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Abstract

Will asset managers with large amounts of capital and high risk bearing capacity hold

large blocks and monitor aggressively? Both block size and monitoring intensity are

governed by the contractual incentives of institutional investors, which themselves are

endogenous. We show that when high risk bearing capacity arises via optimal delega-

tion, funds hold smaller blocks and monitor significantly less than proprietary investors

with identical risk bearing capacity. This is because the optimal contract enables the

separation of risk sharing and monitoring incentives. Our findings rationalize charac-

teristics of real world asset managers and imply that block sizes will be a poor predictor

of monitoring intensity.
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1 Introduction

The rise of asset managers has led to the concentration of vast amounts of capital in

the hands of institutional investors.1 How is this likely to affect corporate governance?

These investors have large risk bearing capacity and thus are able—in principle—to hold

large blocks and monitor portfolio firms aggressively. However, both block size and the

extent of monitoring are endogenous to the contractual incentives of institutional investors.

Such contractual incentives—in turn—are endogenously determined, and will anticipate

institutional ownership and monitoring decisions. Will institutional investors hold large

blocks commensurate to their risk bearing capacity in equilibrium? Conditional on holding

such blocks, will they monitor firms aggressively? To help answer these questions, we

study the economics of delegated blockholding. In particular, we characterize corporate

governance and risk sharing in markets where equity ownership is optimally delegated and

both equity block sizes and the level of monitoring are determined by endogenous contracts

established between asset managers and their investors.

We benchmark our analysis against the influential characterization of risk sharing and

monitoring in a market with proprietary ownership found in Admati, Pfleiderer, and Zech-

ner (1994)—APZ henceforth. Taking as given the existence of a proprietary trader with

high risk bearing capacity, APZ consider whether anticipated monitoring costs will limit

the trader’s willingness to hold large blocks. Under broad and plausible conditions, they

find the answer is “no”—as long as traders with high risk bearing capacity cannot commit

to limit their trading, they will trade to the competitive risk sharing allocation and monitor

at a level consistent with that allocation. This is because the ability to trade repeatedly

erodes the large trader’s strategic advantage. APZ’s striking finding is confirmed in the

fully dynamic analysis of DeMarzo and Urosevic (2006). Overall, therefore, the existing

1See, e.g., Dasgupta, Fos, and Sautner (2021) for relevant stylized facts.

2



literature provides a reassuring view: risk sharing and monitoring can coexist happily in

financial markets as long as ownership is proprietary.

We show that when high risk bearing capacity is instead attained endogenously via

delegation, outcomes are dramatically different. First, the optimal fund holds less of the

risky asset, i.e., a smaller block, than an investor with the same risk bearing capability

would under the competitive risk sharing allocation. In other words, delegation hurts

risk sharing. Second, delegation separates block sizes and monitoring incentives, because

monitoring is undertaken by professional asset managers on behalf of the fund. It is their

effective stake, not the fund’s overall stake, that determines the fund’s level of monitoring.

The optimal delegation contract allocates an effective stake to these professional asset

managers that results in a level of monitoring that would be privately optimal for fund

investors at their initial endowment. These two effects combined imply that the optimal

fund undertakes significantly less monitoring than a proprietary blockholder of identical

risk bearing capacity. While delegation thus has negative implications for risk sharing and

monitoring relative to the case with proprietary large traders, it does provide valuable risk

sharing opportunities to agents who do not have full access to financial markets.

Model summary. We start with a minor variation of the APZ benchmark. Our version

of their classical “CARA-Normal” model features a firm whose final-date equity cash flows

are distributed Normally and a group of traders with CARA utility. There are two types

of traders: a single large entity, L, with risk tolerance, i.e., risk bearing capacity, of λ, and

a continuum of small traders with aggregate risk bearing capacity of 1 − λ .2 In addition

to trading (potentially many times) in a Walrasian market at the initial date, L can also

monitor at an intermediate date: such monitoring is costly for L but increases average

2For expositional ease, in the introduction we describe our model “as if” the economy has unit aggregate
risk bearing capacity. However, our formal analysis is valid for any arbitrary aggregate risk bearing capacity.
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final-date cash flows to all equity holders. The competitive equilibrium allocation in such

an economy involves L holding λ fraction of the firm’s equity.

Imagine that L′s initial endowment of the risky asset is ω < λ. Will L trade from ω all

the way to λ? There are several impediments. First, L knows that if she trades to λ she

will then monitor at a commensurately higher intensity and all 1−λ other shareholders will

benefit from such monitoring. Second, L knows that along the way to λ she must pay the

full value of future monitoring when acquiring shares, i.e., she moves prices against herself

as she trades. However, in a key result, APZ show that as long as L can’t commit to limit

her trading, she will nevertheless trade to λ and monitor at the high intensity corresponding

to such large holdings. This arises because of an endowment effect. Counterfactually, if

any sequence of trades led to a proposed final holding level for L that is strictly below λ,

she would be tempted to buy a bit more because the current holding is now part of her

endowment. Starting from this endowment, there will always be at least some incremental

risk sharing gains by buying a bit more, despite having to pay the full value of future

monitoring in making such purchases. This result implies that the anticipation of future

monitoring costs does not act as an impediment to holding large positions in financial

markets.

In our main analysis, we enrich the APZ framework to model delegated blockholding.

We replace L with a measure of small, “unskilled,” investors with an aggregate risk bearing

capacity of λ and an aggregate endowment of ω < λ (the same as L above). These investors

cannot trade or monitor. The remaining “skilled” investors, with an aggregate risk bearing

capacity of 1 − λ, can trade and monitor. They can also offer trading and monitoring

services to the unskilled investors in return for fees. A fund is formed if unskilled investors

(who we then call limited partners, or LPs) team up with an endogenously chosen subset

of skilled investors with an aggregate risk bearing capacity of τ ∈ (0, 1− λ] (who we then
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call general partners, or GPs) to pool their endowments. LPs are passive once the fund

is formed, and GPs determine holding and monitoring levels subject to their contractual

incentives.

We derive an optimal contract from the point of view of the LPs in two parts. First, we

find the optimal allocation from the LPs’ point of view as if they could act as a group and

commit to a monitoring level and a trading strategy. Next, we show that under intuitive

and plausible conditions a simple linear delegated fund contract exists that fully achieves

this optimal outcome for the LPs, subject to the GPs’ actual trading and monitoring

decisions under the contract. The optimal linear contract specifies a fee f paid by LPs to

join the fund and a skin in the game parameter φ ∈ [0, 1] representing the GPs’ share of the

fund’s assets. Since GPs can choose to unilaterally deviate from the fund and benefit from

the monitoring undertaken by the fund, the contractual payments must compensate GPs

for their monitoring costs. Subject to compensating the GPs for their costs, the contract

aims to induce them to trade and monitor so as to achieve the outcome desired by the LPs

as a group.

We show that—despite the fact that the GPs cannot commit to limit the fund’s trade

(exactly as in APZ)—the optimal contract induces radically different trading and moni-

toring choices relative to the APZ benchmark. A key insight is that delegation separates

monitoring incentives from overall holdings. This is because delegated monitoring is un-

dertaken by professional asset managers on behalf of the fund: It is their effective stake,

not the fund’s overall stake, that determines the fund’s level of monitoring. The opti-

mal contract allocates a share of the fund’s assets to GPs that induces monitoring at a

level consistent with only the LPs’ initial endowment; in other words, LPs do not have to

compensate GPs for any monitoring that is excessive from the LP’s private perspective.

However, since LPs’ initial endowment is ω < λ, whereas the aggregate risk bearing capac-
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ity of the LP’s is λ, the optimal fund monitors less than a proprietary trader with identical

risk bearing capacity. Further, we show that the fund also holds too small an overall posi-

tion in the asset: in particular, under the optimal contract, the LPs hold a position within

the fund that fully reflects their market power as a strategic trader with aggregate risk

bearing capacity λ. Overall, therefore, by separating monitoring incentives from risk shar-

ing, the optimal contract enables LPs to attain their privately optimal, full-commitment,

levels of both monitoring and risk sharing. But this is attained at the expense of lower

overall levels of monitoring and risk sharing in the market. That said, the ability to access

financial markets via delegation clearly enhances risk sharing relative to the case where

unskilled agents are simply excluded from financial markets.

Applied implications. Our main results characterize the economics of monitoring and

risk sharing in financial markets with delegated blockholding. Given the preponderance of

delegated asset managers in modern financial markets, these results are relevant to inter-

preting key features of blockholding and monitoring that are prevalent today. Specifically,

our model has three main applied implications for corporate governance and the role of

the asset management industry.

Which asset managers will monitor. Our analysis of optimal delegation arrangements has

implications for the degree to which different types of asset managers should be expected

to engage in the monitoring of portfolio firms. In particular, we show that asset managers’

(i.e., GPs’) skin in the game, which determines their level of monitoring, is increasing in

the endowment of each underlying investor (LP) in the fund. Thus, if fund investors have

relatively high endowments, they will invest in funds in which managers take larger personal

stakes and monitor aggressively. If, on the other hand, fund investors have relatively low

endowments, they will invest in funds in which managers will take small personal stakes

and monitor very little.
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This depiction resonates with key characteristics of asset management firms observed

in reality. Relatively poor real-world investors tend to invest in mutual funds. It is well

documented that mutual fund managers have very little self-investment in their funds

(Khorana, Servaes, and Wedge 2007), and mutual funds are notorious for being muted in

their engagement efforts (e.g., Bebchuck et al 2017). In contrast, wealthy individuals tend

to invest in hedge funds. Managers of these funds are well known to self-invest significantly

and play an active role in the monitoring of their portfolio firms (Agarwal, Daniel, and

Naik, 2009, Brav, Jiang, and Kim 2010).

Larger blocks may monitor less than small blocks. Our results imply that block size may

not be a good predictor of monitoring intensity. With proprietary blocks as in APZ,

larger stakes imply more monitoring because stake size directly determines monitoring

intensity. However, with delegated blocks the fund’s internal incentive structure separates

monitoring incentives from stake size. In particular, in our model, the endogenous block size

is increasing in both the number of fund investors and their initial endowments, whereas

monitoring intensity is determined only by their initial endowment. As a result, blocks

held by funds with many investors with low initial endowment may be larger but feature

significantly less monitoring than those held by funds with a smaller number of investors

with higher initial endowment. In this regard, our results are consistent with Nockher

(2022), who shows that smaller blockholders tend to be more intensive monitors than

larger blockholders.

The role of index funds in governance. At the broadest level, our analysis indirectly

highlights a role for index funds in corporate governance. Our analysis speaks to the

concentrated holding choices of active funds, who make deliberate portfolio decisions (as our

GPs do). A key implication of our model is that such active asset managers do not utilize

their full risk bearing capacity to hold concentrated positions, and expend suboptimally
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low levels of resources into monitoring. This finding must be viewed in the context of the

evolution of the asset management industry and the emergence of passive, i.e., index, funds

which—purely by virtue of their size—mechanically end up holding concentrated positions

in firms. If active funds do not hold sufficiently concentrated stakes and thus limit their

monitoring, as our results suggest, it becomes all the more important to understand the

role of index funds in governance (Brav, Malenko, and Malenko 2022).

1.1 Related literature

Our paper relates most directly to APZ and papers that generalize and extend their find-

ings. DeMarzo and Urosevic (2006) extend APZ to a fully dynamic setting, while Marinovic

and Varas (2021) also incorporate private information. In contrast to these papers, which

retain APZ’s focus on proprietary blocks in their exploration of dynamic implications,

we focus on the economics of delegated block ownership rather than on dynamics. More

broadly, our work relates to a number of different literatures.

At the most basic level, our paper is connected to the significant theoretical literature

that studies blockholder monitoring. This literature is surveyed by Edmans and Holderness

(2017). Many papers within this literature (e.g., Shleifer and Vishny 1986, Faure-Grimaud

and Gromb 2004) take block size as being exogenous. Others (e.g., Kyle and Vila 1991,

Maug 1998, Kahn and Winton 1998, Back, Collin-Dufresne, Fos, Li, and Ljunqvist 2018)

consider how proprietary blocks can emerge endogenously by focusing on the ability to

generate short-term trading profits. Our analysis differs from all these prior papers by

explicitly modeling the emergence of delegated equity blocks. Further, in contrast to the

second strand discussed above, we assume fully transparent financial markets, so there are

no trading profits; in this respect, our analysis has similarities to Bolton and von Thadden

(1998), though they also focus purely on proprietary blocks.
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More recently, a growing theoretical literature takes the delegated nature of equity

ownership seriously, and considers the role of the incentives of asset managers in corporate

governance. This literature is surveyed by Dasgupta, Fos, and Sautner (2021) (see, in par-

ticular, section 4 of that paper). While several papers within that literature (e.g., Dasgupta

and Piacentino 2015) have highlighted the negative implications of agency frictions arising

from the delegation of portfolio management on the level of monitoring at portfolio firms,

none of those papers endogenize the presence of delegated blockholders.

Finally, our paper is related in spirit to the literature on the endogenous emergence

of financial intermediaries, starting with the work of Diamond and Dybvig (1983), as well

as the literature on optimal contracting in delegated portfolio management, starting with

the work of Bhattacharya and Pfleiderer (1985). Relative to the former, which has focused

on banking, we consider the emergence of asset managers. Relative to the latter, which

considers optimal contracting with respect to trading by asset managers, we incorporate

monitoring considerations as well.

2 A benchmark model

We start with a simplified, benchmark, version of the APZ model. Consider a financial

market with a single firm with 1 infinitely divisible equity share outstanding, and a risk-free

asset in perfectly elastic supply whose gross return is normalized to unity. There is a unit

continuum of traders who have CARA utility, each with risk tolerance of ρ. To mirror the

assumption of an exogenously specified large trader in APZ, we assume that a measure

λ of such traders are aggregated into a single trading entity, L, who trades strategically

taking her price impact into account, and can monitor the firm to improve its cash flows.

The remaining 1 − λ of atomistic traders act perfectly competitively. We assume that L

has an endowment of ω ∈ (0, λ] shares while the remaining 1−λ traders have an aggregate
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endowment of 1− ω shares, shared equally among them.

There are three dates. Potentially numerous rounds of trading opportunities are avail-

able at date 1 in a Walrasian market: in any given round of trade, traders submit demand

functions and a market-clearing price is determined. At date 2, L can choose to monitor the

firm as follows: at a cost of c(m), where c′(· ) > 0 and c′′(· ) > 0, she can exert monitoring

effort m ≥ 0 to generate a final equity payoff that is distributed according to N
(
µ(m), σ2

)
,

where µ′(· ) > 0 and µ′′(· ) ≤ 0. At date 3, all payoffs are publicly realized. As in the bulk

of the APZ analysis, L cannot commit to a final round of trade at date 1 or to a particular

level of monitoring at date 2.3

Aggregate risk tolerance. In a Walrasian CARA-Normal market with symmetric in-

formation like ours, each competitive agent will have a demand function of ρµ(m)−P
σ2 , and

thus the total demand of a measure x of atomistic competitive agents is given by ρxµ(m)−P
σ2 ,

which is equivalent to the demand of a single competitive agent with risk tolerance of ρx.

In other words, the aggregate risk tolerance of a given measure of atomistic competitive

agents is proportional to the measure of those agents. Accordingly, throughout the paper,

we shall treat the 1 − λ of atomistic traders as being represented by a single competitive

trader with risk tolerance of ρ(1− λ). For benchmarking purposes, we assume that L has

the same risk tolerance as the aggregate risk tolerance of the measure of competitive agents

he replaces, i.e., ρλ. This assumption will be convenient when we generalize the model to

explicitly model the large trader as an endogenous delegated trading vehicle, i.e., a fund,

formed of a measure of investors and fund managers.

3APZ also consider the case of multiple assets as well as more general monitoring technologies; we use
this baseline version of their model, as it is under these specific assumptions that APZ provide the most
complete characterizations.
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Competitive allocations with perfect risk sharing. Before analyzing the full equi-

librium involving both strategic and competitive trading as well as monitoring, it is helpful

to establish a benchmark in which all traders are competitive and monitoring cannot arise.

In such a benchmark, risk sharing considerations are the sole determinants of equilibrium

allocations. Denoting L′s equilibrium holdings by α, it is easy to see that the competitive

equilibrium allocation is α = λ. This is because the competitive equilibrium involves per-

fect risk sharing, under which L would hold ρλ
ρλ+ρ(1−λ) = λ fraction of the risky asset while

the atomistic traders would hold ρ(1−λ)
ρλ+ρ(1−λ) = 1− λ of the risky asset, in accordance with

their relative levels of risk tolerance.

Equilibrium trading and monitoring. In order to analyze L′s trading, taking into

account both strategic and monitoring incentives, we follow APZ to outline a few baseline

steps. First, given that L is unable to commit to a particular level of monitoring, the

equilibrium monitoring level is determined by L’s final holdings on date 2. If α is L’s total

ownership of the risky asset upon entering date 2, then m is given by:

m(α) = argmaxmαµ(m)− c(m), (1)

which is given implicitly by the solution to

α =
c′(m)

µ′(m)
. (2)

Note that m does not affect the risk of L’s portfolio, so risk adjustment does not affect this

choice. Clearly, m(α) is increasing in α.

If L′s final ownership of the risky asset is expected to be α, the 1−λ atomistic investors
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have an aggregate demand of

ρ (1− λ)
µ(m(α))− P

σ2
,

giving rise to a market clearing price of

P (α) = µ(m(α))− 1− α
ρ(1− λ)

σ2. (3)

Finally, given that L is unable to commit to a final round of trade within date 1, we follow

APZ in focusing on globally stable allocations. In the absence of the ability to commit to

a given number of trades, APZ show that following any sequence of trades, L will wish to

trade again ahead of her monitoring choice unless she has traded to an allocation which is

globally stable. Such an allocation is defined as follows:

Definition 1. An allocation αG is globally stable iff (i)

αG ∈ argmaxαΨ(α)−Ψ(αG)− (α− αG)P (αG),

and (ii) for every ω ∈ [0, 1], such that ω 6= αG,

Ψ(αG)−Ψ(ω)− (αG − ω)P (αG) > 0,

where

Ψ(α) = αµ(m(α))− c(m(α))− 1

2ρλ
α2σ2 (4)

is the certainty equivalent for L of holding α units of the risky asset and monitoring

accordingly.

In words, this means that: (i) once a globally stable allocation is reached, L will not wish

12



to trade away from it at current prices; and (ii) L is willing to trade to the globally stable

allocation from any other position at prices consistent with the globally stable allocation.

In their central result, APZ show that:

Proposition 1. (Admati, Pfleiderer, and Zechner 1994) As long as Ψ(α) is strictly con-

cave, there exists a unique globally stable allocation, αG = λ, which coincides with the

competitive equilibrium allocation.

All proofs are in the Appendix. The restriction on the concavity of Ψ(α) is the same as in

APZ (see APZ’s Proposition 3 and 4).

This key result implies that the possibility of monitoring does not affect the degree of

risk sharing in equilibrium. The reason, as APZ discuss, is that the lack of the ability to

commit to a final round of trade erodes the strategic advantage of the large trader, who

subsequently trades all the way to the competitive equilibrium allocation. Put another

way, there is no trade-off between diversification and monitoring because an endowment

effect induces L to trade all the way to the risk sharing optimum. Counterfactually, if any

sequence of trades led to a proposed final holding level for L that is strictly below her risk

sharing optimum, she would be tempted to buy a bit more because the current holding is

now part of her endowment. Starting from this endowment, there will always be at least

some incremental risk sharing gains by buying a bit more, despite having to pay the full

value of future monitoring in making such purchases.

While the concept of global stability is essentially static, its relevance has been con-

firmed by DeMarzo and Urosevic (2006) in a fully dynamic version of the APZ model with

continuous trading and monitoring opportunities. Indeed, their main result is that the large

trader will ultimately trade to the competitive price-taking allocation, which generalizes

and provides a dynamic micro-foundation for APZ’s concept of global stability.

In reality, the concentration of ownership into the hands of a large trader is typically
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achieved by delegating portfolio management to professional asset managers who trade and

monitor on behalf of their clients. Thus, in the remainder of the paper, we examine how

incentives to monitor are determined when risk averse investors can optimally delegate to

a professional fund manager, who can then trade freely in financial markets but cannot

make prior commitments to monitor firms at any particular level of intensity.

3 Delegated blocks

We now introduce the possibility of delegated blockholding. Instead of assuming that a

measure λ of investors exogenously acts as a single trading entity as above, we now assume

that a measure λ of investors lacks the ability to either trade directly in the market or

monitor, and are thus “unskilled.” The remaining 1− λ fraction of investors are “skilled”

and can trade freely in markets and monitor, as in the benchmark model. Such agents

also have the ability to group themselves together to offer investment services to unskilled

investors. In turn, if unskilled investors wish to trade the risky asset, they must pool

their resources and employ a group of skilled investors, thus endogenously generating the

possibility of delegated blockholding. To be consistent with the benchmark model, the λ

measure of unskilled investors has aggregate endowment ω ≤ λ of the risky asset (shared

equally), while the 1− λ measure of skilled investors have the remaining 1−ω endowment

(also shared equally, as in the benchmark).4

A “fund” is formed when the λ measure of unskilled investors, who we also refer to as

Limited Partners, or “LPs,” decide to employ a chosen positive measure of skilled investors,

who we also refer to as General Partners, or “GPs,” to trade and monitor on their behalf.5

4The assumed equality between the measure of investors represented by L in the baseline model and the
measure of unskilled investors in the main model is purely for expositional convenience. All our qualitative
results hold for any λ ∈ (0, 1).

5Note that no funds would form without the participation of unskilled investors. In any fund with only
skilled investors, some subset of those investors must monitor and thus pay costs. However, any investor
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The GPs in a fund act collectively to make trading and monitoring decisions based on

their joint incentives, while the LPs are passive once they have joined the fund. As in the

benchmark model, the GPs cannot commit to a given trading strategy or monitoring level

up front—they always behave opportunistically once the fund has been established. When

a fund is formed, all GPs and LPs joining the fund contribute their endowments to the

fund and agree to a contract.

Optimal delegation Since our interest is in optimal delegation, we aim to maximize

the payoff of LPs. In other words, the contracting terms are chosen to optimize the payoff

of the LPs while ensuring the participation of the requisite mass of GPs. We do this in

two parts. First, we find the optimal allocation from the point of view of the LPs as if

they could act as a group (as in our benchmark analysis), but in addition have the ability

to commit ex ante to both a given monitoring level and a single round of trade. This

corresponds to their optimal payoff with full commitment ability vis a vis both monitoring

and trading. We then show that under intuitive and plausible conditions a simple linear

delegated fund contract exists that fully achieves this optimal outcome for the LPs, subject

to the GPs’ actual trading and monitoring decisions under the contract. In other words,

while no agents in the model actually have the ability to commit to a monitoring level

or a trading strategy, we show that optimal delegation can achieve the full commitment

optimum for the LPs.

If the LPs could act as a group and publicly commit to a monitoring level of m and a

single round of trade, the price they would face if they traded to a final stake of α is given

that is supposed to be in the subset that monitors can choose not to join the fund, trade on their own,
and enjoy exactly the same cash flow payoffs without paying the monitoring costs. So, to persuade them
to join the fund, the subset that are in the fund but do not monitor must pay those that are expected to
monitor. But this effectively means that monitoring costs are shared among all agents in the fund, and so
the previous argument applies and individual investors who are not expected to monitor would prefer not
to join the fund.
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by µ(m)− 1−α
ρ(1−λ)σ

2. Thus, they would have a joint optimization problem given by

max
m,α

αµ(m)− c(m)− 1

2ρλ
α2σ2 − (α− ω)

(
µ(m)− 1− α

ρ(1− λ)
σ2
)
.

Solving this problem yields the following result.

Proposition 2. The LPs’ full commitment optimum has an optimal monitoring level, mC ,

implicitly defined by ω = c′(mC)
µ′(mC)

, and an optimal final stake of αC ≡ λ(1+ω)
(1+λ) .

Since ω < λ, it is easy to see that the optimal final stake of the LPs lies between their

initial endowment (ω) and their competitive allocation with perfect risk sharing (λ):

ω < αC < λ.

The LPs want to increase their stake in the risky asset above their endowment to attain

diversification benefits (so αC > ω is optimal). However, they avoid trading all the way to

their competitive allocation so that they can fully exploit their strategic trading advantage,

i.e., accounting for the fact that they move prices. Further, the LPs’ full commitment

optimal monitoring level does not depend on their final stake, α. Instead, by analogy to

equation (2), it is clear that the LPs desire monitoring to occur “as if” their ownership

was equal to their initial endowment ω. Thus, LPs want to hold more than their initial

endowment for risk sharing purposes but wish to monitor only at their original endowment

level. Intuitively, this is because they are aware that any increase in monitoring over and

above the level implied by their endowment induces a higher price that offsets the benefits

of the additional monitoring from the perspective of the LPs.

Let

ΠC
LP ≡ αCµ(mC)− c(mC)− 1

2ρλ
(αC)2σ2 − (αC − ω)

(
µ(mC)− 1− αC

ρ(1− λ)
σ2
)
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denote the LPs’ aggregate equilibrium payoff at their full commitment optimum. Next we

consider whether a delegated fund contract exists that can achieve a payoff of ΠC
LP for the

LPs.

Fund formation At the outset, it is important to note that even if a fund contract can

be designed that delivers exactly this optimal payoff to the LPs, it may not be feasible to

form such a fund because individual LPs (who cannot actually coordinate their actions)

will not be willing to join it. Indeed, we have the following result.

Lemma 1. There exists a ω̂ ∈ (0, λ) such that for ω ≤ ω̂, LPs will join a fund that delivers

an aggregate LP payoff of ΠC
LP , while for ω > ω̂ they will not—i.e., delegated blockholding

can arise only when unskilled agents have relatively low endowments of the risky asset.

Intuitively, if an individual LP defects from the fund, they enjoy the full benefits of the

fund’s monitoring for free and lose only the diversification benefits of participation in the

fund. Thus, if the endowment ω was sufficiently close to the competitive risk sharing level,

and diversification benefits were therefore small, individual LPs would prefer to defect.

Now consider a proposed fund contract specified as follows: a chosen mass of GPs,

τ ∈ (0, 1 − λ), invited into the fund, a skin in the game parameter, φ ∈ [0, 1], specifying

the GPs’ share of the fund’s assets, and an up-front fee, f , which each participating LP

must pay to join the fund. Overall, a fund formed under this contract can be represented

as a linear contracting triple, (τ, φ, f), representing the measure of GPs, their skin in the

game, and the per-LP fee, respectively.

We solve for the optimal fund by backward induction. We first assume that a fund with

λ LPs and (an arbitrary positive measure of) τ GPs is formed, and proceed to compute

the monitoring and trading decisions of the GPs for a given (τ, φ, f). We then solve for

the optimal contracting terms that achieve a payoff of ΠC
LP for the LPs. While doing so,
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we ensure that all τ GPs are willing to join the fund. We denote the optimal set of linear

contracting terms by the triple (τ∗, φ∗, f∗).

We reuse α to denote the final stake in the risky asset held by the fund. The GPs have

an effective stake in the final payoff of the risky asset equal to their proportional share

of the fund’s stake, or φα. Given that monitoring does not affect the risk of their payoff,

they will optimally choose m as follows (all D-superscripts refer to functions defined for

the delegated fund model):

mD(α) = argmaxmφαµ(m)− c(m), (5)

which is given implicitly by the solution to φα = c′(m)
µ′(m) .

Since the GPs cannot commit to a given trading strategy, we again focus on globally

stable trading allocations. We note first that the pricing function must be adjusted for the

fact that the mass of competitive price-taking investors has been reduced from 1 − λ to

1− λ− τ given the formation of the fund. If the competitive investors expect the fund to

end up with a stake of α, their aggregate demand will be

ρ (1− λ− τ)
µ(mD(α))− P

σ2
,

giving rise to a market clearing price of

PD (α) = µ(mD(α))− 1− α
ρ(1− λ− τ)

σ2. (6)

The definition of a globally stable allocation must also be adjusted for our delegated

fund model as follows, since GPs make decisions on behalf of the entire fund but enjoy

only a φ proportion of its payoff.
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Definition 2. An allocation αDG is globally stable iff (i)

αDG ∈ argmaxαΨD(α)−ΨD(αDG)− φ(α− αDG)PD(αDG),

and (ii) for every ω ∈ [0, 1], such that ω 6= αDG ,

ΨD(αDG)−ΨD(ω)− φ(αDG − ω)PD(αDG) > 0,

where

ΨD(α) = φαµ(mD(α))− c(mD(α))− 1

2ρτ
φ2α2σ2 (7)

is the certainty equivalent for the GPs if the fund holds a stake of α units of the risky asset

and they monitor accordingly. We have the following result.

Lemma 2. As long as ΨD(α) is strictly concave, there exists a unique globally stable

allocation

αDG =
τ/φ

τ/φ+ 1− λ− τ
. (8)

The equilibrium stake of the fund αDG depends only on the sizes of the LP and GP

populations, λ and τ , and the skin in the game parameter, φ. The expression is analogous

to the globally stable allocation in the APZ benchmark derived in Proposition 1: it is part

of the competitive equilibrium allocation in a market with two competitive traders, one of

whom has risk tolerance of ρ(1 − λ − τ) while the other has risk tolerance of ρτ/φ. The

former is simply the aggregation of the skilled investors who did not join the fund (i.e., did

not become GPs). The latter investor aggregates the skilled investors inside the fund, i.e.,

the GPs. Recall that trading decisions in the fund are taken by a measure τ of GPs who

have an aggregate risk tolerance of ρτ . However, these GPs are only exposed to a fraction

φ of the holdings of the fund, giving them an effective risk tolerance of ρτ/φ.
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Notably, however, this allocation does not necessarily correspond to perfect risk sharing

among all investors—which arose in the globally stable allocation of APZ (see Proposition

1)—as this would require an allocation of αDG = τ + λ (since the measure of investors in

the fund is the sum of λ LPs and τ GPs). The deviation from perfect risk sharing arises

due a combination of two factors: First, only a measure of τ < τ +λ agents make decisions

on behalf of the whole fund; and second, those agents are exposed to only a fraction φ of

the fund’s holdings. Indeed, it is apparent that if τ/φ = τ + λ in the expression for αDG

above, we obtain αDG = τ+λ. Given this deviation from perfect risk sharing in equilibrium,

the determination of the optimal linear contracting parameters (τ∗, φ∗, f∗) is critical for

determining both the level of monitoring and the degree of diversification in the model.

We assume for the remainder of the analysis that ΨD(α) is strictly concave, so that a

globally stable allocation exists. Comparing the effective stakes of skilled investors inside

and outside the fund yields the following result.

Lemma 3. The GPs in the fund and the outside skilled investors end up with identical

effective per-investor holdings of the risky asset.

This result implies that there is perfect risk sharing over the part of the risky asset that is

not (effectively) held by the LPs among the total 1−λ measure of skilled investors, whether

inside or outside the fund. This is because the existence of multiple trading opportunities

combined with the inability to commit to a particular trading strategy erodes the strategic

advantage of the GPs, who subsequently trade to arrive at the point of perfect risk sharing

between themselves (with effective risk tolerance τ/φ) and skilled investors outside the

fund (with aggregated risk tolerance 1− λ− τ), as discussed above.

Given the trading and implied monitoring choices of the GPs for a given (τ, φ, f), we

now proceed to solve for the optimal linear contracting terms to determine (τ∗, φ∗, f∗). In

our central result, we show that:
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Proposition 3. For ω ≤ ω̂, an optimal fund that achieves an aggregate payoff of ΠC
LP for

the LPs exists and is characterized by:

1. a mass of GPs τ∗ =
(1−λ2)ω
1−λω ,

2. a skin in the game parameter φ∗ = (1+λ)ω
2λω+λ+ω , and

3. a fee

f∗ =
1

λ

[
c(mC) + PD∗(αD∗G )

(
(1− φ∗)(ω + τ∗

(1− ω)

1− λ
)− ω

)]
(9)

where the superscript D∗ indicates that the associated function or variable is evaluated

at φ∗ and τ∗.

The proof proceeds in several steps. First, we solve for τ∗ and φ∗ such that (1) the

GPs’ equilibrium monitoring effort equals the LPs’ optimal level, mC , which requires that

the GPs’ effective stake in the risky asset, φ∗αD∗G , equal ω, and (2) that the LPs’ effective

stake, (1−φ∗)αD∗G , equals their optimal stake, αC . Next, we set the fee f∗ to just satisfy the

participation constraint of individual GPs conditional on the existence of a fund involving

τ∗ GPs with a skin in the game parameter φ∗. Finally, we show that this fee level makes

the LPs’ aggregate payoff coincide exactly with ΠC
LP , which also ensures that they will

participate given that ω ≤ ω̂.

We examine the implications of this result and the intuition behind it through a series of

remarks and corollaries. First, we discuss the levels of risk sharing and monitoring implied

by the equilibrium. The optimal delegation contract selects the skin in the game parameter

(φ∗) and measure of GPs (τ∗) so as to render the effective holdings of the GPs to be equal

to the endowment of the LPs (ω). LPs, however, do not hold their original endowment,

but rather end up with a larger holding of the risky asset: λ1+ω
1+λ > ω. As explained

previously, these outcomes correspond to what the LPs would like to do if they could act

in concert and exert full commitment power over their monitoring and trading strategies.
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With respect to monitoring, LPs prefer that monitoring occur at a level commensurate with

their initial endowment due to the well-known free-riding phenomenon (first formalized by

Grossman and Hart 1980). Effectively, the LPs cannot “enjoy” the monitoring benefits

on anything more than their initial endowment, and thus would like to limit it. However,

because of risk sharing they would like to hold a larger stake than their initial endowment.

In the absence of commitment power, doing these things simultaneously is not possible in

a proprietary blockholder model like APZ, where the final stake of the blockholder drives

both monitoring incentives and risk sharing benefits. Thus, the key question is: how is this

accomplished in our model, which still does not give investors any commitment power?

The answer is that, in our delegated case, LPs do not directly monitor—GPs monitor

on their behalf. That is, delegation by definition splits roles: LPs own a fraction of the

fund, (1− φ∗)αD∗G , but monitoring is undertaken by the GPs who own the rest: φ∗αD∗G .

Thus, delegation enables the separation of (LP-) ownership and (GP-) monitoring. The

contract that maximizes LP welfare ensures that monitoring occurs only at the level that

is privately optimal for LPs absent risk sharing considerations, but gives them an effective

stake in the fund that also optimizes their collective risk sharing and trading incentives

without regard to any effect on monitoring. To summarize:

Remark 1. The delegation of blockholding breaks the link between diversification by LPs

and the monitoring that occurs on their behalf. The optimal linear contract enables moni-

toring at a level privately optimal for LPs absent risk sharing motives, while also enabling

LPs to trade to their privately optimal level of risk sharing absent monitoring motives,

taking into account their collective market power.

Second, we consider the role of the fee, f∗. The fee is relevant to both GPs who receive

it and LPs who pay it. We consider GPs first. Any individual skilled agent can choose

between joining the measure τ∗ of GPs inside the fund or remaining part of the measure
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1− λ− τ∗ of skilled agents who do not join the fund. As noted above, the fee f∗ is set to

make the payoffs of these two choices equal.

Remark 2. The fee f∗ compensates GPs for their expected equilibrium monitoring costs

as well as for the value of any endowment that they sacrifice when they join the fund.

Since, as shown in Lemma 3, GPs in the fund and skilled investors outside the fund

end up holding the same effective stake per investor, their degree of diversification is not

affected by joining the fund and the LPs do not need to compensate them for taking more

or less risk. However, there are two ways in which GPs’ payoffs differ from those of skilled

agents who choose not to become GPs. First, skilled agents choosing to become GPs inside

the fund share the cost of monitoring, while those remaining outside the fund enjoy the

benefits of such monitoring for free. Thus, the fee f∗ must fully compensate GPs for their

monitoring costs at the fund’s ultimate stake. Second, the fee must compensate GPs for

giving up some of their endowment: When they join the fund, GPs are allocated an initial

pre-trade endowment of φ
∗

τ∗

(
ω + τ∗ 1−ω1−λ

)
, which is smaller than 1−ω

1−λ , the initial endowment

of each skilled agent.

Next, we turn to the role of the fee in the LPs’ payoff. Clearly, if GPs require full

compensation for monitoring costs incurred inside the fund then LPs must pay for these.

This is consistent with the LPs’ full commitment optimum, in which they also pay the

full monitoring cost. Further, in contrast to GPs, LPs start with an endowment in the

fund that is higher than their initial endowment of ω
λ . In line with the discussion above,

this is a result of the reallocation of some of the GPs’ initial endowment to the LPs. LPs

must pay for this added initial endowment. Put another way, in order to achieve their full

commitment optimum level of ownership, αC , LPs effectively have to buy less as a result of

joining the optimal fund than they would if, counterfactually, they traded independently

to this allocation. The optimal fee charges them for this benefit, thus bringing their total
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payoff to ΠC
LP .

Remark 3. The fee f∗charges the LPs for the full expected monitoring costs expended by

GPs as well as as for the value of any additional endowment that they are allocated when

they join the fund.

Finally, in order to complete our analysis of delegated blockholding and compare it to

the benchmark case of APZ, we compute the overall stake held by the fund under optimal

delegated ownership. The optimal fund holds a stake in the risky asset equal to ω+λ1+ω
1+λ ,

i.e., the effective stake of the GPs plus the effective stake of the LPs. We show that this

is less than its competitive risk sharing optimal allocation, λ + τ∗, which is also what

a proprietary blockholder representing the same measure of traders would hold under a

globally stable allocation.

Corollary 1. The optimal fund holds less of the risky asset than the corresponding com-

petitive equilibrium allocation for a trader with the same overall risk tolerance.

3.1 Risk sharing and monitoring: Delegated vs Proprietary Ownership

We are now in a position to compare our results on delegated blockholding to those of

APZ’s benchmark (presented in Section 2). Taking as given the existence of a proprietary

trader with large risk bearing capacity, APZ ask whether the anticipation of monitoring

costs affects the degree of risk diversification in the economy. Under broad and plausi-

ble conditions, they find the answer is “no”—concentrated blockholders still trade to the

competitive risk sharing allocation and monitoring occurs at that allocation. However,

we show that when blockholding is achieved by optimal delegation, the picture changes

dramatically, in at least two ways.

First, the delegated vehicle that is formed holds less of the risky asset, i.e., a smaller

block, than what is implied by perfect risk sharing, whereas in the proprietary APZ case
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perfect risk sharing is achieved. This is because, when delegating to form a fund, the op-

timal contractual terms account for the fact that the fund will affect prices when trading

and thus ensures that the LPs ultimately hold an amount of the risky asset that reflects

their market power (and thus shades its trades downwards), as shown in Proposition 2 and

Corollary 1. Thus, in contrast to to the APZ proprietary benchmark, delegated blockhold-

ing results in underdiversification relative to the unconstrained optimum.

Second, delegation separates ownership and monitoring by allocating monitoring tasks

only to a subset of participants in the fund, i.e., the GPs. The optimal delegation contract

allocates an effective stake for GPs of ω, which results in a level of monitoring that would

be privately optimal for LPs absent risk sharing considerations, i.e., corresponding purely

to their initial endowments (see Remark 1). As a result, the optimal delegation contract

achieves strictly less monitoring than a proprietary blockholding of comparable size.

3.2 Recontracting

In APZ, there is no trade-off between diversification and monitoring, because an endow-

ment effect induces the large trader, L, to trade all the way to the risk sharing optimum.

Counterfactually, if any sequence of trades led to a proposed final holding level for L that is

strictly below her risk sharing optimum, she would be tempted to buy a bit more because

the current holding is now part of her endowment. Starting from this endowment, there

will always be at least some incremental risk sharing gains by buying a bit more, despite

having to pay the full value of future monitoring in making such purchases. In the optimal

contract solved above, LPs end up with a stake of λ
1+λ(1 + ω), which is greater than their

initial endowment of ω, but monitoring occurs at a level corresponding to an ownership

of ω. Hence, a discerning reader may wonder whether a variant of the APZ endowment

effect may come into play wherein the LPs now wish to recontract with GPs to reflect
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their new endowment. Could the possibility of such recontracting revive the APZ result,

wherein the LPs achieve the risk sharing optimum holding of λ, and monitoring occurs at

a commensurate level?

In principle, the LPs as a group would indeed like to recontract with GPs to form a

fund that monitors more intensely. To see this, consider a situation where the equilibrium

contract from above is signed and the fund trades to the stable allocation, but then an

unexpected opportunity arises to dissolve the existing fund and start a new one prior to

any monitoring taking place. We then have a repeat of the model above starting from an

aggregate LP endowment of λ
1+λ(1 + ω) instead of ω, which may lead to a new fund that

will monitor at a level corresponding to ownership of λ
1+λ(1 + ω).6

However, unlike repeated trading, which is always feasible, repeated contracting may

be impossible because it is sensitive to free riding: as shown above in Lemma 1, as soon

as LPs have an endowment higher than ω̂ < λ, it is not possible to form a fund. For such

high endowments, the risk sharing benefits to individual LPs is too small, and thus each

individual LP would benefit by deviating and staying out of the fund (if it is formed), thus

saving themselves the fees that must be paid to the GPs. As a result, any endowment

level ω < ω̂ for which a fund can be formed but λ
1+λ(1 + ω) > ω̂ holds would not be

subject to recontracting. This clearly holds for some positive measure set of endowments

ΩS = {ω′ > 0 : ω′ ≤ ω̂ < λ
1+λ(1 + ω′) < λ}. Thus, the possibility of recontracting does not

revive the APZ result.

6As noted in Lemma 3, GPs in the fund and skilled investors outside the fund hold the same effective
stakes after trading, so the new fund formation problem is isomorphic to the original problem with different
endowments.
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4 Mutual Funds and Hedge Funds: Clientele, Fees, and En-

gagement

Our analysis of optimal delegation arrangements has implications for the asset management

industry and the degree to which different types of asset managers engage in the monitoring

of portfolio firms. Proposition 3 implies that the skin in the game of the asset managers

(GPs), φ∗ = (1+λ)ω
2λω+λ+ω , and their total effective investment in the risky asset, ω, are both

increasing in the endowment of each underlying investor (LP) in the fund. In turn, the

level of equilibrium monitoring undertaken by the fund, ω
γ , increases in asset managers’

effective stake. Thus, within the constraint under which delegated blockholding arises in

equilibrium (ω < ω̂ ∈ (0, λ)), if fund investors have a relatively high endowment of the

risky asset, they will invest in funds where managers take a larger personal stake in the

fund; these funds monitor more aggressively. In contrast, if fund investors have a relatively

small endowment of the risky asset, they will invest in funds where managers take a small

personal stake in the fund; these funds monitor their portfolio firms very little.

The above depiction of asset management resonates with key characteristics of different

types of asset management firms observed in reality. Relatively poor real world investors

tend to invest in mutual funds. It is well documented that mutual fund managers invest

very little in their funds: according to Khorana, Servaes, and Wedge (2007) some 57%

of mutual fund managers do not invest at all in their constituent funds, and the average

self-investment among the rest is 0.04%. Finally, mutual funds are notorious for being

relatively muted in their engagement of portfolio firms (e.g., Bebchuck, Cohen, and Hirst

2017). In contrast, relatively wealthy individuals tend to invest in hedge funds, which

typically have minimal net worth requirements. Hedge funds managers are well known to

self-invest significantly in the fund (estimates in the literature range from 7% of fund assets
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under management in Agarwal, Daniel, and Naik 2009 to 20% in He and Krishnamurthy

2013). It is also well documented that hedge funds play a far more active role in the

monitoring of their portfolio firms (Brav, Jiang, and Kim 2010).

Our results also imply that stake size may not be a good predictor of monitoring

intensity. With proprietary blocks, larger stakes imply more monitoring because stake

size directly determines monitoring intensity. However, with delegated blocks the fund’s

internal incentive structure separates monitoring incentives from stake size. As a result,

funds with smaller stakes might actually monitor more intensively than those with larger

stakes depending on their investor clientele. Specifically, the total delegated block size in

our model is ω + λ
1+λ(1 + ω) which is increasing both in the number of LPs and in the

aggregate endowment of the LPs. Potentially, therefore, funds with many investors holding

limited endowments (large λ, small ω) can have large blocks with very little monitoring. In

contrast, funds with fewer investors who hold high endowments (small λ, relatively large

ω) can have relatively small blocks with significantly more monitoring.

As an illustrative example, compare a fund with a relatively large number (λ = 15%)

of investors with very limited endowments of the risky asset (ω = 0.1%) versus a fund with

a relatively small number (λ = 5%) of investors with relatively high endowments of the

risky asset (ω = 0.5%). The former fund would hold approximately 13% of the firm, GPs

would own a very small fraction—0.8%—of the fund’s assets under management, and for

γ = 0.1, monitoring would occur at a low intensity of ωγ = 0.01. The latter fund would hold

approximately 5% of the firm, i.e., a much smaller stake; GPs would own a much larger

fraction—9.5%—of the fund’s assets under management, and for γ = 0.1, monitoring would

occur at five-times the intensity of the other fund, ω
γ = 0.05.

While our model is not ideally suited for calibration, it is noteworthy that these block

sizes, GP-ownership stakes, and monitoring intensity are broadly in line with observations
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about mutual fund families and hedge funds. Large families like Blackrock or Fidelity

often own well over 10% of US corporations but arguably do not monitor much, while their

managers typically have very small stakes in the fund (as discussed above). In contrast,

activist hedge funds hold a median stake of around 5-6% in target firms, monitor intensively,

and—as discussed above—GPs often hold a personal stake of around 10% of the fund’s

assets under management. Our results are also consistent with Nockher (2022), who finds

that smaller blockholders, and particularly those with a larger percentage of their fund

invested in a given firm, tend to be more engaged monitors than larger blockholders.

5 Conclusion

Blockholder monitoring is important, but the determinants of long-term block sizes and the

resulting implications for the degree of monitoring are not fully understood. The existing

theoretical literature devoted to this question focuses only on proprietary blockholding,

whereas modern markets are dominated by delegated asset managers. We present a sim-

ple model of delegated trading and monitoring to examine the economics of concentrated

ownership and blockholder monitoring in financial markets dominated by institutional in-

vestors.

Our analysis shows that delegation has important consequences for both block sizes

and monitoring. In particular, optimal delegation contracts allow for the separation of

diversification and monitoring motives. This can lead to less monitoring and inferior risk

sharing relative to proprietary blocks, but gives rise to monitoring and risk sharing benefits

where proprietary blocks would not exist.

At an applied level, our model illustrates how some commonly observed characteris-

tics of asset management firms—the clientele they serve, the extent of managerial self-

investment, and the degree to which they monitor portfolio firms—can arise as a result of
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optimal contracting with fund investors. Further, our results imply that block size may not

be a good predictor of monitoring intensity because the fund’s internal incentive structure

separates monitoring incentives from stake size. Finally, given that we conclude that active

asset managers may endogenously avoid utilizing their full risk bearing capacity to hold

concentrated positions, our analysis indirectly highlights the importance of the governance

role of index asset managers—who mechanically hold concentrated stakes—in corporate

governance.
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Appendix

Proof of Proposition 1: We begin with condition (i) of the globally stable allocation.

Combining definition (4) with the selected monitoring level (1) and the market clearing

price (3), the optimization problem can be written as:

max
α

αµ(m(α))− c(m(α))− 1

2λ
α2σ2 −Ψ(αG)− (α− αG)

(
µ(m(αG))− 1− αG

ρ(1− λ)
σ2
)
,

giving rise to the following first order condition:

µ(m(α)) + αµ′(m(α))m′(α)− c′(m(α))m′(α)− 1

ρλ
ασ2 −

(
µ(m(αG))− 1− αG

ρ(1− λ)
σ2
)

= 0.

Since m(α) satisfies αm′(α)− c′(α) = 0, this simplifies to

µ(m(α))− 1

ρλ
ασ2 −

(
µ(m(αG))− 1− αG

ρ(1− λ)
σ2
)

= 0

Now, setting α = αG above and solving gives:

1

ρλ
αGσ

2 =
1− αG
ρ(1− λ)

σ2, i.e., αG = λ.

Now, we turn to condition (ii) of the globally stable allocation to verify that Ψ(λ)−Ψ(ω)−

(λ − ω)P (λ) > 0 for all ω 6= λ. This is equivalent to showing that ω = λ is a global

maximum of the function

Ψ(ω)− ωP (λ) = ωµ(m(ω))− c(m(ω))− 1

2ρλ
ω2σ2 − ω

(
µ(m(λ))− σ2

ρ

)
.
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To verify this we first note that the simplified first order condition

µ(m(ω))− 1

ρλ
ωσ2 −

(
µ(m(λ))− σ2

ρ

)
= 0

is satisfied at ω = λ. We then evaluate the second order condition at ω = λ: µ′(m(λ))m′(λ)−
σ2

ρλ . This is strictly negative as long as Ψ(α) is strictly concave as required.�

Proof of Proposition 2: In analyzing the full-commitment case, we assume that LPs

collectively commit to a level of monitoring m which is publicly observed. Further, they

also commit publicly to a single round of trade. Now, if they trade to a holding of α, then

they will face a price of µ(m)− 1−α
ρ(1−λ)σ

2, generating a payoff of

αµ(m)− c(m)− 1

2ρλ
α2σ2 − (α− ω)

(
µ(m)− 1− α

ρ(1− λ)
σ2
)
.

Taking the partial derivative of the objective function with respect to m yields a FOC of

ωµ′(m)− c′(m) = 0,

which does not depend on α. The SOC is clearly satisfied given our assumptions, so the

solution is given implicitly by ω = c′(mC)
µ′(mC)

.

Taking the partial derivative of the objective function with respect to α for a given m

and simplifying yields the FOC

(1 + ω)σ2

ρ(1− λ)
− α

(
σ2

ρλ
+

2σ2

ρ(1− λ)

)
= 0,

and again the SOC is clearly satisfied. Solving for α yields an optimal stake of

αC =
1 + ω

1 + λ
λ. �
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Proof of Lemma 1: In the full commitment optimum, each individual unskilled agent

(LP) has a payoff of

1

λ

(
αCµ(mC)− c(mC)− 1

2ρλ
(αC)2σ2 − (αC − ω)

(
µ(mC)− 1− αC

ρ(1− λ)
σ2
))

.

If a single unskilled agent were to stay out of the fund and instead consume their endow-

ment, they would receive a payoff of

1

λ

(
ωµ(mC)− 1

2ρλ
ω2σ2

)
.

Subtracting the latter from the former yields a difference of

1

λ

(
(αC − ω)µ(mC)− ((αC)2 − ω2)

σ2

2ρλ
− c(mC)− (αC − ω)

(
µ(mC)− 1− αC

ρ(1− λ)
σ2
))

,

which is clearly negative when ω = λ (in which case αC = λ), and clearly positive when

ω = 0 (by virtue of the definition of αC and mC). Thus, if the difference decreases

monotonically in ω, then by continuity there will be exactly one value of ω ∈ (0, λ) for

which the difference is exactly zero. We take the ω−derivative of the difference while

accounting for the dependence of αC and mC on ω. This yields 1
λ times

(
λ

1 + λ
− 1

)
µ(mC)+

(
1 + ω

1 + λ
λ− ω

)
µ′(mC)

∂mC

∂ω
− σ2

2ρλ

(
2

(
1 + ω

1 + λ
λ

)(
λ

1 + λ

)
− 2ω

)
−c′(mC)

∂mC

∂ω

−
(

λ

1 + λ
− 1

)(
µ(mC)−

1− 1+ω
1+λλ

ρ(1− λ)
σ2

)
−
(

1 + ω

1 + λ
λ− ω

)(
µ′(mC)

∂mC

∂ω
+

λ

1 + λ

σ2

ρ(1− λ)

)
or

− σ2

2ρλ

(
2

(
1 + ω

1 + λ
λ

)(
λ

1 + λ

)
− 2ω

)
− c′(mC)

∂mC

∂ω
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−
(

λ

1 + λ
− 1

)(
−

1− 1+ω
1+λλ

ρ(1− λ)
σ2

)
−
(

1 + ω

1 + λ
λ− ω

)(
λ

1 + λ

σ2

ρ(1− λ)

)
or

− σ
2(λ− ω)

λ(1− λ2)ρ
− c′(mC)

∂mC

∂ω
< 0, since

∂mC

∂ω
> 0. �

.

Proof of Lemma 2: We begin with condition (i) of the globally stable allocation. Com-

bining definition (7) with the selected monitoring level (5) and the market clearing price

(6), the optimization problem can be written as:

max
α

φαµ(m(φα))−c(m(φα))−φ
2α2σ2

2ρτ
−Ψ(αDG)−φ(α−αDG)

(
µ(m(φαDG))−

1− αDG
ρ(1− λ− τ)

σ2
)
,

giving rise to the following first order condition:

φµ(m(φα))− 1

ρτ
φ2ασ2 − φ

(
µ(m(φαDG))−

1− αDG
ρ(1− λ− τ)

σ2
)

= 0.

Now, setting α = αDG above and solving gives

1

ρτ
φ2αDGσ

2 = φ
1− αDG

ρ(1− λ− τ)
σ2, i.e., αDG =

τ/φ

τ/φ+ 1− λ− τ
.

Now, we turn to condition (ii) of the globally stable allocation to verify that ΨD( τ/φ
τ/φ+1−λ−τ )−

ΨD(ω) − φ( τ/φ
τ/φ+1−λ−τ − ω)PD( τ/φ

τ/φ+1−λ−τ ) > 0 for all ω 6= τ/φ
τ/φ+1−λ−τ . This is equiv-

alent to showing that ω = τ/φ
τ/φ+1−λ−τ is a global maximum of the function ΨD(ω) −

φωPD( τ/φ
τ/φ+1−λ−τ ), i.e.,

φωµ(m(φω))− c(m(φω))− 1

2ρτ
ω2φ2σ2 − φω

(
µ

(
m(φ

τ/φ

τ/φ+ 1− λ− τ
)

)
− 1

ρ(τ/φ+ 1− λ− τ)
σ2
)

.
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To verify this we first note that the first order condition

φµ(m(φω))− 1

ρτ
ωφ2σ2 − φ

(
µ

(
m(φ

τ/φ

τ/φ+ 1− λ− τ
)

)
− 1

ρ(τ/φ+ 1− λ− τ)
σ2
)

= 0

is satisfied at ω = τ/φ
τ/φ+1−λ−τ . We then evaluate the second order condition at ω =

τ/φ
τ/φ+1−λ−τ : φµ′(m(φ τ/φ

τ/φ+1−λ−τ ))m′(φ τ/φ
τ/φ+1−λ−τ ) − φ2σ2

ρτ . This is strictly negative as long

as ΨD(α) is strictly concave as required.�

Proof of Lemma 3:The per-GP effective allocation is
φαDG
τ = φ

τ+φ−φ(λ+τ) . The skilled

investors outside the fund hold an aggregate stake of 1 − αDG = φ−φ(λ+τ)
τ+φ−φ(λ+τ) , leading to a

per-investor allocation of 1
1−λ−τ

φ−φ(λ+τ)
τ+φ−φ(λ+τ) = φ

τ+φ−φ(λ+τ) . �

Proof of Proposition 3: To replicate a payoff of ΠC
LP for the LPs, (1) the fund, i.e., the

GPs, must choose to monitor at level mC , which they will only do if their own stake inside

the fund is equal to ω units of the risky asset; and (2) the LPs must hold a final stake

inside the fund of αC = λ(1+ω)
(1+λ) units of the risky asset. We choose φ and τ to achieve (1)

and (2). For (1), we require that φαDG = ω. For (2), we require that (1 − φ)αDG = λ(1+ω)
(1+λ) .

Plugging in the definition of αDG and solving these two equations for the two unknowns φ

and τ yields φ∗ and τ∗ as given in the text of Proposition 3. From here forward, let the

superscript D∗ indicate that the associate function or variable is evaluated at τ∗ and φ∗.

Next we determine the fee level f∗ that just meets the participation constraint of

individual GPs to ensure that the optimal mass τ∗ will join the fund given the optimal

skin in the game parameter φ∗. The fund’s total endowment is given by ω+τ∗ 1−ω1−λ (the LPs’

endowment plus the GPs’ share of the skilled investors’ aggregate endowment of 1 − ω).
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The per-GP payoff for those who join the fund is given by

1

τ∗

[
ΨD∗(αD∗G )− φ∗

(
αD∗G − ω − τ∗

(1− ω)

1− λ

)
PD∗(αD∗G ) + λf

]
. (10)

The per-investor payoff for skilled investors who do not join the fund is

1

1− λ− τ∗

[
ΨD∗
U (αD∗G )−

(
1− αD∗G −

(
1− ω − τ∗ (1− ω)

1− λ

))
PD∗(αD∗G )

]
,

where ΨD
U (α) = (1− α)µ(mD(α))− (1−α)2σ2

2ρ(1−λ−τ) is the aggregate certainty equivalent payoff

of the mass of 1− λ− τ skilled investors outside of the fund who hold an aggregate stake

of 1 − α given that the fund holds a stake of α. By defecting from the fund unilaterally,

any given GP who is supposed to join the fund can realize the latter payoff. Thus, their

participation constraint will be met as long as f is set to make these two payoffs equivalent.

Defining

f∗ =
1

λ

 τ∗

1−λ−τ∗
[
ΨD∗
U (αD∗G )−

(
1− αD∗G −

(
1− ω − τ∗ (1−ω)1−λ

))
PD∗(αD∗G )

]
−
[
ΨD∗(αD∗G )− φ∗

(
αD∗G − ω − τ∗

(1−ω)
1−λ

)
)PD∗(αD∗G )

]
 (11)

ensures the participation of the requisite mass of GPs. Later in this proof, we show that the

above expression for f∗is equivalent to the expression shown in the statement of Proposition

3.

To complete the proof, we now show that the above contracting terms lead to an

aggregate payoff for the LPs of ΠC
LP . First, we show that the price of the risky asset

in the delegated fund equilibrium is equivalent to the price in the LPs’ full commitment

optimum. In the full commitment optimum, the price is given by µ(mC) − 1−αC
ρ(1−λ)σ

2.

Replacing αC with λ(1+ω)
(1+λ) yields a price of µ(mC) − 1−λω

ρ(1−λ2)σ
2. In the delegated fund

equilibrium, the price, evaluated at the optimal fund parameters, is given by PD∗(αD∗G ) =
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µ(mC)−
1− τ∗/φ∗

τ∗/φ∗+1−λ−τ∗

ρ(1−λ−τ∗) σ2. It is straightforward to show the algebraic equivalence of these

two prices using the definitions of τ∗ and φ∗.

Since the level of monitoring in the delegated fund equilibrium is identical to that in

the LPs’ full commitment optimum and the LPs’ final holdings are identical, to complete

our argument it suffices to show that LPs pay identical effective monitoring costs and

trading costs across the two cases. With respect to the monitoring costs, note that the

GPs directly pay the entirety of the actual costs in the delegated fund equilibrium while the

LPs pay these costs in the full commitment optimum. Thus, the aggregate fee paid by the

LPs must compensate GPs for their monitoring costs. With respect to trading costs, the

costs incurred by the LPs in their full commitment optimum equal the equilibrium price

times their aggregate trading quantity, or PD∗(αD∗G )(αC − ω) (using the result above that

the equilibrium price is equivalent to the full commitment price). In the delegated fund

equilibrium they directly pay trading costs equal to the price times their proportional stake

in the fund times its overall trading quantity, or PD∗(αD∗G )(1 − φ∗)(αD∗G − ω − τ∗
(1−ω)
1−λ ).

Since, as shown previously, (1− φ∗)αD∗G = αC , the savings in the LPs’ direct trading costs

for the delegated fund equilibrium relative to their full commitment equilibrium equal

PD∗(αD∗G )

[
(αC − ω)− (1− φ∗)(αD∗G − ω − τ∗

(1− ω)

1− λ
)

]
= PD∗(αD∗G )

[
(1− φ∗)(ω + τ∗

(1− ω)

1− λ
)− ω

]
.

Thus, the aggregate fee must also transfer this amount from the LPs to the GPs.

To show that the equilibrium fee, f∗ as defined in (11) accomplishes these requirements,

first note that it is straightforward to show that τ∗

1−λ−τ∗ (1− α
D∗
G ) = ω, and since we know

that φ∗αD∗G = ω also holds, we have τ∗

1−λ−τ∗Ψ
D∗
U (αD∗G ) − ΨD∗(αD∗G ) = c(mC). We can
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therefore rewrite the fee f∗ as

1

λ

[
c(mC) + PD∗(αD∗G )

(
φ∗(αD∗G − ω − τ∗

(1− ω)

1− λ
)− τ∗

1− λ− τ∗

(
1− αD∗G −

(
1− ω − τ∗ (1− ω)

1− λ

)))]

or

1

λ

[
c(mC) + PD∗(αD∗G )

(
φ∗(−ω − τ∗ (1− ω)

1− λ
)− τ∗

1− λ− τ∗

(
−
(

1− ω − τ∗ (1− ω)

1− λ

)))]

or

1

λ

[
c(mC) + PD∗(αD∗G )

(
φ∗(−ω − τ∗ (1− ω)

1− λ
)−

φ∗αD∗G
(1− αD∗G )

(
−
(

1− ω − τ∗ (1− ω)

1− λ

)))]

or

1

λ

[
c(mC) + PD∗(αD∗G )

(
(1− φ∗)(ω + τ∗

(1− ω)

1− λ
)− ω

)]
,

as in Proposition 3. Thus, since the aggregate fee is λf∗, the LPs’ obtain payoff ΠC
LP .

Finally, note that Lemma 1 implies that all λ LPs find participation in the fund optimal

as long as ω ≤ ω̂.�

Proof of Corollary 1: The fund holds αD∗G = τ∗/φ∗

τ∗/φ∗+1−λ−τ∗ of the risky asset in equi-

librium. The fund is made up of agents of measure λ + τ∗ and thus the collective risk

tolerance of this group of agents is λ+ τ∗. In a competitive equilibrium, such a collective

of agents will hold λ + τ∗ of the risky asset. Using the expressions in Proposition 3 we

have:

τ∗

φ∗
=

(
1− λ2

)
ω

1− λω
2λω + λ+ ω

(1 + λ)ω
=

(1− λ) (2λω + λ+ ω)

1− λω
.
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We first show that τ∗/φ∗ < λ+ τ∗. Assume the contrary. This implies that:

(1− λ) (2λω + λ+ ω)

1− λω
≥ λ+

(
1− λ2

)
ω

1− λω
,

which simplifies to λ (ω − λ) ≥ 0, which is a contradiction because λ > 0 and ω ≤ λ. Having

shown that τ∗

φ∗ < λ + τ∗, we now observe that αD∗G = τ∗/φ∗

τ∗/φ∗+1−λ−τ∗ <
λ+τ∗

λ+τ∗+1−λ−τ∗ =

λ+ τ∗.�
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