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1 Introduction

Expected returns reflect and guide investment decisions in the economy (e.g., Cochrane,

1996) and hence they are closely related to firm behavior and aggregate outcomes such as

unemployment (Borovicka and Borovicková, 2018). Over the last decades, the literature

has identified hundreds of factors predicting cross-sectional returns (Harvey et al., 2016).1

However, the economic content of factors is an open question (Kozak et al., 2018). Factor

returns might be a compensation for risk as basic asset pricing theory asserts, but they

may also arise because of behavioral biases, institutional, informational, and many other

frictions.2

We propose simple-to-use tests to assess whether risk can explain the difference in

expected returns for a given factor. Distinguishing between risk factors and anomalies re-

quires a definition of risk. For this purpose, we go back to basic microeconomics and define

risk as anything a risk-averse individual with an increasing and concave von Neumann-

Morgenstern utility function dislikes. The basic idea behind our two tests is to assess

whether every risk-averse individual strictly prefers the long leg of a factor over its short

leg. If this preference does not hold for all individuals, at least one possible risk-averse

individual prefers to forgo the higher return of the long leg in exchange for the lower,

but less risky, return of the short leg. Then, risk can explain the difference in expected

returns between the long and the short leg. More precisely, the factor’s expected return

is a possible compensation for the higher risk of the long leg with respect to the short leg.

The main empirical results of the paper indicate that a majority of factors are anomalies

rather than possible risk factors.

Researchers and practitioners typically build factors through portfolio sorts according

to the value of a characteristic, such as firms’ market capitalization, divide the sorted

stocks into groups according to some percentiles (e.g., deciles), and then form portfolios

based on the groups. If the average returns appear monotonic in the characteristic,

researchers form a factor by subtracting low-return portfolio returns from high-return

1In the following, we do not use the term “factor” as a shorthand for “risk factor.” A factor can be
an anomaly, or a return spread that risk can explain. When we use the terms “factor,” we have variables
in mind that help predict returns in the cross section without taking a stance on the validity of a factor
model.

2See e.g., Berk et al., 1999; Gomes et al., 2003; Cooper, 2006 for risk compensation, Bondt and Thaler,
1985; Jegadeesh and Titman, 1993 for biases, Gromb and Vayanos, 2010 for institutions frictions, and
Cohen et al., 2012 for informational frictions.
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portfolio returns, mimicking a long-minus-short strategy. Factors based on multivariate

sorting similarly have a long leg with high expected returns and a short leg with low

expected returns. Basic asset pricing theory stipulates the higher expected returns of the

long leg should be a compensation for higher risk. Thus, similarly to Kelly et al. (2019),

if risk alone cannot explain the spread in expected returns between the two legs of the

factor, we call the latter an “anomaly,” otherwise we call it a “possible risk factor.” In the

present paper, an anomaly is a deviation from the risk-return tradeoff.

The null hypothesis of the first test corresponds to unconditional strict preferences for

the long leg, while the null hypothesis of the second test corresponds to strict preferences

for the long leg conditional on the market (i.e., after controlling for exposure to market

risk). Empirically, the majority of return spreads appear to be anomalies rather than

possible risk factors. Regarding the Fama and French (2015) four factors and the momen-

tum factor (Jegadeesh and Titman, 1993; Carhart, 1997), our tests indicate that value,

momentum, operating profitability, and investment are anomalies rather than possible

risk factors. Evidence is mixed regarding size: The null hypothesis is rejected, but it is

unclear whether the rejection is due to risk or a lack of a significant factor return. Apply-

ing the tests to a standard data set of more than 200 factors shows that more than 70%

of them are anomalies and thus indicate that the main empirical finding holds beyond the

widely-used Fama and French (2015) four factors and momentum.

To formally motivate the tests, we develop a simple model economy, in which a factor

is not a risk factor but arises due to a friction. In addition, to tie the tests to asset-

pricing theory, we investigate the economic content of the null hypotheses of the two tests

beyond a pairwise comparison of factor legs. In an economy with diversification benefits,

spreads in expected returns between two tradable assets should compensate for non-

diversified risk. We show if the null hypotheses of the tests hold, then non-diversified risk

alone is unlikely to explain the factor’s expected return, that is, the latter should exceed

compensations for non-diversified risk required by individuals. The intuition behind the

result is that undiversified risk is unlikely to explain E(RL − RS) if the total risk cannot

explain E(RL − RS) in the first place. The null hypotheses of the tests correspond to

what we call strong second order stochastic dominance (SSD), which is the standard

SSD condition with strict inequality instead of weak inequality. A strict inequality is a

necessary condition for an anomaly and thus it is key to derive the equilibrium foundations

of the tests.
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In line with most of the literature on factor models, for simplicity, we focus on a one-

period setting. Nevertheless, we show the equilibrium foundations for both tests remain

valid in multi-period settings. We also demonstrate the equilibrium foundations hold

independently of the structure of the economy (e.g., whether or not individuals optimally

diversify risk, whether or not markets are complete, whether or not a representative agent

exists, etc.). Thus, the theoretical foundations of the proposed tests are robust within a

large class of models.

The equilibrium foundations of the tests indicate our empirical results are consistent

with a literature highlighting the importance of market frictions and behavioral biases for

differences in cross-sectional returns.3 Recently, Korsaye et al. (2021), Dello-Preite et al.

(2022) and Cong et al. (2022) find non-systematic variables are helpful to explain cross-

sectional returns in line with market frictions, whereas Lopez-Lira and Roussanov (2023)

find that latent common factors have limited explanatory power for stock returns. Chinco

et al. (2022), instead, survey investors and find they do not make investment decisions

based on the covariance between asset returns and consumption growth, making it less

likely that this covariance, which captures non-diversified risk, explains cross-sectional

returns. Our empirical results are also consistent with a large literature on “low-risk

anomalies” (e.g., Haugen and Heins, 1975; Baker et al., 2011; Frazzini and Pedersen,

2014; Schneider et al., 2020).

To assess the performance of the tests, we investigate their properties mathematically,

numerically and empirically. First, building on the statistics and econometrics literature

on SSD (McFadden, 1989), we show the tests have good asymptotic properties, that is,

they are valid and consistent. Second, we investigate their finite-sample properties through

Monte-Carlo simulations, confirming the asymptotic properties of the tests. Finally, as a

proof of concept, we apply the unconditional test to the market factor, that is, the spread

in expected returns between US stock returns and one-month US Treasury bill returns.

Overwhelming empirical evidence exists documenting that US stocks have higher expected

returns than Treasury bills, but are riskier. In line with the evidence, the tests clearly

indicate risk can explain the spread, so the market factor appears as a possible risk factor

unlike the majority of other factors.

The tests possess several note-worthy properties. First, the tests are comprehensive.

3Luttmer (1996), He and Modest (1995), Guvenen (2009) and Czellar et al. (2022) show market
frictions can even explain the equity premium puzzle.
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The tests do not rely on a specific measure of risk (e.g., variance), or utility function (e.g.,

constant relative risk-aversion utility function) because they test the strict preference for

the long leg, accounting for all types of risks disliked by risk-averse individuals, including

high-order moments and tail risks.

Second, the tests are model-free. They do not assume a parametric model of returns.

The standard approach assumes a linear factor model with a specific dependence structure

for the errors (e.g., Ross (1976)’s Arbitrage Pricing Theory and its extensions). We simply

define an anomaly as a deviation from the risk-return tradeoff, that is, a difference in

expected returns that risk alone cannot explain. In contrast, the literature often equates

anomalies to non-zero alphas of regressions of a long-minus-short strategy on a specific

factor model that is assumed to capture risk.

Third, the unconditional test is immune to the multiple hypotheses and pretesting

problems: The test does not yield any type I (nor type II) error asymptotically. In

other words, as the sample size increases, it is not only impossible to fail to reject a

false null hypothesis (type II error), but it is also impossible to wrongly reject a true

null hypothesis (type I error). Therefore, for samples of sufficient size, we are unlikely to

incorrectly classify by luck a factor as a possible risk factor contrary to standard tests. By

construction, a test of significance at the 5% level classifies an insignificant return spread

as significant 5% of the time, even asymptotically, giving rise to the issues of multiple

hypothesis testing and pretesting.

Finally, both tests escape the Hansen and Richard (1987) critique, that is, they do not

require that conditioning on the information set of the econometrician and conditioning on

the information of the investor coincides. The null hypotheses of the tests are expressed in

terms of expectations and thus are robust to conditioning down on a smaller information

set. In contrast, approaches based on factor models rely on covariances, which are not

robust to conditioning down on a smaller information set.

Despite the aforementioned noteworthy properties, we do not claim that the proposed

tests are without limitations. A first possible shortcoming is the need to take a stand

on a definition of anomalies. We define an anomaly as a factor that cannot be explained

by risk alone. Although the definition is grounded in theory, the definition implies that

anomalies are not necessarily risk free. For example, the definition implies that idiosyn-

cratic risk factors due to limited investors knowledge (e.g., Merton, 1987) are considered

anomalies. The rationale is that a public authority —e.g., the U.S. Securities and Ex-
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change Commission— may design policies to eliminate the information friction, and thus

the anomaly. Our definition also means a factor that arises due to a deviation from von

Neumann-Morgenstern expected utility theory (e.g., loss aversion) or from rational expec-

tations is also considered an anomaly. In particular, factors due to a deviation of beliefs

from the true distribution of returns are considered anomalies, even if these beliefs are

the result of Bayesian learning. Again, the rationale is that the deviation comes, in the

first place, from an information friction instead of risk.

A second possible limitation concerns the equilibrium foundations of the tests. Beyond

the pairwise comparison of factor legs, the equilibrium foundations of the tests rely on

Taylor expansions, so they are valid up to approximation errors. Taylor expansions are

ubiquitous in asset pricing theory (e.g., log linearizations such as the Campbell-Shiller

decomposition) and empirical works (e.g., inference based on asymptotic approximations),

and they have been found useful. In the present paper, approximation errors are unlikely

to affect the empirical results because we can arbitrarily recenter the Taylor expansions to

shrink approximation error terms. Nevertheless, results based on Taylor approximations

should always be taken with a grain of salt because of the very nature of approximations.

In summary, we do not claim that the present paper exhausts the question of the economic

content of factors. We only hope that it helps shed new light on whether factors can be

explained by risk alone.

Any progress in understanding the relation between risk and factors is not a mere

academic curiosity. In many situations, the practical implications of a factor discovery

depend on whether it is a risk factor or an anomaly. If a factor corresponds to risk, an

individual would likely try to limit her exposure to this factor. Conversely, if a factor

corresponds to an anomaly, an individual would likely want to load on it —if possible—

and thus earn higher expected returns. Likewise, for investment decisions, firms would

likely account for a risk factor to value investment projects, but not necessarily for an

anomaly. More generally, unlike an anomaly, a risk factor can typically be used for risk

adjustments of future risky cash flows, which is key both in asset pricing and for real

investment decisions.
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Related literature

To the best of our knowledge, our paper is the first to propose simple tests to distinguish

anomalies from possible risk factors without assuming a linear factor model with a specific

dependence structure for the errors. Nevertheless, in addition to the already mentioned

papers, we build on several strands of the literature.

The literature on factor models for the cross-section of stock returns goes back, at least,

to the CAPM (Sharpe, 1964; Lintner, 1965; Mossin, 1966), in which differences in exposure

to the market return determine differences in expected returns. However, theoretically,

Merton (1973) shows the market factor does not need to be the only risk factor and

Dybvig and Ingersoll (1982) even show the existence of CAPM equilibria with arbitrage

opportunities. Empirically, starting with Basu (1977) and Banz (1981), the literature has

developed several factor models that attribute important roles to factors other than the

market factor. Fama and French (1992, 1993)’s three factors plus momentum (Jegadeesh

and Titman, 1993; Carhart, 1997) partly synthesize these early findings.

Since then, exponential growth describes the number of newly discovered factors (Har-

vey et al., 2016), partially spurred by the availability of better computing power, data

mining, and trial and error,4 econometric advances,5 and the incorporation of no-arbitrage

and equilibrium constraints in statistical linear factor models.6 Most of this literature fo-

cuses on observable factors rather than latent and unobservable factors, a feature our

paper shares.

A recent literature attempts to “tame” the factor “zoo” (Cochrane, 2011) by using

novel econometric methods. A first strand of literature proposes to reduce the dimensions

of the “zoo” through the extraction of a small number of unobservable factors from static

or dynamic PCAs.7 A second strand proposes techniques to infer a parsimonious set

of observable factors. Barillas and Shanken (2018) and Bryzgalova et al. (2020) develop

Bayesian model-selection approaches to select factors. Freyberger et al. (2020), Freyberger

4See, e.g., McLean and Pontiff (2016); Harvey et al. (2016); Chinco et al. (2021); Chen and Zimmer-
mann (2020); Akey et al. (2022).

5See, e.g., Gibbons et al. (1989); Jagannathan and Wang (1998); Todorov and Bollerslev (2010); Kan
et al. (2013); Gagliardini et al. (2016, 2019); Forni et al. (2017); Kim and Skoulakis (2018); Raponi et al.
(2020); Giglio and Xiu (2021); Pelger (2019); Lettau and Pelger (2020a); Cattaneo et al. (2020); Fan et al.
(2022).

6See, e.g., Ross (1976); Chamberlain and Rothschild (1983); Connor (1984).
7See, e.g., Connor and Korajczyk (1993); Onatski (2010); Ahn and Horenstein (2013); Kelly et al.

(2019); Lettau and Pelger (2020b).
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et al. (2021), and Feng et al. (2020) adapt LASSO-type of techniques to shrink the number

of factors. A third and small strand of the literature tries to distinguish risk factors from

anomalies. Pukthuanthong et al. (2018), for example, propose to classify priced factors

related to the covariances matrix of returns as risk factors.

The present paper is closest to this last strand of the literature. The main differences

are: (i) Our approach does not rely on a linear statistical model of returns, which might

admit arbitrage opportunities for the set of traded assets (Al-Najjar, 1998). (ii) It detects

anomalies instead of risk factors — the rejection of the null hypotheses of our tests indicate

a possible risk factor. (iii) It evades the Hansen and Richard (1987) critique, that is, it

does not require that conditioning on the information set of the econometrician and the

investor coincide.

We also build on a large econometric literature on tests of stochastic dominance. The

literature mainly builds on McFadden (1989). Our unconditional test is a subsampling

implementation of a modified McFadden (1989) test of SSD. From a technical point of

view, it is closest to Linton et al. (2005), although the null hypotheses are different:

Our null hypothesis is “the long leg strongly dominates the short leg,” whereas applying

Linton et al. (2005) to our setting would imply the null hypothesis “the long leg dominates

the short leg or the short leg dominates the long leg.” Our conditional test is a test of

conditional strong SSD. It follows from an application of Durot (2003)’s approach, along

the lines of Delgado and Escanciano (2013) and thus adapts the latter to strong SSD. Our

block subsampling implementations of the unconditional and conditional tests allow for

time-series and cross-sectional dependence.

We also build on a large literature in mathematics on SSD, which goes back to Hardy

et al. (1929). The SSD literature in finance has mainly focused on portfolio allocation or

general equilibrium implications of stochastic dominance (e.g., Post, 2003; Hodder et al.,

2015). Recently, Chalamandaris et al. (2021) and Arvanitis et al. (2022), building on

Arvanitis et al. (2019) and Scaillet and Topaloglou (2010), propose a method to assess

whether adding a factor to a given set of factors is beneficial for every risk-averse investor

and for every investor with a prospect-theory utility, respectively. These are spanning

tests for factor investing, but they do not allow distinguishing anomalies from possible

risk factors. We also contribute to this literature by introducing the concept of strong

SSD, that is, the replacement of weak inequalities by strict inequalities in the different
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characterizations of SSD.8 This modification is crucial for the equilibrium foundations of

the null hypotheses of our tests: If we allowed for an equality, some individuals could be

indifferent between the long and the short leg, so both legs could coexist in equilibrium,

and hence no anomaly would exists.

2 Motivation and definitions

We now discuss the motivation for the tests, explain their null hypothesis and their

equilibrium foundations. For simplicity, we focus on a one-period equilibrium framework

and on the unconditional test. Section 4 shows the logic behind the conditional test is

similar to the unconditional test. We discuss the extension to a multi-period setting in

Subsection 5.6.

2.1 A Factor is not necessarily a Risk Factor

2.1.1 Simple case

A factor, that is, a variable that helps predict cross sectional returns, does not need to

be a risk factor. This is the primary motivation for our tests. By “risk factor,” we mean

a factor whose expected return can be explained by risk alone. We call an anomaly a

factor that is not explained by risk alone. In order to support the motivation of our

tests, we now provide a simple model economy, in which a factor does not compensate

investors for loading on systematic risk, but rather arises due to a friction. The following

model is in the spirit of existing models that introduce a friction to explain empirical

factors (e.g., Merton, 1987; Frazzini and Pedersen, 2014), but the following model is more

parsimonious. Moreover, we derive a factor model representation (equation (6) below)

that explicitly incorporates the friction in the form of a factor. For brevity, the following

model motivates our tests with a friction-driven anomalies, but behavioral biases can also

generate anomalies, and thus also motivate our test.

Consider a representative investor who maximizes her expected utility subject to con-

straints on long positions. More specifically, the representative investor maximizes the

8Strict SSD is used to qualify the situation in which all possible strictly risk averse individuals (i.e.,
individuals with a strictly concave von Neumann-Morgenstern utility function) strictly prefer a lottery to
another lottery (Dana, 2004, Definition 1). For this reason, we use the term strong SSD instead of strict
SSD.
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following mean-variance problem






maxw∈RK w′(μ − R01) − λ
2
w′Σw

wk 6 M̄k, for k = 1, 2, . . . , K,
(1)

where vector R := (R1 R2 . . . RK)′ denotes the vector of gross returns of risky assets,

μ := E(R) the expected gross return of risky assets, Σ := V(R) the variance-covariance

matrix of risky assets’ gross returns, R0 the gross return of the risk-free rate, wk the

fraction of initial wealth invested in the asset k, w := (w1 w2 . . . wK)′, 1 := (1 1 . . . 1)′ a

K×1 vector of ones, M̄ := (M̄1 M̄2 . . . M̄K)′ the vector of upper bounds on long positions,

and λ > 0 captures risk aversion. The constraint on long position M̄k, for example, can

be due to regulation (e.g., risk management). The existence of a solution to the mean-

variance problem (1) is a sufficient condition for the existence of general equilibrium

economy with a representative investor maximizing the mean-variance problem (1). See

Luttmer (1996), He and Modest (1995) for prominent examples of representative agents

in economies with frictions, and Luttmer (1992) for aggregation results.

Solving (1) is equivalent to maximizing the Lagrangian

max
w∈RK

w′(μ − R01) −
λ

2
w′Σw − δ′(w − M̄),

where δ is the vector of Lagrange multipliers for the constraints on long positions. Thus,

the first order condition is

μ − R01 − λΣw∗ − δ = 0, (2)

resulting in optimal portfolio weights

w∗ =
λτ

λ
wτ −

λδ

λ
wδ, (3)

where λτ := 1′Σ−1 (μ − R01) , λδ := 1′Σ−1δ, wτ := Σ−1(μ−R01)
1′Σ−1(μ−R01)

, wδ := Σ−1δ
1′Σ−1δ

. In a

frictionless economy, the portfolio wτ is the standard tangency portfolio. The portfolio

wδ reflects the distortion to the optimal demand for risky assets due to the friction.

The first order condition (2) is also equivalent to

μ − R01 = λΣw∗ + δ = λΣw∗ + λδΣwδ, (4)
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so the expected return of the optimal portfolio is

(w∗)′ (μ − R01) = λ (w∗)′ Σw∗ + λδ (w∗)′ Σwδ. (5)

In a frictionless economy, the expected return of an efficient portfolio is proportional

to its level of risk (w∗)′ Σw∗. With a constraint on long positions, a correction exists

proportional to the covariance of the efficient portfolio with the friction portfolio wδ.

According to the optimality condition (4), the expected excess return of any portfolio

wp is

w′
p(μ − R01) = λw′

pΣw∗ + λδw
′
pΣwδ. (6)

The factor model (6) consists of two factors, (w∗)′R and w′
δR, where (w∗)′R corresponds

to a market-type factor. In the standard approach, which assumes factors are necessarily

risk factors, the lambdas λ and λδ would be called the prices of risk of the factors, (w∗)′R

and w′
δR, respectively. While the factor (w∗)′R is a risk factor, the factor w′

δR is not a

risk factor. It is due to the constraints on long positions. In the absence of constraints,

the Lagrange multiplier δ and the lambda λδ are zero, and thus the only factor is the

market-type factor (w∗)′R, that is, the factor w′
δR does not exist.

We can also derive an augmented-CAPM representation of the factor model (6). In

equilibrium, the representative individual holds the market portfolio with weigths wM :=
w∗

1′w∗ . By the optimality condition (4), the expected excess returns of any portfolio wp and

of the market portfolio wM are

μp − R0 = w′
p(μ − R01) = λ̄w′

pΣwM + λδw
′
pΣwδ

μM − R0 = w′
M (μ − R01) = λ̄w′

MΣwM + λδw
′
MΣwδ,

where λ̄ := λ1′w∗. Combination of the last two equalities yields the augmented-CAPM

representation

μp − R0 = βp,M (μM − R0) + (βp,δ − βp,MβM,δ) λ̄δ, (7)

where βi,j is the beta of portfolio i relative to portfolio j and λ̄δ := λδw
′
δΣwδ. The

expected excess return of any portfolio wp has two components: A CAPM component

βp,M (μM − R0) proportional to the market excess return but also a second component
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(βp,δ − βp,MβM,δ) λ̄δ related to the exposure to the friction portfolio wδ. The exposure

to the friction portfolio accounts for the fact that in equilibrium the market will also be

impacted by its exposure to wδ. To avoid double counting, the exposure of the portfolio wp

to the friction portfolio wδ is its beta relative to this portfolio βp,δ net of the compensation

for the presence of the second factor in the market portfolio βp,MβM,δ. In the augmented-

CAPM model (7), the factor w′
δR drives the wedge between the expected excess return

E(Rk − R0) and the risk compensation βp,M (μM − R0). The wedge (βp,δ − βp,MβM,δ) λ̄δ

is due to the constraints. However, the standard approach that assumes a factor is

necessarily a risk factor would typically classify the factor w′
δR as a risk factor. Therefore,

the standard approach would also fail to classify any anomaly spanned by the factor w′
δR

as an anomaly.

2.1.2 General case

Friction-driven factors are not an artefact of the previous model. Under general as-

sumptions that allow for different types of frictions (e.g., bid-ask spreads, proportional

transactions costs, and constraint on long positions), building on Jouini and Kallal (1995),

Luttmer (1996) shows that no-arbitrage implies the existence of at least one strictly pos-

itive SDF (stochastic discount factor) M and a vector δ s.t. (such that)

E[M(R − R01)] = δ (8)

where δ belongs to a subset of RK determined by the frictions. See also Korsaye et al.

(2021, Proposition 1). The vector δ corresponds to the wedge due to frictions. In the

standard textbook presentations of SDF, the wedge vector δ = 0 because free portfolio

formation is assumed, that is, frictions are ruled out. The pricing equation (8) shows that

both an SDF M and a wedge vector δ are necessary to explain differences in expected

returns. In other words, both risk and frictions are necessary to explain differences in

expected returns. Hereafter, without loss of generality, we impose E(M) = 1 because we

can divide both sides of the pricing equation (8) with E(M).

Then, by the pricing equation (8), Cov(R,M) + E(R − R01) = δ so E(R − R01) =

−Cov(R,M)+ δ, which, in turn, implies that, the expected excess return of any portfolio
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wp is

w′
p(μ − R01) = Cov(w′

pR,−M) + λδw
′
pΣwδ (9)

where μ := E(R), Σ := V(R), λδ := 1′Σ−1δ, and wδ := Σ−1δ
1′Σ−1δ

. The two-factors model (9)

generalizes the simple two-factor model (6): The covariance Cov(w′
pR,−M) corresponds

to the term λw′
pΣw∗ in the simple two-factor model (6). The two-factor model (9) shows

that the standard approach would wrongly classify the factor wδR and any anomaly

spanned by the latter as a risk factor. This is why we propose tests to assess whether risk

alone can explain the difference in expected returns captured by a factor.

2.2 Null hypothesis

In basic microeconomic theory, risk is anything risk-averse individuals with an increasing

and concave von Neumann-Morgenstern utility function dislike. The starting point of the

tests is to apply this definition of risk to the typical construction of factors. Researchers

and practitioners typically build a factor as a long-minus-short trading strategy, in which

the long leg is a high-expected-returns portfolio and the short leg corresponds to a low-

expected-returns portfolio. Thus, the basic idea is to test, for each factor, whether every

risk-averse individual would strictly prefer the lottery representing the long leg to the

lottery representing the short leg. Accordingly, the null hypothesis of the unconditional

test is

H0 : ∀u ∈ U2, E[u(RS)] < E[u(RL)], (10)

where U2 denotes a class of concave and increasing functions, and RS and RL denote the

gross returns of the long leg and the short leg, respectively. If the null hypothesis (10)

is rejected, then at least one possible risk-averse individual weakly prefers the short leg

to the long leg, so risk can explain the spread in expected returns. In other words, a

possible risk-averse individual prefers to forego the higher expected return of the long leg

in exchange for the lower expected return of the short leg, because the latter is less risky.

Then, risk can explain the expected return of the factor. Testing for all possible utility

functions in U2 allows us to sidestep the choice of a specific measure of risk, that is, the

choice of a specific utility function u.
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The null hypothesis (10) is similar to the well-known SSD. The difference arises from

the use of strict inequalities instead of weak inequalities, that is, the null hypothesis (10)

rules out the possibility of risk-averse individuals who are indifferent between the long

and the short leg. Hereafter, when the null hypothesis (10) holds, we say that RL strongly

SSD dominates RS.

The replacement of weak inequalities is key from an economic point of view. SSD is not

a sufficient condition for an anomaly for at least two reasons. First, it does not guarantee a

strictly positive expected factor return E(RL−RS), which is a necessary condition for the

existence of a factor. Second, the modification is central for the equilibrium foundations

of the tests. If some individuals are indifferent between the long and the short leg, then

both legs can coexist in equilibrium, hence no anomaly exists. In fact, any portfolio SSD

dominates itself, although it necessarily coexists with itself. In contrast, no portfolio

strongly SSD dominates itself, because strong SSD is not a reflexive binary relation.9

2.3 Equilibrium foundations

In this section, we show that, under general assumptions, the null hypothesis (10) should

be a sufficient condition for an anomaly. We label a factor an anomaly if risk alone

cannot explain the expected return of the factor, that is, if the expected return exceeds

all possible risk compensations required by risk-averse individuals.

9Another way to obtain strict inequalities instead of weak inequalities is to rule out affine utility
functions from the class U2 and rely on strict SSD. The latter corresponds to the situation in which all
possible individuals with a strictly concave von Neumann-Morgenstern utility function strictly prefer the
dominant lottery (Dana, 2004, Definition 1 and strict Jensen’s inequality). We do not pursue this path
because (i) Risk neutrality (i.e., affine utility functions) is a standard benchmark in finance and economics;
(ii) As previously indicated, the existence of a strictly positive expected factor return E(RL − RS) is a
necessary condition for the existence of an anomaly, so it needs to be part of the null hypothesis.
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2.3.1 Equilibrium Foundations without Diversification Benefits

Figure 1: Risk aversion and asset pricing without diversification benefits

Notes: For simplicity, we assume P(W0R = 1) = P(W0R = 3) = 1
2
so E(W0R) = 2. Risk aversion corresponds to the

concavity of the von Neumann-Morgerstern utility u(.). By Jensen’s inequality, concavity implies E[u(W0R)]6u(E(W0R)),
that is, the individual prefers the sure amount of money E(W0R) to the random payoff W0R. The certainty equivalent
u−1(E[u(W0R))]) is the amount of money that makes an individual with von Neumann-Morgerstern utility u(.) indifferent
between an asset with payoff W0R and the sure amount of money u−1(E[u(W0R))]). In other words, the certainty
equivalent indicates how much an individual values an asset in the absence of diversificaiton benefits. Then, the risk
premium is E(W0R) − u−1(E[u(W0R))]).

In the absence of diversification benefits, the equilibrium implication of the null hypothesis

(10) is immediate. Assume every individual has to invest all her wealth W0 either in the

short leg, or in the long leg, so no diversification benefits exist. Furthermore assume all

individuals have strictly increasing von Neumann-Morgenstern utility functions in U2. If

the returns of the long leg are strictly preferred by all possible individuals to the returns

of the short leg, then by the invariance of the null hypothesis under strictly positive affine

transformations of lotteries (Lemma 1 on p. 21)

E[u(RS)] < E[u(RL)]

⇔ E[u
(
W0RS

)
] < E[u

(
W0RL

)
]

⇔ u−1
(
E[u
(
W0RS)

)
]
)

< u−1
(
E[u
(
W0RL

)
]
)
,
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where u−1
(
E[u
(
W0RS

)
]
)
and u−1

(
E[u
(
W0RL

)
]
)
are the certainty equivalents of the in-

vestment payoffs of the short and long leg, respectively. In words, all possible risk averse

individuals value the investment payoff of the long leg strictly higher than the investment

payoff of the short leg, that is, the private value of the long leg investment payoff W0RL

is higher than that of the short leg W0RS for all possible risk adjustments. Figure 1

illustrates how risk averse individuals value investment payoff. Now, by the definition of

gross returns, the market price of both investments is W0. Thus, every individual tries

to buy the long leg. Hence, the price of the long leg relative to the short leg increases

and its returns decrease up to a point at which some individuals are indifferent between

the two. At the equilibrium, the long leg cannot be strictly preferred by all individuals.

Therefore, it yields the following definition of an anomaly for a factor.

Definition 1 (Anomaly in the absence of diversification benefits). In the absence of diver-

sification benefits, a factor RL − RS is an anomaly if, for all von Neumann-Morgenstern

utility functions u ∈ U2, E[u(RS)] < E[u(RL)].

As a mirror of Definition 1, in the absence of diversification benefits, a factor RL −RS

is a risk factor if there exists u(.) in U2 s.t. E[u(RL)] 6 E[u(RS)]. In words, a factor

RL − RS is a risk factor if there exists a possible risk averse individual who prefers to

forego the higher expected return of the long leg in exchange for the lower expected return,

but less risky, of the short leg. In the latter case, risk alone can explain the difference in

expected returns between the long and the short leg.

2.3.2 Equilibrium Foundations with Diversification Benefits

In an economy with several assets, the aforementioned equilibrium implication does not

necessarily hold because individuals do not have to choose one among two assets. Indi-

viduals can combine assets into portfolios, so the idiosyncratic risk of different assets can

cancel out through diversification. Then, the remaining non-diversified risk corresponds

to the movement of individuals’ wealth, so the priced risk corresponds to the comovements

of the factor return with individuals’ wealth.

We now show the null hypothesis (10) “H0 : ∀u ∈ U2, E[u(RS)] < E[u(RL)]” should

still be a sufficient condition for an anomaly in the presence of diversification benefits.

More precisely, we show the null hypothesis (10) implies the expected return of the factor
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is unlikely to be explained by risk alone, that is, it exceeds the risk compensations required

by risk-averse individuals.

For this purpose, we first derive the possible factor risk compensations under general

assumptions. The assumptions should be as general as possible but not allow for behav-

ioral biases or frictions affecting the expected return of the factor: We want risk com-

pensations, not compensations for frictions or behavioral biases. The following derivation

shows it is sufficient to consider a situation in which such individuals optimally and freely

trade the factor in a neighborhood of their locally optimal terminal wealth. Importantly,

we do not need to specify a fully fledged equilibrium model.

Derivation of Risk Compensation

By construction, a factor RL − RS is a costless portfolio, because it consists of buying

$1 of the long leg and selling $1 of the short leg. Thus, for any individual, irrespective

of budget constraints, as long as the factor freely trades in a neighborhood of the locally

optimal terminal wealth W1 of the individual, the expected marginal value of the factor

is zero, that is,

E[u′(W1)(RL − RS)] = 0, (11)

where u(.) and W1 denote, respectively, individual’s utility function and terminal wealth.

The mathematics behind the standard optimality condition (11) corresponds to the fol-

lowing Taylor approximations around W1, that state, up to approximation errors,

E[u(W1 + (RL − RS))] − E[u(W1)] = E[u′(W1)(RL − RS)] (12)

E[u(W1 − (RL − RS))] − E[u(W1)] = −E[u′(W1)(RL − RS)] (13)

By the first Taylor approximation (12), if E[u′(W1)(RL − RS)] > 0, one more unit of the

costless portfolio RL − RS would increase individual’s utility so W1 would not be locally

optimal. Similarly, by the second Taylor approximation (13), if E[u′(W1)(RL − RS)] < 0,

one less unit of the costless portfolio RL − RS would increase individual’s utility so W1

would not be locally optimal.10

By the optimality condition (11), Cov(u′(W1), RL −RS) + E[u′(W1)]E(RL −RS) = 0,

10See Appendix A.2 for a complete proof under general assumptions.
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so the expected return of the factor explained solely by risk is

E(RL − RS) = −
1

E[u′(W1)]
Cov(u′(W1), RL − RS). (14)

In words, the expected return of the factor E(RL − RS) should be the negative of its co-

variance with individuals’ marginal utility normalized by individuals’ expected marginal

utility. Hence, the expected return of the factor should exactly compensate for its nor-

malized negative comovements with the marginal utility of terminal wealth W1, and thus

for its normalized positive comovements with terminal wealth W1 —the marginal utility

function u′(.) is decreasing due to concavity. If the expected return of a factor exceeds

risk compensations required by all possible risk averse individual, we call it an anomaly.

Definition 2 (Anomaly in the presence of diversification benefits). In the presence of di-

versification benefits, a factor RL−RS is an anomaly if, for all von Neumann-Morgenstern

utility functions u ∈ U2,

−
1

E[u′(W1)]
Cov(u′(W1), RL − RS) < E(RL − RS).

Definition 2 does not require us to specify a particular equilibrium model. The op-

timality condition (11), and thus equation (14), holds as long as individuals can freely

trade the costless portfolio RL − RS in a neighborhood around their locally optimal ter-

minal wealth W1 (see Appendix A.2). Thus, the quantity − 1
E[u′(W1)]

Cov(u′(W1), RL −RS)

should be the risk compensation for any one-period equilibrium model. In other words,

in any equilibrium model, whether partial equilibrium or general equilibrium, whether

with production or not, whether with complete or incomplete financial markets etc., the

right-hand side of equation (14) delivers the risk compensation. If a wedge exists between

the expected return of the factor E(RL−RS) and the risk − 1
E[u′(W1)]

Cov(u′(W1), RL−RS),

an explanation other than risk is needed to account for the expected return of the factor

E(RL − RS). In the simple economy of Section 2.1, for example, the risk compensation

is − 1
E[u′(W1)]

Cov(u′(W1), RL − RS) = λw′Σw∗ for the representative agent, so the wedge

is λδw
′Σwδ. By avoiding specifying a particular equilibrium model, the results become

“immune to mistakes in how one might fill out the complete specification of the underlying

economic model” (Hansen, 2013).

Moreover, the derivation of equation (14) indicates alternative explanations should
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arise due to frictions or behavioral biases that induce a violation of the optimality condi-

tion (11). Hence, an informational friction or a trading friction on the factor can be an

explanation, but a friction on production or even a short-sale constraint on an asset that

is not part of the factor cannot be an explanation. Note also that, if a wedge exists for

all concave increasing utility functions, the sole presence of “irrational” individuals can-

not be an explanation as long as “rational” unconstrained individuals are present because

equation (14) would need to hold for the “rational” individuals.

The Null Hypothesis (10) and Risk Compensation

The following proposition shows that if the null hypothesis (10) holds, then the expected

return of the factor E(RL−RS) should exceed the risk compensation − 1
E[u′(W1)]

Cov(u′(W1), RL−

RS) for a large class of increasing and concave utility functions.

Proposition 1 (Equilibrium foundation for unconditional test). For any twice contin-

uously differentiable strictly increasing and concave utility function u on [u, u], which

includes the support of W1 and of the returns RS and RL, up to approximation errors, the

null hypothesis “H0 : ∀u ∈ U2, E[u(RS)] < E[u(RL)]” implies the expected return of the

factor exceeds its risk compensation, i.e.,

−
1

E[u′(W1)]
Cov(u′(W1), RL − RS) < E(RL − RS).

Proposition 1 provides sufficient assumptions under which strict preference for the long

leg implies the existence of an anomaly, up to approximation errors. If risk alone cannot

explain the factor’s expected return E(RL − RS), other explanations, such as behavioral

biases or institutional frictions, are necessary to explain the factor’s expected return and

thus we call the factor an anomaly. The intuition behind Proposition 1 is that undiversified

risk is unlikely to explain E(RL −RS), if the total risk cannot explain E(RL −RS) in the

first place. The proof of Proposition 1 is based on Taylor expansions similar to (12) and

(13). In the proof, it is key that Taylor expansions are around the random terminal wealth

W1, so the random changes of W1 can account for the curvature of the utility function u(.).

In particular, approximating around W1 allows accounting for the concavity of the utility

function, that is, risk aversion. In contrast, if the Taylor approximations were around the

fixed value E(W1), it would not be possible to account for the curvature of u(.) and thus
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risk aversion would be neutralised.11 Note the assumptions underlying Proposition 1 are

mild. The assumptions do not require us to specify a data-generating process (DGP) for

returns, nor the primitives of an economy.

The presence of an anomaly, or more generally the violation of the “frictionless” op-

timality condition (11), does not imply the existence of arbitrage opportunities in the

economy. For example, in the simple economy of Section 2.1, the constraint on long posi-

tions implies the violation of the “frictionless” optimality condition (11) and the existence

of an anomaly, but no arbitrage opportunity exists. With arbitrage opportunities, no (fi-

nite) solution to the portfolio choice problem (1) of the representative individual existed.

In fact, the second part of the fundamental theorem of asset pricing, that is, the equiv-

alence between absence of arbitrage and the existence of a solution to a portfolio choice

problem, has been generalized to an economy with frictions (Jouini and Kallal, 1999).

3 Unconditional Test

We now expand on the unconditional test and its statistical properties.

3.1 Unconditional Null Hypothesis in a Testable Form

To derive the testable implications of the null hypothesis (10), the following lemma

provides a characterization of strong SSD in terms of cumulative distribution functions

(CDFs).

Lemma 1 (Characterizations of strong SSD in terms of CDF). Assume the support of

the random variables RL and RS is a subset of the interval [u, u] ⊂ R with u 6= u. Denote

the left and right derivative of a function u(.) at x with u′
−(x) and u′

+(x), respectively.

Define the class U2 of concave and increasing functions u : [u, u] → R s.t. there exist

u′
+(u) ∈ R and u′

−(ǔ) ∈ R \ {0}, where ǔ 6= u and ǔ := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈

[z, u], u(x) = 0}
}
. Then the following statements are equivalent.

(i) For all u ∈ U2, E[u(RS)] < E[u(RL)].

(ii) For all z ∈]u,∞[, F
(2)
L (z) < F

(2)
S (z), where, ∀i ∈ {H,L}, F

(2)
i (z) :=

∫ z

u
(z−x)dFi(x)

denotes the integrated CDF of Ri, with Fi(.) the CDF of Ri.
11See Appendix A.3 for more details.
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Proof. See Appendix A.1.1.

Well-known estimators of CDFs and functionals thereof exist, so Lemma 1 provides a

way to test the null hypothesis (10). Lemma 1 is the strong counterpart of the well-known

Hardy-Littlewood et. al. theorem for SSD.

Note, it is not sufficient to replace the weak inequalities in standard proofs of the

Hardy-Littlewood et. al. theorem by strict inequalities to prove Lemma 1. The key new

ingredient of the proof is the quantity ǔ, which enters in the definition of the class U2

of concave increasing functions. The restrictions on ǔ rules out constant functions from

the class U2 —they would imply an equality and thus necessarily violate (10)—, while

they allow short-put-payoff-type functions, whose expectations are equal to the integrated

CDF. Despite these restrictions, the class U2 contains all strictly increasing, differentiable,

and concave functions on R. In words, the class U2 is the class of concave, increasing

functions differentiable at the minimum u of the support and with non-zero left-derivative

at the minimum between “absorbing” zeros and the maximum u of the support.

A direct consequence of Lemma 1 is the invariance of the null hypothesis (10) under

strictly positive affine transformations of lotteries. This result implies the formulations

of the null hypothesis (10) in terms of terminal wealth, capital gain, gross returns or any

other strictly positive affine transformation thereof, are all mathematically equivalent,

that is, ∀u ∈ U2, E[u(RS)] < E[u(RL)] ⇔ ∀u ∈ U2, E[u(W0RS)] < E[u(W0RL)], where

W0 > 0 is the initial wealth of the risk-averse individual.

In addition to Lemma 1, we require the following assumption to obtain a test statistic

for the null hypothesis (10).

Assumption 1. (a) (Common bounded support) The support of the random variables

RL and RS is [ur, ur] ⊂ [u, u], where u = ur and u 6= u. (b)(No touching without

crossing) If there exists ż ∈ (u, u] s.t. F
(2)
L (ż) = F

(2)
S (ż), then there exists z̈ ∈ (u, u] s.t.

F
(2)
S (z̈) < F

(2)
L (z̈).

Assumption 1(a) is a standard assumption in the econometrics and economic SSD

literature and should be “harmless” in practice (McFadden, 1989). It can be relaxed at

the cost of notational and mathematical complications. Assumption 1(b) “no touching

without crossing” should also be harmless in practice. A sufficient condition for the
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assumption is that zero is not a critical value, that is, the derivative of the function

z 7→ F
(2)
S (z) − F

(2)
L (z) is non-zero in the level set of 0. The set of critical values of

the function z 7→ F
(2)
S (z) − F

(2)
L (z) has zero Lebesgue measure following Sard’s theorem.

Thus, Assumption 1(b) is harmless in practice, although it is crucial for the present paper.

Thanks to Assumption 1(b), the null hypothesis (10) does not hold if, and only if, there

exists z ∈ (u, u] s.t. F
(2)
S (z) < F

(2)
L (z).

3.2 Unconditional Test Statistic

We now discuss the asymptotic properties of the unconditional test, study its properties

in simulations, and discuss the issues of multiple hypotheses testing and pretesting.

3.2.1 Asymptotic properties

In many statistical tests, the idea is to reject a null hypothesis if the difference between an

(unconstrained) estimator and an estimator constrained by the null hypothesis is too large.

For example, given a sample (Xt)
T
t=1 of size T with independent and identically distributed

data, the idea behind a t-test with null hypothesis “H0 : EX1 = 0” is to assess whether

the difference between the average X̄T and zero normalized by the standard error σ̂/
√

T

(i.e.,
√

T |X̄T − 0|/σ̂) is large. If the normalized difference between the (unconstrained)

estimator X̄T and the constrained estimator 0 is beyond a plausible threshold, the null

hypothesis “H0 : EX1 = 0” is rejected. In the present paper, both tests follow the same

logic.

By Lemma 1, the null hypothesis (10) is equivalent to the null hypothesis

H0 : ∀z ∈]u,∞[, F
(2)
L (z) − F

(2)
S (z) < 0, (15)

where F
(2)
L (z) and F

(2)
S (z) denote the integrated CDF of RL and RS, respectively. More-

over, the standard estimator for a CDF is the empirical CDF, so a standard estimator

of the integrated CDF F
(2)
i is the integrated empirical CDF F̂

(2)
i (z) := 1

T

∑T
t=1 1{Ri,t 6

z}(z − Ri,t), for i ∈ {L, S}. Thus, the statistic of the unconditional test is the differ-

ence between the unconstrained estimator F̂
(2)
L (.)− F̂

(2)
S (.) and the constrained estimator

23



min{F̂ (2)
L (.) − F̂

(2)
S (.), 0}, that is,

√
TKS∗

T : =
√

T sup
z∈IT

∣
∣
∣F̂ (2)

L (z) − F̂
(2)
S (z) − min{F̂ (2)

L (z) − F̂
(2)
S (z), 0}

∣
∣
∣

=
√

T sup
z∈IT

∣
∣
∣F̂ (2)

L (z) − F̂
(2)
L∧S(z)

∣
∣
∣ , (16)

where IT := [cT , u], with cT ↓ u, and F̂
(2)
L∧S(z) denotes the minimum of the integrated

empirical CDF (that is, F̂
(2)
L∧S(z) = min{F̂ (2)

L (z), F̂
(2)
S (z)}).12 The estimator min{F̂ (2)

L (.)−

F̂
(2)
S (.), 0} is a constrained estimator of F

(2)
L (.) − F

(2)
S (.), because it satisfies the null hy-

pothesis (15) by construction.

The following proposition shows the KS∗
T test statistic (16) defines a valid and consis-

tent test of the null hypothesis (10).

Proposition 2 (No type I error and No type II error). Under Assumption 1 and the

assumptions of Appendix A.4, for any level of the test α ∈]0, 1],

(i) if the null hypothesis (10) holds, then

lim
T→∞

P
(
ĉ1−α <

√
TKS∗

T

)
= 0;

(ii) if the null hypothesis (10) does not hold, then

lim
T→∞

P
(
ĉ1−α <

√
TKS∗

T

)
= 1;

where ĉ1−α is the 1 − α quantile of a (centered) block-subsampling approximation of

the asymptotic distribution of
√

TKS∗
T with a block size bT s.t. limT→∞ bT = ∞ and

limT→∞
bT

T
= 0.

Proof. See Appendix A.4.

Proposition 2 (i) shows the null hypothesis is asymptotically never rejected when it

is true, i.e., no type I error exists, asymptotically. Proposition 2 (i) a fortiori also means

12The absolute value is superfluous in the Kolmogorov-Smirnov (KS) test statistic (16) because, for
all z ∈ R, 0 6 F̂

(2)
L (z) − F̂

(2)
L∧S(z) by the definition of F̂

(2)
L∧S(z). However, we keep the absolute value

to emphasize that the KS test statistic (16) measures the distance between the unconstrained estimator
F̂

(2)
L and the constrained estimator F̂

(2)
L∧S(z).
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the test is valid, that is, the probability of wrongly rejecting a true hypothesis is asymp-

totically smaller than any level α ∈ (0, 1]. Proposition 2 (ii) shows the null hypothesis

is rejected with probability one when it is wrong, that is, no type II error exists, asymp-

totically. In the present paper, we rely on centered and uncentered block subsampling to

approximate the distribution of test statistics. Block subsampling implies drawing with-

out replacement matrices (Ri,t+1 Ri,t+2 ∙ ∙ ∙ Ri,t+bT
)i∈{L,S} of bT consecutive observations

of contemporaneous returns RL and RS, instead of any matrix (Ri,t1 Ri,t2 ∙ ∙ ∙ Ri,tbT
)i∈{L,S}

of bT observations of RL and RS. In this way, block subsampling accounts for potential

time- and cross-sectional dependence.

3.2.2 Monte-Carlo Simulations

We find in Monte-Carlo simulations in Table 1 that the finite-sample properties of the

test statistic KS∗
T are in line with Proposition 2. For all DGPs, p-values go to zero when

the null hypothesis (15) is wrong. Also, in line with the asymptotic theory, a large and

growing proportion of p-values equals one, when the null hypothesis (10) holds, because of

the absence of type I error, asymptotically. The first two DGPs are Gaussian distributions

calibrated to data. More precisely, the DGPs are calibrated to two factors —size and the

dividend yield— for which the null hypotheses are barely true (or false). This calibration

should be challenging for the test. The third DGP is a stylized DGP except for the

correlation between the long leg and the short leg. The latter correlation is calibrated

to the average correlation of the legs of some of the most prominent factors. Further

simulation results and details are available in Appendix B.

One insight from the simulations is that centered block subsampling tends to yield

more rejections than uncentered block subsampling approximations. Hence, to be conser-

vative, we use the centered subsampling approximation in our empirical implementation.

In Section 5.2, we also investigate the finite-sample properties of the tests on actual fi-

nancial data.

3.2.3 Immunity to Multiple Hypothesis Testing and Pretesting

Because of the large number of factors considered in the literature, Harvey et al. (2016)

raise the concern of multiple hypothesis testing. The multiple hypothesis problem orig-

inates from the probability of wrongly rejecting at least one true hypothesis, if one si-
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Table 1: Performance of unconditional test in Monte-Carlo simulations

H0 DGP Boxplots of p-values

False

[
RL

RS

]
IID
↪→ N

([
1.015
1.0078

]

,

[
.122 .0051

.0572

])

True

[
RL

RS

]
IID
↪→ N

([
1.011
1.010

]

,

[
.0392 .0012

.0572

])

False






RL
IID
↪→ 1 + t(4)

RS
IID
↪→ N (1, 1)

Cor(RS, RL) = .7

Notes: The first two data-generating processes (DGP) correspond to Gaussian distributions calibrated to factors for which
H0 are barely true (or false). The third DGP is a stylized DGP except for the correlation that is calibrated to data. The
reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution of KS∗

T is
approximated through centered block subsampling with block size bT =

√
T .The tops and bottoms of each “box" are the

25th and 75th percentiles of the p-values, respectively. The line in the middle of each box is the median. Crosses beyond
the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the interquartile range away from the
corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the interquartile ranges to the furthest
observations within the whisker length.
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multaneously tests many true hypotheses with size and level of each test exactly equal

to α ∈ (0, 1]. By definition of the asymptotic size of a test, if one simultaneously and

independently tests 100 true hypotheses at size α = 5%, one expects to wrongly reject

five true hypotheses, asymptotically. The following Proposition 3 shows the unconditional

test is immune to the multiple hypothesis problem.

Proposition 3 (Immunity to multiple hypothesis testing). Define a family (H0,k)
K
k=1 of

null hypotheses s.t. H0,k : ∀u ∈ U2, E[u(Rk,S)] < E[u(Rk,L)], where Rk,S and Rk,L denote

the return of the short and the long leg of the factor k. Define the set J ⊂ [[1, K]] of true

hypotheses. Under the assumptions of Proposition 2, the asymptotic family-wise error

rate (FWER) is zero, i.e.,

lim
T→∞

P
{
∃j ∈ J s.t. ĉj,1−α <

√
TKS∗

j,T

}
= 0,

where KS∗
j,T is the unconditional test statistic (16) that corresponds to the null hypothesis

H0,j and ĉj,1−α is the 1 − α quantile of a (centered) block-subsampling approximation of

the asymptotic distribution of
√

TKS∗
j,T with a block size bT s.t. limT→∞ bT = ∞ and

limT→∞
bT

T
= 0.

Proof. By positivity and additivity of probability measures, 0 6 P{∃j ∈ J s.t. ĉj,1−α <
√

TKS∗
j,T} = P

{⋃
j∈J{ĉj,1−α <

√
TKS∗

j,T}
}
6
∑

j∈J P{ĉj,1−α <
√

TKS∗
j,T}. Now, by

Proposition 2i, we know limT→∞
∑

j∈J P{ĉj,1−α <
√

TKS∗
j,T} = 0, so the result follows

from the squeeze theorem.

Usual multiple hypothesis procedures for t-tests bound from above the false discovery

rate (FDR), which is a less stringent criterion than FWER (e.g., Lehmann and Romano,

2006). While Proposition 3 is stronger than the property of usual multiple hypothesis

testing techniques, it does not address the deeper problem of pretesting. In the context

of t-tests, the pretesting problem is the following. The classical theoretical justification

of an asymptotic t-test of size α is the t-statistic has a probability 1 − α, asymptotically,

to be between the α/2 and 1 − α/2 quantiles of a standard Gaussian distribution under

the test hypothesis. However, once computed, the t-statistic is in the non-rejection region

with probability 0 or 1, that is, it either is or it is not in the non-rejection region. Thus, if

the result of this first test leads an econometrician to implement a second t-test of size α,

the corresponding t-statistic does not typically have a probability of 1−α asymptotically
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to be between the α/2 and 1 − α/2 quantiles of a standard Gaussian distribution under

the test hypothesis. The observation of the first t-statistic has removed a part of the

randomness of the second t-statistic. Except in specific cases, statistics based on the

same data set are not independent. Hence, the classical theoretical justification does not

hold for the second t-test. In fact, the econometrician would need to use the asymptotic

distribution of the second t-statistic conditional on the result of the first t-statistic, and

it is generally difficult to derive such a distribution. The pretesting problem is even more

difficult because the econometrician would not only need to condition on the result of the

last t-test but on all previous knowledge about the data (e.g., plots of the data, descriptive

statistics, prior model selections etc.).

Because of a lack of a general solution to the pretesting problem, it is typically ig-

nored, that is, the econometrician typically proceeds as if they had chosen the test to be

implemented before any examination of the data. Multiple hypothesis testing techniques

do not tackle the pretesting problem because they assume that the list of all statistics

to be potentially computed is determined before any examination of the data. The lat-

ter assumption is difficult to defend in the case of factor discovery: The evolution of

cross-sectional asset pricing is a hard-to-predict dialog between theory and many empir-

ical studies. The following Proposition 4 shows the unconditional test is immune to the

pretesting problem.

Proposition 4 (Immunity to pretesting). Under the assumptions of Proposition 2, for

any sequence of events {FT}T∈N,

lim
T→∞

P
(
{ĉ1−α <

√
TKS∗

T} ∩ FT

)
= lim

T→∞
P(ĉ1−α <

√
TKS∗

T )P (FT ) .

Proof. See Appendix A.5.

Proposition 4 shows the unconditional test is independent of any sequence of events

{FT}T∈N as the sample size increases. Thus, conditioning on prior knowledge of the data

is irrelevant for a sufficiently large sample size. It also means that conditioning on the

result of the unconditional test is also irrelevant for further inference. To the best of

our knowledge, only a few known inference procedures with such a property exist (e.g.,

Hannan and Quinn, 1979). Like Proposition 3, Proposition 4 is a direct consequence of

Proposition 2.
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4 Test Conditional on the Market

The unconditional test relies on the unconditional distribution of returns. However,

practitioners—probably inspired by the CAPM—usually analyze returns after control-

ling for exposure to market risk. For this reason, we propose a test conditional on the

market.

4.1 Null Hypothesis Conditional on the Market

The null hypothesis of the test conditional on the market is the same as for the uncon-

ditional test, except that it controls for the market return RM . The idea is to test, for

each factor, whether every possible risk-averse individual would strictly prefer the long-leg

lottery to the short-leg lottery conditional on the market, that is,

H0 : ∀u ∈ U2, E[u(RS)|RM ] < E[u(RL)|RM ], (17)

where RM denotes the market return.

The main motivation for the null hypothesis (17) relative to the null hypothesis (10)

of the unconditional test is the practice of controlling for the market through a regression

with the market (excess) returns as an explanatory variable. In this way, practitioners

control for affine functions of the market returns. The test conditional on the market does

not only control for affine functions of market returns, but for all measurable functions

of market returns, because Chen et al. (2021) and Lopez-Lira and Roussanov (2023),

among others, highlight the importance of nonlinearities. Moreover, it should not matter

whether we use market returns, or excess returns: Conditioning on RM , or conditioning

on RM − Rf does not matter because they generate the same σ-algebra.

As for the unconditional test, a characterization of strong conditional SSD in terms of

CDFs is necessary to bring the null hypothesis (17) to the data.

Lemma 2 (Characterization of conditional strong SSD in terms of CDF). Assume a com-

plete probability space. Under Assumption 1(a), the following statements are equivalent.

(i) For all u ∈ U2, E[u(RS)|RM ] < E[u(RL)|RM ] almost surely (a.s.).

(ii) For all z ∈]u,∞[, F (2)
L|M(z|RM) < F

(2)
S|M (z|RM) a.s., where F

(2)
L|M(z|RM ) :=

∫ z

u
FL|M(y|RM)dy

a.s.
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Proof. See Appendix A.1.2.

Lemma 2 is the conditional counterpart of Lemma 1. Similarly to Lemma 1 for the

null hypothesis (10), Lemma 2 implies the invariance of the null hypothesis (17) under

strictly positive affine transformations of lotteries. In particular, the lemma implies that

it does not matter whether we consider the leg’s returns, or —if inspired by the CAPM—

we consider the latter in excess of the risk-free rate, i.e., ∀u ∈ U2, E[u(RS)|RM ] <

E[u(RL)|RM ] ⇔ ∀u ∈ U2, E[u(RS − Rf )|RM ] < E[u(RL − Rf )|RM ]. As for the uncondi-

tional test, a conditional counterpart of the assumption “no touching without crossing” is

necessary to bring the null hypothesis (17) to the data.

4.2 Test Statistic Conditional on the Market

By Lemma 2, the hypothesis (17) is equivalent to the null hypothesis

H0 : ∀z ∈]u,∞[, F
(2)
L|M (z|.) − F

(2)
S|M(z|.) < 0, (18)

where F
(2)
L|M(z|x) and F

(2)
S|M (z) denote the integrated CDF of RL and RS conditional on

RM , respectively. We cannot follow the same approach as for the unconditional test in

Section 3, because conditional empirical CDFs do not follow functional CLTs. Thus, we

follow Durot (2003)’s approach along the lines of Delgado and Escanciano (2013) and

adapt the latter to strong SSD. The key idea is to express the null hypothesis (18) in

terms of the concavity of the second-order antiderivative of the difference of integrated

conditional CDFs.

Under standard regularity conditions, a function is strictly negative if, and only if,

its first-order antiderivative is strictly decreasing, and if, and only if, its second-order

antiderivative (i.e., the antiderivative of the antiderivative of the function) is strictly

concave. Thus, the null hypothesis (18) is equivalent to the null hypotheses

H0 : ∀z ∈]u,∞[,

∫ .

−∞
[F

(2)
L|M (z|ẋ)−F

(2)
S|M(z|ẋ)]fX(ẋ)dẋ = F

(2)
L,M (z, .)−F

(2)
S,M (z, .) strictly decreasing

H0 : ∀z ∈]u,∞[, C(2)(z, .) is strictly concave, (19)

where, for all z ∈ R, C(2)(z, .) denotes a normalized antiderivative of F
(2)
L,M (z, x) −

F
(2)
S,M (z, .). An unconstrained estimator of C(2)(z, .) is the antiderivative Ĉ(2)(z, .) of the
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integrated empirical CDF. A constrained estimator of C(2)(z, .) is the smallest concave

majorant T Ĉ(2)(z, .) of Ĉ(2)(z, .) because the smallest concave majorant (also called least-

concave majorant) of a concave function is the concave function itself.

Therefore, the test statistic is

√
TC∗

T :=
√

T sup
(z,u)∈]u,∞[×F̂M ([uM ,uM ])

|T Ĉ(2)(z, u) − Ĉ(2)(z, u)|,

where [uM , uM ] denotes the support of RM . The following proposition shows the C∗
T test

statistic defines a valid and consistent test.

Proposition 5 (Validity and consistency). Under the Assumption 1 and the assumptions

of Appendix A.7,

(i) if the null hypothesis (17) holds, then

lim
T→∞

supP
(
ĉ1−α <

√
TC∗

T

)
6 α;

(ii) if the null hypothesis (17) does not hold, then

lim
T→∞

P
(
ĉ1−α <

√
TC∗

T

)
= 1;

where ĉ1−α is the 1 − α quantile of a (centered) block-subsampling approximation of

the asymptotic distribution of
√

TC∗
T with a block size bT s.t. limT→∞ bT = ∞ and

limT→∞
bT

T
= 0.

Proof. See Appendix A.7.

Proposition 5 shows the test conditional on the market is valid and consistent. Re-

sults from a Monte-Carlo simulation in Table 2 support Proposition 5. When the null

hypothesis (17) is wrong, p-values converge to zero as the sample size increases. When

the null hypothesis (17) is true, a large proportion of p-values is away from zero. For ease

of comparison, the DGPs are the same as in Table 1 for the unconditional tests except

for the common component x.
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Table 2: Performance of conditional test in Monte-Carlo simulations

H0 DGP Boxplots of p-values

False

[
RL

RS

]
IID
↪→ x + N

([
1.015
1.0078

]

,

[
.122 .0051

.0572

])

True

[
RL

RS

]
IID
↪→ x + N

([
1.011
1.010

]

,

[
.0392 .0012

.0572

])

False

[
RL

RS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ 1 + t(4)

zS
IID
↪→ N (1, 1)

Cor(zS, zL) = .7

Notes: The first two data-generating processes (DGP) are calibrated to data. In particular x
IID
↪→ N (0, σx), where σx = .04

is the estimated standard deviation of monthly market returns. The third DGP is a stylized DGP except for the correlation
that is calibrated to data. The reported p-values are based on 1000 simulated samples of sample size equal to the indicated
T . The distribution of C∗

T is approximated through centered block subsampling with block size bT =
√

T . The tops and
bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively. The line in the middle of each box
is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value that is more than 1.5 times the
interquartile range away from the corresponding end of the interquartile ranges. Whiskers are drawn from the ends of the
interquartile ranges to the furthest observations within the whisker length.
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4.3 Equilibrium Foundations for the Test Conditional on the Mar-

ket

In the absence of diversification benefits, the equilibrium foundations of the conditional

test are similar to the ones of the unconditional test. The only difference is that investors’

preferences correspond to an expected utility under the distribution conditional on the

market.

In the presence of diversification benefits, the following proposition formalizes the

one-period equilibrium foundations for the test conditional on market.

Proposition 6 (Equilibrium foundation for test conditional on market). Let RW and

[uW1
, uW1 ], respectively, denote the return on wealth (that is, RW := W1

W0
, where W0 denotes

the initial wealth) and the support of W1. Under Assumptions 1, for all u ∈ U2 s.t. u

is strictly increasing and twice continuously differentiable on [u, u], which includes the

support of W1 and of the returns RS and RL, then, up to approximation errors, the null

hypothesis “H0 : ∀u ∈ U2,E[u(RS)|RW ] < E[u(RL)|RW ]” implies the expected return of

the factor exceeds its risk compensation, that is,

−
1

E[u′(W1)]
Cov(u′(W1), RL − RS) < E(RL − RS).

Proof. Under Assumption 1, by iterated conditioning, the Hardy et. al. theorem, and As-

sumption 1(b) (no touching without crossing), if, ∀u ∈ U2, E[u(RS)|RW ] < E[u(RL)|RW ],

then, ∀u ∈ U2, E[u(RS)] < E[u(RL)]. Then the result follows immediately from Propo-

sition 1.

Proposition 6 shows that, up to approximation errors, strict preference for the long

leg conditional on the market is a sufficient condition for an anomaly. The assumptions

of Proposition 6 are similar to the assumptions of Proposition 1.

5 Empirical Results

We now apply our tests to data. We start by describing the dataset and, as a proof of

concept, we apply the unconditional test to the market factor (MKT). Then, we apply

the tests to the widely-used Fama and French 4 factors plus momentum (FF4+MOM).
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Finally, we provide an overview of the test results for a standard dataset of more than

200 potential risk factors.

5.1 Data

Data for the Fama and French factors and momentum, FF4+MOM, are from Kenneth

French website. The frequency is monthly. The factors are built by double sorting stocks

on size and four characteristics, that is, book to market (BM), operating profitability

(OP), investment (INV) and momentum (MOM). For each characteristic, stocks are dou-

ble sorted into Small and Big stocks as well as tertiles of stocks with Low, Medium and

High characteristics. For each characteristic, the long leg of the corresponding factor is

the equally weighted portfolio of two portfolios of Small and Big stocks in the highest

tertiles (lowest for INV) and equivalently for the short leg. For each characteristic, the

long leg of the corresponding Size factor is the equally weighted portfolio of three portfo-

lios of Small stocks (Low, Medium and High), while the short leg is the equally weighted

portfolio of three portfolios of Big stocks. Following Fama and French (2015), we built a

Size factor by averaging the long and short legs across the Size factors related to BM, OP

and INV. We also use as the aggregate market the CRSP value-weighted index as well as

the one-month Treasury Bill for the risk-free rate.

For BM and MOM a long sample of data is available, starting from July 1926 (BM) or

January 1927 (MOM). For the market and the Treasury bill yield, data are also available

starting from July 1926. For OP and INV, data start only from July 1963. For this reason,

we report for BM, MOM and the market MKT the findings for the full sample period

as well as for a restricted period starting in July 1963. The samples for the FF4+MOM

factors end in October 2021.

Moreover, we use data for 205 potential risk factors from Chen and Zimmermann

(2022). Stocks are sorted into quantile portfolios, where the number of quantiles depends

on data availability for the respective characteristic. We use the lowest and highest

quantiles and retain as the short leg the quantile with the low average return over the

sample period. We discuss evidence for the original samples of the published papers as

well as for the post-publication samples and the full samples. The data end in December

2020.
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5.2 Proof of Concept

Propositions 2 and 5 show the unconditional and conditional tests have good asymptotic

properties. Monte-Carlo simulations (Tables 1-2 in previous sections and Appendix B)

indicate that the finite sample performance of the tests are in line with the asymptotic

properties. In the present section, we apply the unconditional test to the market factor

MKT as a proof of concept on actual financial data.

Overwhelming empirical evidence shows US stocks have higher expected returns than

Treasury bills, but are riskier. Thus, we test the following null hypothesis

H0 : ∀u ∈ U2, E[u(Rf )] < E[u(RM )],

where Rf is the one-month Treasury bill gross return and RM is the CRSP market gross

return. We report results in Table 3.

Table 3: Unconditional test applied to the equity premium (i.e., market factor
MKT)

Long Short tL−S
NW P-value

1926 - 2021 0.96 0.27 4.01 0.00
1963 - 2021 0.96 0.37 3.18 0.00

Notes: The columns “Long,” “Short,” “ tL−S
NW ” and “P-value” correspond to the average return of the long leg, the average

return of the short leg, the t-statistic for the null hypothesis “H0 : E(RS) = E(RL)," and the p-value of the unconditional
test, respectively. We use Newey-West standard errors to calculate tL−S

NW . The frequency of the data is monthly.

We clearly reject the null hypothesis, so, in line with the empirical evidence, the market

factor MKT is a possible risk factor. In other words, levels of risk aversion exist s.t. US

Treasury bills are preferred to US stocks. The results are robust to subsample analysis.

While the results are a proof of concept for the unconditional test, they also indicate the

tests set a high threshold to classify a factor as an anomaly, in the sense that they allow

for any arbitrarily high level of risk aversion. By construction, the tests do not require

the level of risk aversion (i.e., the concavity of the von Neumann-Morgenstern utility) to

be plausible for actual agents in the economy. Mehra and Prescott (1985) also show a

sufficiently high level of risk aversion can make individuals prefer US Treasury bills over

US stocks, but they regard it as implausibly high and coin the term “equity premium
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puzzle.”

5.3 Unconditional Test Applied to FF4+MOM Factors

The FF4+MOM factors are widely assumed to be risk factors and used to adjust for risk

both in practice and academia. We apply our unconditional test to these factors to assess

whether they are anomalies or possible risk factors. We report the results in Table 4.

Table 4: Unconditional test applied to FF4+MOM factors

Long Short tL−S
NW P-value

Size 1963 - 2021 1.21 0.97 1.85 0.00
BM 1926 - 2021 1.32 0.99 2.80 0.15
BM 1963 - 2021 1.24 0.97 1.98 0.40
OP 1963 - 2021 1.18 0.92 2.71 1.00
INV 1963 - 2021 1.22 0.96 2.91 1.00
MOM 1926 - 2021 1.42 0.78 4.40 1.00
MOM 1963 - 2021 1.38 0.76 3.60 0.54
MKT 1926 - 2021 0.96 0.27 4.01 0.00
MKT 1963 - 2021 0.96 0.37 3.18 0.00

Notes: The columns “Long,” “Short,” “ tL−S
NW ” and “P-value” correspond to the average return of the long leg, the average

return of the short leg, the t-statistic for the null hypothesis “H0 : E(RS) = E(RL)," and the p-value of the unconditional
test, respectively. We use Newey-West standard errors to calculate tL−S

NW . The frequency of the data is monthly. BM
stands for book-to-market, OP for Operating Profitability, INV for Investment and MOM for Momentum.

Setting aside the Market factor, only Size has a p-value below standard thresholds. The

result is robust to different methods for constructing Size. A first potential explanation is

the lack of significance of the expected return of Size: The t-statistic of the long-minus-

short portfolio tL−S
NW is slightly below 1.96, suggesting Size might not be a factor after

all, and thus neither an anomaly nor a risk factor. A second potential explanation is

that Size can be explained by risk alone. This second explanation seems more plausible

because a t-statistic tL−S
NW , which is slightly below 1.96 and thus significant at 10%, is

unlikely to explain a p-value of zero for the unconditional test. Moreover, in the original

sample (Online Appendix) and for other constructions of the Size factor, the p-value is

still zero even when the expected return is highly significant. This second, more plausible

explanation lends support to Berk (1995), who explains why Size should not be regarded

as an anomaly, but rather as a compensation for risk.
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Regarding BM, INV, OP and MOM, we cannot reject the null hypothesis for the

sample period starting in July 1963. Similar results hold even if we exclude 2020 and

2021. For MOM, the spread between the short and the long legs is greater than 7% on

an annual basis and hence close to the equity premium. While a high risk aversion can

explain the equity premium, it cannot explain the MOM factor. The p-values are also

large for the newly discovered OP and INV factors even though their expected returns

are less than half the MOM factor’s expected return. The findings indicate OP and INV

are anomalies through the lens of our test.

The evidence for the BM factor is weaker, especially for the longest sample period.

The findings complement the debate around the value factor in Ang and Chen (2007) and

Fama and French (2006) as well as to the recent value trap. A necessary condition for

strong SSD is a strictly positive expected return for a factor. In the post-1963 sample, the

p-value of 40% indicates that BM is not a risk factor. Note the sample period includes the

2010-2020 decade during which value stocks underperformed relative to growth stocks.

5.4 Test Conditional on Market applied to FF4+MOM Factors

The test conditional on the market has the main advantage relative to the unconditional

test to control for exposure to market risk including nonlinear dependence. We report the

results of the test conditional on the market in Table 5.

Table 5: Test conditional on market applied to FF4+MOM factors

Long Short tL−S
NW P-value

Size 1963 - 2021 1.21 0.97 1.85 0.00
BM 1926 - 2021 1.32 0.99 2.80 0.37
BM 1963 - 2021 1.24 0.97 1.98 0.25
OP 1963 - 2021 1.18 0.92 2.71 0.40
INV 1963 - 2021 1.22 0.96 2.91 0.09
MOM 1926 - 2021 1.42 0.78 4.40 0.60
MOM 1963 - 2021 1.38 0.76 3.60 0.43

Notes: The columns “Long,” “Short,” “ tL−S
NW ” and “P-value” correspond to the average return of the long leg, the average

return of the short leg, the t-statistic for the null hypothesis “H0 : E(RS) = E(RL)," and the p-value of the conditional
test, respectively. We use Newey-West standard errors to calculate tL−S

NW . The frequency of the data is monthly. BM
stands for book-to-market, OP for Operating Profitability, INV for Investment and MOM for Momentum.

We still reject the null that Size is an anomaly. While the p-values drop for the other
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characteristics, BM, OP and MOM still appear as anomalies. In the case of INV, the

p-value is now only 9%, which is above the standard 5% threshold, but slightly below

10%. Again, the findings are robust to alternative construction methods of the Size factor

as well as looking at recent data only.

One possible explanation for the drop in p-values relative to the unconditional test is

the unusual absence of type I error for the latter, asymptotically (compare Proposition 2i

to Proposition 5ii). A second possible explanation is the important commonality between

the market and the legs of different factors.

5.5 A Bird View on the Factor Zoo

Beyond the widely-used FF4+MOM factors studied above, hundreds of other factors —

the factor “zoo”— have been discovered. In order to have a broader assessment, we also

apply the two tests to a standard dataset of more than 200 potential factors. We report

the detailed results in the Appendix. In the present section, we only provide an overview

of the main results. We use 5% as the threshold above which we cannot reject the null

hypothesis. We report the proportions of potential factors that appear as anomalies in

the table below.

Table 6: Proportion of p-values above 5%

Unconditional Conditional on Market
Original Sample 0.92 0.87
Post-Pub. Sample 0.35 0.34
Full Sample 0.88 0.77

Notes: The data base correspond to Chen and Zimmermann (2022) dataset of 205 potential factors. The frequency of the
data is monthly.

A first result is that a majority of the 205 potential factors appear as anomalies in the

original sample of the published papers and the full sample. For both tests, we find more

than 70% appear as anomalies. Because the existence of a factor is necessary condition for

an anomaly, this result lends support to Chen and Zimmermann (2020); Chen (2021a,b);

Jensen et al. (2022), who find that most factors can be replicated in the original sample.

Remember the unconditional test is immune to multiple hypothesis problem and the

pretesting problem and hence makes the results of this literature even stronger.
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A second result is the dramatic drop in the proportion of anomalies from the original

sample to the post publication sample: The proportion drops from about 90% to about

35% for both tests. Two potential explanations exist for this drop: (i) Many anomalies

became risk factors after publication; or (ii) The phenomenon of “anomaly elimination”

occurred, that is, many anomalies disappeared because their expected returns shrank to

zero. Table 7 supports the second explanation. Table 7 displays the proportion of apparent

anomalies among the significant factors, that is, the proportion of p-values above 5% for

the potential factors with expected returns significantly positive at the 5% level. The table

shows the proportion of apparent anomalies among (significant) factors is above 80%, and

often close to 90%, in line with “anomaly elimination,” which has been documented (e.g.,

Hanson and Sunderam, 2014; McLean and Pontiff, 2016): Following the publication of an

anomaly, some investors trade on it, so its expected return decreases after a temporary

increase (Pénasse, 2022).

Table 7: Proportion of p-values above 5% for significant factors

Unconditional Conditional on Market
Original Sample 0.93 0.89
Post-Pub. Sample 0.95 0.93
Full Sample 0.91 0.81

Notes: We compute the displayed proportions as follows. (i) We keep from the Chen and Zimmermann (2022) dataset of
205 potential factors, the ones that have a t-statistics bigger than the 95% quantile of standard normal distribution. (ii)
We compute the proportion of p-value above 5% among the remaining factors. For simplicity, potential pretesting
problems are ignored. The frequency of the data is monthly.

The third and main result is a clear majority of factors appears to be anomalies in all

samples. Overall, more than 80% of factors appear to be anomalies in the original sample,

the post-publication sample, and the full sample (see Table 7). In Table 6, the proportions

are lower than in Table 7 because some potential factors do not have significantly positive

expected returns and thus are not factors to begin with. This third result generalizes the

results for the FF4+MOM factors to most of the factors documented in the literature.

This generalization is not surprising because theory and empirical evidence indicate strong

commonality across factors (e.g., Reisman, 1992; Bryzgalova et al., 2020) and given the

literature stressing the role of frictions for factors (e.g., Nagel, 2005; Weber, 2018; Bowles

et al., 2022; Kim et al., 2022).
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5.6 Multiperiod Considerations

In line with a large part of the literature on cross sectional asset pricing, for simplicity,

we focused on one-period equilibrium foundations for the proposed tests. In the present

section, we provide multi-period equilibrium foundations for the tests. For this purpose,

as in the one-period case, we first derive the risk compensation required by risk-averse

individuals who maximize time additive utility functions U(C0:T ) :=
∑T

t=0 βtE[u(Ct)],

where β ∈ (0, 1) denotes a subjective time discount factor, u(.) an increasing and concave

von Neuman-Morgenstern utility function, and C0:T := (C0, C1. . . . , CT ) a consumption

plan.13 A generalization of the one-period reasoning of Section 2.3.2 implies that, for any

time period t ∈ [[1, T ]] at which the factor RL,t − RS,t is freely tradable, the following

optimality condition holds

E[u′(Ct)(RL,t − RS,t)] = 0 ,

so the expected return of the factor explained by risk alone is

E(RL,t − RS,t) = −
1

E[u′(Ct)]
Cov(u′(Ct), RL,t − RS,t).

See Proposition A.1 in Appendix A.2 for a formal proof. Therefore, indexing returns with

t, the equilibrium foundations provided by Propositions 1 and 6 still hold with Ct in lieu

of Wt. The multi-period version of Propositions 1 shows the results in Tables 3 and 4

have multi-period equilibrium foundations.

6 Summary and Discussion

Over the last decades, hundreds of factors predicting cross-sectional returns have been

discovered. In the present paper we (i) provide a simple theoretical model, in which a

limit on long positions yields a factor that is not a risk factor; (ii) derive in a general but

simple manner risk compensations required by risk-averse individuals to hold a factor and

13Our tests cannot be extended to Epstein-Zin-Weil utility functions. One of the reasons is that
Epstein-Zin-Weil utility functions violate first order stochastic dominance, and thus, a fortiori, SSD.
Individuals with Epstein-Zin-Weil utility functions do not always prefer more to less. More precisely,
Epstein-Zin-Weil utility functions violate the monotonicity axiom according to which an agent does not
choose a lottery if another available lottery is preferable in every state of the world (Bommier et al.,
2017).
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deduce definitions of anomaly; (iii) introduce the concept of strong SSD; (iv) show that if

the long leg of a factor strongly SSD dominates its short leg, the factor’s expected return

should exceed its possible risk compensations in equilibrium; (v) propose two tests based

on strong SSD; (vi) verify the performance of the tests numerically, mathematically, and

empirically; and (vii) apply the two tests to more than 200 factors.

We propose and use two tests because they rely on different assumptions. Despite

their differences, both tests classify a majority of factors —including most of the widely

used FF4+MOM factors— as anomalies. Thus, the factor “zoo” appears to be mainly

an anomaly “zoo.” This result might appear unexpected, because strong SSD sets a high

threshold for anomalies. Strong SSD requires strict preference even for implausibly high

levels of risk aversion.

The proposed tests do not only help to detect anomalies, that is, deviations from

the risk-return tradeoff. They also provide some guidance on which types of models can

explain the anomalies. The tests and their theoretical foundations barely impose any

restriction on distributions of returns nor on production, etc. Thus, explanations of the

anomaly “zoo” call for models in which risk-averse individuals do not buy factors that

they value higher than their market price. In particular, trading frictions on factors (e.g.,

Nagel, 2005), intermediary asset pricing as in He and Krishnamurthy (2018), or behavioral

biases (e.g., Barberis et al., 2021) are possible explanations for the detected anomalies,

while frictions on production are unlikely explanations.

Beyond the question of the factors “zoo,” the present paper is a step toward a solu-

tion to Fama’s joint hypothesis problem (Fama, 1970; Roll, 1977; Fama, 2013), in the

sense that it proposes model-free tests to detect abnormal excess returns. In its modern

formulation, the joint hypothesis problem states that asset pricing tests always jointly

test the existence of abnormal returns and a model of market equilibrium (e.g., CAPM).

Hence, it is impossible to distinguish abnormal returns from using the wrong model of

market equilibrium or the wrong proxy for the market portfolio. In contrast, the two

tests we propose can help detect abnormal excess returns without assuming a specific

model of market equilibrium.14 Therefore, the proposed tests should be useful to detect

abnormal excess returns in many situations, especially given that the currently prevailing

14While our tests are a step toward a solution to the modern formulation of Fama’s joint hypothesis
problem, they do not address its original formulation in terms of information. Our tests do not assess
whether asset prices reflect all available information. The latter remains an open issue.
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methods equate abnormal returns to the alphas of regressions on a preferred factor model.

In this way, both tests can provide guidance for better investment decisions and capital

allocation.
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ONLINE APPENDIX TO:

Anomaly or Possible Risk Factor?
Simple-To-Use Tests

Benjamin Holcblat, Abraham Lioui and Michael Weber

A Proofs

A.1 Proof of Lemma 1 and Lemma 2 (equivalent characteriza-

tions of strong SSD)

A.1.1 Unconditional strong SSD

Lemma 1 is a simplified version of the following theorem.

Theorem A.1 (Equivalent characterizations of strong SSD). Assume that the support

of the random variables RL and RS is a subset of [u, u] ⊂ R with u 6= u. For a u :

[u, u] → R, define ǔ := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], u(x) = 0}

}
, and denote its

left derivative and right derivative at x with u′
−(x) and u′

+(x), respectively.15 Then the

following statements are equivalent.

(i) For all real-valued, concave, and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R

and u′
−(ǔ) ∈ R \ {0} with ǔ 6= u, E[u(RS)] < E[u(RL)].

(ii) For all z ∈]u,∞[, E[(z − RL)+] < E[(z − RS)+].

(iii) For all z ∈]u,∞[, F
(2)
L (z) < F

(2)
S (z), where F

(2)
L (z) :=

∫ z

u
FL(y)dy.

Theorem A.1 is the strong counterpart of the well-known Hardy-Littlewood et. al.

theorem (Hardy et al., 1929, 1934; Blackwell, 1951; Sherman, 1951; Cartier et al., 1964;

Strassen, 1965), which has been popularized in economics by Rothschild and Stiglitz

(1970),

Proof. Apply upcoming Theorem A.2 with W1 = 1.
15Concavity only ensures left and right differentiability in the interior ]u, u[ (e.g., Aliprantis and Border,

1994, Theorem 7.22), so the assumptions of right differentiability at u is not subsumed by the concavity
assumption.
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A.1.2 Conditional strong SSD

Lemma 2 is a simplified version of the following Theorem. The following theorem is the

conditional counterpart of Theorem A.1.

Theorem A.2 (Equivalent characterizations of conditional strong SSD). Assume that the

support of the random variables RL and RS is a subset of [u, u] ⊂ R with u 6= u. Assume a

complete probability space. For a function uW1 : [u, u] → R indexed by a random variable

W1, define ǔW1 := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈ [z, u], uW1(x) = 0}

}
, and denote its

left derivative and right derivative at x with u′
W1,−(x) and u′

W1,+(x), respectively. Then

the following statements are equivalent.

(i) For all real-valued, concave and increasing function uW1(.) defined on [u, u] and

Borel measurable w.r.t. the index W1 s.t. E|uW1(u)| < ∞, E|u′
W1,+(u)| < ∞ and

E|u′
W1,−(ǔW1)| < ∞ with u′

W1,−(ǔW1) 6= 0 and ǔW1 6= u a.s., E[uW1(RS)|W1] <

E[uW1(RL)|W1] a.s.

(ibis) For all real-valued, concave and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R

and u′
−(ǔ) ∈ R \ {0} with ǔ 6= u, E[u(RS)|W1] < E[u(RL)|W1] a.s.

(ii) For all z ∈]u,∞[, E[(z − RL)+|W1] < E[(z − RS)+|W1] a.s.

(iii) For all z ∈]u,∞[, F (2)
L|W1

(z|W1) < F
(2)
S|W1

(z|W1) a.s., where F
(2)
L|W1

(z|W1) :=
∫ z

u
FL|W1

(y|W1)dy

a.s.

Before the proof of Theorem A.2, the following lemma shows that ǔW1 is well-defined

and measurable.

Lemma A.1 (Existence and σ(W1)-measurability of ǔW1). Under the assumptions of

Theorem A.2, for all the members of the class of utility functions defined in the statement

(i) of the latter theorem, the following statements hold.

(i) There exists a function w1 7→ ǔw1 with values in [u, u] s.t. ǔw1 := min
{
u, inf{z ∈

[u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0}
}
, for all w1 ∈ R.

(ii) The correspondence ϕ(w1) := {x ∈ [u, u] : uw1(x) = 0} is closed and connected

valued, and weakly measurable.

(iii) The correspondences ψu(w1) :=






ϕ(w1) if ϕ(w1) 6= ∅

{u} otherwise
is closed, connected and

non-empty valued, and weakly measurable.
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(iv) For all w1 ∈ R, {z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅ iff 0 < d(u, ψu(w1)) :=

infx∈ψu(w1) |u − x|.

(v) The function w1 7→ ǔw1 is Borel measurable.

Proof. (i) For convenience, in the present proof, put Aw1 := {z ∈ [u, u] s.t., ∀x ∈

[z, u], uw1(x) = 0}, where w1 ∈ R.

1st case: ∀z ∈ [u, u], ∃ż ∈ [z, u] s.t. uw1(ż) 6= 0. Then, by definition, the set Aw1 is

the empty set ∅, so its greatest lower bound is ∞ (i.e., inf Aw1 = inf ∅ = ∞), which, in

turn, implies that ǔw1 := min
{
u, inf Aw1

}
= u.

2nd case: ∃z ∈ [u, u], s.t., ∀ż ∈ [z, u], uw1(ż) = 0. Then, Aw1 is not the empty set.

There are two subcases. First, consider the subcase Aw1 := {u}, so ǔw1 = u. Now consider

the remaining subcase Aw1 6= {u}, so inf Aw1 6= u. By the sequential characterization of

infima, there exists a sequence (zn) ∈ AN
w1
s.t. limn→∞ zn = inf Aw1 . Now, Aw1 is a subset

of the closed set [u, u], so (zn) ∈ [u, u]N, which, in turn, implies that inf Aw1 ∈ [u, u] by

the sequential characterization of closed sets (e.g., Aliprantis and Border, 1994, Lemma

3.3.5).

(ii) Closeness, connectedness and weak measurability respectively follow from the

continuity, the monotonicity of uw1(.), and the measurability of correspondences defined

as a level set of a Carathéodory function (e.g., Aliprantis and Border, 1994, Lemma

18.8.2).

(iii) We only prove the statement for ψu(.) because the proof is the same for ψu(.). By

construction, the correspondence ψu(.) is closed, connected and non-empty valued by the

properties of ϕ(.) stated in (ii), and the properties of the singleton {u}. Thus, it remains

to show that ψu(.) is weakly measurable.

Denote the lower inverse of a correspondence ψ : S � X with ψl(.), i.e., ψl(A) = {s ∈

S : ψ(s) ∩ A 6= ∅}, ∀A ⊂ X (e.g., Aliprantis and Border, 1994, p. 557). By definition of

the lower inverse and of the correspondence ψu, for all open subset O of [u, u],

ψl
u(O) = {w1 ∈ R : ϕ(w1) ∩ O 6= ∅}

⋃
[{w1 ∈ R : ϕ(w1) = ∅} ∩ {w1 ∈ R : {u} ∩ O 6= ∅}]

= ϕl(O)
⋃[

ϕl(R)c ∩ {w1 ∈ R : u ∈ O}
]
∈ B(R)

where the explanations for the last inclusion are the following. First, by (ii), ϕ(.) is

weakly measurable, so ϕl(O) and ϕl(R)c are measurable (e.g., Aliprantis and Border,

1994, Definition 18.1). Second, {w1 ∈ R : u ∈ O} = ∅ or R, so it is also Borel measurable.

(iv) Fix w1 ∈ R. “⇒” Assume {z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅. There

are two cases.

1st case: ψu(w1) = ϕ(w1). By (ii), ψu(w1) = ϕ(w1) := {x ∈ [u, u] : uw1(x) = 0} is a closed
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connected set, which means a closed interval (e.g., Rudin, 1953, Theorem 2.47). Thus,

{z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅ (i.e., ∀z ∈ [u, u], ∃x ∈ [z, u] s.t. uw1(x) 6= 0)

implies that d(u, ψu(w1)) > 0.

2nd case: ψu(w1) = {u}. Then, d(u, ψu(w1)) = d(u, u) > 0, because u 6= u by assumption.

“⇐” If d(u, ψu(w1)) > 0, then, for all x ∈ [u− ε, u] where ε := d(u, ψu(w1)), uw1(x) 6= 0

by definition of ψu(.). Thus, ∀z ∈ [u, u], ∃x ∈ [max(z, u − ε), u] s.t. uw1(x) 6= 0. Thus,

{z ∈ [u, u] s.t., ∀x ∈ [z, u], uw1(x) = 0} = ∅.

(v) By (iii), the correspondence ψu(.) is weakly measurable and nonempty-valued.

Thus, the distance function δ : [u, u]×R → R s.t. δ(z, w1) := d(z, ψu(w1)) := infx∈ψu(w1) |z−

x| is Carathéodory (e.g., Aliprantis and Border, 1994, Theorem 18.5), so, the set B :=

{w1 ∈ R : δ(u,w1) > 0} = {w1 ∈ R : d(u, ψu(w1)) > 0} is Borel measurable. More-

over, by (iii), the correspondence ψu(.) is closed and nonempty valued and weakly mea-

surable, so, by the Castaing representation theorem (e.g., Aliprantis and Border, 1994,

Corollary 18.14.2), there exists a sequence of Borel measurable selectors (fn)n∈N s.t.

ψu(w1) = {f1(w1), f2(w1), . . .}, for all w1 ∈ R. Then, by (iv),

ǔw1 = u1B(w1) + { inf
n∈N

fn(w1)}1Bc(w1),

which is Borel measurable as the product and the addition of Borel measurable functions.

Proof of Theorem A.2. The proof —especially that (ii) implies (i)— does not follow the

usual proof of the Hardy-Littlewood et. al. theorem provided in the economic and finance

literature. The latter proof relies on limiting arguments (e.g., Rothschild and Stiglitz,

1970) that do not go well with strict inequalities. In particular, for two real-valued

sequences (un) and (vn), the strict inequalities un < vn, for all n ∈ N, do not imply

limn→∞ un < limn→∞ vn. The proof follows from the introduction of the quantity ǔ 6= 0,

careful modifications of the proof techniques used in the mathematical literature (e.g.,

Föllmer and Schied, 2002, for a textbook presentation), and new technical lemmas.

(i) ⇒ (ibis) If uW1(.) = u(.), then |u′
+(u)| = E|u′

W1,+(u)| ∈ R and |u′
−(ǔ)| =

E|u′
W1,−(ǔ)| ∈ R \ {0}.

(ibis) ⇒ (ii). For any z ∈]u,∞[, the function x 7→ −(z−x)+ is a real-valued, concave,

increasing function on [u, u]. Moreover, ǔ = z if z ∈]u, u], and ǔ = u otherwise, so u′
−(ǔ) =

1 6= 0 and ǔ 6= u. Moreover, for any z ∈]u,∞[, if u(x) = −(z − x)+, then u′
+(u) = 1.

Thus, putting u(x) = −(z −x)+, by assumption, −E[(z −RS)+|W1] < −E[(z −RL)+|W1]

a.s., which is equivalent to the needed result E[(z − RL)+|W1] < E[(z − RS)+|W1] a.s.

(ii) ⇒ (i). Let uW1(.) be real-valued, concave, continuous, and increasing function
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uW1(.) defined on [u, u] and Borel measurable w.r.t. the index W1 s.t. E|uW1(u)| < ∞,

E|u′
W1,+(u)| < ∞ and E|u′

W1,−(ǔW1)| < ∞ with u′
W1,−(ǔW1) 6= 0 and ǔW1 6= u a.s., Then,

hW1(.) := −uW1(.) is a convex function. By the fundamental theorem of calculus for

convex functions (e.g., Föllmer and Schied, 2002, Proposition A.4), for all x ∈ [u, u], a.s.,

hW1(x)

= hW1(ǔW1) +

∫ x

ǔW1

h
′
W1,−(y)dy where h

′
W1,−(.) := h′

W1,−(.)1]u,u](.) + h′
W1,+(.)1{u}(.)

= hW1(ǔW1) −
∫ ǔW1

x

h
′
W1,−(y)dy1{x 6 ǔW1}

because, by definition of h
′
W1,−(.) and ǔW1 , ∀y ∈]ǔW1 , u], h

′
W1,−(y) = 0;

(a)
= hW1(ǔW1) −

∫ ǔW1

x

[h
′
W1,−(y) − h

′
W1,−(ǔW1) + h

′
W1,−(ǔW1)]dy1{x 6 ǔW1}

= hW1(ǔW1) −
∫ ǔW1

x

h
′
W1,−(ǔW1)dy1{x 6 ǔW1} −

∫ ǔW1

x

[h
′
W1,−(y) − h

′
W1,−(ǔW1)]dy1{x 6 ǔW1}

(b)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)1{x 6 ǔW1} +

∫ ǔW1

x

[h
′
W1,−(ǔW1) − h

′
W1,−(y)]dy1{x 6 ǔW1}

(c)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

x

∫ ǔW1

y

γW1(dz)dy1{x 6 ǔW1} where γW1 is a random

σ-finite Borel measure on [u, u[ s.t., ∀(a, b) ∈ [u, u]2, γW1([a, b[) = h
′
W1,−(b) − h

′
W1,−(a);

(d)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

u

∫ ǔW1

u

1{x 6 y 6 z}dyγW1(dz)1{x 6 ǔW1}

(e)
= hW1(ǔW1) − h

′
W1,−(ǔW1)(ǔW1 − x)+ +

∫ ǔW1

u

(z − x)+γW1(dz) (A.1)

(a) By assumption, E|h′
W1,−(ǔW1)| = E|u′

W1,−(ǔW1)| < ∞, so h′
W1,−(ǔW1) is finite a.s.

16

Now, h
′
W1,−(.) := h′

W1,−(.)1]u,u](.)+h′
W1,+(.)1{u}(.) = h′

W1,−(.) a.s. because ǔW1 6= u a.s. by

assumption. Thus, h
′
W1,−(ǔW1) is finite a.s. (b) Standard algebra yields

∫ ǔW1

x
h
′
W1,−(ǔW1)dy =

h
′
W1,−(ǔW1)

∫ ǔW1

x
dy = h

′
W1,−(ǔW1)(ǔW1 − x). (c) By Lemmas A.2 and A.4 (p. OA.7 &

OA.8), there exists a unique σ-finite random Borel measure γW1 on [u, ǔW1 [ s.t. γW1([a, b[) =

h
′
W1,−(b) − h

′
W1,−(a), ∀(a, b) ∈ [u, u]2 a.s. (d)

∫ ǔW1

x

∫ ǔW1

y
γW1(dz)dy =

∫ ǔW1

u

∫ ǔW1

u
1{y 6

z}γW1(dz)1{x 6 y}dy =
∫ ǔW1

u

∫ ǔW1

u
1{x 6 y 6 z}γW1(dz)dy =

∫ ǔW1

u

∫ ǔW1

u
1{x 6 y 6

z}dyγW1(dz) where the last equality follows from Fubini-Tonelli’s theorem (e.g., Kallen-

berg, 1997, Theorem 1.27) because the Lebesgue measure and γW1 are σ-finite on [u, u]. (e)

Standard algebra yields, ∀z ∈ [u, ǔW1 ],
∫ ǔW1

u
1{x 6 y 6 z}dy1{x 6 ǔW1} =

∫ ǔW1

u
1{x 6

y 6 z}dy = (z − x)1{x 6 z} = (z − x)+.

16Concavity of uW1(.) ensure the existence of u′
W1,−(ǔW1) only if ǔW1 ∈]u, u[.
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Then, by the theorem of disintegration of measures (e.g., Kallenberg, 1997, Theorem

6.3-6.4 with equation (6)) and Lemma A.1v on p. OA.2„ a.s.,

−E[uW1(RL)|W1] = E[hW1(RL)|W1] =

∫ u

u

hW1(x)dFL|W1(x|W1)

(a)
= hW1(ǔW1)

∫ u

u

dFL|W1(x|W1) − h
′
W1,−(ǔW1)

∫ u

u

(ǔW1 − x)+dFL|W1(x|W1)

+

∫ u

u

∫ ǔW1

u

(z − x)+γW1(dz)dFL|W1(x|W1)

(b)
= hW1(ǔW1)[FL|W1(u|W1) − FL|W1(u|W1)] − h

′
W1,−(ǔW1)E[(ǔW1 − RL)+|W1]

+

∫ ǔW1

u

∫ u

u

(z − x)+dFL|W1(x|W1)γW1(dz)

(c)
= hW1(ǔW1) − h

′
W1,−(ǔW1)E[(ǔW1 − RL)+|W1] +

∫ ǔW1

u

E[(z − RL)+|W1]γW1(dz)

(d)
< hW1(ǔW1) − h

′
W1,−(ǔW1)E[(ǔW1 − RS)+|W1] +

∫ ǔW1

u

E[(z − RS)+|W1]γW1(dz)

= E[hW1(RS)|W1] = −E[uW1(RS)|W1]

(a) Show the three terms of equation (A.1) have a finite expectation so their condi-

tional expectation are well-defined (e.g., Kallenberg, 1997, Theorem 6.1.i&iii), which,

in turn, implies that the integral of the sum is the sum of the integrals. Firstly, by

definition, the support of ǔW1 is in [u, u], so E|hW1(ǔW1)| < ∞ by Lemma A.5 on p.

OA.8. Secondly, by the triangle inequality, provided that ǔW1 and RL take values in

[u, u], E|h
′
W1,−(ǔW1)(ǔW1 − RL)+| 6 E|h

′
W1,−(ǔW1)||u − u| = |u − u|E|h′

W1,−(ǔW1)| =

|u − u|E|u′
W1,−(ǔW1)| < ∞ by assumption, the definition of h

′
W1,−(.), and the assumption

ǔW1 6= u. Thirdly, by the triangle inequality and the monotonicity of the Lebesgue inte-

gral (e.g., Aliprantis and Border, 1994, Theorem 11.13.3), E|
∫ ǔW1

u
(z − RL)+γW1(dz)| 6

E
∫ ǔW1

u
|u − u|γW1(dz) = |u − u|E|h

′
W1,−(ǔW1) − h

′
W1,−(u)| 6 |u − u|[E|h

′
W1,−(ǔW1)| +

E|h
′
W1,−(u)|] = |u − u|[E|h′

W1,−(ǔW1)| + E|h
′
W1,+(u)|] < ∞ by assumption, and where the

last equality follows from the definition of the extended derivative h
′
W1,−(.), which is a.s.

equal to h′
W1,−(.)1]u,u](.)+h′

W1,+(.)1{u}(.), and the assumption ǔW1 6= u. (b) First, by defi-

nition, the probability measure corresponding to the c.d.f. FL|W1 is finite, and thus σ-finite.

Second, by Lemma A.2, the random measure γW1(.) is σ-finite. Thus, by Fubini-Tonelli’s

theorem (e.g., Kallenberg, 1997, Theorem 1.27),
∫ u

u

∫ u

u
(z − x)+γW1(dz)dFL|W1(x|W1) =

∫ u

u

∫ u

u
(z − x)+dFL|W1(x|W1)γW1(dz). (c) By definition of c.d.f. with support [u, u],

FL|W1(u|W1) = 1 and FL|W1(u|W1) = 0, so FL|W1(u|W1) − FL|W1(u|W1) = 1. (d) Firstly,

by assumption, ∀z ∈]u, u], E[(z − RL)+|W1] < E[(z − RS)+|W1], and ǔW1 6= u, so
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−h
′
W1,−(ǔW1)E[(ǔW1 − RL)+|W1] < −h

′
W1,−(ǔW1)E[(ǔW1 − RS)+|W1] by Lemma A.3 on

p. OA.7. Secondly, by assumption, ∀z ∈]u, u], E[(z − RL)+|W1] < E[(z − RS)+|W1]

a.s., so
∫ u

u
E[(z − RL)+|W1]γW1(dz) 6

∫ u

u
E[(z − RS)+|W1]γW1(dz) by the monotonicity

of the Lebesgue integral (e.g., Kallenberg, 1997, Lemma 1.18). Moreover, as previously

noticed in the explanation for (a), E|
∫ ǔW1

u
(z−x)+γW1(dz)| 6 E

∫ ǔW1

u
|u−u|γW1(dz) = |u−

u|E|h
′
W1,−(ǔW1)−h

′
W1,−(u)| 6 |u−u|

[
E|h

′
W1,−(ǔW1)| + E|h

′
W1,−(u)|

]
= |u−u|[E|h′

W1,−(ǔW1)|+

E|h′
W1,+(u)|] < ∞, so E|E[

∫ ǔW1

u
(z−RL)+γW1(dz)|W1]| = E|

∫ ǔW1

u
E[(z−RL)+|W1]γW1(dz)| <

∞, which implies that
∫ ǔW1

u
E[(z − RL)+|W1]γW1(dz) is finite a.s.

(ii) ⇔ (iii). By the theorem of disintegration of measures, we can follow the standard

mathematical proof based on Fubini-Tonelli’s theorem.

Lemma A.2. Under the assumptions of Theorem A.2, for all the members of the class

of utility functions defined in the statement (i) of the latter theorem, there exists a unique

random σ-finite measure γW1(.) on [u, u] s.t. γW1([a, b[) = h
′
W1,−(b)−h

′
W1,−(a) a.s., where

h
′
W1,−(.) := h′

W1,−(.)1]u,u](.) + h′
W1,+(.)1{u}(.) a.s. with h(.) := −u(.).

Proof. By Lemma A.3 and A.4 on p. OA.7, the extended left-derivative h
′
W1,−(.) is increas-

ing and left continuous. Therefore, by a standard result for Lebesgue-Stieltjes integrals

(e.g., Aliprantis and Border, 1994, Theorem 10.48 and comment just below), there ex-

ists a unique σ-finite Borel measure γW1 on [u, u] s.t. γw1([a, b[) = h
′
−,W1

(b) − h
′
−,W1

(a),

∀(a, b) ∈ [u, u]2 a.s.. In fact, the measure γW1 is finite a.s., because, ∀A ∈ B([u, u]),

γW1(A) 6 h
′
−,W1

(u) − h
′
−,W1

(u) = h′
−,W1

(u) − h′
+,W1

(u) < ∞ a.s. where the last inequal-

ity follows from Lemma A.4 on p. OA.8. Now, {[a, b[: (a, b) ∈ [u, u]2} is a π-system

that generates the Borel σ-algebra B([u, u]) (e.g., Aliprantis and Border, 1994, Lemma

4.19-4.20), and, for all (a, b) ∈ [u, u]2, w1 7→ h
′
−,w1

(b) − h
′
−,W1

(a) is Borel measurable

because, for all x ∈ [u, u], the left derivative w1 7→ h′
−,w1

(x) inherits the measurability of

w1 7→ hw1(a) := −uw1(x) by stability of measurability under limits (e.g., Aliprantis and

Border, 1994, Theorem 4.27). Thus, by a standard result about random finite measures

(e.g., Kallenberg, 1997, Lemma 1.40, which immediately extends to finite measures), the

result follows.

Lemma A.3 (Extended conditional left-derivative). Let hW1 : [u, u] → R be a convex

decreasing function indexed by a random variable W1. Then, if E|h′
W1,+(u)| < ∞ and

E|h′
W1,−(u)| < ∞, there exists a.s. a finite extended left-derivative on [u, u],

h
′
W1,−(x) :=






h′
W1,−(x) ∀x ∈]u, u]

h′
W1,+(x) for x = u
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which is

(i) left-continuous,

(ii) increasing, and

(iii) negative.

Proof. It follows from the convexity of h(.).

Lemma A.4. Let hW1 : [u, u] → R be a convex decreasing function indexed by a random

variable W1. Let ǔW1 be a random variable s.t. ǔW1 := min
{
u, inf{z ∈ [u, u] s.t., ∀x ∈

[z, u], uW1(x) = 0}
}
, where uW1(.) := −hW1(.). Then E|h

′
W1,+(u)| < ∞ and E|h′

W1,−(u)| <

∞, iff, E|h′
W1,+(u)| < ∞ and E|h′

W1,−(ǔW1)| < ∞.

Proof. It follows from the increasing slope criterion for convex functions and the definition

of ǔW1 .

Lemma A.5. Let hW1 : [u, u] → R be a convex function indexed by a random variable W1

s.t. E|hW1(u)| < ∞, E|h′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞. If X is a random variable

with its support in [u, u], E|hW1(X)| < ∞.

Proof. By the increasing slope criterion for convex functions and its corollaries (e.g.,

Aliprantis and Border, 1994, Theorem 7.21-7.22), for all x ∈]u, u],

h′
W1,+(u) 6

hW1(x) − hW1(u)

x − u
6 h′

W1,−(u)

⇒ hW1(u) + h′
W1,+(u)(x − u) 6 hW1(x) 6 hW1(u) + h′

W1,−(u)(x − u)

Moreover, the latter equality is also true if x = u. Now, on one hand, if 0 6 hW1(x),

then |hW1(X)| 6 |hW1(u)+h′
W1,−(u)(X −u)|, and, on the other hand, if hW1(x) 6 0, then

|hW1(X)| 6 |hW1(u) + h′
W1,+(u)(X − u)|. Thus, for any random variable X with support

in [u, u],

|hW1(X)| 6 |hW1(u) + h′
W1,−(u)(X − u)| + |hW1(u) + h′

W1,+(u)(X − u)|
(a)

6 2|hW1(u)| + |h′
W1,−(u)||X − u| + |h′

W1,+(u)||X − u|
(b)

6 2|hW1(u)| + |h′
W1,−(u)||u − u| + |h′

W1,+(u)||u − u|

(c)
⇒ E|hW1(X)| 6 2E|hW1(u)| + E|h′

W1,−(u)||u − u| + E|h′
W1,+(u)||u − u|

(d)
< ∞

(a) Apply triangle inequality, and note that the absolute value of a product is equal to

the product of the absolute values. (b) By assumption, u 6 X 6 u. (c) Monotonicity
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and linearity of integrals (e.g., Aliprantis and Border, 1994, Theorem 11.13). (d) By

assumption, E|hW1(u)| < ∞, E|h′
W1,+(u)| < ∞ and E|h′

W1,−(u)| < ∞.

A.2 Proof of optimality condition and risk compensation

The following Proposition A.1 establishes the optimality condition and the risk compen-

sation for factors in the one-period case, and in the multiperiod case. The one-period

case corresponds to T = 1 and a given C0 because a strictly increasing utility functions

implies C1 = W1 in a one-period framework.

Proposition A.1 (Optimality condition & risk compensation). Assume the factor RL,t−

RS,t is different from zero with probability one, i.e., P(RL − RS 6= 0) = 1. Assume time-

additive utility functions U(C0:T ) :=
∑T

t=0 βtE[u(Ct)] where β > 0 is the time discount

factor, T ∈ [[1,∞[[ the time horizon, and u(.) a continuously differentiable von Neuman-

Morgenstern utility function. Under Assumption 1(a), if C0:T := (C0, C1, . . . , CT ) is a

locally optimal consumption process with values in the interior of [u, u] for an individual

with utility function U(C0:T ) :=
∑T

t=0 βtE[u(Ct)], then, for any time period ṫ ∈ [[1, T ]] at

which the factor RL,ṫ − RS,ṫ is freely tradable in a neighborhood of Cṫ,

(i) [Optimality condition] E[u′(Cṫ)(RL,ṫ − RS,ṫ)] = 0; and

(ii) [Risk compensation] under the additional assumption that E[u′(Cṫ)] 6= 0, E(RL,ṫ −

RS,ṫ) = −
1

E[u′(Cṫ)]
Cov(u′(Cṫ), RL,ṫ − RS,ṫ).

Proof. (i) For any ṫ ∈ [[1, T ]], define the consumption process C̃0:T := (C̃0, C̃1, . . . , C̃T )

s.t., ∀k ∈ [[1, T ]] \ {ṫ}, C̃k = Ck and C̃ṫ = Cṫ + ε(RL,ṫ − RS,ṫ) where ε > 0. Then, on one

hand, by Assumption 1(a), for ε small enough, Cṫ + ε(RL,ṫ−RS,ṫ) is in any arbitrary small

neighborhood of Cṫ so the local optimality of C0:T implies

0 6 U(C0:T ) − U(C̃0:T ) = βE[u(Cṫ)] − βE[u(Cṫ + ε(RL,ṫ − RS,ṫ))]

(a)
⇔ 0 6 E

[
[u(Cṫ) − u(Cṫ + ε(RL,ṫ − RS,ṫ))]

ε(RL,ṫ − RS,ṫ)
(RL,ṫ − RS,ṫ)

]
(b)
→ E[u′(Cṫ)(RL,ṫ − RS,ṫ)] , as ε ↓ 0.

(a) Divide both sides by 1/(βε), and multiply the numerator and the denominator of the

fraction with (RL,ṫ−RS,ṫ). (b) By Assumption 1(a), for ε small enough Cṫ + ε(RL,ṫ−RS,ṫ)

is in the interior of [u, u] with probability one. Now, by the mean-value theorem and

the continuity of the derivative on [u, u], ε 7→
[u(Cṫ)−u(Cṫ+ε(RL,ṫ−RS,ṫ))]

ε(RL,ṫ−RS,ṫ)
is bounded for ε

small enough. Thus, by the definition of derivatives, Lebesgue’s dominated convergence

theorem yields the result.
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On the other hand, following a similar reasoning with C̃ṫ = Cṫ − ε(RL,ṫ −RS,ṫ) implies

E[u′(Cṫ)(RL,ṫ − RS,ṫ)] 6 0. Thus, the result follows.

(ii) Standard calculations yield

E[u′(Cṫ)(RL,ṫ − RS,ṫ)] = 0

⇔ Cov(u′(Cṫ), RL,ṫ − RS,ṫ) + E[u′(Cṫ)]E(RL,ṫ − RS,ṫ) = 0

⇔ E(RL,ṫ − RS,ṫ) = −
Cov(u′(Cṫ), RL,ṫ − RS,ṫ)

E[u′(Cṫ)]

Remark 1 (Infinite horizon). Inspection of the proof shows Proposition A.1 can be ex-

tended to infinite horizon under the additional assumption that
∑∞

t=0 |β
tE[u(Ct)]| <

∞. �

Remark 2. Another way to derive the optimality condition is to go through standard Euler

equations. We do not follows this other way because it would require more assumptions:

It would at least require each leg of the factor to be freely tradable, separately. �

A.3 Proof of Proposition 1

The proof is based on Taylor expansions. The key idea is to show that the first term that

does not cancel out corresponds to E[u′(W1)(RL −RS)], which determines non-diversified

risk. See the derivation of equation (14) in Section 2.3.2.

Proof of Proposition 1. Two first order Taylor expansions of u(.) around W1 yield, up to

approximation error,

E[u(W0RL) − u(W0RS)]

= E
[
u(W1) + u′(W1)

(
W0RL − W1

)
− u(W1) − u′(W1)

(
W0RS − W1

)]

= W0E [u′(W1)(RL − RS)] , (A.2)

where, by Lemma 1, the null hypothesis (10) implies 0 < E[u(W0RL) − u(W0RS)].

Thus, up to approximation error, dividing both sides by W0,

0 < E [u′(W1)W0(RL − RS)] = W0Cov(u′(W1), RL − RS) + W0E[u′(W1)]E(RL − RS)

⇔ −
1

E[u′(W1)]
Cov(u′(W1), RL − RS) < E(RL − RS).
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Remark 3. A sufficient (but not necessary) condition for the approximation errors to be

negligible is |E[
∫W0RL

W1
(W0RL − x)u′′(x)dx−

∫W0RS

W1
(W0Rs − x)u′′(x)dx]| < |E[u(W0RL)−

u(W0RS)]|. �

Remark 4. A side product of the proof is to show that Roll (1977)’s critique, that is

unobserved wealth, is of second order for the proposed tests: The wealth term W0 and

u(W1) cancel out in the Taylor expansions. �

Discussion: Taylor approximations and approximation errors

Taylor approximations have been shown to be helpful in many areas, including asset

pricing theory (e.g., log linearization such as the Campbell-Shiller decomposition and

solution methods to asset pricing models with Epstein-Zin preferences) and empirical

works (e.g., inference based on asymptotic approximations). However, because of the

potential effect of approximation errors, they should be used with caution.

In the case of the Proof of Proposition 1, there are several reasons why we can argue

up to approximation errors for the purpose of the paper. First, the invariance of the

null hypothesis (10) under strictly positive affine transformations of lotteries (Lemma 1)

allows to arbitrarily recenter the Taylor expansions in order to reduce the magnitude

of the higher error terms. For this reason, Proposition 1 can still hold even when the

approximation errors of the corresponding Taylor approximation is arbitrarily big for

some utility functions.17 Second, the Taylor expansion are around the random terminal

wealth W1, so the random changes of W1 allow to account for the curvature of the utility

function u(.). In particular, it allows to account for its concavity, which embodies risk

aversion. In contrast, if Taylor approximations were around the fixed value E(W1), then

risk aversion would be neutralised. Finally, note that Taylor expansions in the Proof of

Proposition 1 are similar to the Taylor expansion behind the portfolio optimality condition

(11): One more marginal unit of the costless portfolio RL − RS yields a new utility

E[u(W1+RL−RS)] ' E[u(W1)]+E[u′(W1)(RL−RS)], so the utility change E[u(W1+RL−

RS)]−E[u(W1)] ' E[u′(W1)(RL −RS)] is zero at the optimum. This is the mathematical

logic behind the portfolio optimality condition (11).

17We thank Shri Santosh for providing in his discussion a simple example where the approximation
error can be made arbitrarily big for a specific utility function, while Proposition 1 still holds.
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A.4 Proposition 2

A.4.1 Core of the proof

The mathematics are standard. We just need (i) the test statistic (16) to go to zero under

the null hypothesis and (ii) the test statistic to diverge under the alternative hypothesis.

The crux of the mathematics is the following. Denote with A the subset of R, in which

the null hypothesis (15) does not hold, that is,

A := {z ∈ R : F
(2)
S (z) < F

(2)
L (z)}.

Then, addition and subtraction of F
(2)
L (z) and F

(2)
L∧S(z) to the quantity maximized by the

KS∗
T test statistic (16) yields

√
TKST (z) :=

√
T{F̂ (2)

L (z) − F̂
(2)
L∧S(z)}

=
√

T
{

F̂
(2)
L (z) − F

(2)
L (z) − [F̂

(2)
L∧S(z) − F

(2)
L∧S(z)] + F

(2)
L (z) − F

(2)
L∧S(z)

}

=
√

T [F̂
(2)
L (z) − F

(2)
L (z)] −

√
T [F̂

(2)
L∧S(z) − F

(2)
L∧S(z)]

+
√

T [F
(2)
L (z) − F

(2)
S (z)]1A(z), (A.3)

because, for all z /∈ A, F (2)
L (z) − F

(2)
L∧S(z) = F

(2)
L (z) − F

(2)
L (z) = 0.

Under the null hypothesis (15), by the definition of A, 1A(z) = 0, for all z ∈ R. Thus,

for T big enough, with probability one,

√
TKST (z) =

√
T [F̂

(2)
L (z) − F

(2)
L (z)] −

√
T [F̂

(2)
L∧S(z) − F

(2)
L∧S(z)]

=
√

T [F̂
(2)
L (z) − F

(2)
L (z)] −

√
T [F̂

(2)
L (z) − F

(2)
L (z)] = 0,

because F
(2)
L∧S(.) = F

(2)
L (.), and a Law of Large Numbers (LLN) implies the uniform

convergence of F̂
(2)
L (z) := 1

T

∑T
t=1 1{RL,t 6 z}(z − RL,t) and F̂

(2)
S (z) := 1

T

∑T
t=1 1{RS,t 6

z}(z−RS,t) to F
(2)
L (z) := E[1{RL,t 6 z}(z−RL,t) and F

(2)
S (z) := E[1{RS,t 6 z}(z−RS,t),

so F̂
(2)
L∧S(z) = F̂

(2)
L (z) for T big enough. Thus,

√
TKS∗

T is asymptotically smaller than any

positive quantity, so P
(
ĉ1−α <

√
TKS∗

T

)
goes to zero, as T → ∞. If the null hypothesis (15)

does not hold,
√

T [F̂
(2)
L (z) − F

(2)
L (z)] =

√
T
[

1
T

∑T
t=1 1{RL,t 6 z}(z − RL,t) − E[1{RL,t 6

z}(z − RL,t)]
]
, which, by a Central Limit Theorem (CLT), converges to a tight limit

after multiplication by
√

T . Similarly, by the continuous mapping theorem
√

T [F̂
(2)
L∧S(z)−

F
(2)
L∧S(z)] = OP (1). However, for all z ∈ A,

√
T [F

(2)
L (z)−F

(2)
S (z)]1A(z) → ∞, as T → ∞.

Therefore, under the alternative hypothesis, as T → ∞, the KS∗
T test statistic (16), which

maximizes (A.3), goes to infinity, and thus becomes bigger than any threshold ĉ1−α.
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A.4.2 Assumptions and intermediary results

Assumption 2 (Weak convergence of normalized integrated CDF& cT ). Denote the weak

convergence with “ .” As T → ∞,

√
T

(
F̂

(2)
S − F

(2)
S

F̂
(2)
L − F

(2)
L

)

 

(
HS

HL

)

where the process {H(z)}z∈[u,u] := {(HS(z) HL(z))′}z∈[u,u] has a tight measurable Borel

measurable version that lies in the space UC([u, u], ρ) of (uniformly) continuous functions

on [u, u] endowed with the supremum norm ρ. Moreover, cT converges sufficiently slowly

to u from above.

Assumption 3 (Strict stationarity with strong mixing). The bivariate process (rt)
T
t=1 :=

(RS,t RL,t)
T
t=1 is strictly stationary and α-mixing.

Assumption 3 is often required to check Assumption 2, so the former is not really more

restrictive than the latter.18

Lemma A.6 (Asymptotic limit of KS∗
T ). Under Assumptions 1 and 2,

(i) if H0 holds, then, for T big enough, supz∈IT

∣
∣
∣F̂ (2)

L (z) − F̂
(2)
L∧S(z)

∣
∣
∣ = 0 with probability

one (w.p.1.).

(ii) if H0 does not hold, then as T → ∞, KS∗
T = supz∈IT

∣
∣
∣F̂ (2)

L (z) − F̂
(2)
L∧S(z)

∣
∣
∣ converges

to a non-zero positive constant KS
∗
w.p.1.

Proof. It follows from a reasoning along the lines of the mathematical arguments of the

core of the proof.

Lemma A.7 (Subsampling CDF of KS∗
T,i). Assume (bT ) ∈ [[1,∞[[N s.t. limT→∞ bT = ∞

and limT→∞
bT

T
= 0. Under Assumptions 1 , 2, and 3, if H0 does not hold,

(i) for all x ∈ R \ {KS
∗
}, with probability one, as T → ∞, Ĝ0

T,bT
(x) → 1(KS

∗
6 x)

where Ĝ0
T,bT

(x) := 1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i 6 x); and

(ii) for all α ∈ [0, 1[, as T → ∞, g0
T,bT ,1−α → KS

∗
with probability one, where g0

T,bT ,1−α :=

inf{y : 1 − α 6 Ĝ0
T,bT

(y)}
18As in the literature (e.g., Politis et al., 1999), we still state both assumptions to simplify the presen-

tation.
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Proof. (i) By triangle inequality for the L2 norm |.|2,

|Ĝ0
T,bT

(x) − 1(KS
∗
6 x)|2 6 |Ĝ0

T,bT
(x) − E[Ĝ0

T,bT
(x)]|2 + |E[Ĝ0

T,bT
(x)] − 1(KS

∗
6 x)|2

=
√
V[Ĝ0

T,bT
(x)] + |P(KS∗

T,1 6 x) − 1(KS
∗
6 x)|2

because E[Ĝ0
T,bT

(x)] = E[ 1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i 6 x)] = E[1(KS∗
T,1 6 x)] = P(KS∗

T,1 6

x) where the second equality comes from strict stationarity (i.e., Assumption 3). Now,

for all x ∈ R \ {KS
∗
}, as T → ∞, |P(KS∗

T,1 6 x) − 1(KS
∗
6 x)|2)) = |P(KS∗

T,1 6

x) − 1(KS
∗
6 x)| → 0 w.p.1 because KS∗

T,1 = KS∗
bT
, which converges in distribution to

the non-zero positive constant KS
∗
by Lemma A.6ii. Thus, it is sufficient to prove that

V[Ĝ0
T,bT

(x)] → 0, as T → ∞ w.p.1. using strong mixing.

(ii) Let η > 0 and ε > 0 s.t. 1− α < 1− ε & ε < 1− α, i.e., ε ∈]0, min{α, 1− α}[. By

(i), w.p.1, there exists T̄ ∈ [[1,∞[[ s.t. T > T̄ implies






1 − Ĝ0
T,bT

(KS
∗
+ η) < ε

Ĝ0
T,bT

(KS
∗
− η) − 0 < ε

⇔






1 − ε < Ĝ0
T,bT

(KS
∗
+ η)

Ĝ0
T,bT

(KS
∗
− η) < ε

⇒






1 − α < Ĝ0
T,bT

(KS
∗
+ η)

Ĝ0
T,bT

(KS
∗
− η) < 1 − α

because ε > 0 s.t. 1−α < 1− ε & ε < 1−α. Now, g0
T,bT ,1−α := inf{y : 1−α 6 Ĝ0

T,bT
(y)},

where Ĝ0
T,bT

(.) is an increasing function. Thus, w.p.1, ∀T > T̄ , KS
∗
− η < gT,bT ,1−α 6

KS
∗
+ η.

Lemma A.8 (Centered Subsampling CDF of KS∗
T,i). Assume (bT ) ∈ [[1,∞[[N s.t. limT→∞ bT =

∞ and limT→∞
bT

T
= 0. Under Assumptions 1 , 2, and 3, if H0 does not hold,

(i) for all x ∈ R \ {KS
∗
}, w.p.1, as T → ∞, Ǧ0

T,bT
(x) → 1(KS

∗
6 x) where Ǧ0

T,bT
(x) :=

1
T−bT +1

∑T−bT +1
i=1 1(KS∗

T,i − KS∗
T 6 x); and

(ii) for all α ∈ [0, 1[, as T → ∞, ǧ0
T,bT ,1−α → KS

∗
w.p.1, where ǧ0

T,bT ,1−α := inf{y :

1 − α 6 Ǧ0
T,bT

(y)}

Proof. Adapt the proof of Lemma A.7.

Proof of Proposition 2. Case 1.1: H0 holds. Uncentered subsampling. By definition of

F̂
(2)
L∧S,bT ,i(.), 0 6

√
bT KS∗

bT ,i :=
√

bT supz∈[u,u] |F̂
(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)|. Thus, under As-
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sumptions 1 and 2, by Lemma A.6i, for T big enough, w.p.1,
√

T supz∈[u,u] |F̂
(2)
L (z) −

F̂
(2)
L∧S(z)| = 0 6

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)|, ∀i ∈ [[1, T − bT + 1]] . Therefore,

√
T supz∈[u,u] |F̂

(2)
L (z) − F̂

(2)
L∧S(z)| is smaller than any quantile of the distribution of the

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)|.

Case 1.2: H0 holds. Centered subsampling. Under Assumptions 1 and 2, by Lemma

A.6i, for T big enough, w.p.1,
√

T supz∈[u,u] |F̂
(2)
L (z) − F̂

(2)
L∧S(z)| = 0. Thus,for T big

enough, w.p.1, the centered subsampled statistics
√

bT K̇S
∗
T,i are equal to the uncen-

tered susbsampled test statistic
√

bT KS∗
T,i, i.e.,

√
bT supz∈[u,u] |F̂

(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)| =

√
bT [supz∈[u,u] |F̂

(2)
L,bT ,i(z) − F̂

(2)
L∧S,bT ,i(z)| − supz∈[u,u] |F̂

(2)
L (z) − F̂

(2)
L∧S(z)|]. Thus, the same

proof as in the uncentered case applies.

Case 2.1: H0 does not holds. Uncentered subsampling, i.e., ĉ1−α := inf{x : 1 − α 6

ĜT,bT
(x)} where ĜT,bT

(x) := 1
T−bT +1

∑T−bT +1
i=1 1(

√
bT KS∗

T,i 6 x).

By definition of gT,bT ,1−α,

{
gT,bT ,1−α <

√
TKS∗

T

}

=
{

inf{x : 1 − α 6 ĜT,bT
(x)} <

√
TKS∗

T

}

=
{

inf{
x

√
bT

: 1 − α 6 ĜT,bT
(x)} <

√
T

bT

KS∗
T

}

(a)
=
{

inf{y : 1 − α 6 ĜT,bT
(
√

bT y)} <

√
T

bT

KS∗
T

}

(b)
=
{

inf{y : 1 − α 6 Ĝ0
T,bT

(y)} <

√
T

bT

KS∗
T

}

=
{

g0
T,bT ,1−α <

√
T

bT

KS∗
T

}

(a) Put y = x/bT . (b) Ĝ0
T,bT

(y) = 1
T−bT +1

∑T−bT +1
t=1 1(KS∗

T,i 6 y) = 1
T−bT +1

∑T−bT +1
t=1 1(

√
bT KS∗

T,i 6√
bT y) = ĜT,bT

(
√

bT y)

Now, under Assumptions 1 , 2, and 3, , limT→∞ P
{

g0
T,bT ,1−α <

√
T
bT

KS∗
T

}
= 1 because

limT→∞ g0
T,bT ,1−α = KS

∗
6 limT→∞

√
T
bT

KS∗
T = limT→∞

√
T
bT

KS
∗

= ∞ w.p.1. by Lemma

A.7ii and limT→∞
bT

T
= 0 by assumption.

Case 2.2: H0 does not holds. Centered subsampling, i.e., ĉ1−α := inf{x : 1 − α 6

ĜT,bT
(x)} where ĜT,bT

(x) := 1
T−bT +1

∑T−bT +1
i=1 1(

√
bT (KS∗

T,i − KS∗
T ) 6 x). Follow the same

reasoning as in the case 2.1.
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A.5 Proof of Proposition 4

Proof. 1st case: H0 is true. By positivity and monotonicity of probability measures, 0 6

P
(
{ĉ1−α <

√
TKS∗

T} ∩ FT

)
6 P(ĉ1−α <

√
TKS∗

T ). Now, if H0 is true, limT→∞ P(ĉ1−α <
√

TKS∗
T ) = 0. Thus, the result follows from the squeeze theorem because limT→∞ P

(
{ĉ1−α <

√
TKS∗

T}
)

× P (FT ) = 0

2st case: H0 is wrong. On one hand, by additivity of probability measures, for all

T ∈ [[1,∞[[,

P(FT ) = P(FT ∩ {ĉ1−α <
√

TKS∗
T}) + P(FT ∩ {ĉ1−α <

√
TKS∗

T}
c)

⇒ P(FT ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T}) = P(FT ∩ {ĉ1−α <

√
TKS∗

T}
c)

(a)
⇒ P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T}) 6 P(FT ∩ {ĉ1−α <

√
TKS∗

T}
c)

(b)
⇒ P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T}) 6 1 − P(ĉ1−α <

√
TKS∗

T )

(a) P(FT )P(ĉ1−α <
√

TKS∗
T ) − P(FT ∩ {ĉ1−α <

√
TKS∗

T}) 6 P(FT ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T}) because P(ĉ1−α <

√
TKS∗

T ) ∈ [0, 1] by definition of probability. (b) By mono-

tonicity of probability measures, P(FT ∩ {ĉ1−α <
√

TKS∗
T}

c) 6 P({ĉ1−α <
√

TKS∗
T}

c) =

1 − P(ĉ1−α <
√

TKS∗
T ).

On the other hand, for all T ∈ [[1,∞[[,

P(FT )P(ĉ1−α <
√

TKS∗
T ) − P(FT ) 6 P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T})

⇔ P(FT )[P(ĉ1−α <
√

TKS∗
T ) − 1] 6 P(FT )P(ĉ1−α <

√
TKS∗

T ) − P(FT ∩ {ĉ1−α <
√

TKS∗
T})

Now, by Proposition 2ii (p. 24), limT→∞ P(ĉ1−α <
√

TKS∗
T ) = 1, so that limT→∞ 1 −

P(ĉ1−α <
√

TKS∗
T ) = 0 and limT→∞[P(ĉ1−α <

√
TKS∗

T )−1] = limT→∞ P(FT )[1−P(ĉ1−α <
√

TKS∗
T )] = 0 because P(FT ) is bounded. Therefore, the result follows from the squeeze

theorem.

A.6 Supplementary results

The following result seems to be known, although no proofs or statements is available in

the literature to the best of our knowledge.

Theorem A.3 (Equivalent characterizations of conditional SSD). Assume that the sup-

port of the random variables RL and RS is a subset of [u, u] ⊂ R with u 6= u. Then the

following statements are equivalent.

(i) For all real-valued, concave and increasing function uW1(.) defined on [u, u] and

Borel measurable w.r.t. the index W1 s.t. E|uW1(u)| < ∞, E|u′
W1,+(u)| < ∞ and
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E|u′
W1,−(u)| < ∞ , the following inequality holds E[uW1(RS)|W1] 6 E[uW1(RL)|W1]

a.s.

(ibis) For all real-valued, concave and increasing function u(.) on [u, u] s.t. u′
+(u) ∈ R

and u′
−(u) ∈ R, the following inequality holds E[u(RS)|W1] 6 E[u(RL)|W1] a.s.

(ii) For all z ∈ R, E[(z − RL)+|W1] 6 E[(z − RS)+|W1] a.s.

(iii) For all z ∈ R, F (2)
L|W1

(z|W1) 6 F
(2)
S|W1

(z|W1) a.s., where F
(2)
L|W1

(z|W1) :=
∫ z

u
FL|W1

(y|W1)dy

a.s.

Proof of Theorem A.3. Repeat the proof of Theorem A.2 with u in lieu of ǔW1 .

A.7 Proposition 5

Assumption 4 (Conditional no touching without crossing). If there exists ż ∈]u, u] s.t.

F
(2)
L|M(ż) = F

(2)
S|M(ż), then there exists z̈ ∈]u, u] s.t. F

(2)
S|M (z̈) < F

(2)
L|M (z̈).

Assumption 5 (Weak convergence). (a) If H0 holds,
√

TC∗
T converges weakly to a lim-

iting law, as T → ∞. (b) As T → ∞,
√

T (Ĉ(2) − C(2))  HC, where HC has a tight

measurable Borel measurable version that lies in the space of uniformly continuous func-

tions endowed with the supremum norm ρ.

Assumption 6 (Strict stationarity with strong mixing). The process (RS,t RL,t RM,t)
T
t=1

is strictly stationary and α-mixing.

Proof of Proposition 5. (i) Use properties of least concave majorant (Durot and Tocquet,

2003, Sec. 2), and adapt the proof of Beran (1984, Theorem 1) along the lines of Politis

et al. (1999, Theorem 3.2.1).

(ii) It follows from the same logic as the proof of Proposition 2(ii).

B Monte-Carlo simulations

The objective of this section is to (i) explore the finite-sample behaviour of the tests; (ii)

compare them with alternative implementations.

B.1 DGPs

B.1.1 Stylized DGPs

The stylized DGPs, which are taken from Whang (2019, p. 225–227) and displayed

in Table A.1 (p. OA.18), allow to assess the performance of the tests in well-understood
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situations. A Gaussian distribution is strictly preferred by all risk-averse agents to another

Gaussian distribution if its mean and variance are smaller.

Table A.1: Stylized DGPs

H0 DGP Plots of CDF & Integrated CDF

True

[
RL

RS

]
IID
↪→ N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ N

([
0
.5

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ N

([
0
0

]

,

[
1 0
0 .52

])

B.1.2 DGPs calibrated to data

In Table A.2 (p. OA.19), the DGPs are calibrated to data. They allow to assess the finite-

sample performance of the test in situations that mimick the data. For this purpose, we

calibrate Gaussian distributions to factors for which the null hypotheses are barely true

(or false). More precisely, the mean and the variance are calibrated to the average and

the empirical variance of the legs of the factor SIZE and the factor DY in original sample.
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Table A.2: DGPs calibrated to data

H0 DGP Plots of CDF & Integrated CDF

False

[
RL

RS

]
IID
↪→ N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
RL

RS

]
IID
↪→ N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

B.1.3 Non-Gaussian DGPs with correlation calibrated to data

The non-Gaussian DGPs with correlation calibrated from data, which are displayed in

Table A.6 (p. OA.24), correspond to examples of distributions mentioned in the stochastic

dominance literature. The correlation is calibrated to the average correlation between the

short and the long legs of factors in the original sample, that is .7. We rely on the NORTA

algorithm (Cario and Nelson., 1997) to generate the data with the desired correlation and

marginal distributions. The first DGP, which is adapted from Whang (2019, p. 10) and

Rothschild and Stiglitz (1970, Sec. IV) is known to be a challenging DGP. The second

DGP allows to assess the performance of the tests in the present of fat tails: Students

distributions are leptokurtic.

OA.19



Table A.3: Non-Gaussian DGPs with correlation calibrated to data

H0 DGP Plots of CDF & Integrated CDF

False






RL ↪→ .3U[0,3] + .7U[1,2]

RS ↪→ U[.5,2.5]

Cor(RS, RL) = .7

False






RL
IID
↪→ t(4)

RS
IID
↪→ N (0, 1)

Cor(RS, RL) = .7

B.2 Unconditional Test

B.2.1 Number of grid points and subsample size bT

Like other tests of stochastic dominance à la McFadden (1989), our test requires to choose

the number of gridpoints used to approximate the supremum in the test statistic. In the

literature, the usual number of gridpoints seems to be 100 or less (e.g., Barrett and Donald,

2003; Whang, 2019). For caution, we use 200, and we have checked that our simulation

results are not affected up to two decimals after the dot if we double the number of nodes

to 400.

Regarding the subsample size bT , asymptotic theory requires limT→∞ bT = ∞ and

limT→∞
bT

T
= 0 (Propositions 2 and 5 on p. 24 & 31). This leaves a wide choice of

subsample sizes. The trade off is the following. If bT is too big (i.e., too close to the

sample size T ), the subsample statistics are too close to each other, so the subsampling

distribution is too tight. Conversely, if bT is too small (e.g., bT = 1), the subsample

statistics are too far from each other, so the subsampling distribution is too wide. While

some automatic data-dependent methods have been to proposed to choose the subsample

size bT (e.g., Linton et al., 2005; Politis et al., 1999, Chap. 9), there is no consensus about
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which data-dependent methods to choose. Now, by the CLT, under general assumptions,

the rate of convergence of estimators (i.e., the rate of accumulation of information) is
√

T , so we choose subsample size bT = b
√

T c where bac := max{n ∈ N : n 6 a}. For

robustness, we also tried bT = bm +
√

T c with m ∈ {5, 10, 20}, and bT =
⌈

ηT
log[log(ee+T )]

⌉

with η ∈ {.25, .5} and where dae := min{n ∈ N : a 6 n} for all a ∈ R.19 Monte-Carlo

simulations, which are available upon request, indicate that none of this alternatives work

better than bT = b
√

T c. Moreover, our empirical results appear qualitatively robust to

these different subsample sizes. Thus, we stick to bT = b
√

T c.

B.2.2 Results

We compare uncentered and centered block subsampling. In some situations, it has been

found that centered subsampling outperforms the original uncentered subsampling in

small sample (e.g., Chernozhukov and Fernández-Val, 2005). Our analysis focuses on the

boxplots of the p-values.

Overall, the different implementations of the tests appear to have a satisfactory finite-

sample behaviour, i.e., the p-values are usually high under the null hypothesis, while

the distribution of the p-values tends to converge to a point mass at zero under the

alternative. Nevertheless, some patterns indicate some systematically different finite-

sample behaviors. In particular, centered block subsampling implementation performs

similarly to our uncentered, except that the p-values are generally smaller. Thus, for

caution, in the empirical section of the main text, we only report results from our centered

subsampling implementation so it goes against our main result. For the DGPs calibrated

to data and the Non-Gaussian DGPs with correlation calibrated to data, the good finite-

sample performance of the tests is partly due to the correlation between the short and

the long legs : The higher the correlation, the less probable are crossing of the integrated

empirical CDFs under the null hypothesis, and the more probable are crossing under the

alternative hypothesis.

19The term ee guarantees that the denominator is bigger than one, so the subsample size cannot be
negative nor bigger than the sample size.
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Table A.4: Monte-Carlo simulations of KS∗
T : Stylized DGPs

H0 DGP Boxplots of p-values

True

[
RL

RS

]
IID
↪→ N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ N

([
0
.5

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ N

([
0
0

]

,

[
1 0
0 .52

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of KS∗

T is approximated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.
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Table A.5: Monte-Carlo simulations of KS∗
T : Calibrated DGPs

H0 DGP Boxplots of p-values

False

[
RL

RS

]
IID
↪→ N

([
.015
.0078

]

,

[
.122 .0051

.0572

])

True

[
RL

RS

]
IID
↪→ N

([
.011
.010

]

,

[
.0392 .0012

.0572

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of KS∗

T is approximated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.
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Table A.6: Monte-Carlo simulations of KS∗
T :Non-Gaussian DGPs with corre-

lation calibrated to data

H0 DGP Boxplots of p-values

False






RL
IID
↪→ .3U[0,3] + .7U[1,2]

RS
IID
↪→ U[.5,2.5]

Cor(RS, RL) = .7

False






RL
IID
↪→ t(4)

RS
IID
↪→ N (0, 1)

Cor(RS, RL) = .7

Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of KS∗

T is approximated through block subsampling for “KS∗
T No centering,” and centered block subsampling for “KS∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.

B.3 Conditional tests

For ease of comparison, the parameterization and the DGPs are similar to the ones for

the unconditional tests, except for a new common component. More precisely, we add a

common independent Gaussian component x ↪→ N (0, σ2
x) to each of the DGPs. E.g., the

first DGP is
[
RL

RS

]

= x +

[
zL

zS

]
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where x
IID
↪→ N (0, σ2

x),

[
zL

zS

]
IID
↪→ N

([
0

0

]

,

[
1 0

0 1

])

, and x is independent of [zL zS]′.

The parameter σx is calibrated to correspond to an estimate of the standard deviation

of the monthly market returns, i.e., σx = 4%. Regarding the parameterization, as in the

unconditional test and for the same reasons, we keep the subsample size bT =
√

T and

the number of nodes to 200.

The patterns of the p-value distributions appear similar to the ones of the uncondi-

tional tests, namely smaller p-values for centered subsampling, better performance when

the correlation between boths legs is higher.
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Table A.7: Monte-Carlo simulations of C∗
T : Stylized DGPs

H0 DGP Boxplots of p-values

True

[
RL

RS

]
IID
↪→ x + N

([
0

−.1

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ x + N

([
0
.5

]

,

[
1 0
0 1

])

False

[
RL

RS

]
IID
↪→ x + N

([
0
0

]

,

[
1 0
0 .52

])

Note:The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of C∗

T is approximated through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.
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Table A.8: Monte-Carlo simulations of C∗
T : Calibrated DGPs

H0 DGP Boxplots of p-values

False

[
RL

RS

]
IID
↪→ x + N

([
1.015
1.0078

]

,

[
.122 .0051

.0572

])

True

[
RL

RS

]
IID
↪→ x + N

([
1.011
1.010

]

,

[
.0392 .0012

.0572

])

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of C∗

T is approximated through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.
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Table A.9: Monte-Carlo simulations of C∗
T : Non-Gaussian DGPs

H0 DGP Boxplots of p-values

False

[
RL

RS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ .3U[0,3] + .7U[1,2]

zS
IID
↪→ U[.5,2.5]

Cor(zS, zL) = .7

False

[
RL

RS

]
IID
↪→ x +

[
zL

zS

]

where






zL
IID
↪→ t(4)

zS
IID
↪→ N (0, 1)

Cor(zS, zL) = .7

Note: The reported p-values are based on 1000 simulated samples of sample size equal to the indicated T . The distribution
of C∗

T is approximated through block subsampling for “C∗
T No centering,” and centered block subsampling for “C∗

T .” The
block size is bT =

√
T .The tops and bottoms of each “box" are the 25th and 75th percentiles of the p-values, respectively.

The line in the middle of each box is the median. Crosses beyond the whisker length indicate outliers. An outlier is a value
that is more than 1.5 times the interquartile range away from the corresponding end of the interquartile ranges. Whiskers
are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length.

C Additional empirical evidence
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Table A.10: Acronym and Description of the 205 Characteristics

This Table provides a short description of each of the 205 characteristics used.

Description

AM Total assets to market
AOP Analyst Optimism
AbnormalAccruals Abnormal Accruals
Accruals Accruals
AccrualsBM Book-to-market and accruals
Activism1 Takeover vulnerability
Activism2 Active shareholders
AdExp Advertising Expense
AgeIPO IPO and age
AnalystRevision EPS forecast revision
AnalystValue Analyst Value
AnnouncementReturn Earnings announcement return
AssetGrowth Asset growth
BM Book to market using most recent ME
BMdec Book to market using December ME
BPEBM Leverage component of BM
Beta CAPM beta
BetaFP Frazzini-Pedersen Beta
BetaLiquidityPS Pastor-Stambaugh liquidity beta
BetaTailRisk Tail risk beta
BidAskSpread Bid-ask spread
BookLeverage Book leverage (annual)
BrandInvest Brand capital investment
CBOperProf Cash-based operating profitability
CF Cash flow to market
Cash Cash to assets
CashProd Cash Productivity
ChAssetTurnover Change in Asset Turnover
ChEQ Growth in book equity
ChForecastAccrual Change in Forecast and Accrual
ChInv Inventory Growth
ChInvIA Change in capital inv (ind adj)
ChNAnalyst Decline in Analyst Coverage
ChNNCOA Change in Net Noncurrent Op Assets
ChNWC Change in Net Working Capital
ChTax Change in Taxes
ChangeInRecommendation Change in recommendation
CitationsRD Citations to RD expenses
CompEquIss Composite equity issuance
CompositeDebtIssuance Composite debt issuance
ConsRecomm Consensus Recommendation
ConvDebt Convertible debt indicator
CoskewACX Coskewness using daily returns
Coskewness Coskewness
CredRatDG Credit Rating Downgrade
CustomerMomentum Customer momentum
DebtIssuance Debt Issuance
DelBreadth Breadth of ownership
DelCOA Change in current operating assets
DelCOL Change in current operating liabilities
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Table A.10 (continued)

Description

DelDRC Deferred Revenue
DelEqu Change in equity to assets
DelFINL Change in financial liabilities
DelLTI Change in long-term investment
DelNetFin Change in net financial assets
DivInit Dividend Initiation
DivOmit Dividend Omission
DivSeason Dividend seasonality
DivYieldST Predicted div yield next month
DolVol Past trading volume
DownRecomm Down forecast EPS
EBM Enterprise component of BM
EP Earnings-to-Price Ratio
EarnSupBig Earnings surprise of big firms
EarningsConsistency Earnings consistency
EarningsForecastDisparity Long-vs-short EPS forecasts
EarningsStreak Earnings surprise streak
EarningsSurprise Earnings Surprise
EntMult Enterprise Multiple
EquityDuration Equity Duration
ExchSwitch Exchange Switch
ExclExp Excluded Expenses
FEPS Analyst earnings per share
FR Pension Funding Status
FirmAge Firm age based on CRSP
FirmAgeMom Firm Age - Momentum
ForecastDispersion EPS Forecast Dispersion
Frontier Efficient frontier index
GP gross profits / total assets
Governance Governance Index
GrAdExp Growth in advertising expenses
GrLTNOA Growth in long term operating assets
GrSaleToGrInv Sales growth over inventory growth
GrSaleToGrOverhead Sales growth over overhead growth
Herf Industry concentration (sales)
HerfAsset Industry concentration (assets)
HerfBE Industry concentration (equity)
High52 52 week high
IO_ShortInterest Inst own among high short interest
IdioRisk Idiosyncratic risk
IdioVol3F Idiosyncratic risk (3 factor)
IdioVolAHT Idiosyncratic risk (AHT)
Illiquidity Amihud’s illiquidity
IndIPO Initial Public Offerings
IndMom Industry Momentum
IndRetBig Industry return of big firms
IntMom Intermediate Momentum
IntanBM Intangible return using BM
IntanCFP Intangible return using CFtoP
IntanEP Intangible return using EP
IntanSP Intangible return using Sale2P
InvGrowth Inventory Growth
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Table A.10 (continued)

Description

InvestPPEInv change in ppe and inv/assets
Investment Investment to revenue
LRreversal Long-run reversal
Leverage Market leverage
MRreversal Medium-run reversal
MS Mohanram G-score
MaxRet Maximum return over month
MeanRankRevGrowth Revenue Growth Rank
Mom12m Momentum (12 month)
Mom12mOffSeason Momentum without the seasonal part
Mom6m Momentum (6 month)
Mom6mJunk Junk Stock Momentum
MomOffSeason Off season long-term reversal
MomOffSeason06YrPlus Off season reversal years 6 to 10
MomOffSeason11YrPlus Off season reversal years 11 to 15
MomOffSeason16YrPlus Off season reversal years 16 to 20
MomRev Momentum and LT Reversal
MomSeason Return seasonality years 2 to 5
MomSeason06YrPlus Return seasonality years 6 to 10
MomSeason11YrPlus Return seasonality years 11 to 15
MomSeason16YrPlus Return seasonality years 16 to 20
MomSeasonShort Return seasonality last year
MomVol Momentum in high volume stocks
NOA Net Operating Assets
NetDebtFinance Net debt financing
NetDebtPrice Net debt to price
NetEquityFinance Net equity financing
NetPayoutYield Net Payout Yield
NumEarnIncrease Earnings streak length
OPLeverage Operating leverage
OScore O Score
OperProf operating profits / book equity
OperProfRD Operating profitability R&D adjusted
OptionVolume1 Option to stock volume
OptionVolume2 Option volume to average
OrderBacklog Order backlog
OrderBacklogChg Change in order backlog
OrgCap Organizational capital
PS Piotroski F-score
PatentsRD Patents to R&D expenses
PayoutYield Payout Yield
PctAcc Percent Operating Accruals
PctTotAcc Percent Total Accruals
PredictedFE Predicted Analyst forecast error
Price Price
PriceDelayRsq Price delay r square
PriceDelaySlope Price delay coeff
PriceDelayTstat Price delay SE adjusted
ProbInformedTrading Probability of Informed Trading
RD R&D over market cap
RDAbility R&D ability
RDIPO IPO and no R&D spending
RDS Real dirty surplus
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Table A.10 (continued)

Description

RDcap R&D capital-to-assets
REV6 Earnings forecast revisions
RIO_Disp Inst Own and Forecast Dispersion
RIO_MB Inst Own and Market to Book
RIO_Turnover Inst Own and Turnover
RIO_Volatility Inst Own and Idio Vol
ResidualMomentum Momentum based on FF3 residuals
ReturnSkew Return skewness
ReturnSkew3F Idiosyncratic skewness (3F model)
RevenueSurprise Revenue Surprise
RoE net income / book equity
SP Sales-to-price
STreversal Short term reversal
ShareIss1Y Share issuance (1 year)
ShareIss5Y Share issuance (5 year)
ShareRepurchase Share repurchases
ShareVol Share Volume
ShortInterest Short Interest
Size Size
SmileSlope Put volatility minus call volatility
Spinoff Spinoffs
SurpriseRD Unexpected R&D increase
Tax Taxable income to income
TotalAccruals Total accruals
UpRecomm Up Forecast
VarCF Cash-flow to price variance
VolMkt Volume to market equity
VolSD Volume Variance
VolumeTrend Volume Trend
XFIN Net external financing
betaVIX Systematic volatility
cfp Operating Cash flows to price
dNoa change in net operating assets
fgr5yrLag Long-term EPS forecast
grcapx Change in capex (two years)
grcapx3y Change in capex (three years)
hire Employment growth
iomom_cust Customers momentum
iomom_supp Suppliers momentum
realestate Real estate holdings
retConglomerate Conglomerate return
roaq Return on assets (qtrly)
sfe Earnings Forecast to price
sinAlgo Sin Stock (selection criteria)
skew1 Volatility smirk near the money
std_turn Share turnover volatility
tang Tangibility
zerotrade Days with zero trades
zerotradeAlt1 Days with zero trades
zerotradeAlt12 Days with zero trades
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