable” state ωM , the

one with the highest stochastic factor m1(ωM). This holds true under the mild condition that

the highest stochastic discount factor exceeds the time discount rate under risk neutrality, that

is m1(ωM) > β. Part iii) describes the optimal contract and the distribution of state-contingent

repayments across future states ω ∈ Ω. Firm j pays out as much as possible in the most valuable

state ωM , in compliance with the budget constraint (8), while borrowing constraints are binding in
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all other states Ω\ωM . The multipliers λj,1(ω) have intuitive expressions. They are equal to the

relative importance of the most valuable state compared to other states, measured as the fractional

increase in the stochastic discount factor between state ωM and ω. Similarly, λj,0 represents the

fractional increase between m1(ωM) and the time preference parameter β. Overall, in this stylized

setting, firms follow a stark policy by arranging contracts to transfer as many resources as possible

to most valuable state for value maximization.

3 The Dynamic Contracting Model

While the stylized economy in the previous section conveniently conveys the main theoretical

insights of this study, its practical applicability is limited. First, firm policies are notably stark,

especially as borrowing constraints do not limit corporate investment. Second, it does not provide a

clear mapping between the Lagrange multipliers on borrowing constraints and observable variables.

Third, for the sake of illustration, it does not fully leverage one of the primary advantages of the

contracting approach, which is the ability to abstract from the comprehensive modeling of the

consumption side of the economy.

This section develops a discrete-time dynamic limited enforcement model in a neoclassical envi-

ronment. Firms make investment and financing decisions with an infinite time horizon. Thus, they

take into account the expected consequences of current actions for the feasibility of their future

plans. Firms can arrange lending contracts with competitive lenders to raise external financing.

Lenders have limited ability to enforce credit arrangements that manifests itself in the presence of

endogenous collateral constraints.12 Specifically, lenders restrict credit supply such that, in each

period and state, firms’ continuation value is greater than what it would be if they did not honor

their promises to repay and lenders could liquidate a fraction of their assets pledged as collateral.

The state-contingent nature of the contract allows firms to transfer resources to states and times

where they are more valuable. This section details the technology and the industry environment,

12This paper studies the asset pricing implications of related limited enforcement problems. Related problems
are proposed, for example, by Albuquerque and Hopenhayn (2004), Lorenzoni and Walentin (2007), Rampini and
Viswanathan (2013), and Li, Whited, and Wu (2016). This paper considers the asset pricing implications.
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and the financial contracting problem. Section 4 derives the key asset pricing results of this paper

that I test empirically in Section 5.

Technology and Competitive Environment. A continuum of perfectly competitive firms op-

erates in an industry. Each firm produces a homogeneous product, whose price is normalized to

one. In period t, a fraction φ of new firms randomly enters the industry. Existing firms become

unproductive and exit with probability φ, so that the total mass of operating firms is unchanged

over time.

An entrant i arrives with some initial capital stock ki,0. Entrants engage in a contract with

lenders to obtain external financing. Firms have access to a production technology, which generates

a stochastic stream of profits

Π(ki,t, si,t) ≡ A(si,t)k
α
i,t,

where ki,t is the capital of firm i at time t, α ∈ (0, 1) is the curvature parameter of the production

function, which exhibits decreasing returns to scale, and A(si,t) is a stochastic process describing

productivity. The idiosyncratic shock si,t is the driving force of firm-level heterogeneity, and gen-

erates a nontrivial cross section of firms. si,t follows a Markov process with finite support S and a

stationary discrete transition function Qs(si,t+1|si,t).

Equity Value Maximization. Drawing upon the insights in Section 2, I do not impose structure

on the consumption side of the economy. Instead, I merely assume the existence of a valid stochastic

discount factor of marginal investors for the pricing of firms’ equity (formally, the counterpart

of m1(ω)). I posit that firms maximize the expected discounted value of dividends, taking such

stochastic discount factor as given.

Assumption: Marginal Investor’s SDF and Value Maximization. There exists a stochastic discount

factor process {Mi,t}∞t=0, with Mi,t > 0. Firm i maximizes Et [
∑∞

τ=0Mi,t+τdi,t+τ ], where {di,t}∞t=0 are

equity payouts.

In the interest of generality, I accommodate the possibility that the stochastic discount factor

Mi,t is specific to firm i. This caters to potentially complex market structures on the consumption

side of the economy, particularly certain forms of market incompleteness. It is well known that

in incomplete markets different investors have different stochastic discount factors and therefore
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disagree on the solution to the optimal decision problem of the firm.13 Complete markets are

nested as a special case in which Mi,t = Mt, for all firms in the economy. As firms take the

stochastic discount factor as given, the optimality conditions I derive and empirically test are the

same that would arise in general equilibrium.14

Financing and Contracting. Upon arriving in the industry, firms can enter a contractual re-

lationship with a representative lender. The contract not only provides initial funding, but also

financing over the firm’s life cycle. As discussed in Section 2, I assume the lender is risk neutral

and has deep pockets. In this setting, both parties have motives to arrange contracts to implement,

albeit imperfect, risk sharing.

Lenders are instead exposed to time-varying borrowing costs because of, for example, aggregate

credit risk, and lend at the gross interest rate Rt, which is taken ask given. I impose that the

stochastic discount factor is consistent with the market riskfree rate, that is Rt = Et[Mi,t+1].

The timing of events over a firm’s life cycle is as follows. As soon as a firm enters the industry,

it signs a contract with the lender to obtain initial funding. Then, at the beginning of each period,

the firm first faces the exogenous exit shock, and the state si,t realizes and the market rate Rt

is observed. There are no information asymmetries because si,t is publicly known. Second, firm’s

decisions and operations occur: inputs are purchased, production takes place, revenues are collected,

transfers to and from lenders are made, and dividends are distributed. Third, the firm chooses either

to renege the contract or to continue operations. This limited enforcement problem is discussed in

more detail below. Figure 1 summarizes the intra-period timing.15

[Insert Figure 1 Here]

In this setup, the financing contract includes transfers {τi,t}∞t=0 which, as I detail below, can be

expressed recursively as time-t decisions over transfers Rtb(si,t+1, Rt+1) contingent to each state at

13See, for example, Ekern and Wilson (1974) (Chapter 10), Radner (1974) (Chapter 11) Magill and Quinzii (2002)
(Chapter 6), and Gomes and Michaelides (2007).

14Given that the model is derived at the firm level, it does not necessarily bear implications for the behavior of
aggregate asset prices and consumption. However, it is immune to the aggregation critiques in Deaton (1992) and
Kirman (1992) for its predictions about cross-sectional differences in returns. For a related discussion, see Cochrane
(1996) (p. 618).

15In this setup, the contract has one side commitment. While there is a limited commitment problem on the
firm’s side, the lender honors the long-term contract. This feature becomes apparent in the recursive formulation in
Appendix A.3, where the lender’s promise-keeping constraint is part of the problem.
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time t + 1. Given this set of promised repayments, the firm receives Et[b(si,t+1, Rt+1)] upfront at

time t (the counterpart of pBj,0 in Section 2).

In this work I remain agnostic about the implementation of the optimal contract. Existing

studies show that state-contingent debt contracts can be implemented in practice with common

financial instruments such as credit lines (Nikolov, Schmid, and Steri, 2019), financial derivatives

(Rampini and Viswanathan, 2013) and portfolios of bonds with different maturities (Angeletos,

2002). External equity issuance might also be part of the implementation, despite corporations do

not often engage in seasoned equity offering and often do so as a result of the exercise of employees

stock options (e.g., McKeon, 2015).

One interpretation of lenders in the model are bankers, who cannot purchase (substantial) shares

of the firms on the secondary market. The U.S. legislation prevents banks from holding firms’ equity

(Eckbo, 2007, Chapter 5), as commercial banks are restricted to hold equity only through venture

capital subsidiaries and through the restructuring of distressed loans.16

Recursive Formulation. Closely following Abreu, Pearce, and Stacchetti (1990), the contract-

ing problem can be formulated recursively using net worth wi,t as a state variable, as detailed in

Appendix A.3. Realized net worth in a future state determined by si,t+1 and Rt+1 determines the

amount of resources that are available to the firm in a certain state, net of liabilities. Intuitively,

net worth is the corporate counterpart of household’s wealth, and captures how constrained a com-

pany is in terms of resources to allocate to investment, and distributions. The recursive contracting

problem is the following:

V (wi,t, si,t, Rt) = max
{di,t,ki,t+1,b(si,t+1,Rt+1),w(si,t+1,Rt+1)}

di,t + Et [Mi,t+1V (w(si,t+1, Rt+1), si,t+1, Rt+1)](17)

s.t.

θki,t+1 ≤ Et [Mi,t+1V (w(si,t+1, Rt+1), si,t+1, Rt+1)] (18)

di,t ≥ 0 (19)

wi,t ≥ di,t + ki,t+1 − Et[b(si,t+1, Rt+1)] (20)

w(si,t+1, Rt+1) ≤ Π(ki,t+1, si,t+1) + (1− δ)ki,t+1 −Rtb(si,t+1, Rt+1) ∀si,t+1, ∀Rt+1. (21)

16In other countries, such as in Germany and Japan, banks are instead allowed to undertake equity investments.
The regulatory debate about whether U.S. commercial banks should be allowed to expand their ability to hold equity
falls beyond the scope of this work.
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The collateral constraint (18) arises from the limited enforcement problem. The lender anticipates

that the borrower has limited commitment and can renege the contract. Thus, the lender is willing

to lend until the amount θki,t+1 the borrower can divert does not exceed the borrower’s continuation

value Et [Mi,t+1V (w(si,t+1, Rt+1), si,t+1, Rt+1)]. This imposes an enforcement constraint on the firm’s

side, and makes reneging the contract never optimal. Funding is therefore riskfree, and firms raise an

amount Et[b(si,t+1, Rt+1)] at time t backed up by state-contingent promises to repay b(si,t+1, Rt+1) at

time t+1. Constraint (19) imposes that equity is in fixed supply by restricting dividend payments di,t

to be non-negative. Thus, the firm cannot raise additional funds by issuing costless external equity

(i.e., negative dividends). Without this constraint, firms would be financially unconstrained and the

contracting problem would be trivial. Constraints (20) and (21) are the budget constraints at time t

and in all states si,t+1 at time t+1. Specifically, equation (20) at time t ensures that available funds,

namely net worth and raised funds, suffice to cover dividend and capital expenditures. Equations

(21) define net worth in all future states as the sum of cash flows and the depreciated value of

capital, minus the state-contingent amount to be repaid in that state.17

The recursive formulation in terms of net worth not only improves the computational efficiency

of the numerical solution because of the smaller state-space, but is also convenient to introduce

the hedging interpretation of the model. The firm has a limited borrowing capacity because of the

collateral constraint. In this formulation, the firm has the possibility to choose state-contingent

promised utility (contractual repayments) b(si,t+1, Rt+1) for each state. The firm can therefore

choose to hedge a specific state s at time t + 1 by choosing a lower repayment b(si,t+1, Rt+1). All

else equal, hedging a state has three effects. First, the firm saves borrowing capacity by relaxing

the enforcement constraint. Second, as Equation (21) shows, the firm increases its net worth in

state s at time t+ 1, by lowering its required repayment. As a result, more resources are available

for investments and distributions in state s. Third, as Equation (20) illustrates, a lower repayment

in some future state implies a lower amount of external funds raised at time t, and less net worth

available for today’s investment and distributions. In sum, the firm can effectively hedge a state by

transferring net worth from today to specific future states tomorrow. Because the firm’s external

financing capacity is limited by the borrowing constraint, the company faces a tradeoff between

raising funds today, and preserving them for specific states that may occur tomorrow.

17In the equilibrium contract, the budget constraints are always satisfied with equality.
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4 An Asset Pricing Model

This section introduces the key asset pricing results of this paper. Specifically, I recover firms’

stochastic discount factors in terms of firm’s policies and characteristics. This leads to an asset pric-

ing model, which I refer to as the ”Contracting Asset Pricing Model” or simply as the ”Contracting

Model”. Before stating the main result, the following proposition shows that the firm problem has

a well-defined solution and establishes key properties of the value function that stem from the main

economic mechanism of the model.

Proposition 5 (Properties of the Value Function) Let T be the Bellman operator associated

with the problem (17)-(18), V UB(wi,t, si,t, Rt) the solution of the same problem without Constraint (18),

and V LB(wi,t, si,t, Rt) a function over the same domain of V (wi,t, si,t, Rt) such that V LB(wi,t, si,t, Rt) ≤

V (wi,t, si,t, Rt). Assume the tranversality conditions

lim sup
n↑∞

Et
[
Mi,t+nV

UB(w(si,t+n, Rt+n), si,t+n, Rt+n)
]

= 0, (22)

and

lim inf
n↑∞

Et
[
Mi,t+nV

LB(w(si,t+n, Rt+n), si,t+n, Rt+n)
]

= 0. (23)

Then

i) the value function is the unique fixed point of T in the order interval [V LB(wi,t, si,t, Rt), V
UB(wi,t, si,t, Rt)],

ii) the sequence of functions {T nV LB(wi,t, si,t, Rt)}∞n=1 converges to V (wi,t, si,t, Rt) pointwise,

iii) the value function is increasing, weakly concave and differentiable in net worth wi,t,

iv) the value function is weakly increasing in si,t and weakly decreasing in Rt.

The first and second part of the proposition provide a procedure to solve for the equilibrium

contract. Since in the contracting problem the objective function itself appears on the right-hand

side of the collateral constraint, the dynamic programming problem in (17)-(18) is not a standard

convex optimization problem. In particular, verifying the discounting property of Blackwell’s suffi-

cient conditions would require the knowledge of the solution to be determined. The solution of the

functional equation may therefore not be unique. However, a different approach based on Knaster-

Tarski fixed-point theorem allows to establish two results. First, the value function is the unique
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fixed point of the Bellman operator in a restricted functional space. The lower boundary of this

functional space is the zero function, while the upper boundary is the solution to a planner’s prob-

lem in which the enforcement constraint is removed. Second, the sequence of functions obtained

by iterating the Bellman operator from the lower bound converges pointwise to such a fixed point.

Theoretically, the solution can be obtained by value function iteration from the any initial condition

V LB(wi,t, si,t, Rt) ≤ V (wi,t, si,t, Rt), such as the null function, as long as the transversality condi-

tions are satisfied.18 The third part states that the more resources the firm has available, the higher

its market value, but the latter increases disproportionately less with the level of net worth. Thus,

all else equal, firms that arrange financing contracts to transfer net worth to a specific future state

increases the market value if that state is realized, but the marginal value of transferred net worth

is decreasing. Finally, the fourth part shows that, due to the positive persistence in the Markov

processes driving profitability si,t and interest rates Rt (that is typically observed empirically), the

value of equity is nondecreasing in si,t and nonincreasing in Rt. Intuitively, high profitability states

are expected to trigger good future investment prospects, while high interest rates are likely to be

associated to high future borrowing costs as well.

The next proposition obtains a stochastic discount factor from firms’ policies.

Proposition 6 (The Contracting Asset Pricing Model) The stochastic discount factor firm

i responds to can be backed out from the firm’s optimality conditions as follows:

Mi,t+1 =
1

Rt(1 + λi,t)

1

gvi,t+1

, (24)

where λi,t is the Lagrange multiplier on the collateral constraint (18) and

gvi,t+1 ≡
Vw(w(si,t+1, Rt+1), si,t+1, Rt+1)

Vw(wi,t, si,t, Rt)
(25)

denotes the growth of the marginal value of net worth.

Equation (24) is the counterpart of Equation (15) in the two-period example of Section 2.

Its derivation is straightforward from the first-order condition with respect to the state-contingent

18Observe that the first-best solution V UB(wi,t, si,t, Rt) is bounded, in that the dynamic programming problem
without the collateral constraint is a standard convex Bellman problem.
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repayments. This result reflects the key intuition of this study that the possibility to negotiate state-

contingent repayments with the lenders allows firms to transfer resources across states. Firms have

a rationale for raising external financing because of the collateral constraint, and have a motive

to arrange state-contingent contracts to transfer net worth to the most important states, where

the stochastic discount factor is high. In the absence of state-contingent financing, the stochastic

discount factor cannot be recovered, and the first-order condition with respect to state-uncontingent

financing would not deliver a stochastic discount factor for each state, but only one pricing equation

containing an expectation over all future states, along the lines of (16) in Corollary 1.

Specifically, the stochastic discount factor relates to firm i’s policy through the Lagrange multi-

plier λi,t on the borrowing constraint, and the growth rate of the marginal value of net worth gvi,t+1.

The right-hand side of Equation (24) illustrates how the optimal decisions of heterogeneous firms

respond to the state preferences of shareholders to maximize the value for their equity holdings.

Backing out the stochastic discount factor therefore amounts to investigate which state must have

led a firm to optimally respond through its observed investment and financing decisions. In the

absence of a state-contingent financing contract, realized net worth in individual future states could

not instead be actively transferred by the firm through its decisions, but would vary across states

only because of exogenous shocks. Observed firm policies would not therefore be informative of the

stochastic discount factor.

The economic mechanism driving the result in Equation (24) can be interpreted in light of

firms’ optimal contracting. Firms have a motive to engage in financial contracting to transfer

resources (net worth) to states that are most important to maximize their market value. This

policy would increase net worth and lower its marginal value gvi,t+1 in those states. Importantly,

collateral constraints limit firms’ ability to achieve this goal, as the term 1
1+λi,t

accounts for. Thus,

Equation (24) does not imply that, empirically, one should expect to observe net worth growing

in states in which the stochastic discount factor is presumably high, such as bad times. The more

financially constrained firms are, the higher the shadow value λi,t of extra borrowing, the less their

effective ability to transfer resources to most important states, in spite of their motives. This is

consistent with the model of Rampini and Viswanathan (2013) and the evidence in Li, Whited, and

Wu (2016) and Nikolov, Schmid, and Steri (2019), according to which financially constrained firms
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engage less in risk management because their immediate financing needs override their hedging

concerns.

It is important to notice that all the state variables of the problem determine firm policies, and

in turn affect firms’ contracting behavior. From an empirical standpoint, this result implies that

firm characteristics enter the stochastic discount factor directly. This mechanism is analogous to

how, on the consumption side of the economy, the state variables of the representative household’s

problem enter the stochastic discount factor in the intertemporal CAPM of Merton (1973).

The following proposition offers an equivalent expected return/beta representation of the Con-

tracting Model. This formulation shows how individual securities can be priced using a stochastic

discount factor derived from firms’ optimal policies.

Proposition 7 (Expected Return-Beta Representation) The expected excess return

Et[R
e
i,t+1] ≡

V (wi,t+1, si,t+1, Rt)

V (wi,t, si,t, Rt)− di,t
−Rt (26)

on the traded equity claims of firm i is given by the following expression:

Et
[
Re
i,t+1

]
= βi,tλi,t, (27)

where βi,t ≡
Covt

[
(gvi,t+1)

−1
,Re

i,t+1

]
V art

[
(gvi,t+1)

−1
] where λi,t ≡ −

V art
[
(gvi,t+1)

−1
]

Et[(gvi,t+1)
−1

]
.

Proposition 7 establishes that the expected excess equity return of a generic firm i are driven

by the covariance of its realized returns Re
i,t+1 with the reciprocal of the growth of the marginal

value of net worth gvi,t+1 which, as Proposition 6 shows, in turn depend of firm i′s state variables.

As standard in the asset pricing literature, βi,t can be interpreted as a quantity of risk, and λi,t as a

price of risk, with a key difference: λi,t does not appear in Equation (27) an aggregate quantity, but

rather as a firm-specific quantity. The reason is the quintessence of the Contracting Model, namely

that Proposition 6 backs out a stochastic discount factor from individual firms’ contracting behavior.

Accordingly, the pricing of the equity claims of firm i reflects the price of risk λi,t embedded in its

marginal value of net worth, and the covariance of the firm’s payoffs Re
i,t+1 with such a marginal

27



value, as βi,t captures. Shares of firms that are worth less in most important states, which can in

turn be identified as those to which firms, coping with financial constraints, actively transfer net

worth and lower its marginal value, are risky investments and require higher expected returns. Vice

versa, shares of firms that provide high rewards in important states work as a hedge, are more

expensive and hence require lower expected returns.

Importantly, the results in Proposition 6 and Proposition 7 neither require shareholders to be

underdiversified nor imply that the Contracting Model is more suitable to price stocks of either

small or private firms. Similarly, as discussed in Section 3, although the model is purely derived at

the firm level and is not suited to derive direct aggregate implications, it is not inconsistent with

the existence of aggregate risk factors that price the equity of large public firms, such as reduced-

form factor models, or with the consumption-based paradigm. On the contrary, in Section 5.5, I

empirically relate the Contracting Model to reduced-form multifactor models, and I document its

consistency with the aggregate investment and profitability factors that both Hou, Xue, and Zhang

(2015) and Fama and French (2016) show to be essential for pricing the shares of large firms.

A remark is in order about the link between the results in this section and the large literature

on anomalies in the cross section of returns. Equation (27) highlights that all determinants of the

growth of the marginal value of net worth gvi,t+1 are supposed to drive differences in cross-sectional

expected equity returns. As Section 5 highlights, the model predicts that the dynamics of its state

variables, which summarize all the information the firm needs at each point in time to determine

its optimal policy, determine the dynamics of gvi,t+1. As a consequence, the pricing equation (27)

suggests an interpretation of anomaly variables as possibly omitted determinants of the growth of

the marginal value of net worth that are not captured by differences across firms in loadings on

macroeconomic factors in benchmark asset pricing models, such as the CAPM and the Consumption

CAPM.

Finally, the following corollary shows that Proposition 7 implies an approximation in which

expected returns are proportional to ”net worth betas” βwi,t, defined using covariances with the

marginal value of net worth gvi,t+1 instead of its reciprocal.
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Corollary 2 (”Net Worth Betas”) The expected excess return Et[R
e
i,t+1] on the equity of firm i

can be approximated as

Et
[
Re
i,t+1

]
' βwi,tλ

w
i,t,

where βwi,t ≡
Covt[gvi,t+1−1,Re

i,t+1]
V art[gvi,t+1−1]

and λwi,t ≡ V art
[
gvi,t+1 − 1

]
.

The difference between the expressions for expected excess returns in Proposition 7 and Corollary

2 is that the former identifies more risky stocks as those whose payoffs co-vary negatively with the

stochastic discount factor, and accordingly with
(
gvi,t+1

)−1
, while the latter shows that shares of firms

whose payoffs co-vary positively with the growth rate gvi,t+1 − 1 of the marginal value of net worth

have higher net worth betas and require higher expected returns. In Proposition 7, the minus sign

in λi,t implies that stocks with high βi,t are valuable in most important states and are less risky. In

Corollary 2, instead, the compensation for risk is proportional to net worth betas. This distinction

is also present in the CAPM within the consumption-based framework, in which expected return-

beta representations can be derived both considering covariances with the stochastic discount factor

and, approximately, with the market portfolio.19 As in the case of the CAPM, with the exception

of some special cases, such as normally distributed returns and quadratic utility, the formulation

that associates higher betas to higher risks holds only approximately, due to the non-linearity of

Mi,t+1 in gvi,t+1.

5 Empirical Asset Pricing Tests

In this section, I test the implications of the Contracting Model using U.S. data from 1965 to

2013. I present four sets of empirical results, which relate to (i) empirical tests of the Contract-

ing Model by GMM, (ii) the existence of spreads in average returns associated with the model

19Ferson and Jagannathan (1996) show that a linear stochastic discount factor mt+1 =
K∑
k=1

c(k)f
(k)
t+1 is equiv-

alent to a ”beta pricing” representation where E[Rt+1] =
K∑
k=1

β(k)δ(k), where β(k) =
Cov(f

(k)
t+1,Rt+1)

V ar(f
(k)
t+1)

, c(0) =

1
δ(0)

(
1 +

K∑
k=1

δ(k) Et[f
(k)
t+1]

V art(f
(k)
t+1)

)
and c(k) = − 1

δ(0)
δ(k)

V art(f
(k)
t+1)

. In particular, the stochastic discount factor correspond-

ing to the CAPM is Mt+1 = at − btRWt+1, where at and bt are predetermined quantities at time t and RWt+1 is the
gross return on the market portfolio. See, for example, Cochrane (2001), Chapter 6.
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predictions, (iii) a comparison of the pricing performance of the Contracting Model and standard

asset pricing models, and (iv) to the relationship between the Contracting Model and the recent

multifactor models of Hou, Xue, and Zhang (2015) and Fama and French (2016).

5.1 Empirical Predictions

Proposition 6 recovers the stochastic discount factor from the growth of the marginal value

of net worth gvi,t+1 arising from firms optimal policies. Although gvi,t+1 is inherently unobservable,

the model structure imposes restrictions on its dependence on the dynamics of the state variables.

These restrictions carry predictions for both coefficient estimates in GMM tests of the Contracting

Model and for observed spreads in average returns in the cross section. The following proposition

establishes that the growth of the marginal value of net worth is (weakly) decreasing in net worth

growth for firm i. To simplify notation, I use the shorthald wi,t+1 to denote w(si,t+1, Rt+1).

Proposition 8 (Net Worth Growth and its Marginal Value) The growth of the marginal value

of net worth gvi,t+1 is weakly decreasing in net worth growth
wi,t+1

wi,t
, for all wi,t, si,t, si,t+1, Rt+1.

This result stems from the concavity of the value function, and reflects the fact that large

transfer of net worth to specific states are disproportionally less valuable than small transfers. As

the stochastic discount factor in Proposition 6 predicts that most important states for equity prices

of any firm i are inversely related to gvi,t+1 given the severity of its financial constraints λi,t, net

worth growth is expected to load positively on the stochastic discount factor. I test this prediction

with the GMM tests of Section 5.2.

Unlike net worth growth, the incidence of the growth rates of profitability
si,t+1

si,t
and of interest

rates Rt+1

Rt
on the stochastic discount factor depends on parametrizations, and in particular on the

persistence of profitability shocks and interest rates. As in the production economy with technol-

ogy shocks of Rampini and Viswanathan (2013), the positive persistence in si,t and Rt typically

observed in practice has two contrasting effects. First, when productivity is high (low), persistent

shocks decrease (increase) the marginal value of net worth because the expected profitability and
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net worth going forward are high (low) too. Vice versa, persistence in interest rates raises (lowers)

the borrowing cost for the firm and its marginal value of net worth when interest rates are high

(low). Second, high (low) current profitability increases (decreases) investment needs because of

the higher (lower) expected conditional profitability of investment, therefore increasing (decreas-

ing) the marginal value of net worth. Similarly, high (low) interest rates increase (decrease) the

conditional expected cost of borrowing, and contribute to reduce (raise) the amount of debt to be

otherwise repaid, thus increasing (decreasing) preserved future net worth and reducing (increasing)

its marginal value. As a consequence, for both profitability growth and interest rate growth, two

contrasting forces determine the ultimate dominating effect.

Although the model structure does not restrict the dependence of the stochastic discount factor

on
si,t+1

si,t
and Rt+1

Rt
, it offers predictions for their consistency with observed spreads in expected

returns, as well as for the cross-sectional spread in returns associated with net worth growth
wi,t+1

wi,t
.

Proposition 9 (Realized Equity Returns) i) Realized equity excess returns Re
i,t+1 are weakly

increasing in observed net worth growth
wi,t+1

wi,t
, ii) realized equity excess returns Re

i,t+1 are weakly

increasing in observed profitability growth
si,t+1

si,t
, iii) realized equity excess returns Re

i,t+1 are weakly

decreasing in observed interest rate growth Rt+1

Rt
, for all wi,t, si,t, Rt.

The first part of the proposition implies a negative relationship between average returns and net

worth growth in the cross section. Intuitively, shares of firm i earn higher realized excess returns

Re
i,t+1 in states in which its worth grows. Since the most important states can be backed out from

firm i’s policy as those in which firm i’s net worth increases the most, shares of firms whose net

worth grows are a hedge in that they pay out more in most important states, in which the stochastic

discount factor is high. Thus, according to Corollary 2, high net worth growth stocks have low net

worth betas provide a hedge in more important states and require lower expected returns. Observe

that this argument is alike to the one in textbook consumption-based models, in which securities

that pay out in most important states are a hedge against sustained downturns and earn higher

expected returns. The only difference is that most important states are not directly linked to

aggregate consumption risk, but are now backed out from the optimal response of individual firms,

as Proposition 6 shows. Also notice that, even in the case of complete markets, firms in general
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respond differently to the same aggregate state because they are heterogeneous, for example with

respect to size or financial constraints.

The intuition behind the second and the third part of Proposition 9 is similar. Expected returns

are higher for those that pay out more in important states, in which the growth of the marginal

value of net worth gvi,t+1 is lower. The second part of the proposition implies that if gvi,t+1 decreases

with profitability growth
si,t+1

si,t
, shares of firms whose profits grow provide higher payoffs in less

important states (low gvi,t+1), have high net worth betas, and earn higher expected returns. The

third part implies that if gvi,t+1 decreases with interest rate growth, that is most important times are

associated with interest rate spikes, interest rate reductions are associated with lower stock prices,

high net worth betas, and higher expected equity returns. In summary, the Contracting Model

imposes restrictions on the observed spreads in average returns on the basis in accordance to the

states that, in the presence of borrowing constraints, are most important for individual firms. These

predictions are summarized in Table 1.

5.2 GMM Tests of the Contracting Asset Pricing Model

Because the contracting model of Section 3 allows the stochastic discount factor to be firm

specific, Proposition 6 provides a valid stochastic factor for the equity of an individual firm i. In

this subsection, I implement GMM tests of the Contracting Model using 80 portfolios as test assets.

Portfolio-level tests not only allow to assess the pricing performance of the model on several test

assets, but also provide estimates of the loadings of net worth growth, profitability growth, and

interest rate growth on the stochastic discount factor in Equation (24).

I examine the implications of the model for cross-sectional expected gross returns20. Equation

(27) restricts the pricing errors for the gross return on equity of firm i to satisfy

Et
[
Mi,t+1(1 +Re

i,t+1)
]

= 1. (28)

20It is well known that when excess returns are used to estimate stochastic discount factor models, the mean of
the stochastic discount factor is not identified. Recent studies, such as Burnside (2015), find that GMM estimates
are typically sensitive to the normalization of the mean of the stochastic discount factor due to weak identification.
This shortcoming does not instead afflict GMM tests on gross returns.
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In other words, the stochastic discount factor Mi,t+1 for the equity of an individual firm i is valid

to price the equity of firm i because it is backed out from its optimal policy. The pricing error

on a portfolio of securities is therefore the (weighted) average of the pricing error of its individual

securities. Although, in theory, (28) could be applied to individual securities, this empirical strategy

is not viable. First, accounting data to construct net worth growth and profitability growth for

individual firms are only available for relatively short time series and with a limited frequency in

Compustat. Second, the size of the GMM system with individual securities would be impractical

to estimate.

The empirical GMM tests in this section are based on yearly data from 1965 to 2013. Because

the contracting model does not provide a closed-form solution for the loadings of net worth growth,

profitability growth, and interest rate growth, I adopt a conservative estimation strategy and con-

sider a linear approximation of Mi,t+1 in which I restrict such loadings to be constant.21 This choice

avoids making specific assumptions on the functional forms that would necessarily increase the

number of parameters to identify, and provides the model with less degrees of freedom for fitting

observed portfolio returns. GMM estimation with constant loadings uses the test assets to capture

average effects in the sample and to confront them with the model sign restrictions. Estimation

is by two-step GMM, with the initial weighting matrix attaching equal weights to all assets. The

Appendix provides additional details on the estimation procedure.

Table 2 presents the estimation results. Coefficient estimates for the three variables and the

corresponding test statistics based on HAC standard errors are reported in Panel A. The table also

reports the following goodness-of-fit measures based on first-stage inference: the mean absolute

pricing error (MAE), and the cross-sectional R2 of a regression of realized average excess returns on

predicted average excess returns, computed as in Campbell and Vuolteenaho (2004). As a formal

test of model mis-specification I report results from the J-test of overidentifying restrictions (Hansen

and Singleton (1982))22. The results in Table 2 suggest that the Contracting Model finds support

in the data.

21This estimation choice is conservative because the loadings on net worth, profits, and interest rate growth rates
are allowed to be different across firms, offering several additional degrees of freedom.

22Although several studies, such as Ferson and Foerster (1994), Ahn and Gadarowski (2004), and Lewellen, Nagel,
and Shanken (2010), document the statistical power of this test is low in the context of asset pricing tests, and
their small-sample properties vary to a great extent with the sample size and the test assets, I report the results for
comparability with previous studies.
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The first two rows of the table report GMM estimates of the coefficients on net worth growth,

profitability growth, and interest rate growth. The estimate for net worth growth is in line with the

predicted sign from the model, with a loading of 0.12. The loadings of -0.16, and 0.26 on profitability

growth and interest rate growth, respectively, indicate that most important states are those in which

profitability lowers and borrowing costs raise. All coefficients are statistically significant ar the one

percent level, with test statistics of 5.61, -9.62, and 3.04. The estimates imply that most critical

states to maximize firm value are those in which firms try, in the presence of financial constraints, to

transfer more net worth, those in which firms’ profits decline, and those in which borrowing is more

costly. Proposition 9 implies that, in accordance with these estimates, one should observe stocks of

firms with low net worth growth and with high profitability growth require higher expected returns.

I examine these predictions in the next section.

Panel B indicates that the Contracting Model appears to capture a substantial part of the

variation in expected returns across the test assets. Mean absolute pricing errors on the tests assets

are equal to 1.16% per annum, ranging from 0.78% to 1.67% per annum. Cross-sectional R2 are

also high, ranging from 0.59 for the industry portfolios to 0.81 for the net worth and profitability

growth portfolios23. Finally, although the results of the formal test of overidentifying restrictions

should be interpreted with extreme caution, the test based on the J statistic cannot statistically

reject the model.

[Insert Table 2 Here]

Figure 2 provides a visual summary of the performance of the model. Panels A through D report

predicted versus realized average returns for the four sets of test assets. If priced correctly, the

portfolio should lie along the 45-degree line. The figure confirms that, empirically, the Contracting

Model goes a long way in pricing the test assets.

[Insert Figure 2 Here]

23Remarkably, the model is rather successful in pricing the Fama-French 30 Industry portfolios. In fact, as Lewellen,
Nagel, and Shanken (2010) document, these test assets represent a challenge for all leading asset pricing models.
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5.3 The Growth Rates of Net Worth and Profitability

Table 3 considers univariate portfolio sorts involving the growth rates of net worth and profitabil-

ity. The table reports average annualized returns, heteroscedasticity and autocorrelation consistent

t statistics, and Sharpe ratios of 10 equally weighted and 10 value-weighted portfolios sorted on each

of the two variables, and the spread between the lowest and the highest decile portfolios (L-H).

Consistent with the predictions of Proposition 6, the panel labeled ”Net Worth Growth” shows

that average returns decline from low-net-worth-growth to high-net-worth-growth portfolios, with

an average spread of 12.29% for the equally-weighted portfolios (Sharpe ratio = 1.03) and of 3.87%

for the value-weighted portfolios (Sharpe ratio = 0.28). The panel labeled ”Profitability Growth”

instead discloses a spread associated with the growth rate of profitability, consistent with the pre-

dictions of Proposition 6 and with the empirical evidence of the previous section. In particular,

the spread in average returns between the high and the low profitability growth portfolios is 4.60%

(Sharpe ratio = 0.82) when equally-weighted portfolios are considered, and 3.83% (Sharpe ratio =

0.34) when value-weighted portfolios are considered.

[Insert Table 3 Here]

Table 4 reports estimates from Fama and MacBeth (1973) cross-sectional regressions of monthly

returns on the growth rates of net worth and profitability. Cross-sectional regressions are commonly

used to draw inferences about the differential effect of multiple candidate determinants of average

returns, and estimated regression slopes provide direct statistical estimates of these marginal effects.

The first two columns of Table 4 confirm the negative spread in returns associated with the growth

rate of net worth, and the premium related to the growth rate of profitability. The slope of the

growth rate of net worth is -0.93, roughly 7 standard errors from zero, while the slope of the growth

rate of profitability is 0.22, with a t statistic of 4.54. The third column considers the joint effect

of the two variables. The estimated slopes have a similar magnitude of those in Columns 1 and

2. Indeed, the correlation between the two variables is relatively low. The fourth column adds

the logarithm of market capitalization, the logarithm of book-to-market equity, and momentum as

control variables. The results replicate the well-known size and value premia, and the return spread
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related to momentum. The latter regression specification emphasizes the economic importance of

the premia related to the growth rates of net worth and profitability. In fact both variables exhibit

a strong marginal explanatory power that is reflected in large average slopes and t-statistics. In

particular, the t statistic of profitability growth is roughly comparable to the one of the value

premium, while the t statistic of net worth growth is almost twice larger than them.

Finally, the rightmost column of Table 4 includes two additional variables, namely investment

and profitability, that the empirical multifactor models of Hou, Xue, and Zhang (2015) and Fama

and French (2016) identify as key determinants of cross-sectional equity returns. Perhaps not sur-

prisingly, these two variables are correlated to net worth growth and profitability growth, although

they do not appear to completely subsume them. I further investigate the relationship between the

Contracting Model and the aggregate investment and profitability factors in Section 5.5.

[Insert Table 4 Here]

Overall, the results of the sorts in Table 3 and of the regressions is Table 4 consistently document

that, as the Contracting Model predicts, the growth rate of net worth and the growth rate of

profitability are, respectively, negatively and positively related to returns. For both variables, the

marginal effects appear to be both economically sizeable and strongly statistically significant.

5.4 Comparison Among Models

Table 5 compares the pricing performance of the Contracting Model and that of the CAPM, of

the consumption CAPM, and of the Fama and French three-factor model. Panel A reports estimated

factor loadings for the three asset pricing models and the results of the J-test of overidentifying

restrictions. Estimates involve the same 80 test considered in the previous section. Panel B reports

the mean absolute pricing errors (MAE) and the cross-sectional R2 for all the models and all the

test assets. For convenience, the MAE and the R2 for the Contracting Model are also reported.

Consistent with several previous studies, the CAPM and the Consumption CAPM are not

successful in pricing the tests assets. The MAE is high, ranging from 1.44% per annum to 2.64%
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per annum, and the R2 is consistently low across all test assets. The Fama-French model instead

performs better, with mean absolute pricing errors ranging from 1.18% to 1.68% per year. However,

as in Lewellen, Nagel, and Shanken (2010), the three-factor model has a very low R2 on the 30

Fama-French portfolios. In the estimates in Table 5, that refer to the joint pricing of 80 test assets,

the latter R2 is even slightly negative, with a value of −0.06. With respect to both indicators

of pricing performance, the Contracting Model outperforms all models with the only exception of

the 25 Fama-French portfolios sorted by size and book-to-market equity, on which the three factor

model has a slightly lower MAE and a slightly higher R2. Remarkably, unlike the other models,

the Contracting Model has a satisfactory pricing performance when the 30 Fama-French industry

portfolios are considered. Finally, not surprisingly, the formal tests based on the J statistics are

uninformative, and are unable to reject any model.

[Insert Table 5 Here]

Figure 3 summarizes the previous comparison among models. Panels A through D depict pre-

dicted versus realized average excess returns for the CAPM, the Consumption CAPM, the Fama-

French model, and the Contracting Model. The figure refers to all the test assets together. Panels

A and B show that the points are far from the 45-degree line for the CAPM and the Consumption

CAPM, while they line up better for the Fama and French’s model (Panel C) and especially for the

Contracting Model (Panel D).

[Insert Figure 3 Here]

5.5 Relation to Aggregate Multifactor Models

The Contracting Model is not a multifactor model. It is derived at the firm level and it is

not suited to derive direct aggregate implications. However, this does not necessarily imply an

inconsistency with the existence of aggregate risk factors that price the equity of large public firms,

such as reduced-form factor models, or with the consumption-based paradigm.
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The results in Section 5.3 highlight a relationship between the individual determinants of the

stochastic discount factor in the Contracting Model, net worth growth and profitability growth, and

the variables used to construct the investment and profitability factors in the empirical multifactor

models of Hou, Xue, and Zhang (2015) and Fama and French (2016).

Table 6 further explores the relationship between these multifactor models and the Contracting

Model. First, I construct two ad-hoc empirical factors using net worth growth and profitability

as sorting variables, following the approach in Fama and French (2016) to obtain a projection

on the space of traded stocks. Specifically, I start by forming six (2x3) value-weight portfolios

formed on size and net worth growth, and six (2x3) value-weight portfolios formed on size and

profitability growth. Then, I define the net worth growth factor (NWG) as the average return on

the two low net worth growth portfolios minus the average return on the two high net worth growth

portfolios. Similarly, I define the profitability growth factor (PRG) as the average return on the two

high profitability growth portfolios minus the average return on the two low profitability growth

portfolios.

Panel A reports regressions of the market (MRKRF), size (SMB), value (HML), profitability

(RMW), and investment (CMA) factors on NWG and PRG. The first row in Panel A shows that the

net worth growth factor is strongly positively related to the value and, especially, to the investment

factor. The coefficients are large and statistically significant, with R-squared above 45 percent

for the HML regression and of roughly 80 percent for the CMA regression. The second row show

that, while the PRG factor is positively related to both the investment and profitability factors, its

relationship to them is less pronounced in comparison to the net worth growth factor, with smaller

and less significant coefficients.

Panel B instead considers ”orthogonalizing” regressions, in which all factors are regressed on the

remaining ones. In the regressions of Panel B, an intercept statistically indistinguishable from zero

can be interpreted as the factor used as the dependent variables to be redundant after including

all the others in a multifactor pricing model. Consistent with the findings of Hou, Xue, and Zhang

(2015), the HML factor appears to be redundant. In addition, the net worth growth factor NWG

appears to be subsumed by the others, with an intercept not significant at the 10 percent level and

a high R-squared above 80 percent. Thus, the NWG ad-hoc factor defined through the Contracting
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Model appears to be strongly related to the empirical factors in Hou, Xue, and Zhang (2015) and

Fama and French (2016). On the contrary, the rightmost column of Panel B shows that, while the

profitability growth factor is positively related to the CMA and RMW factors, it is far from being

captured by them. The estimated intercept is 0.17, almost three standard errors away from zero,

with an R-squared of 8.5%.

In all, the results in Table 6 suggest that, while the Contracting Model is not a multifactor

model, the variables it predicts to generate cross-sectional spreads in average returns can be used to

construct factors the relate to those that both Hou, Xue, and Zhang (2015) and Fama and French

(2016) show to be essential for pricing the equity of large listed firms.

[Insert Table 6 Here]

6 Conclusions

I show that, under some conditions, a valid stochastic discount factor to price the equity claims

of a firm can be backed out its optimal financial contracting behavior. This leads to an asset pricing

model, which goes a long way in rationalizing observed cross-sectional differences in average equity

returns. This approach bypasses some challenges related to the structure of the consumption side

of the economy.

The Contracting Asset Pricing Model is not a multifactor model. It accommodates incomplete

markets and is derived at the firm level. However, this work poses questions for future research not

only for production-based asset pricing, but also for consumption-based models, and for empirical

work on the cross section of expected returns. The present approach may represent a complementary

tool to advance the understanding of the consumption side of the economy. The ultimate goal

of asset pricing theory is to provide a general equilibrium explanation of how asset returns and

consumption are jointly determined. In general equilibrium, the stochastic discount factor obtained

from both the production and consumption side of the economy must have consistent properties.

These additional restrictions may provide guidance in modeling the household side on the economy.
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Another implication of the contracting approach is that the state variables of the firm’s opti-

mization problem, in other words the determinants of firms’ decisions, drive the dynamics of the

stochastic discount factor firms respond to. Although the model is not suited to derive direct ag-

gregate implications, the contracting approach offers an alternative interpretation of the anomalies

that arise in the cross section of equity returns. Through the lens of the model, anomaly variables

can be regarded as possibly omitted determinants of the growth of the marginal value of net worth

that are not captured by differences across firms in loadings on macroeconomic factors in benchmark

asset pricing models. For empirical work, this observation may provide insights for the development

of new testable hypotheses for cross-sectional differences in returns.
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Table 2
GMM Tests of the Contracting Model.

The table reports the estimated loadings on the growth rate of net worth, the growth rate of profitability,

and the growth rate of the riskfree interest rate for the Contracting Model. The test assets are the 25

Fama-French portfolios sorted on size and book-to-market equity, 25 portfolios sorted on the growth

rates of net worth and profitability, and the 30 Fama-French industry portfolios. All returns are annual.

Estimation is by two-step GMM. Test statistics (Z-Stat) based on HAC standard errors are in parentheses.

The kernel is Newey-West with a lag length of 1 year. MAE denotes the percent mean absolute pricing

error, and the R2 is computed as in Campbell and Vuolteenaho (2004). The latter two statistics are based

on first-stage estimates. J, df, and p(J) denote the test statistic, the degrees of freedom, and the p-value for

a test of overidentifying restrictions. Data are from 1965 to 2013. All variables are defined in the Appendix.

Panel A: Coefficient Estimates

Net Worth Growth Profitability Growth Interest Rate Growth

Loading 0.12 -0.16 0.26
Z-Stat (5.61) (-9.62) (3.04)

J 25.29
df 76

p(J) 1.00

Panel B: Pricing Errors

FF 25 Size/BM 25 NW/P Growth FF 30 Industry All Portfolios

MAE (%) 1.67 0.78 1.04 1.16

R2 0.70 0.81 0.59 0.70
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Table 4
Fama-MacBeth Regression: Growth Rates of Net Worth and Profitability.

The table reports coefficient estimates from Fama-MacBeth regressions. The dependent variable is the

monthly stock return. Column (1) includes the growth rate of net worth. Column (2) includes the growth

rate of profitability. Column (3) includes the growth rates of both net worth and profitability. Column (4)

adds the logarithm of market capitalization (size), the logarithm of book-to-market equity, and momentum

as controls. Column (5) adds investment and profitability. T statistics are reported in parentheses. The

symbols ***, ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Data

are from June 1965 to December 2013. All variables are defined in the Appendix.

Dependent Variable: Monthly Return

(1) (2) (3) (4) (5)

Net Worth Growth -0.93 -0.93 -0.69 -0.30
(-6.91) (-6.82) (-6.91) (-2.54)

Profitability Growth 0.22 0.18 0.14 0.10
(4.54) (3.81) (3.28) (2.16)

Size -0.13 -0.13
(-3.35) (-3.35)

Book-to-Market 0.22 0.24
(3.97) (4.04)

Momentum 0.46 0.44
(2.81) (2.67)

Investment -0.38
(-6.28)

Profitability 0.04
(2.15)

R2 0.004 0.001 0.005 0.035 0.037
N 1678439 1681446 1663115 1630099 1630099
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Table 5
Comparison Among Models.

Panel A reports the estimated factor loading on consumption growth, the market return, the HML and

the SMB factors for the CAPM, the Consumption CAPM, and the Fama-French three factor model.

The test assets are the 25 Fama-French portfolios sorted on size and book-to-market equity, 25 portfo-

lios sorted on the growth rates of net worth and profitability, and the 30 Fama-French industry port-

folios. All returns are annual. Estimation is by two-step GMM. Test statistics based on HAC stan-

dard errors are in parentheses. The kernel is Newey-West with a lag length of 1 year. J and p(J)

denote the test statistic, and the p-value for a test of overidentifying restrictions. Panel B reports,

for all three models and for the Contracting Model, the percent mean absolute pricing error (MAE),

and the R2 is computed as in Campbell and Vuolteenaho (2004). The latter two statistics are based

on first-stage estimates. Data are from 1965 to 2013. All variables are defined in the Appendix.

Panel A: Coefficient Estimates

Cons. Gr. Market HML SMB J p(J)

CAPM 0.35 25.48 1.00
(1.94)

CCAPM 0.14 25.41 1.00
(8.59)

Fama-French 0.67 0.81 2.15 25.45 1.00
(2.16) (1.77) (4.75)

Panel B: Pricing Errors

FF 25 25 NW/P FF 30 All
Size/BM Growth Industry Portfolios

CAPM MAE (%) 2.64 1.61 1.44 1.87
R2 0.23 0.20 0.18 0.22

CCAPM MAE (%) 2.32 1.56 1.56 1.80
R2 0.40 0.26 -0.02 0.28

Fama-French MAE (%) 1.34 1.18 1.68 1.42
R2 0.74 0.52 -0.06 0.52

Contracting Model MAE (%) 1.67 0.78 1.04 1.16
R2 0.70 0.81 0.59 0.70
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Table 6
Regression Involving Aggregate Factors.

Panel A reports estimates from regression of the aggregate factors in the empirical models of of Hou, Xue, and Zhang

(2015) and Fama and French (2016) on the two ad-hoc factors motivated by the contracting model and described in

Section 5.5. MKTRF denotes the market factor, SMB the size factor, HML the value factor, CMA the investment

factor, and RMW the profitability factor. All the previous factors are constructed as in Fama and French (2016).

NWG and PRG denote the factors constructed using net worth growth and profitability growth as sorting variables,

using the same procedure in Fama and French (2016). Panel B reports regression estimates from orthogonalizing

regressions in which all factors are regressed on the remaining ones. Heteroskedasticity and autocorrelation consistent

t statistics are reported in parentheses. The symbols ***, ** and * indicate statistical significance at the 1%, 5%,

and 10% levels, respectively. Data are from June 1965 to December 2013. All variables are defined in the Appendix.

Panel A: Aggregate Factors vs Contracting Model Ad-Hoc Factors
MKTRF SMB HML RMW CMA

NWG -0.72∗∗∗ -0.15∗∗ 0.91∗∗∗ -0.10 0.85∗∗∗

(-8.13) (-2.14) (19.37) (-1.43) (41.29)

PRG -0.42∗∗∗ -0.10 0.13 0.32∗∗∗ 0.13∗∗∗

(-2.80) (-0.88) (1.63) (2.73) (4.15)

Constant 0.73∗∗∗ 0.32∗∗∗ 0.19∗∗ 0.20∗∗ 0.14∗∗∗

(4.28) (2.58) (2.16) (2.36) (3.81)

R2 0.127 0.011 0.470 0.051 0.793

Panel B: Orthogonalizing Regressions
MKTRF SMB HML RMW CMA NWG PRG

MKTRF 0.12∗∗∗ 0.02 -0.10∗∗∗ -0.04∗∗∗ -0.01 -0.02
(3.03) (0.74) (-4.16) (-3.84) (-0.60) (-1.23)

SMB 0.24∗∗∗ 0.02 -0.23∗∗∗ 0.00 -0.02 0.02
(2.88) (0.54) (-3.44) (0.24) (-1.29) (0.77)

HML 0.09 0.05 0.20∗∗ 0.10∗∗∗ 0.12∗∗∗ 0.01
(0.75) (0.54) (2.28) (4.46) (4.96) (0.15)

RMW -0.38∗∗∗ -0.46∗∗∗ 0.20∗∗ 0.00 -0.09∗∗∗ 0.10∗∗

(-3.59) (-3.90) (2.28) (0.09) (-3.25) (2.03)

CMA -0.83∗∗∗ 0.04 0.52∗∗∗ 0.01 0.81∗∗∗ 0.23∗∗∗

(-4.10) (0.24) (4.60) (0.10) (20.83) (3.07)

NWG -0.11 -0.18 0.51∗∗∗ -0.40∗∗∗ 0.10∗∗∗ -0.28∗∗∗

(-0.60) (-1.26) (4.63) (-3.15) (25.25) (-3.27)

PRG -0.18 0.09 0.01 0.22∗∗ 0.15∗∗∗ -0.14∗∗∗

(-1.21) (0.78) (0.15) (2.20) (3.21) (-3.54)

Constant 0.82∗∗∗ 0.31∗∗ 0.05 0.30∗∗∗ 0.15∗∗∗ -0.07 0.17∗∗∗

(4.59) (2.51) (0.53) (3.82) (3.86) (-1.48) (2.84)

R2 0.244 0.172 0.522 0.247 0.812 0.812 0.085
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Figure 1
The Dynamic Limited Enforcement Problem.

The figure depicts the timing of events in the dynamic limited enforcement problem, as described in the

text. The sequence of events occurs each period after the contract between the lender and the borrower is

signed.

Intraperiod Timing

Shocks are 
observed

Is the firm 
liquidated?

Yes

No

Liquidation 
Value is split

Inputs are purchased 
Revenues are collected 
Dividends are distributed 
Transfers are made

Next period
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Figure 2
Predicted vs Realized Returns: Contracting Model.

The figure illustrates annual predicted and realized percent returns for the first-stage GMM estimation of

the Contracting Model as in Table 2. Panels A through D refer to the following test assets: the 25 Fama-

French portfolios sorted on size and book-to-market equity, 25 portfolios sorted on the growth rates of net

worth and profitability, the 30 Fama-French industry portfolios, and all the previous portfolios. In panel

A, the first digit of the label corresponds to the size quintile, and the second digit to the book-to-market

equity quintile. In Panel B, the first digit of the label corresponds to net worth growth quintile, and the

second digit to the profitability growth quintile. In Panel C, the labels are mnemonics for Fama and French

30-Industry classification as on Kenneth French’s website. Data are from 1965 to 2013. All variables are

defined in the Appendix.
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Figure 3
Predicted vs Realized Returns: Comparison Among Models.

The figure illustrates predicted and realized excess returns for the first-stage GMM estimation of different

asset pricing models. The test assets are: the 25 Fama-French portfolios sorted on size and book-to-market

equity, 25 portfolios sorted on the growth rates of net worth and profitability, and the 30 Fama-French

industry portfolios. Panels A through D refer to the CAPM, the Consumption CAPM, the three factor

model of Fama and French, and the Contracting Model. Data are from 1965 to 2013. All variables are

defined in the Appendix.
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Appendix

A.1 Proofs of Propositions

Proof of Proposition 1. The Lagrangian of investor i’s individual optimization is

Li ≡ u(ci,0) + β
∑
ω∈Ω

π(ω) · u(ci,1(ω))−
∑
ω∈Ω

βπ(ω)λi,1(ω)

Bi,1(ω)− ai,1(ω)−
∑
j∈J

dFj,1(ω)nFi,j,0

 ,

from which the expressions in Part i) follow immediately from the first-order conditions with respect to ai,1(ω) and

nFi,j,0. From (4), m1(ω) =
pa,1(ω)
π(ω) . Thus, the right-hand side of (6) is equalized across investors. The inequalities in

Part ii) simply follow from λi,1(ω) ≥ 0. To prove Part iii), notice that λl,1(ω) = 0 implies m1(ω) = MRSl,1(ω). Let
h = arg maxi∈IMRSi,1(ω) be the investor with the highest marginal rate of substitution. By contradiction, assume
that h is constrained, i.e., λh,1(ω) > 0. Then

MRSl,1(ω) = m1(ω) =
β(u′(ch,1(ω)) + λh,1(ω))

u′(ch,0)
>
βu′(ch,1(ω))

u′(ch,0)
= MRSh,1(ω),

which contradicts h being the agent with the highest marginal rate of substitution. Thus, it must be the case that
h is also unconstrained, and MRSl,1(ω) = MRSh,1(ω). Part iv) follows straightforwardly from (7).

Proof of Proposition 2. The proof is an application of Stiemke’s lemma (Stiemke, 1915), which I state for
convenience.

Lemma 1 (Stiemke) Let M be a r× c matrix. Then one and only one of the following statements is true: i) there
exists a column vector in vr in Rr with strictly positive coordinates, such that vTr M = 0; ii) there exists a column
vector vc in Rc such that Mvc > 0, that is Mvc has all non-negative elements, with at least one strictly positive
element.

Proof of Lemma 1. See Mangasarian (1994), Chapter 2.4, pag. 32.

Define the (S + 1)× (S + J) matrix M obtained by concatenating −p and x vertically, that is:

M ≡



−pa,1(ω1) −pa,1(ω) −pa,1(ωS) −pF1,0 −pFj,0 −pFJ,0
1 ... 0 ... 0 dF1,1(ω1) ... dFj,1(ω1) ... dFJ,1(ω1)

0 ... 1 ... 0 ... dFj,1(ω) ...

0 ... 0 ... 1 dF1,1(ωS) ... dFj,1(ωS) ... dFJ,1(ωS)

 .

Applying Lemma 1, statement i) is true while ii) is false, as the condition vTr M = 0 is satisfied by vTr =
[1, π(ω1)m1(ω1), ..., π(ω)m1(ω), ..., π(ωS)m1(ωS)] because of (4) and (5). π(ω)m1(ω) is strictly positive as u(·) is
increasing and λi,1(ω) ≥ 0. Thus, one cannot find any vector θi ∈ RS+J such that Mθi > 0, that is a trading
strategy θi that violates the no-arbitrage condition.

Proof of Proposition 3. The Lagrangian of firm j’s individual optimization is

Lj ≡ dFj,0 +
∑
ω∈Ω

π(ω)m1(ω)dFj,1(ω)−λj,0(−wj,0 +kj,0−pBj,0)−
∑
ω∈Ω

π(ω)m1(ω)λj,1(ω)(bj,1(ω)−Aj,1(ω)̇f(kj,0)). (A.1)

(15) immediately follows from the first-order conditions with respect to the state-contingent transfers bj,1(ω).
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Proof of Corollary 1. Equation (16) immediately follows from the first-order condition with respect to bj,1from
(A.1), in which bj,1(ω) = bj,1. If S > 2, the two FOCs with respect to bj,1 and kj,0, that is

1 + λj,0 =
∑
ω∈Ω

π(ω)m1(ω)Aj,1(ω)fk(kj,0) (1 + λj,1(ω)) , (A.2)

do not allow to solve for the S values m1(ω).

Proof of Proposition 4. The Karush-Kuhn-Tucker conditions for the firm’s problem are

1 + λj,0 =
∑
ω∈Ω

π(ω)m1(ω)Aj,1(ω)fk(kj,0) (1 + λj,1(ω)) ,

m1(ω) = β
1 + λj,0

1 + λj,1(ω)
,

λj,0
(
wj,0 − kj,0 + pBj,0

)
= 0,

π(ω)m1(ω)λj,1(ω)(bj,1(ω)−Aj,1(ω)f(kj,0)) = 0, ∀ω ∈ Ω,

λj,0 ≥ 0,

π(ω)m1(ω)λj,1(ω) ≥ 0, ∀ω ∈ Ω,

wj,0 − kj,0 + pBj,0 ≥ 0,

Aj,1(ω)f(kj,0)− bj,1(ω) ≥ 0, ∀ω ∈ Ω.

Part i) follows from combining (A.2) with (15). fk(·) is invertible because of the properties of the production
function. Notice that The capital stock is always financeable because, from the budget and borrowing constraints
kj,0 ≤ pBj,0 ≤

∑
ω∈Ω π(ω)βAj,1(ω)f(kj,0). To prove Part ii), by contradiction, suppose the firm increases its dividend

dFj,0 by the amount sj,0 = wj,0 − kj,0 + pBj,0 > 0 under the contract (kj,0, {bj,1(ω)}ω∈Ω) and attain value V (wj,0).
Instead, the firm could arrange the a contract with identical capital expenditure and repayments, but with a transfer
b̂j,1(ω) = bj,1(ω)− sj,0

π(ωL) . This would result in p̂Bj,0 =
∑
ω∈Ω π(ω)βbj,1(ω)− βsj,0 and attain V̂ (wj,0). The difference

in the objective functions V̂ (wj,0) − V (wj,0) is π(ωL)m1(ωL)
sj,0
π(ωL) − βsj,0 = sj,0(m1(ωL) − β), which is positive if

and only if m1(ωM ) > β. To prove Part iii), notice that the multipliers λj,1(ω) are decreasing with respect to m1(ω).

Take any two states ωL and ωH such that m1(ωL) ≤ m1(ωH). The optimality condition m1(ω) = β
1+λj,0

1+λj,1(ω) implies

that
λj,1(ωL) ≥ λj,1(ωH),

with equality if m1(ωL) = m1(ωH). The objective function evaluated in correspondence of the optimal capital choice
is

V (wj,0) = max
bj,1(ω)

wj,0 − f−1
k

(
1

β
∑
ω∈Ω π(ω)Aj,1(ω)

)
+
∑
ω∈Ω

βπ(ω)bj,1(ω)

+
∑
ω∈Ω

π(ω)m1

(
Aj,1(ω)f

(
f−1
k

(
1

β
∑
ω∈Ω π(ω)Aj,1(ω)

))
− bj,1(ω)

)
.

The objective function is linear in bj,1(ω), which load with coefficients π(ω)(β −m1(ω)). The lowest coefficient is
the one of ωM . Firms transfer resources to ωM to set the lowest possible feasible bj,1(ωM ) (i.e., they repay as much
as they can ∀ω ∈ Ω\ωM ). From the budget constraint at t = 0, one obtains∑

ω∈Ω\ωM

π(ω)βAj,1(ω)f(kj,0) + π(ω)βbj,1(ωM ) = kj,0 − wj,0,

which yields

bj,1(ωM ) =
kj,0 − wj,0 −

∑
ω∈Ω\ωM

π(ω)βAj,1(ω)f(kj,0)

βπ(ωM )
,

bj,1(ω) = Aj,1(ω)f(kj,0),∀ω ∈ Ω\ωM .
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This implies λj,1(ωM ) = 0. The multipliers therefore solve the following system:

m1(ω) = β
1 + λj,0

1 + λj,1(ω)
, ∀ω ∈ Ω\ωM ,

1 + λj,0 =
∑
ω∈Ω

π(ω)m1(ω)Aj,1(ω)fk(kj,0) (1 + λj,1(ω)) ,

λj,1(ωM ) = 0,

which is solved by

λj,0 =
m1(ωM )− β

β
,

λj,1(ω) =
m1(ωM )−m1(ω)

m1(ω)
, ∀ω ∈ Ω\ωM ,

λj,1(ωM ) = 0.

Proof of Proposition 5. Denote as Y the set of the possible values for the state variables wi,t, si,t, and
Rt, as Γ(y) the set of feasible actions di,t, ki,t+1, b(si,t+1, Rt+1) and w(si,t+1, Rt+1) for each y ∈ Y, as y′ the values
of the state variables at time t + 1 in correspondence of a feasible action a ∈ Γ(y), and as d(y, a) the dividend di,t
corresponding to the state y when the action a is chosen. Let V be the set of functions from Y to (−∞,∞). In
the remainder of the proof, I use the shorthands V LB for V LB(wi,t, si,t, Rt), V

UB for V UB(wi,t, si,t, Rt), and V ∗

for V (wi,t, si,t, Rt). Denote by ≤ be partial order operator for the functions on V , and by T the Bellman operator
defined by

(Tv)(y) = sup
a∈Γ(y)

(d(y, a) + Et [Mi,t+1v(y′)]), y, y′ ∈ Y, v ∈ V. (A.3)

In this setting, the number of states is assumed to be finite, and by no arbitrage we have Mi,t+1 > 0. Therefore, from
the definition of T , it follows that T is monotone. Furthermore, T (V UB) ≤ V UB , and T (V LB) ≥ V LB . Under these
conditions, the Knaster-Tarski fixed-point theorem (Aliprantis and Border (2006), Theorem 1.10) guarantees that
the Bellman operator has at least one fixed point V FP in [V LB , V UB ]. Define the sequence V LBn , with n = 0, 1, 2, ...
such that V LB0 = V LB , and V LBn+1 = TV LBn . Since any fixed point of T in [V LB , V UB ] is bounded above by V UB ,

the increasing sequence V LBn must converge to a fixed point V̂ LB in [V LB , V UB ]. By definition of fixed point,
V FP = TV FP , and, by construction, V LBn ≤ V FP , for all n. Thus, V̂ LB ≤ V FP . Using the transversality conditions
and since the number of states is finite, the conclusion of Theorem 4.3 in Stokey and Lucas (1989) goes through.
Therefore V ∗ = V FP . Finally, the transversality conditions ensure the assumptions for Lemma 4.3 in Kamihigashi
(2012) are satisfied, and this guarantees that V ∗ ≤ V̂ LB . As a consequence, the following chain of inequalities holds:

V ∗ ≤ V̂ LB ≤ V FP = V ∗ (A.4)

This establishes that the uniqueness result in part (i), and the convergence results in part (ii). To prove that the
value function is increasing in net worth in part (iii), while the contraction mapping theorem does not hold, the
Knaster-Tarski theorem guarantees that iterating from any feasible lower bound of the solution V allows to converge
to the solution. Consider as a lower bound V of the solution the function f = wi,t ∈ V , corresponding to the policy in
which the firms pays out all its net worth as dividends. This initial condition is feasible but non necessarily optimal,
thus is a lower bound for the solution. Consider the set A of bounded, continuous, and weakly increasing functions,
and the set A0 of bounded, continuous, and strictly increasing functions. A is closed under the sup norm, and
A0 ⊆ A. Since V ∈ A, to show that the fixed point is strictly increasing in wi,t, it suffices to show that T (f) ∈ A0.
Consider two values of net worth wH > wL, for any si,t and Rt. To save notation, denote the state (wL, si,t, Rt) as
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yL and the state (wH , si,t, Rt) as yH . Then:

(Tf)(yL) = sup
a∈Γ(yL)

(d(yL, a) + Et [Mi,t+1f(y′)])

≤ sup
a∈Γ(yH)

(d(yL, a) + Et [Mi,t+1f(y′)])

< sup
a∈Γ(yH)

(d(yH , a) + Et [Mi,t+1f(y′)])

= (Tf)(yH),

where the second inequality follows from the fact that Γ(yL ) ⊆ Γ(yH ) and the second inequality from the
fact that d(yH , a) > d(yL, a). T then maps bounded, continuous, and weakly increasing functions into bounded,
continuous, and increasing functions and, iterating from f = wi,t, one can conclude that the value function is
increasing. To prove weak concavity, denote as a′L and a′H feasible choices from states yL and yH , respectively, i.e.
aL ∈ Γ(yL) and aH ∈ Γ(yH), and let aL attain T (f)(yL) and aH attain T (f)(yH). Consider a τt+1 combination
of the maximizers with α ∈ (0, 1), aα ≡ αaL + (1 − α)aH . Consider a weakly concave function f ∈ V. Then the
constraint set is τt+1, that is aα ∈ Γ(yα), because the constraint (18) is evaluated at f, and the hypograph of a
concave function is a convex set. Consider the initial state yα ≡ αyL + (1 − α)yH , and let y′α be the values of the
state variables at time t+ 1 in correspondence of aα.Then:

T (f)(yα) ≥ d(yα, aα) + Et [Mi,t+1f(y′α)]
≥ αd(yL, aL) + (1− α)d(yH , aH) + Et [Mi,t+1 (αf(y′L) + (1− α)f(y′H)))]

= αT (f)(yL) + (1− α)T (f)(yH)

where the first inequality follows from the absence of the sup operator on the right-hand side, the second from
the weak concavity of dividends in net worth and of f , and the last equality from aL attaining T (f)(yL) and aH
attaining T (f)(yH). Then for any yL, yH and any concave f , T (f)(yα) > αT (f)(yL) + (1−α)T (f)(yH), i.e. T maps
concave functions into concave functions. Because there exists at least a weakly concave lower bound (f = wi,t), the
Knaster-Tarski theorem implies the value function in weakly concave in net worth. It immediately follows from the
concavity of the value function that the constraint set is convex, and Lemma 1 in Benveniste and Scheinkman (1979)
applies, implying differentiability in net worth.

To establish part (iv), I follow the approach in Lemma 5 of Rampini and Viswanathan (2013), in that the
return function di,t is not necessarily increasing in si,t and decreasing in Rt, and the assumptions of Theorem 9.7
in Stokey and Lucas (1989) do not hold. To prove that the value function in non-decreasing in si,t for a fixed Rt,
consider the ordered set S = {s′1, ..., s′S} of possible realizations s′j of si,t+1,with s′j−1 ≤ s′j , j = 2, ..., S, and two
initial states sL and sH , with sH ≥ sL. For any threshold ω ∈ [0, 1], define the step function β : [0, 1] → R as

β(ω) =
S∑
j=1

b(s′j , Rt+1)1BL
j

(ω), where

BL1 = [0, Qs(sL, s
′
1)],

BLj =

(
j−1∑
l=1

Qs(sL, s
′
l),

j∑
l=1

Qs(sL, s
′
l)

]
, j = 2, ..., S.

Given the initial state sL, returns the repayment corresponding to the realization of the highest state s′j whose
c.d.f. does not exceed ω. The probability to observe the payment b(s′j , Rt+1) if the current state is sL conditional

on Rt+1 is instead the Lebesgue measure λ(BLj ). Analogously, for the initial state sH , define BHj , j = 1, ..., S, and

Bjk = BLj ∩ BHk ,∀j, k ∈ S. Define the step function β̂ : [0, 1] → R as β̂(ω) =
N∑
j=1

N∑
k=1

b(s′j , Rt+1)1Bjk
(ω), ∀ω ∈ [0, 1],
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and the stochastic financing policy for BHk ,∀k = 1, ..., S, as bH(s′j |s′k, Rt+1) = b(s′j , Rt+1) with positive Lebesgue

measure λ(BHk > 0) and conditional probability q(s′j |s′k, Rt+1) =
λ(Bjk)

λ(BH
k )
. This implies a stochastic net worth

w(s′j |s′k, Rt+1) = Π(ki,t+1, s
′
k) + (1− δ)ki,t+1 −RtbH(s′j |s′k, Rt+1)

≥ Π(ki,t+1, s
′
j) + (1− δ)ki,t+1 −Rtb(s′j , Rt+1) = w(s′j , Rt+1) almost everywhere,

where the inequality follows from the monotonicity of the Markov chainQs(si,t+1|si,t), that is
∑
s′≤s′ Qs(sH , s

′) ≤∑
s′≤s′ Qs(sL, s

′), for all sH , sL, s
′, that in turn implies λ(Bjk) = 0 if j > k.

For all wi,t and Rt, assume f(yH) ≥ f(yL), yH = (wi,t, sH , Rt), yL = (wi,t, sL, Rt). Let aL ∈ Γ(yL) attain
T (f)(yL) and aH ∈ Γ(yH) attain (Tf)(yH). Then:

(Tf)(yL) = d(yL, aL) +
∑
R′∈R̃

Mi,t+1QR(Rt, R
′)
∑
s′j∈S

Qs(sL, s
′
j)f(wL(s′j , R

′), s′j , R
′)

≤ d(yL, aL) +
∑
R′∈R̃

Mi,t+1QR(Rt, R
′)
∑
s′k∈S

Qs(sL, s
′
k)
∑
s′j∈S

q(s′j |s′k, R′)f(wL(s′j |s′k, R′), s′k, R′)

≤ d(yH , aL) +
∑
R′∈R̃

Mi,t+1QR(Rt, R
′)
∑
s′k∈S

Qs(sH , s
′
k)
∑
s′j∈S

q(s′j |s′k, R′)f(wL(s′j |s′k, R′), s′k, R′)

≤ d(yH , aH) +
∑
R′∈R̃

Mi,t+1QR(Rt, R
′)
∑
s′j∈S

Qs(sH , s
′
j)f(wH(s′j , R

′), s′j , R
′)

= (Tf)(yH)

where the three inequalities follow from w(s′j |s′k, Rt+1) ≥ w(s′j , Rt+1) almost everywhere, from the monotonicity
of the Markov chain process followed by si,t given the feasibility of aL if the initial state is yH (f is non-decreasing),
and from the optimality of aH . Thus, T maps increasing functions into increasing functions, hence the fixed point is
strictly increasing because there exists a lower bound which is (weakly) increasing (f = wi,t) and the Knaster-Tarski
theorem applies. Finally, the proof that the value function is non-increasing in Rt for a fixed si,t follows the same
steps applied to the Markov process for Rt, with the difference that the stochastic net worth w(si,t+1, R

′
j |R′k) is

smaller or equal than w(si,t+1, R
′
j) almost everywhere, which immediately implies that T maps decreasing functions

of Rt into decreasing functions of Rt since

(Tf)(yH) = d(yH , aH) +
∑
s′∈S

Mi,t+1Qs(si,t, s
′)
∑
R′j∈R̃

QR(RH , R
′
j)f(wH(s′, R′j), s

′, R′j)

≤ d(yH , aH) +
∑
s′∈S

Mi,t+1Qs(si,t, s
′)
∑
R′k∈R̃

QR(RH , R
′
k)
∑
R′j∈R̃

q(s′, R′j |R′k)f(wH(s′, R′j |R′k), s′, R′k)

≤ d(yL, aH) +
∑
s′∈S

Mi,t+1Qs(si,t, s
′)
∑
R′k∈R̃

QR(RL, R
′
k)
∑
R′j∈R̃

q(s′, R′j |R′k)f(wH(s′, R′j |R′k), s′, R′k)

≤ d(yL, aL) +
∑
s′∈S

Mi,t+1Qs(si,t, s
′)
∑
R′j∈R̃

QR(RL, R
′
j)f(wL(s′, R′j), s

′, R′j)

= (Tf)(yL).

Proof of Proposition 6. The first-order conditions of problem (17)-(18) with respect to b(si,t+1, Rt+1)
are:

Rtν(si,t+1)Mi,t+1 =
νi,t

1 + λi,t
. (A.5)
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Solving the previous equation for Mi,t+1, the stochastic discount factor can be obtained as

Mi,t+1 =
1

Rt(1 + λi,t)

νi,t
Vw(w(si,t+1, Rt+1), si,t+1, Rt+1)

. (A.6)

The envelope condition with respect to the state variable wi,t is νi,t = Vw(wi,t, si,t, Rt). Plugging the expression of

the multiplier νi,t from the envelope condition into (A.6) yields Mi,t+1 = µMi,t
Vw(wi,t,si,t,Rt)

Vw(w(si,t+1,Rt+1),si,t+1,Rt+1) .

Proof of Proposition 7. The excess returns on individual securities can be then priced as Et
[
Mi,t+1R

e
i,t+1

]
=

0, or equivalently as

Et

[
Mi,t+1

Et[Mi,t+1]
Rei,t+1

]
= 0. (A.7)

Writing the previous expression in terms of moments yields

Covt

[
Mi,t+1

Et[Mi,t+1]
, Rei,t+1

]
+

1︷ ︸︸ ︷
Et

[
Mi,t+1

Et[Mi,t+1]

]
Et
[
Rei,t+1

]
= 0,

that is

Et
[
Rei,t+1

]
= −Covt

[
Mi,t+1

Et[Mi,t+1]
, Rei,t+1

]
= −

Covt

[
1

gvi,t+1
, Rei,t+1

]
Et

[
1

gvi,t+1

] . (A.8)

Defining βi,t ≡
Covt

[
(gvi,t+1)

−1
,Re

i,t+1

]
V art

[
(gvi,t+1)

−1
] and λi,t ≡ −

V art
[
(gvi,t+1)

−1
]

Et[(gvi,t+1)
−1

]
yields Et

[
Rei,t+1

]
= βi,tλi,t.

Proof of Corollary 2. The pricing kernel can be log-linearized taking a Taylor expansion of logMi,t+1

around Et[Mi,t+1] as

logMi,t+1 ' logEt[Mi,t+1] +
1

Et[Mi,t+1]
(Mi,t+1 − Et[Mi,t+1])

= logEt[Mi,t+1] +
Mi,t+1

Et[Mi,t+1]
− 1,

which implies
Mi,t+1

Et[Mi,t+1]
' 1 + logMi,t+1 − logEt[Mi,t+1].

Plugging the expression of Mi,t+1 in Proposition 6 in the previous equation yields

Mi,t+1

Et[Mi,t+1]
' 1− log gvi,t+1 + logEt

[
gvi,t+1

]
.

Rearranging (A.7) yields
Et
[
Rei,t+1

]
' βwi,tλwi,t

using the fact that gvi,t+1 is a gross growth rate and log(1 + (gvi,t+1 − 1)) ' gvi,t+1 − 1.

Proof of Proposition 8. Consider the following monotone transformation of gvi,t+1 :

log gvi,t+1 = log Vw(wi,t+1, si,t+1, Rt+1)− log Vw(wi,t, si,t, Rt).

The first term on the right-hand side is non-increasing in wi,t+1, for all si,t+1, Rt+1, because of the concavity

of Vw(wi,t+1, si,t+1, Rt+1) . The term − log Vw(wi,t, si,t, Rt) is non-decreasing in wi,t, for all si,t, Rt, and by the
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envelope theorem and the envelope theorem Vw(wi,t+1, si,t+1, Rt+1) does not depend on wi,t at the optimum. Thus

log gvi,t+1 is non-increasing in wi,t+1 and non-decreasing in wi,t , implying that gvi,t+1 is non-increasing in
wi,t+1

wi,t
.

Before proving Proposition 9, I shall prove the following lemma.

Lemma 2 (Payout Policy) There exists a net worth cutoff w(si,t, Rt) such that di,t = 0 if
wi,t < w(si,t, Rt) and di,t = wi,t − w(si,t, Rt) if wi,t ≥ w(si,t, Rt).

Proof of Lemma 2. The envelope theorem implies that Vw(wi,t, si,t, Rt) = 1 + υD, where υD ≥ 0

denotes the Lagrange multiplier on dividend non-negativity constraint. The concavity of the value function implies

that υD is decreasing in net worth wi,t+1 Thus, Vw(wi,t, si,t, Rt) > 1 if di,t = 0 and Vw(wi,t, si,t, Rt) = 1 if

di,t > 0 . Define the cutoff w(si,t, Rt) ≡ inf{wi,t : di,t > 0} . Let the optimal choice di,t = 0, ki,t+1 = k(si,t, Rt),

b(si,t+1, Rt+1) = b(si,t, Rt), w(si,t+1, Rt+1) = w(si,t+1, Rt+1) attain V (w(si,t, Rt), si,t, Rt). Then, for all wi,t >

w(si,t, Rt), Vw(wi,t, si,t, Rt) = 1 yields Vw(wi,t, si,t, Rt) = V (w(si,t, Rt), si,t, Rt)+
∫ wi,t

w(si,t,Rt)
1dv, which is attained by

the policy di,t = wi,t−w(si,t, Rt), ki,t+1 = k(si,t, Rt), b(si,t+1, Rt+1) = b(si,t, Rt), w(si,t+1, Rt+1) = w(si,t+1, Rt+1).

Proof of Proposition 9. Consider the following monotonic transformation of the realized equity return

R̃i,t+1 :

log R̃i,t+1= log V (wi,t+1, si,t+1, Rt)− log (V (wi,t, si,t, Rt)− di,t). (A.9)

To establish the result in part i), observe that the first term on the right-hand side increases in wi,t+1 because the

value function is weakly increasing in net worth, and is not affected by wi,t because of the envelope theorem. From

lemma 2, for wi,t < w(si,t, Rt), di,t = 0 which implies that the term log(V (wi,t, si,t, Rt)−di,t) is weakly decreasing

in w−1
i,t because the value function is weakly increasing in net worth. For wi,t ≥ w(si,t, Rt), di,t = wi,t−w(si,t, Rt)

and Vw(wi,t, si,t, Rt) from lemma 2, which implies that log(V (wi,t, si,t, Rt)−di,t) is insensitive to w−1
i,t for dividend

payers. Then log R̃i,t+1 is increasing in net worth growth
wi,t+1

wi,t
, and so is Rei,t+1 = R̃i,t+1 −Rt . To establish part

ii), observe that, in (A.9), log V (wi,t+1, si,t+1, Rt) in weakly increasing in si,t+1 , while log(V (wi,t, si,t, Rt) − di,t)
is weakly decreasing in s−1

i,t for wi,t < w(si,t, Rt) because the value function is weakly increasing in si,t , and

is insensitive to s−1
i,t for wi,t ≥ w(si,t, Rt) for the same argument in part i). Thus, log R̃i,t+1 is increasing in

profitability growth
si,t+1

si,t
, and so is Rei,t+1 = R̃i,t+1−Rt . Finally, the proof of part iii) follows the same steps of the

one of part ii), using the fact that the value function is weakly decreasing in Rt, and so is Rei,t+1 = R̃i,t+1−Rt.

A.2 Implementation with Credit Lines

The following proposition shows than the recursive contract in Section 3 can be implemented
with a secured line of credit. In this implementation, the line of credit allows the firm to draw
or restore right after observing the shocks (si,t+1, Rt+1). Thus, it provides the firm with liquidity
contingent to the realization of the state.24 While alternative implementations of the contract exist,
for example based on forward contracts25, credit lines are especially relevant empirically given their
widespread use in US public corporations, as I discuss in Section 3.

24See also Nikolov, Schmid, and Steri (2019).
25See, for example, Rampini and Viswanathan (2013).
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Proposition 10 (Credit Lines Implementation) The one-period contingent claims b(si,t+1, Rt+1)
in (17)-(21) can be equivalently implemented with a line of credit with drawn part c(si,t+1, Rt+1)
and limit cL(si,t+1, Rt+1) defined as the maximum drawn amount that exhausts the firm i’s borrow-
ing capacity, that is as the solution of θki,t+1 = Et [Mi,t+1V (wL(si,t+1, Rt+1), si,t+1, Rt+1)], where
wL(si,t+1, Rt+1) = Π(ki,t+1, si,t+1) + (1− δ)ki,t+1 −RtcL(si,t+1, Rt+1).

Proof of Proposition 10. Consider any sequence of net repayments (restorations) on the credit line
{cR(hi,t)

∞
t=τ after any history hi,t ≡ {ki,j , cRi,j−1, di,j−1, si,j , Rj}tj=1 of previous policies and both aggregate and

idiosyncratic shocks, where cRi,t is the observed restoration of firm i at time t.Negative restorations represent addi-
tional draws from the line of credit. Define the drawn part of the line of credit cD(hi,τ ) at any time τ such that the
present value of future restorations is equal to the amount to be eventually repaid to the lender, that is

Rτ−1,τ cD(hi,τ ) ≡ Eτ

[ ∞∑
t=τ

1

Rτ,t
cR(hi,t)

]
, (A.10)

where Rp,p+l denotes the discount rate of the lenders between periods p and p + l. Rewriting (A.10) one period
ahead yields

Rτ,τ+1cD(hi,τ+1) = Eτ+1

[ ∞∑
t=τ+1

1

Rτ+1,t
cR(hi,t)

]
. (A.11)

Using Rτ,t = Rτ,τ+1Rτ+1,t, one obtains

Rτ−1,τ cD(hi,τ ) = Eτ

[ ∞∑
t=τ

1

Rτ,τ+1Rτ+1,t
cR(hi,t)

]
,

and, by the law of iterated expectations

Rτ−1,τ cD(hi,τ ) = cR(hi,τ ) + Eτ

[
1

Rτ,τ+1
Eτ+1

[
cR(hi,τ+1) +

1

Rτ+1,τ+2
cR(hi,τ+2) +

1

Rτ+1,τ+3
cR(hi,τ+3) + ...

]]
.

(A.12)
Combining (A.12) with (A.10) implies

Rτ−1,τ cD(hi,τ ) = cR(hi,τ ) + Eτ [cD(hi,τ+1)] . (A.13)

At any time t, the restoration can be recovered using (A.13) as cR(hi,τ ) = Rτ−1cD(hi,τ )− Eτ [cD(hi,τ+1)] in which

the shorthand notation Rτ−1 has been used, as in the recursive problem in Section 3, for the one-period riskfree

rate Rτ−1,τ . Thus, the problem can be expressed with the recursive representation in Appendix A.3, where the flow

transfers τi,t = cR(hi,τ ) can be recovered from the one-period contingent claims b(si,t+1, Rt+1) = cD(hi,τ ), and the

lender promise-keeping constraint is (A.13). Finally, by Lemma 3 in the Appendix A.3, the contracting problem

admits the net worth representation in Section 3.

Proposition 10 can be extended in a straightforward way to allow for both straight debt and
credit lines. For example, the presence of a monitoring cost or fee on the credit line would lead the
firm to privilege straight debt for the state-uncontingent part of state-contingent debt b(si,t+1, Rt+1)
(i.e. the common part across states), and to use the credit line to implement the state-contingent
repayment profile implied by b(si,t+1, Rt+1).
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A.3 Recursive Formulation of the Contracting Problem

In this section, I show that the contract in Section 3 can be formulated as a recursive dynamic
programming problem. First, following Albuquerque and Hopenhayn (2004), I define feasible and
enforceable contracts. Then, I specify the firm’s optimization problem by introducing equilibrium
contracts. Equilibrium contracts define the Pareto frontier between the value for the firm (which I
interpret as internal equity) and the value for the lender (which I interpret as external financing),
and impose restrictions the realizations of corporate policies that can be observed in the data.

A contract for a firm i that enters the industry specifies a sequence of capital advancements
{ki,t+1}∞t=0, a sequence of transfers {τi,t}∞t=0 from the firm to the lender, and a sequence of div-
idend payments {di,t}∞t=0 to the firm’s shareholders.26 The aforementioned investment, financ-
ing, and dividend policies are fully state-contingent, and depend on the entire history hi,t ≡
{ki,j, τi,j−1, di,j−1, si,j, Rj}tj=1 of previous policies and both aggregate and idiosyncratic shocks. The
current shock is part of the history, consistent with the timing described in Section 3. Importantly,
the contract jointly specifies financing, dividend, and investment policies, in close analogy with the
covenants that are routinely found in loan agreements. On the firm’s perspective, a contract must
be budget feasible, that is the firm’s internally generated profits must suffice to cover investment
expenses, repayments, and dividend distributions. In addition, the firm cannot raise additional
funds by issuing equity, that is di,t ≥ 0 for all t. The latter condition prevents the firm from raising
costless external equity (i.e. to have negative distributions). Without this constraint, the con-
tracting problem would be trivial. Finally, the contract must be consistent with the firm’s limited
liability, that is the value of the firm must be non-negative to prevent non-strategic default.

Definition 1 (Feasible Contract) Let Hi be the set of all possible histories for firm i. A feasible
contract is a mapping Ci : Hi → R3 such that for all hi,t ∈ Hi, (ki,t, τi,t, di,t) = Ci(hi,t), and, for all
t:

di,t ≥ 0, (A.14a)

di,t + τi,t + [ki,t+1 − (1− δ)ki,t] ≤ Π(ki,t, si,t), (A.14b)

Et

[
∞∑
τ=0

Mi,t+τdi,t+τ

]
≥ 0. (A.14c)

The contract has limited enforcement. The firm’s incentive problem is illustrated in the extensive
form game in Figure A.1.

[Insert Figure A.1 Here]

Each period t, after observing the shocks and choosing investment, financing, and payout policies,
the firm faces an outside opportunity of total value O(ki,t+1, si,t, Rt). The value of the outside
opportunity is common knowledge to both parties, and depends on the newly purchased capital
stock, and on the current state of the economy. Different interpretations of the outside opportunity

26By convention, positive transfers represent repayments to the lender, while negative transfer are inflows for the
firm.
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can be entertained. For instance, the firm may liquidate the capital and disappear. The firm
can choose either to renege the contract, divert the capital stock, and use it to pursue an outside
opportunity, or to continue operations. In the former scenario, lenders liquidate the firm, and
the liquidation value is split between the two parties. In particular, the firm is left with θki,t+1,
while the lender expropriates (1 − θ)ki,t+1. In equilibrium, the firm therefore compares the value
of continuing running the firm with its share of the liquidation value.27 Incentive compatibility
requires the diversion value not to exceed the value of staying in the contractual relationship. In
Figure A.1, this corresponds to the subgame perfect equilibrium {R,L} in which the firm never
reneges the contract because of the threat by the lender to liquidate the firm. This leads to the
following definition of enforceable contract (or self-enforcing contract).

Definition 2 (Enforceable Contract) A feasible contract Ci(·) is enforceable if after any history
hi,t and for all t, the following enforcement constraint is satisfied:

θki,t+1 ≤ Et

[
∞∑
τ=1

Mi,t+τdi,t+τ

]
(A.15)

In equilibrium, contracts must be consistent with both the firm and the lender maximizing
their lifetime utility. Since lenders are competitive, equilibrium contracts attain the maximum
initial value for the borrower with the lender breaking even. The lender’s participation constraint
therefore states that the expected discounted value of repayments is non-negative.

Definition 3 (Equilibrium Contract) An equilibrium contract Ci(·) is an enforceable contract
such that the borrower maximizes

E0

[
∞∑
t=0

Mi,tdi,t

]
(A.16)

subject to the lender’s participation constraint

E0

[
∞∑
t=0

R0,tτi,t

]
≥ 0. (A.17)

where R0,t is the lender’s discount rate between time 0 and time t.

Dealing with equilibrium contracts specified as sequence problems would require to keep track of
an infinite sequence of occasionally binding constraints. This is due to the enforcement constraints
in Equation (A.15), which must be satisfied in all future periods t. In this section, I formulate the
problem recursively, so that dynamic programming techniques can be applied. I propose two recur-
sive formulations. First, following Spear and Srivastava (1987) and Abreu, Pearce, and Stacchetti
(1990), I formulate the dynamic limited enforcement model in recursive form with firm’s capital and

27Notice that the value of the outside opportunity is irrelevant in this setup, because the lender always chooses to
liquidate the firm. The strategy L in fact delivers a null payoff to the lender, and is therefore dominated by L. This
is equivalent to assume O(ki,t+1, si,t, Rt) = θki,t+1 in the case of liquidation.
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promised utility to the lender as endogenous state variables. This formulation allows to interpret
optimal contracts as internal equity/external financing pairs on a Pareto frontier.

I define promised utility bi,t at time t as the value of future transfers to the lender, that is:

bi,t ≡
∞∑
j=0

τi,t. (A.18)

With this definition, Spear and Srivastava (1987) show that the equilibrium contracting problem
defined in (A.16), subject to (A.14a), (A.14b), (A.14c), (A.15), and (A.17), has a stationary repre-
sentation as a dynamic programming problem. This leads to the following formulation:

V (ki,t, bi,t, si,t, Rt) = max
{di,t,ki,t+1,b(si,t+1,Rt+1)}

di,t + Et [Mi,t+1V (ki,t+1, b(si,t+1, Rt+1), si,t+1, Rt+1)]

(A.19)

s.t.

di,t ≥ 0 (A.20)

di,t ≤ Π(ki,t, si,t)− Ii,t − τi,t (A.21)

Ii,t = ki,t+1 − (1− δ)ki,t (A.22)

τi,t = Rt−1bi,t − Et[b(si,t+1, Rt+1)] (A.23)

V (ki,t, bi,t, si,t, Rt) ≥ 0 (A.24)

θki,t+1 ≤ Et [Mi,t+1V (ki,t+1, b(si,t+1, Rt+1), si,t+1, Rt+1)] (A.25)

bi,0 ≥ 0 (A.26)

In this formulation, equilibrium contracts maximize the firm’s equity value, using promised utility
and the capital stock as endogenous state variables. In analogy with the sequential formulation of
the contract, Constraint (A.20) is the dividend non-negativity constraint, Constraint (A.21) is the
budget constraint, where the auxiliary variables Ii,t and τi,t define the current investment expense
and transfer to the lender. The law of motions of Ii,t and τi,t are specified in Constraints (A.22)
and (A.23). Constraint (A.23) can be interpreted as a promise-keeping constraint for the lender.
Constraint (A.24) is the limited-liability constraint for the borrower. Constraint (A.25) is the en-
forcement constraint, which states that the diversion value cannot exceed the continuation value.
Thus, reneging the contract is never optimal. Finally, contracts are initialized such that the partic-
ipation constraint (A.26) for the lender is satisfied.

The problem can be further simplified by reducing the dimension of the state space. This can
be achieved using net worth as a state variable, in line with Abreu, Pearce, and Stacchetti (1990),
Rampini and Viswanathan (2010), and Rampini and Viswanathan (2013). Realized net worth in
state si,t+1 and Rt+1 is defined as w(si,t+1, Rt+1) ≡ Π(ki,t, si,t) + (1 − δ)ki,t+1 − Rtb(si,t+1, Rt+1),
and determines the amount of resources that are available to the firm in a certain state, net of
liabilities. Intuitively, net worth is the corporate counterpart of household’s wealth, and captures
how constrained a company is in terms of resources to allocate to investment, and distributions.
This leads to the following lemma.

64



Lemma 3 (Recursive Problem) The constrained optimization problem in (A.19)-(A.26) is equiv-
alent to:

V (wi,t, si,t, Rt) = max
{di,t,ki,t+1,b(si,t+1,Rt+1)}

di,t + Et [Mi,t+1V (w(si,t+1, Rt+1), si,t+1, Rt+1)]

(A.27)

s.t.

di,t ≥ 0 (A.28)

wi,t ≥ di,t + ki,t+1 − Et[b(si,t+1, Rt+1)] (A.29)

w(si,t+1, Rt+1) ≤ Π(ki,t+1, si,t+1) + (1− δ)ki,t+1 −Rtb(si,t+1, Rt+1) ∀sit+1, Rt+1 (A.30)

θki,t+1 ≤ Et [Mi,t+1V (w(si,t+1, Rt+1), si,t+1, Rt+1)] (A.31)

bi,0 ≥ 0 (A.32)

Proof of Lemma 3. By the definition of net worth, Equation (21) must also hold for the current state, which
is measurable respect to the information set at time t. Hence

wi,t ≤ Π(ki,t, si,t) + (1− δ)ki,t −Rt−1bi,t. (A.33)

Because free disposal is never optimal, Equations (A.21) , (20) and (21) are always binding. This yields:

Π(ki,t, si,t) + (1− δ)ki,t −Rt−1bi,t = di,t + ki,t+1 − Et[b(si,t+1, Rt+1)]. (A.34)

Equations (20) and (21), and Equations (A.21), (A.22) and (A.23) are therefore equivalent. The enforcement con-
straint in conjunction with the dividend non-negativity constraint imply that the limited liability constraint is always
satisfied. This constraint is therefore redundant, and can be omitted from the problem. In fact, because at the opti-
mum V (ki,t, bi,t, si,t, Rt) = di,t + Et [Mi,t+1V (ki,t+1, b(si,t+1, Rt+1), si,t+1, Rt+1)], Equation (A.25) can be rewritten
as

V (ki,t, bi,t, si,t, Rt) ≥ θki,t+1 + di,t. (A.35)

By (A.20), di,t ≥ 0. Thus:
V (ki,t, bi,t, si,t, Rt) ≥ θki,t+1 + di,t ≥ θki,t+1, (A.36)

which implies (A.24) because the fact that limki,t↓0 Π(ki,t, si,t) = ∞ makes optimal capital always strictly positive.

Because only wi,t, and not its individual components predetermined at time t, affect the return function di,t, the two

formulations are equivalent.
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Figure A.1
The Enforcement Problem: Extensive Form Game.

The figure shows the extensive form of the game from which enforcement constraints arise as an equilibrium

outcome. Red solid lines and blue dashed lines represent optimal strategies and payoffs for the firm and

the lender respectively. The possible strategies for the borrower are either to renege the contract (R), or

to continue running the firm (R). If the borrower decides to renege the contract, The possible strategies

for the lender are either to liquidate the firm (L), or to not liquidate the firm (L). At time t and for

firm i, Mi,t+1 denotes the stochastic discount factor, Rt is the lender’s discount rate, di,t the dividend

payment, τi,t the repayment to the lender, ki,t the firm’s capital stock, O(ki,t+1, si,t, Rt) the value of the

outside opportunity for the entrepreneur, and 1− θ the fraction of capital the lender can expropriate upon

liquidation. si,t is a firm-specific productivity shock.

NATURE FIRM
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A.4 GMM Testing Procedure

Empirical tests for all the asset pricing models in Section 5 are implemented in stochastic
discount factor form along the lines of Cochrane (2001), to which I refer for a textbook treatment
of such tests. The pricing condition above for a portfolio with weight ωi in the equity of firm i can
be restated as

Et


N∑
i=1

κωiR
e
i,t+1 +

N∑
i=1

ωia
w(si,t+1,Rt+1)−wi,t

wi,t
Re
i,t+1 +

N∑
i=1

ωib
si,t+1−si,t

si,t
Re
i,t+1

+
N∑
i=1

ωic
Rt+1−Rt

Rt
Re
i,t+1 −

N∑
i=1

ωie
κ−1

 = 0,

using a linear approximation for Mi,t+1, where a, b and c denote the constant loadings on net
worth growth, profitability growth, and interest rate growth respectively, κ≡ 1− logEt[Mi,t+1], and
N denotes the number of securities in the portfolio.

Denote by yt ≡ (Re
t , wt, st, Rt) the vector of data used in the estimation, where the i index has

been omitted to simplify notation. Then the set of moments conditions is:

g(θ̂, yt) ≡ [Mt+1(1 +Re
t )− 1] . (A.37)

A sufficient condition for local identification is that the covariance matrix of returns has full rank
(Newey and McFadden (1994)). The objective function for the GMM estimation is:

min
θ̂∈Θ

ET [g′(θ̂, yt)]WET [g(θ̂, yt)], (A.38)

where the operator ET (·) denotes the sample mean for a time series of length T , andW is the positive
definite weighting matrix. Estimation is by two-step GMM, with HAC standard errors. The kernel
is Newey-West with a lag length of 1 year. The first-stage weighting matrix puts an equal weight
on the moment conditions. The R2 and MAE reported in the text are from first-stage estimations.
The R2 measure is computed as in Campbell and Vuolteenaho (2004). The J-test of overidentifying
restrictions is performed as in Hansen and Singleton (1982), and the Hansen-Jagannathan distance,
its test-statistics, and its p-value are derived as in Appendix C of Jagannathan and Wang (1996).

A.5 Data and Variables

The empirical analyses in Section 5 use data about portfolios and factors to test the Contracting
Model, the CAPM, the Consumption CAPM, and the Fama-French three-factor model. The sample
period is from 1965 to 2013.

The Contracting Model variable are constructed from common shares (share codes [shrcd] equal
to 10 or 11) from the Compustat/CRSP merged dataset. In order to prevent look-ahead bias, fiscal
years are matched to calendar years with the procedure in Fama and French (1992). Specifically,
returns on the test assets formed in June of year t are matched to accounting data from the last fiscal

67



year ending in calendar year t−1. This guarantees a gap of at least six months between accounting
data and the date of portfolio formation. In constructing the factors for the Contracting CAPM,
net worth is measured as the book value of equity, consistent with the accounting definition in the
contracting model. Following Daniel and Titman (2006), the book value of equity is computed
using redemption, liquidation, and par value of preferred shares, and accounting for investment tax
credits and postretirement benefits. The data items used are obtained from merging the Compus-
tat/CRSP merged with CRSP. Data on the market return, HML, SMB, CMA, RMW, the riskfree
rate, and industry classification are from Kenneth French’s website. Data on consumption growth
in nondurable and services are from the US national accounts.

The following table summarizes variable definitions with reference to Compustat and CRSP items.

Variable Construction

Value of Preferred Stocks (PS) If available, in this order: PSTKRV , PSTKL, PSTK.

Book Equity (BE) CEQ+ TXDITC (if available) − PS

Market Capitalization log |PRC|·SHROUT
1000

(in June)

Book-to-Market Equity (B/M) log BE
|PRC|·SHROUT/1000

Net Worth AT −DLC −DLTT

Profitability REV T−COGS
AT

Momentum
∑12

m=2 log(1 + rett−m), t :month of forecasted return

Investment (Asset Pricing Tests) AT−L.AT
L.AT

Investment (Corporate Policies) CAPX−SPPE
PPEGT

Operating Income OIBDP
AT

Leverage DLCC+DLT
|PRC|·SHROUT/1000+DLCC+DLT

Distributions DV T
AT

Tobin’s Q DLTT+DLC+PRCCF ·CSHO
AT
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