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Abstract

I quantify the costs of realized flood disasters for banks and create a novel
measure of bank-level flood risk exposure using expected flood risk estimates and
mortgage lending data. I document that banks with large shares of mortgages in
affected areas experience lower profits and capital ratios following flood disasters.
In the cross-section of stock returns, small banks with high exposure to flood risk
underperform other banks, on average, by up to 9.6% per year; this implies that
exposure to flood is not fully priced. Underperformance persists when controlling
for the negative effects of disasters on realized returns and adjusting for investors’
climate change concerns. The findings support regulatory concerns that bank equity
is exposed to physical risk from climate change.
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1 Introduction

Policymakers are increasingly concerned about the potential effects of climate change-

induced disasters on the financial sector. In the United States alone, weather disasters

have caused over $2 trillion in property damage since 1980.1 The widespread consensus

is that the costs of such disasters will likely increase over the next decades (Intergov-

ernmental Panel on Climate Change, 2015). Central banks have started to conduct

climate-related stress tests of the banking sector, and regulators are considering new

climate-related disclosures (SEC, 2022).2 Yet there is limited empirical evidence of how

physical risks from climate change affect individual financial institutions and overall fi-

nancial stability. It is unclear whether physical risks would necessarily affect bank equity

because banks actively manage their risk exposures through diversification, securitization,

or by adjusting lending and loan terms.3

This paper studies how bank equity is exposed to climate change-induced natural

disaster risk by quantifying the costs of realized flood disasters for U.S. banks and by

developing a novel bank-level measure of ex ante flood risk exposure using expected

flood risk estimates and geographic information on mortgages. I combine flood damage

estimates with mortgage-level data to measure the costs of realized floods for banks.

Banks exposed to realized floods exhibit lower profitability and a lower capital ratio.

The estimates on realized flood costs are quantitatively similar for large and small banks,

which suggests that even larger banks do not fully hedge the risks associated with flooding.

Next, I test whether investors price expected flood risk in bank stock returns using

ex ante flood risk exposure, which combines expected flood risk estimates from the First

Street Foundation (FSF) with a bank’s portfolios of originated mortgages to create a

1See https://www.ncei.noaa.gov/access/billions/ for more details. Accessed August 2022.
2The Bank of England published the first climate-related scenario analysis in June 2021, followed

by the European Central Bank shortly after. More recently, financial regulators in Canada and France
began incorporating climate change analyses in their assessments (Brainard, 2021). In September 2022,
the Federal Reserve announced the start of a pilot project to assess the climate risk exposure of the six
largest U.S. banks (Federal Reserve, 2022)

3A large theoretical and empirical literature focuses on risk management in firms. More recent
examples for banks include Demsetz and Strahan (1997); Loutskina (2011); Cerqueiro, Ongena, and
Roszbach (2016); and Ouazad and Kahn (2021); see Degryse, Kim, and Ongena (2009) for a broader
review of the empirical evidence.
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novel flood risk exposure measure for banks. Since climate and environmental risks are

fundamentally downside risks for most firms (Seltzer, Starks, and Zhu, 2022), exposed

banks should, if the risk is aggregate, command a higher expected return—and thus reflect

the higher risk exposure. Alternatively, if the risk is purely idiosyncratic, we would expect

an insignificant relation. The ex ante measure weighs the level of flood risk in a county by

the share of mortgages originated in that county by a bank. I find that within the sample

of small banks, those with high exposure to the risk of flooding underperform compared

with banks with zero exposure. The effect is sizeable: A portfolio of small banks with

high exposure to flood risk underperforms a portfolio of non-exposed small banks, on

average, by 9.6% per year. Flood risk exposure is a robust return predictor and cannot

be explained by other standard bank characteristics in cross-sectional regressions using

pooled OLS. In comparison, flood risk seems to be better priced for larger banks: Flood

risk exposure does not predict underperformance in the sample of large banks.4 The

negative coefficient on expected flood risk is not due to negative risk realizations (i.e.,

actual floods). Realized disasters do not subsume the result. The underperformance

likely reflects a simultaneous combination of unanticipated shocks, such as unanticipated

regulatory shocks, changes in investor preferences, and abnormally large realized disasters.

My novel exposure measure builds on the notion that banks are exposed to floods

through their mortgage portfolios. As highlighted by the European Central Bank (ECB,

2019), natural disasters can lead to abrupt value losses in assets, especially in climate-risk-

sensitive geographic areas. Homes in flood zones are particularly exposed to disasters,

which ultimately affect collateral values for the banks that originated the mortgages. My

measure of flood damage exposure is constructed in two steps. First, I depart from the

literature and define bank-level regional weights as the share of the originated mortgage

amount by a U.S. bank in a county relative to its total originated mortgage amount

in a given year using mortgage-level location information instead of relying on branch

location. Since the mortgage portfolio exposes banks to costs from floods, information

4Large banks are defined as above-median total assets, but the findings hold for top quartile or dollar
thresholds, such as above $50bn in total assets.
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on the location of banks’ assets rather than branches allows me to assess the exposure

more accurately;5 Bank assets can be viewed as a proxy for business risk, while branches

proxy for operational risks. Second, the share of the originated mortgages is matched to

the flood measure. To quantify the cost of floods, the mortgage portfolio is matched to

the estimated flood damage from Sheldus to calculate bank-level scaled flood damage. To

measure ex ante flood risk exposure, the shares of the originated mortgages are matched

to county-level flood probabilities.

Realized flood disasters significantly decrease bank profitability and increase leverage

ratios for up to 1 year. For banks that specialize in mortgage lending, non-performing

loans and mortgage charge-offs are significantly higher for several quarters after major

flood disasters. Further, I illustrate the negative relation between natural disasters and

bank equity using Hurricane Katrina. Banks exclusively lending to affected counties had

abnormal returns of -15% compared with banks lending to other counties in the U.S. Gulf

Coast region.

I examine the cross-sectional relation between ex ante flood risk exposure and U.S.

bank excess stock returns by running bank-level pooled OLS regressions. Bank-level ex-

cess returns and flood risk exposure have a strong negative relation, which suggests a

return discount for exposure to the risk of flooding. In pooled OLS, a one-standard-

deviation increase in flood risk exposure is linked to a 2.4-percentage-points (pp) lower

annualized excess return. This finding is in line with physical risks from climate change

not being adequately priced, as previously documented for non-bank equities.6 One expla-

nation is that these risks have proven difficult to adequately assess and price—especially in

equities, but also in insurance policies or real estate—because unlike other (non-climate)

risks, which have remained relatively constant over the last decades, climate risks have

changed significantly (Oh, Sen, and Tenekedjieva, 2022). Underperformance is limited to

the sample of small banks. Within the sample of small banks, a one-standard-deviation

5For example, Blickle, Hamerling, and Morgan (2022) use branch information and find little effect on
profitability.

6Hong, Li, and Xu (2019) show that physical risk from drought is not priced in food-producing indus-
tries, while Faccini, Matin, and Skiadopoulos (2021) and Acharya, Johnson, Sundaresan, and Tomunen
(2022), respectively, find that rising temperatures and storms are not priced in U.S. stocks.
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increase in flood risk exposure is associated with a 3.6 pp lower annualized excess return;

the estimate for the sample of large banks is positive but insignificant. Importantly, al-

though small banks have smaller balance sheets, they are not less profitable or less well

capitalized. They are typically also active in many counties and across several states,

which underlines the importance of capturing total exposure using banks’ assets. More-

over, if anything, higher geographic diversification is linked to less risky banks (Goetz,

Laeven, and Levine, 2016) with a lower cost of capital (Becker, 2007), which would imply

higher valuations ceteris paribus. In recent years, larger banks have been required to

disclose more information than smaller institutions, and typically receive more scrutiny

from regulators.7 The additional regulations could enable a better assessment of the

flood risk exposure of large banks, which partly explains the different results between the

size-sorted samples.

I confirm the previous result, whereby the underperformance is restricted to the sample

of small banks in bivariate portfolio sorts. Among small banks, a long-short portfolio of

banks more exposed to flood risk underperforms, on average, by 77 bps per month, or

over 9.6% annualized. In contrast, the alpha on the long-short portfolio of large banks

is positive, albeit not significant. Over the period from 2004 to 2020, the long-short

portfolio lost around 50% in the entire sample of banks, or 80% for small banks. The

negative alpha for small banks cannot be explained by a selection of risk factors used

in the banking literature, such as the four equity factors of Carhart (1997) and the two

bond factors of Gandhi and Lustig (2015).

I proxy for expected return with a measure of realized return, but these two might

diverge for several reasons. A negative relation between expected returns and realized

returns in equity has been documented previously, and thus is not a new phenomenon.8

In this setting, the sample of counties with high flood probability correlates with counties

experiencing realized flood disasters. It could be the case that the U.S. experienced a

series of bad shocks, which is picked up by the floor risk exposure. This implies that the

7For example, the Basel III disclosure requirements introduced by the Basel Committee on Banking
Supervision.

8See Fama and French (2002) or Pastor, Stambaugh, and Taylor (2021) for a more recent example.
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underperformance is merely an artifact of the sample and that the risk might be positively

priced. However, changes in weather patterns due to climate change complicate precise

forecasting of flood disasters. Thus, it is highly likely that the underperformance is due

to a series of unanticipated shocks. I perform three tests to examine whether negative

shock realizations explain the underperformance. First, the flood discount captured by

flood risk exposure prevails in a sample without periods of significant floods and storms.

Second, the underperformance of flood-risk-exposed banks persists even when explicitly

controlling for past disasters using damage estimates. Third, underperformance prevails

when using disaster-adjusted returns as dependent variables. This finding suggests that

markets might not have fully adapted to the “new normal” ushered in by climate change.

Next, the sample period from 2004 to 2020 coincides with a fundamental change in

assessing climate change-related risks from the perspective of investors. Recent studies

have found that this transition period can explain differences in expected and realized

returns for the stocks of climate-risk-exposed firms (e.g., Pastor, Stambaugh, and Taylor,

2021). As investors’ preferences for assets less exposed to climate risk increase, returns

on low-risk assets can outperform riskier ones. I test whether the observed increase

in climate change concerns coincide with flood risk exposure. Whereas climate change

concerns, measured by climate change attention data from Google and Ardia, Bluteau,

Boudt, and Inghelbrecht (2022), are also linked to lower excess returns consistent with

prior findings, concern proxies do not entirely subsume the negative coefficient on the

flood risk exposure.

Previous literature has found that views on climate change play an important role

in the pricing of climate-risk-exposed assets.9 Using county-level election data, I find

that that underperformance is stronger for banks that primarily lend to counties with a

majority of Democratic voters. Further, it is strongest in the years when a Democratic

president was in office (i.e., Barack Obama). Democratic officials are more likely to

introduce new climate policies and regulate business in ways that affect local banks

9Baldauf, Garlappi, and Yannelis (2020) and Bakkensen and Barrage (2022) find that houses at risk
of flooding in regions that believe in climate change trade at a discount.
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negatively, and thus, the underperformance might be a reaction to unanticipated policy

shocks.

Next, I perform a series of tests the examine whether the underperformance of flood

risk exposure is driven by an omitted variable. When using banks’ implied cost of capital

(ICC) derived from analyst earnings forecasts and observed equity prices as measure of

expected returns, the coefficient on the flood risk exposure is positive and insignificant.

This alleviates any concern that the underperformance is driven by unobserved bank

fundamentals and further strengthens the argument that it is likely due to unanticipated

shocks. Overall, the results are robust to including HQ-state-times-month fixed effects

and a wide range of controls, including flood insurance coverage, local differences in

economic growth, or local real estate market performance.

This paper is most closely related to the literature that examines the pricing of climate

risk, and generally in equities. Examples include Bolton and Kacperczyk (2021); Bolton

and Kacperczyk (forthcoming); Duan, Li, and Wen (2021); and Hsu, Li, and Tsou (2021).

Whereas these papers focus on the transition risk from climate change, I examine the

physical risk from climate change, such as Hong, Li, and Xu (2019); Acharya, Johnson,

Sundaresan, and Tomunen (2022); Choi, Gao, and Jiang (2020); and Bansal, Ochoa,

and Kiku (forthcoming) who focus on heat-related climate risk in nonfinancial sectors.

Painter (2020) and Goldsmith-Pinkham, Gustafson, Schwert, and Lewis (2021) analyze

climate risk in municipal bonds. In contrast, this paper analyzes the risk of flooding in

U.S. bank equities.

The paper’s evidence is also related to Ardia, Bluteau, Boudt, and Inghelbrecht (2022);

Engle, Giglio, Kelly, Lee, and Stroebel (2020); and Pastor, Stambaugh, and Taylor (2021),

who discuss the importance of climate change concerns in asset pricing. Climate change

concerns cannot explain the results in this paper.

The paper also contributes to the literature on natural disasters and bank perfor-

mance. The existing literature is unclear about the effects on bank performance. Schüwer,

Lambert, and Noth (2019) and Blickle, Hamerling, and Morgan (2022) find a negative or

insignificant effect of disasters on performance, while Noth and Schüwer (2018) provide
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evidence of a positive effect. The common approach to measuring banks’ exposure to

natural disasters has been to use branch information.Instead, I develop a new exposure

measure based on banks’ balance sheet data. Specifically, I use banks’ mortgage lend-

ing activity to map their balance sheets to flood disasters and expected flood risk. The

benefit of this novel measure is that it more accurately maps banks’ business risks. I

show that using branch location to measure exposure to floods underestimates the effects

compared with using balance sheet information. Further, I also analyze loan performance

and equity measures.

Further, the paper contributes to the extensive literature on natural disasters and bank

lending. The evidence suggests that affected banks tend to increase lending in affected

areas following disasters (e.g., Cortés and Strahan, 2017; Barth, Sun, and Zhang, 2019;

Bos, Li, and Sanders, 2022; Koetter, Noth, and Rehbein, 2020; Brown, Gustafson, and

Ivanov, 2021; Ivanov, Macchiavelli, and Santos, 2022). The findings are mostly confined

to certain types of banks.Ouazad and Kahn (2021) document that commercial banks

react to climate risk when disasters realize, while Garbarino and Guin (2021) find that

home loan lenders do not adjust their loan terms following severe flooding. The literature

has only focused on realized disasters, while this paper also analyzes the effect of ex ante

risks from climate change.

The paper also contributes to the literature studying the effect of weather hazards

on real estate markets (Bernstein, Gustafson, and Lewis, 2019; Baldauf, Garlappi, and

Yannelis, 2020; Gibson and Mullins, 2020; Keys and Mulder, 2020; Murfin and Spiegel,

2020; Giglio, Maggiori, Rao, Stroebel, and Weber, 2021), which suggests that not all risk

from flooding is priced in the residential real estate market.

The remainder of the paper is organized as follows. Section 2 describes the data and

introduces the main explanatory variables. Section 3 analyzes the cost of realized floods

to banks. Section 4 shows that flood risk exposure predicts lower returns in the cross-

section of bank stock returns. Section 5 shows that the patterns are robust to an array

of additional controls, and Section 6 concludes.
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2 Data and Summary Statistics

This section describes the different data sources and introduces key explanatory variables.

I focus on floods and hurricanes, which are the costliest disasters in the United States

(Davenport et al., 2021). Weather disasters have caused over $1 trillion in property dam-

age since 2010, of which almost $300 billion is attributed to floods and storms (Figure

1).10 The widespread consensus is that without drastic measures, costs from climate

change-related disasters will increase further over the next decades (Intergovernmental

Panel on Climate Change, 2015), and sea level rise will exacerbate the problem even fur-

ther (Davenport et al., 2021). Some estimates predict that property damage from floods

will likely increase by more than 60% over the next 30 years (First Street Foundation,

2021).

As pointed out by the ECB (2019), with increases in the frequency and severity of

climate disasters, the risk of abrupt losses of asset value in climate risk-sensitive geo-

graphic areas also increases. Real estate is inextricably linked to its geographic location,

and therefore housing in exposed areas is likely to be negatively affected by the expected

increase in natural disasters. For financial institutions lending to this area, this implies

that collateral and asset values become riskier. Every year, mortgage lenders originate

between $200 billion and $250 billion in new mortgages in flood zones, which represents

roughly 12.5% of total bank equity (Ouazad, 2020), and potentially large financial losses.

At the same time, mortgage borrowers are required to have flood insurance when situ-

ated in flood plains, and banks manage their risk exposure through securitization or by

selling riskier mortgages to Fannie Mae and Freddie Mac (Ouazad and Kahn, 2021). Yet

there is mixed evidence that banks account for the risk from disasters in their lending

decisions (e.g., Garbarino and Guin, 2021) Alternatively, a bank may lose business be-

yond mortgage lending if economic activity in the area in which the bank has a large

portfolio share shrinks, either following a realized flood or anticipating a deteriorating

10Since 1980, costs from billion-dollar natural disasters have amounted to $2.3 trillion, with a significant
increase in inflation-adjusted costs in the last 5 to 10 years. See https://www.ncei.noaa.gov/access/
billions/ for more details, accessed in August 2022.
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environment. Further, sudden decreases in the value of collateral lead to readjustments

in household behaviors such as borrowing and consumption (Mian and Sufi, 2011), which

may affect a bank’s general economic performance in that region, and mortgage-backed

securities are also more likely to be write-offs. Thus, constructing an exposure measure

based on mortgage lending patterns proxies for a bank’s overall business exposure in an

area.

To test the link between bank performance and flood disasters, I require estimates of

property damage from floods. To test for the existence of a flood risk premium, I use

regional probabilities of flooding, combined with a bank-level county share measure based

on mortgage lending data, to create novel flood risk exposure. The final data contain

information from 771 bank holding companies (BHC) and cover 2004 to 2020.11

[Place Figure 1 about here]

2.1 Bank-level Shares

To compute the geographic exposure measure at bank holding company level, I use data

on U.S. mortgages obtained from the publicly available part of the data filed under

the Home Mortgage Disclosure Act (HMDA). Federally insured or regulated depository

institutions with total assets exceeding $45 million are required to report mortgage loan

applications and decisions at yearly frequency.12 However, since the analysis focuses on

publicly listed banks, which are typically large, there is no reason to expect that this

threshold and feature of the data should bias the findings.

The HMDA data contain mortgage application-level data and includes detailed in-

formation on the mortgage. Importantly, the data contain information about the status

of the application (e.g., accepted) and typically covers over 90 % of annual mortgage

activity (Favara and Giannetti, 2017). This study focuses on conventional loans and one-

11The full sample includes 771 different banks and 426 banks on average per year.
12The $45 million threshold was set in 2018. Typically, it is time-varying and set by the Consumer

Financial Protection Bureau. Additionally, only banks that originated at least one home purchase loan
or the refinancing of a home purchase loan with an office in a metropolitan statistical are required to
report.
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to four-family home purchase loans that were originated. This is because bankruptcy

and foreclosure laws, as well as government bailout programs, differ for large multi-family

dwellings (Bongaerts et al., 2021). The data is further restricted to owner-occupied houses

(Ouazad and Kahn, 2021). Non-owner occupancies are assumed to be more sophisticated

borrowers who are more likely to insure themselves against flood risk.

2.2 Flood Damages

Flood disaster shocks are constructed using data from the Spatial Hazard Event and

Losses Database for the United States (SHELDUS) maintained by the University of

Arizona.13The data provide information on the date, location, and intensity of all presi-

dentially declared natural disasters in the U.S.. For this study, the data are restricted to

major floodings and storms. While the National Oceanic and Atmospheric Administra-

tion (NOAA) also collects information on non-presidentially declared natural disasters,

SHELDUS has the advantage of estimating dollar damages linked to individual disas-

ters. Also, presidentially declared disasters are more likely to be severe and represent

significant shocks to banks (Ivanov et al., 2022).

[Figure 2 about here]

Figure 2(a) plots the total estimated damage from floods in each U.S. county for the

years 1980 to 2020. Unsurprisingly, coastal regions have higher estimated flood damage

over the sample. Damage estimates are especially high in Gulf Coast regions. However,

the map also highlights urban centers due to the simple summing up of total damages,

which typically overweights larger and denser areas. For this reason, I measure the

intensity of a flood disaster using the total dollar value of property damage in a given

county and quarter scaled by total personal income in that county.

13Data are available for download from the Center for Emergency Management and Homeland Security
(2018) at https://cemhs.asu.edu/sheldus.
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2.3 Expected Flood Risk

To test the existence of a flood risk premium, I require a comprehensive map that defines

the geographic distribution of flood probabilities in the contiguous United States. For this

purpose, I use a map produced by the First Street Foundation (FSF). The data provide

information on the share of housing with a 1% probability of experiencing a 100-year

flood in the cross-section of U.S. counties. The estimates consider increased risk from

sea-level rise and changes in weather patterns. I use this map over the more widely used

flood maps produced by FEMA, because FEMA maps are shown to be outdated. Maps

produced by the FSF cover more counties and use an up-to-date methodology compared

with maps provided by FEMA. For instance, the number of properties with a substantial

risk of flooding is approximately 70% higher than what is estimated by FEMA’s maps

(Flavelle, Lu, Penney, Popovich, and Schwartz, 2020). In addition, estimates show that

80% of commercial properties damaged by Hurricane Harvey and Hurricane Irma were

outside FEMA-designated flood zones (Duguid and Levine, 2020). Therefore, the maps

from FSF provide a better measure of a county’s underlying flood probability.

Furthermore, the advantage of using these maps, compared with sea-level-rise maps

(e.g., Ilhan, 2021), is that they cover the whole United States, which allows me to capture

banks that are only active in landlocked regions. To my knowledge, I am the first to link

these flood maps to bank activity.

The key variable is shown in Figure 2(b). It represents the share of properties with

a 1% probability of a 1-meter flood by 2050 for each county in the continental United

States. Darker shades of blue represent a larger share. Unsurprisingly, coastal regions

are expected to be the most affected. Still, counties in lower areas of the Northwest and

in the Appalachians are also projected to be at high risk.

2.4 Bank Outcomes

Bank balance sheet data are from the quarterly Consolidated Report of Condition and

Income (FR Y-9C) filed by U.S. BHC with the Federal Reserve and data include infor-

mation on bank size and profitability.
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Equity returns are from monthly stock files from the Center for Research in Security

Prices (CRSP), which include monthly returns and prices. In this section, I focus on

bank holding companies.

2.5 Measuring Banks’ Exposure to Floods and Flood Risk

The analyses in this study focus on bank-level outcomes such as stock returns or return

on assets, while the shocks and probabilities used as explanatory variables are available

at county level. Therefore, county-level variables must be aggregated at bank level. An

important aspect of this step is carefully considering the relevant exposure for a given

bank. A common approach in the literature has been to use a bank’s headquarters or

a bank’s branches as a measure of regional bank exposure (e.g., Cortés and Strahan,

2017; Blickle et al., 2022). The shortcoming of this approach is that banks typically lend

outside of the counties in which they are physically located. Further, banks are assumed

to be exposed to flood risk and disasters through their asset holdings. I introduce a novel

share measure for each bank based on a bank’s mortgage lending activity. Specifically,

using HMDA, I compute exposure as total originated home loans retained on the balance

sheet by county divided by the overall yearly originated mortgages retained on a bank’s

balance sheet. Equation 1 formalizes this:

(1) Shareb,c,y =
Originatedb,c,y∑
c Originatedb,c,y

,

where Originatedb,c,t is the total amount of mortgages originated in county c and year y

by bank b. The aim of the weights is to capture general bank lending patterns.

There is some evidence that banks exposed to flood disasters increase the securitization

of mortgages and selling originated mortgages to Fannie Mae and Freddie Mac (Ouazad

and Kahn, 2021). This reduces the bank’s exposure to negative shocks to collateral value.

The empirical analysis accounts for this possibility by focusing on non-securitized mort-

gages in alternative share measures. All main results hold if the share is defined as the

share of retained mortgages. A mortgage is defined as retained if it is not securitized or
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sold to a third party. The aim is to capture banks’ exposure in a county, and therefore

the focus is on mortgages retained in banks’ portfolios. The benefit of using originated

amounts instead of retained amounts is that they more accurately reflect a bank’s overall

business in a region than by only focusing on retained mortgages (Giannetti and Saidi,

2019). Along the same line, as additional measures, I compute the rolling averages of

retained and originated mortgages. Rolling averages alleviate concerns that outlier expo-

sure in mortgage lending drives the results. Rolling averages arguably capture underlying

lending patterns more closely than yearly flow measures and are a better proxy for fu-

ture lending patterns (Favara and Giannetti, 2017). Therefore, they capture the broad

exposure to future profits from lending to a specific county by a given bank.

To analyze how a bank’s balance sheet performance is affected by flood disaster shocks,

I combine county-level exposure with county-level property damage estimates from SHEL-

DUS. Formally, I have:

(2) Scaled Damagesb,q =
∑
c

(Shareb,c,y × Property Damagec,q).

Scaled damages can be viewed as a weighted average of the damage that occurred in

quarter q. In the baseline, property damage is normalized by county-level total personal

income from the Bureau of Economic Analysis. Alternatively, damages in dollar amounts

are normalized by assigning them to the different banks active in a county using county-

level market shares.

Finally, to test whether exposure to the risk of flooding is priced in the cross-section

of bank stock returns, I create a bank-level flood risk exposure measure by weighting the

share of properties with a high flood probability with the bank’s county share. Formally,

I have equation 3:

(3) Flood Risk Exposureb,y =
∑
c

(Shareb,c,y × Flood Probabilityc),

where Flood Probability is the flood probability measure from the flood maps produced

by FSF. In robustness tests, I alternatively use the county-average risk measure and the
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share of properties at risk by 2035.

2.6 Summary Statistics

Table 1 reports summary statistics and differences between banks with high exposure

to flood risk and banks with low exposure to flood risk. High risk banks are defined as

banks within the top quartile sorted on the flood risk exposure each year, and Low are

all other banks. Mortgage-based variables change at an annual frequency. Application is

the total dollar amount of mortgage loan applications received by a bank in a given year.

Retained Amount is the total dollar amount of mortgages originated and retained by a

bank in a given year. This measure excludes non-originated applications and originated

mortgages that were either securitized or sold to a third-party financial firm. Active

Counties and Active Census is the total number of unique counties and states in which a

bank originated mortgages. Average Originations and Average Retained are county-level

dollar amounts of originated and retained mortgages averaged across all active counties

for a given bank in a given year. As a sanity check, the two groups differ significantly in

terms of the key measures of flood risk exposure. Depending on the measure, high flood

risk banks have up to 3 times more mortgages in high-risk counties than low-risk banks.

Within mortgage variables, banks along the flood risk exposure measure are reasonably

similar. On average, they receive and retain equal amounts of mortgage applications.

Less exposed banks tend, on average, to be active in slightly more counties and across

more states. Stock variables are based on monthly stock returns. Balance sheet variables

from Call Reports are updated at quarterly frequency. Ratios are calculated by dividing

by total assets. Loan Ratio is the sum of consumer, commercial, and industry loans

divided by total assets. Real Estate Loans Ratio is the sum of retail and commercial

loans, while Mortgage Ratio is calculated using only retail mortgage loans. ROA is net

income divided by total assets. NPL Ratio is calculated by dividing the sum of 30- and

90-day delinquent loans by total assets. From the table, it also becomes apparent that

the two groups differ in some important variables. They are smaller on average and

therefore are somewhat more focused on mortgage lending. On average, 19% of total
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assets are home mortgages for high-exposure banks and 18.6% for low-exposed banks.

While the difference is statistically significant, it is not that meaningful economically.

For both groups, roughly 20% of the balance sheet is dedicated to household mortgages.

When including commercial properties, the share jumps to almost half of total assets.

Exposed banks rely more on deposit funding. Notably, on average, they do not differ in

profitability, the share of non-performing loans, or leverage ratio. In later sections, I will

account for the observed differences by performing different subsample analyses.

[Table 1 about here]

3 The Cost of Flood Disasters

In this section, I analyze the cost of flood disasters for banks measured by different

outcomes. First, I will illustrate the link between flood disasters and bank returns by

focusing on a major and well-known disaster, Hurricane Katrina. Second, the analysis

will focus on the balance sheet performance of the largest sample of banks (i.e., including

subsidiaries and non-publicly traded). Third, I restrict the sample to publicly traded

banks because the existence of a flood risk premium is tested on this sample.

3.1 Hurricane Katrina

Hurricane Katrina was the largest flood disaster in the U.S. in the last 20 years. Estimates

from the Bureau of Labor Statistics show that industrial production decreased by 12.6%,

with approximately 230 thousand job losses. As the storm’s intensity became clear,

markets priced potential exposure to the damage.

The methodology involves plotting the cumulative abnormal returns (CARs) of banks

active in counties affected by the hurricane (i.e., the treated) and comparing it with the

CAR of banks active in unaffected counties (control). Formally, I calculate the abnormal

return of each bank as follows:

(4) ARb,t = Rb,t − E[Rb,t].
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The daily expected return is defined as

E[Rb,t] = α̂b + β̂
′
bF ,

where F is a vector of factors (Market, SMB, HML, ∆VIX), and the coefficients α̂b and

β̂b are estimated on daily data from January 1, 2005, to July 31, 2005, by regressing

the bank-level return on market factors. Formally, I estimate the following time-series

equation for all banks in the sample:

Rb,t = αb + β
′
bF + εb,t.

I follow Schüwer et al. (2019) to classify banks as affected or control. Following

major disasters, FEMA designates counties as eligible for individual and public disaster

assistance.14 During the hurricane season of 2005, 135 of the 534 counties in the Gulf

Coast region were designated as eligible for FEMA’s disaster assistance. A bank is affected

by Hurricane Katrina if all its mortgage lending in the previous year (2004) was for

properties located in a county eligible for individual and public disaster assistance (the

orange region in Figure 3(a)). The control group consists of banks with all their mortgage

lending in counties that received neither individual nor public disaster assistance but are

located in the U.S. Gulf Coast region or a neighboring state.15 These counties are shown

in dark blue in Figure 3(a). Counties that only received public assistance are excluded.

Schüwer et al. (2019) point out, some counties received public assistance because they

housed evacuees but were not otherwise affected. Consequently, 19 banks are cleanly

identified as only active in affected counties, and 27 as located in unaffected counties.

Figure 3(b) plots the daily CAR of the two value-weighted portfolios from July 2005

to October 2005.

Hurricane Katrina formed on August 24. In the following days, the storm’s inten-

sity and trajectory became more apparent. On August 26, it crossed the southern tip

14See https://www.fema.gov/disasters.
15The U.S. Gulf States are Alabama, Florida, Louisiana, Mississippi, and Texas. Arkansas, Georgia,

Oklahoma, and Tennessee are the neighboring states.
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of Florida, and the trajectory was revised to the Mississippi coast (United States De-

partment of Commerce, 2006). This is seen in the first days of lower negative abnormal

returns compared with the control group. On August 28, the National Weather Service

issued a statement that Hurricane Katrina was a “most powerful hurricane with unprece-

dented strength” and that “most of the area will be uninhabitable for weeks” (National

Weather Service New Orleans, 2005). The storm made landfall on August 29, and the

CAR of affected banks dropped by almost 15% in a matter of days. This is equal to

a $4.5 bn loss in the market capitalization of affected banks. Interestingly, abnormal

returns remained negative for a considerable time, and the CAR never recovered over the

sample. This shows that markets react to the risk from natural disasters once the threat

materializes and salience is high. While banks in the control group are also active in the

extended coastal region, only the abnormal returns of ex post-affected banks decreased.

This points to evidence that markets correctly identify banks’ exposures when faced with

a disaster.

[Figure 3 about here]

3.2 Shock to the Balance Sheet

This section focuses on bank performance following major flood disasters. The empirical

analysis involves regressing bank outcomes on the measure of exposure to flood damage

introduced in Section 2. Formally, I estimate the following equation:

Yb,t = β0 + β1Scaled Damagesbt−1 + β2Capital Ratiob,t−1

+ β3log(Employees)b,t−1 + β4log(Assets)b,t−1

+ β5ROAb,t−1 + γX + εb,t,

(5)

where Ybt represents the outcome of interest, such as return on assets (ROA), capital

ratio, or non-performing loans (NPL). The regression includes a standard set of bank-

level control variables. The regression also includes time (quarter) and bank fixed effects,

given by the vector of X. Bank fixed effects ensure that results are unlikely to be driven
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by unobserved lender characteristics, and time fixed effects alleviate concern that the

results are driven by specific periods. Standard errors are clustered at bank holding

company level.

[Table 2 about here]

Table 2 reports estimates of equation 5 for bank-level ROA. The baseline regression in

column (1) estimates a negative and statistically significant relationship between exposure

to flood damage and ROA. The variable Scaled Damages has a t-statistic of -3.8 and has

been standardized for ease of interpretation. Therefore, the coefficient of -0.005 suggests

that a one-standard-deviation increase in scaled damages results in a decrease in quarterly

ROA of 0.4 basis points. Given an average of 0.4%, this equals a 1% reduction in the

average ROA. However, the distribution of flood disasters typically has a large right tail.

Hurricane Katrina had a magnitude of almost 100 standard deviations, and wiped out the

entire income of affected banks. This shows that large shocks are plausible (and likely).

A 10-standard-deviation increase in flood shocks is associated with 10% lower ROA of

affected banks, consistent with flood damage’s potentially important negative effect on

bank performance. This finding is evidence that banks remain exposed to flood disasters

and, by extension, to the risk of flooding.

The last two columns of Table 2 report estimates from regressions using bank deposits

and headquarters locations to construct the ex ante flood risk exposure. In column (4),

county-level flood damages are aggregated using deposits as weights instead of mortgage-

weighted exposure. In contrast, column (5) weights by physical office location.16 The

coefficients of interest are insignificant in both cases. This additional test helps reconcile

the findings in this study with the conclusions of prior studies (e.g., Blickle et al., 2022).

The baseline Scaled Damages is constructed using damage amounts divided by total

personal income and weighted by total mortgage originations. As discussed previously,

one might worry that the results capture underlying differences in securitization. To rule

out that this is driving the results, in column (2) the dependent variable is redefined

16Branch locations and branch-level deposits come from FDIC Summary of Deposits.
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as property damage estimates weighted by the amount of retained mortgages. In this

context, the coefficient is similar to baseline results, which suggests that wealth differences

are not driving the results. Further, an argument can be made that banks with a higher

market share are more likely to be affected by realized floods. Therefore, in column (3),

damage estimates are first assigned to banks by multiplying by county-level market share.

As previously, the coefficient is of comparable magnitude.

[Table 3 about here]

Table 3 reports the results from equation 5 for a set of accounting variables. All

regressions control for time-varying bank characteristics such as leverage, assets, loan

ratio, and mortgage ratio. As previously, bank and time fixed effects are included in the

regression, while standard errors are clustered at bank holding company level. Column

(1) replicates the baseline results for ROA. The coefficient on Scaled Damages has the

same sign and very similar magnitude as in Panel A of Table 2, which suggests that the

effect is propagated at bank holding company level. A large flood disaster is associated

with exposed banks’ performing 10% worse than unaffected but otherwise comparable

banks. Columns (2) and (3) focus on prudential capital requirements. The estimates

show that leverage and capital ratios decrease when flood damage increases: A one-

standard-deviation increase in flood damage reduces the ratios by approximately 2 bps.

However, given average ratios between 8% and 14%, the effect is small even for larger

episodes. Nevertheless, the coefficients are statistically significant, with t-statistics below

-2.56. The net stable wholesale funding ratio also declines by 5 bps after a one-standard-

deviation increase in flood damage, as reported in column (4). The estimates suggest

that banks not only have lower profits but experience losses in their equity. However, the

reduced ROA is not matched one-to-one with a reduction in equity, which implies that

banks can offset most of the shock without losing equity.

Column (5) reports estimates from a regression of the Z -score, defined as

Z-scoreb,t =
roab,t + equityb,t

σ(roab,t)
,
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where σ(roabt) is the standard deviation of ROA. The Z -score proxies for the distance-

to-default of a bank. The coefficient on Scaled Damages in column (5) is negative and

significant. The estimate implies that the distance to default is negatively associated

with flood disasters and is consistent with flood damage increasing the default likelihood

of a bank.

The results in columns (6) to (7) are based on loan performance variables. The effects

on NPLs, residential real estate loan charge-offs, and loan-loss provisions are positive,

albeit only significantly so in the last case. The coefficients provide suggestive evidence

that the performance of loans decreases following flood disasters and that flood disasters

lead to poorer loan performance and, therefore, higher loan losses. As a placebo test,

Table A2.1 in the Online Appendix reports the results from a regression in which the

scaled damage are weighted by denied mortgage share. Denied mortgages should not

expose banks to floods, which is confirmed by the insignificant coefficients.

3.3 Effect Heterogeneity

The summary statistics have shown significant heterogeneity on some dimensions between

banks with high and low exposure to flood risk. Therefore, Scaled Damages likely has

heterogeneous effects on performance variables. Small banks in the sample are typically

less diversified (Laeven and Levine, 2007) and have more geographically concentrated

lending (Doerr and Schaz, 2021). Further, the propensity to securitize mortgage loans

differs between small and large banks (Casu et al., 2013); smaller banks offload fewer

of their riskier loans to third parties through securitization. Therefore, flood disasters

affect smaller banks to a more significant extent than bigger banks. Similarly, banks that

are more active in mortgage lending, with a higher fraction of mortgage loans on their

balance sheets, should be more affected than banks specializing in other activities.

To examine this heterogeneity, Table 4 presents separate estimates of equation 5 for

banks with a high share of mortgage lending (High) compared with banks with a lower

share of mortgage lending (Low) and small banks compared with large banks. The

partitioning is based on the median mortgage lending share and size. All regressions are
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robust to bank controls and bank and quarter fixed effects.

[Table 4 about here]

Panel A of Table 4 reports results for ROA for the four groups. Columns (1) and (2)

split the sample on the mortgage loan share, while the results in columns (3) and (4)

compare small and large banks. The magnitude of the coefficient of the High mortgage

loan share is somewhat larger than for the Low sample, consistent with the assumption

that the transmission of flood disasters to bank performance is through mortgage loans.

Comparing coefficients across size-sorted samples, the magnitude of the coefficient in the

sample of large banks is larger, suggesting that the ROA of larger banks reacts more

to flood shocks than the ROA of smaller banks. This is surprising, given that larger

banks are, on average, less exposed to flood zones and more geographically diversified. A

possible explanation is that larger banks are more transparent and recognize losses more

quickly than smaller banks.

The full-sample results from Table 3 implied an insignificant relation between flood

damage and NPLs. The subsample analysis shows that NPL and loan charge-offs of

banks with a larger share of mortgages on their balance sheets are positively associated

with an increase in flood damage. I find no significant relation between flood damage

and loan performance variables for banks with a low share of mortgages on their balance

sheets. The coefficients suggest that this is not due to a lack of statistical power, since

the coefficients are statistically insignificant and smaller in magnitude.

Surprisingly, when we focus on small and large banks separately, the estimates show

that a significant effect on NPL is unique to the sample of larger banks: The NPL

ratio increases after flood damage only for large banks. Specifically, I find no evidence

that the sample of small banks incurs an increase in their NPL—if anything, the NPL

ratio is lower for small banks exposed to a shock. Within the sample of large banks, the

estimates show that the NPL ratio is 10% higher following a one-standard-deviation flood

shock. The finding is remarkable, because larger banks are more diversified and typically

have more tools to weather natural disasters (Cortés and Strahan, 2017). However, the

result could also show that larger banks accept higher NPLs in the short term to avoid
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larger loan losses or charge-offs. Panel C of Table 4 offers a first answer: There seems

to be no increase in loan charge-offs for either sample of banks. The relation between

flood damage and loan charge-offs is insignificant for large and small banks. Thus, the

quality of reporting and balance sheet transparency for large banks possibly explains the

differences between size-sorted samples.

3.4 Persistent Effects

The previous section focused on one-quarter-ahead performance variables. Natural dis-

asters, such as floods, arguably have longer-lasting effects—or more precisely, the effects

might only be registered later on banks’ balance sheets. For instance, household delin-

quencies and defaults only materialize with a lag, as I will show.

The empirical strategy involves regressing bank outcomes in periods t + h on the

measure of exposure to flood damage introduced in Section 2. Formally, I estimate the

following equation:

Yb,t+h = β0 + βh
1Scaled Damagesb,t−1 + βh

2Yb,t−1 + βh
3Capital Ratiob,t−1

+ βh
4 log(Employees)b,t−1 + βh

5 log(Assets)b,t−1

+ β6ROAb,t−1 + γX + εhb,t,

(6)

where h goes from -3 to +4 quarters. I report the coefficients βh
1 on Scaled Damages for

the two bank performance variables—ROA and the Tier 1 leverage ratio—in Figure 4. In

both panels, the solid line (with circles) represents point estimates of βh
1 from equation

6, and dashed lines (with triangles) represent 95% confidence intervals for this estimate.

Standard errors are clustered at the bank level.

Figure 4(a) shows the long-run effect of flood damage on bank-level ROA. The quarter

1 coefficient is the same as the coefficient in column (1) of Table 2. The plot shows that

the drop in ROA starts in the same quarter as the flood disaster and tapers off over the

next year, consistent with the effects of floods’ having longer-term consequences. Further,

the finding indicates that most of the impact on profitability occurs in the same quarter as
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the flood realizes. The finding is echoed in Figure 4(b), which plots the coefficient of Tier

1 leverage on flood damage. Again, most of the effect occurs between the first and the

second quarter after the flood disaster. Because points on the line estimate cumulative

effects on the leverage ratio since the shock, the flattening of the line after the second

quarter suggests that the flood has little impact on leverage in the second half of the year

after the disaster. The fact that leverage remains significantly below its pre-flood level

is surprising. Banks might either choose not to or are unable to increase their capital.

Either way, it demonstrates that banks are significantly riskier after experiencing major

natural disasters, which was also conveyed by the significantly lower Z-score. This result

emphasizes the long-lasting effects of a natural disaster (Noth and Schüwer, 2018). The

coefficient estimates in both plots do not show any significant pre-trend.

The evidence in Panels A and B of Figure 4 is consistent with banks’ experiencing

significant losses from floods that require them to offset losses with their equity.

[Figure 4 about here]

Figure 5 conducts a similar analysis using two loan portfolio variables as the outcomes

of interest. As seen in Section 3.3, the effect on portfolio performance variables is only

seen in the subsample of banks with a high share of mortgage loans on their balance

sheet. As previously, the solid line (with circles) represents the point estimates of βh
1

from equation 6, and dashed lines (with triangles) denote 95% confidence intervals for

this estimate. Standard errors are clustered at bank level. The flood realizes at time

0. The coefficients are insignificant for periods before the shock. Figure 5(a) plots the

coefficient from regressing the NPL ratio on flood damage for the sample of banks with

a high share of mortgages. Following the shock, the coefficient is positive and implies

an increase in NPLs within the sample of banks with a high share of mortgages. As

previously, the picture suggests that the full effect of the disaster is only registered after

some time. The share of NPLs increases for 3 quarters before slowly reverting. Since

NPLs are typically measured as loans with missed payments after 30 to 90 days, the

insignificant effect in quarter 0 is comforting: It bolsters the identifying assumption that

borrowers do not adjust their repayments in anticipation of future adverse weather shocks.
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Similarly, as shown in Figure 5(b), loan charge-offs increase in the quarter following the

shock and remain elevated for the next 2 quarters. The increase in loan charge-offs is

steeper than the increase in NPLs. While NPLs depend on borrowers’ behavior, charge-

offs are set by lenders. Thus the difference in slope suggests that lenders partly anticipate

the increase in NPLs and the subsequent default of many borrowers.

[Figure 5 about here]

The evidence in Figures 4 and 5 is consistent with banks’ balance sheets’ deterio-

rating significantly after flood disasters and the fact that the effect manifests itself over

a relatively long period. In addition, as soon as the flood realizes, banks anticipate the

deteriorating economic environment and increase loan charge-offs, which results in an im-

mediate decrease in ROA. ROA and loan charge-offs revert to the pre-shock level faster

than NPLs because of banks’ anticipating behavior.

4 Exposure to Flood Risk

The previous section demonstrated that flood disasters are negatively linked to bank

performance, measured by both ROA and stock returns. In this section, I examine

whether the risk of future floods is priced in the cross-section of bank stock returns.

Specifically, the conjecture is that investors may require higher expected returns from

banks with high exposure to the risk of flooding.

4.1 Evidence in the Cross-section of Returns

First, I run cross-sectional regressions to test whether exposure matters at an individual

bank. The benefit of cross-sectional regressions is that they enable controlling for mul-

tiple characteristics jointly. Therefore, the approach allows me to rule out other known

characteristics that predict returns in the cross-section and ensures the novelty of the

flood risk exposure. To do so, bank-level excess returns are regressed on lagged flood

risk exposure and bank characteristics. Formally, the following cross-sectional regression
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model is estimated using pooled OLS:

rb,t − rf,t = α + β1Flood Risk Exposureb,t−1

+ β2log(Assets)b,t−1 + β3log(BE/ME)b,t−1

+ β4Leverageb,t−1 + β5Loan Ratiob,t−1

+ β6Mortgage Ratiob,t−1 + beta7rb,t−1 + εb,t,

(7)

where the dependent variable is the stock return of bank b over the risk-free rate in month

t. The main coefficient of interest is β1 on Flood Risk Exposure, which captures a bank’s

balance sheet exposure to flood risk. A positive β1 coefficient would imply that increased

exposure earns a positive risk premium. Based on the focus of the analysis, standard

errors are clustered at bank level. Month fixed effects absorb aggregate time-varying

factors.

Column (1) of Table 5 reports the baseline result with the exposure measure based on

the probability of a flood by 2050 and the share of originated mortgages. The coefficient

on the flood risk measure is negative and statistically significant at the 1% level. The

effect is also economically significant: A one-standard-deviation increase in flood risk

exposure leads to 17-bps lower monthly excess return or 2% per year. The estimate

suggests that high flood risk exposure forecasts poor stock performance. Overall, the

result implies that firms with high flood risk exhibit lower future excess returns net of

well-known bank characteristics. This finding contradicts the initial conjecture that the

additional risk should yield a positive return. It is, however, in line with other papers

that test whether markets discount physical risk from climate change (e.g., Hong, Li,

and Xu, 2019), and highlights the differences in studies that focus on transition risks from

climate change, which typically find that investors require higher expected returns from

firms with higher risk exposure (e.g., Bolton and Kacperczyk, 2021). Several potential

explanations could, in theory, reconcile the finding; Some will be tested next.

[Table 5 about here]

The result does not hinge on the choice of flood risk exposure but is robust to a set
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of different approaches. Columns (2) to (7) of Table 5 report the results for six flood

risk exposure measures that capture very similar effects. In column (2), the exposure

measure is based on a shorter flood horizon—specifically, 2035 (instead of 2050). The

regression in column (3) is based on an exposure measure that uses flood risk scores

instead of the share of houses at risk. Column (4) weights underlying flood risk by the

number of retained mortgages instead of the dollar amount. In column (5), only retained

mortgages in a county are used to build the county weights. This approach reduces the

risk that mortgage securitization and other risk-shifting operations drive the identified

underperformance. Next, the primary measure of flood risk exposure is based on the

yearly flow of new mortgages. This approach is prone to a potential problem: It tends to

overweight outliers in lending patterns. For instance, a county might be highly relevant

for a bank for all years except one or vice versa. Hence, columns (6) and (7) use 3-year

rolling averages of mortgage lending as weights. Across all specifications, the result is

negative and statistically significant, with a coefficient β1 between -0.18 and -0.13 and

t-statistics ranging from -3.3 to -2.1. These results echo the coefficient in the baseline

regression of column (1).

Notably, the different measures all capture very similar exposure. The last column

of Table 5 reports a placebo test in which the exposure measure is intended to capture

a different channel. Instead of dividing the number of mortgages retained in a county

by the total amount of mortgages retained by a given bank, a bank’s retained mortgages

are divided by the total aggregate number of originated mortgages in that county (across

all lenders). The exposure measure captures county-level market concentration from the

perspective of a single bank. The prediction is that the result from this regression should

be insignificant and differ from other results. The coefficient on the exposure measure is

positive and insignificant, which suggests that the balance sheet exposure of a bank to a

county is the relevant measure.

All in all, the results suggest that bank stocks underreact to the risk of floods. The

literature on climate risk has proposed several explanations, which I analyze next.
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4.2 Size Differences

As seen in the summary statistics, flood-risk-exposed banks tend to be smaller. This

subsection examines potential differences in the return predictability for different size-

sorted samples.

Table 6 presents separate estimates of equation 7 for small and large banks. The

partitioning is based on either the median or top quartile of size or banks with less than

$50 billion total assets. Only the point estimates on Flood Risk Exposure in the samples

of small banks are negative and statistically significant (with t-statistics between -2.7

and -3.2). Point estimates range from -22 to -15 bps, which translates into up to 2.6%

annualized. The coefficient decreases as the sample of small banks becomes broader.

In column (1), only banks below the median are included, while in column (2) up to

the top quartile and even banks with less than $50 billion total assets are defined as

small. The coefficient for the sample of larger banks is even positive in one case, albeit

insignificant. This suggests that the result is not simply due to a lack of statistical power,

since the coefficients are not only statistically insignificant but also of a different sign.

Several hypotheses might explain the discrepancy between small and large banks. First,

large firms are typically more transparent. They attract more scrutiny from investors

and analysts and are often required to disclose more information. This is especially true

in the banking industry, in which large banks have always been treated differently, but

even more so since the Great Recession. Given that realized floods affect the accounting

performance of large banks, investors could be learning about the exposure to exante

flood risk for large banks. Thus, the positive (insignificant) coefficient for the sample of

large banks is evidence that investors can better price risk exposure to flooding. The

opacity and lack of disclosure of smaller banks render pricing risk more difficult.

[Table 6 about here]

The results suggest that heterogeneity in banks is an important driver of the baseline

result. The negative predictability of flood risk exposure is concentrated in small banks

and banks with a higher share of mortgage lending, although to a lesser extent than size;
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smaller banks are typically less diversified, and therefore more exposed to regional shocks.

4.3 Realized Flood Disasters

Standard asset pricing models predict that riskier assets have higher expected returns

than safer ones due to investors’ risk compensation needs. In the context of this analysis,

this implies that the stocks of banks with a higher flood risk exposure should trade at a

positive risk premium. However, using realized returns, the previous section demonstrated

that flood-risk-exposed banks traded at a significant negative flood risk premium. This

wedge between expected and realized returns can be driven by several causes.

Exposed assets have lower realized returns when the underlying risk materializes—i.e.,

the economy is shocked by a flood disaster. I test this explanation by explicitly controlling

for realized flood disasters.

Bank-level flood risk exposure captures underlying differences in the flood probabilities

of different regions in the United States. Therefore, it is likely correlated with past and

future flood disasters. An area prone to floods in the future has likely experienced floods

in the past. This implies that the flood risk exposure measure might pick up these

negative flood shocks. This, in turn, could explain the negative coefficient on the flood

risk exposure uncovered in the previous section.

To rule out the possibility that the negative flood risk premium is driven by periods of

disasters, I repeat the cross-sectional analysis by removing observations that fall within

a month of a flood disaster. The assumption to test is whether flood disasters are the

main driver of the negative coefficient on flood risk exposure. Table 7 reports results for

four subsamples of the data. First, major disasters are removed from the sample. In

column (1) of Table 7, the months around Hurricane Katrina are omitted; specifically,

the months from August to October 2005 are deleted. Column (2) removes other major

storms (e.g., Hurricanes Sandy and Harvey). Second, the sample is restricted to banks

unaffected by any disasters. Column (3) limits the sample to bank months with zero

exposure to flood disasters—that is, their damage exposure used in Section 3 is 0—and

column (4) reduces the sample further by confining it to banks with high exposure to
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flood risk and simultaneously zero damage from floods. Panel A reports results for the

entire sample of banks, Panel B is restricted to small banks, and Panel C includes large

banks.

[Table 7 about here]

As previously, the negative coefficient on flood risk exposure remains significant and

negative for the entire sample and the sample of small banks. Further, magnitudes are

almost unchanged. The only insignificant coefficient is in column (4), which is the most

restricted sample. Still, the point estimates are identical, which suggests that the power

of the small sample might be an issue in the estimation. The underperformance of flood-

risk-exposed banks cannot be attributed to flood disasters: Exposed banks trade at a

discount, even in samples without major disasters.

An alternative approach is to control for disaster shocks explicitly. So, using the

estimates for property damage from floods, I control for current disasters by including

Damage Exposure from equation 2 in the regression framework. Formally, the following

regression is estimated:

rbt − rft = α + β1Flood Risk Exposurebt + β2Scaled Damagessbt

+ β3Flood Risk Exposurebt × Scaled Damagessbt

+ β4log(Assets)bt + β5log(ME)bt

+ β6Leveragebt + β7rbt−1 + εbt.

(8)

The regression also includes the interaction term between the disaster realization measure

and exposure to risk, which captures offsetting forces separately.

[Table 8 about here]

Table 8 reports estimates from equation 8 for three measures of exposure to flood

damage. The damage measure used in columns (1) and (2) is based on the level of property

damage from floods and has been aggregated using a bank’s mortgage lending. The

original measure is in dollar value but has been standardized to simplify interpretation.
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Column (3) reports the result using the indicator variable High Damage, which takes a

value of 1 if bank-level Damage Exposure is in the top decile. Finally, the measure in

column (4) is the unweighted sum of all damages in a month. It is, therefore, constant

across all banks in a given month.

Panel A of Table 8 reports estimates for the total sample of banks. The coefficient on

flood risk exposure remains negative and significant. Also, the magnitude is almost un-

changed. Therefore, exposed banks still underperform. If the underperformance was due

to disaster shocks, the sign on flood risk exposure should have flipped. The fact that the

sign remains negative implies that disaster exposure cannot explain poor performance.

Nevertheless, the coefficient on the measure of the scaled damages is also negative and

significant in all specifications, which is in line with the hypothesis that floods negatively

affect bank performance. Except for column (3), the interaction between the two ex-

posure measures is not statistically significant. The compounding effect of high flood

risk exposure and high damage exposure in column (3) mutes the effect measured by the

interacted term, which would align with the explanation that past disasters drive perfor-

mance. However, the effect is isolated to one regression. All in all, these results suggest

that the current disaster is not the only or main driver of the results for the entire sample

of banks.

This finding is echoed when I focus on the subsample of small banks. The estimates

are reported in Panel B of Table 8. As previously, the magnitude and significance of

the regression slopes for flood risk exposure are unchanged. A one-standard-deviation

increase in exposure is associated with a 20 bps lower monthly excess return. The coeffi-

cients of the three disaster variables are also negative and significant in most cases.

Finally, Panel C of Table 8 reports estimates for the sample of large banks. Interest-

ingly, coefficients on flood risk exposure are positive, albeit not significant. This suggests

that larger banks are priced differently than smaller banks with respect to flood risk. The

coefficient on scaled damages is negative and significant; therefore, exposure to disaster

is associated with lower realized returns. Since negative shocks are expected to happen

with some probability (smaller than one), negative realizations should produce negative
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returns for exposed banks. This is precisely what is captured by the coefficient on scaled

damages. Thus, investors apparently price the risk of flooding for larger banks.

The results suggest that exposure to flood realizations for the sample of small banks

cannot explain the negative coefficient on the exposure to flood risk. However, the sig-

nificant coefficients show that exposure to disasters has explanatory power. Large banks

experience no underperformance with respect to flood risk exposure, while exposure to

disasters also commands poor performance. The divergence between the size-sorted sam-

ples suggests that investors can price the exposure to flood risk more precisely for large

banks. As discussed earlier, large and small banks differ in several characteristics and

disclosure requirements, which could help to explain this finding.

4.4 Portfolio-level Analysis

Having established that banks with high exposure to flood risk underperform in the cross-

section of bank stocks, I now use portfolio sorts to examine the return difference of banks

with high and low exposure. Banks are sorted in quartiles according to their flood risk

exposure, then the value-weighted returns of the four portfolios are computed. I estimate

the following time-series regressions:

(9) ri,t − rft = αi + βi
′Ft + εi,t,

where rit is the monthly return on the ith flood exposure-sorted portfolio. The vector F

includes six factors—the four factors from Carhart (1997) (the market (Mkt-rf ); small

minus big (SMB); high minus low (HML); and momentum (Mom))—and the two bond

factors from Gandhi and Lustig (2015)—ltg, which is the excess return on an index

of long-term U.S. Treasury bonds, and crd, which is the excess return on an index of

investment-grade, high-quality corporate bonds.

[Table 9 about here]

Table 9 reports estimates from equation 9 for the four quartile portfolio and a portfolio

that goes short portfolio 1 and long portfolio 5—i.e., it shorts the portfolio with the lowest
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exposure and goes long in the portfolio with the highest exposure. Panel A presents results

for the full sample from 2005 to 2020. In columns (1) to (4), the intercept decreases from

0.38% to 0.05% as we move from portfolio 1 to portfolio 4, albeit not monotonically. The

intercept on the High-Low portfolio has a value of -0.43 and a t-statistic of -3.3. The

intercept translates into a 43 bps monthly loss, or -5% annualized.

As in the previous section, small and large banks are analyzed separately. Panel B

of Table 9 reports the intercepts of the four flood risk exposure-sorted portfolios for the

sample of small banks. Intercepts decrease monotonically as we move from portfolio 1

(in column (1)) to portfolio 4 (in column (4)). The difference between the intercepts

in portfolios 5 and 1 is equal to -0.77 and statistically significant at the 1% level. The

High-Low portfolio loses 9.6% per month in annualized terms. Finally, Panel C of Table

9 reports intercepts for the sample of large banks. No discernible pattern in alphas is

observed in this last panel. In line with previous findings, this suggests that the potential

role of flood risk exposure is restricted to smaller banks.

[Figure 6 about here]

Figure 6 plots the cumulative returns of the bottom and top exposure-weighted port-

folios and the cumulative returns of the High-Low portfolio for the full sample of banks.

The cumulative returns of both portfolios increase over the sample running from 2005

to 2020. However, the return on the low-exposure portfolio grows much faster. This is

seen in the negative cumulative return of the High-Low portfolio. Except for the period

around the financial crisis in 2007-2009, the High-Low portfolio loses systematically and

ends at -50% in 2020.

The findings are also robust to other factors prominent in the asset pricing literature.

The monthly return difference, denoted by High-Low, averages -24 bps per month, as

reported in the first column of Panel A of Table 10. Column (2) includes the market

factor. Columns (3) and (4) add the three Fama and French (1993) and Carhart (1997)

four factors. In all cases, the flood factor’s alpha (regression intercept) has a very similar

magnitude, ranging from -0.2 to -0.24 with t-statistics between -1.60 and -1.86. The

flood factor’s exposures to SMB, HML, and Mom indicate that it is slightly leaning
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toward larger stocks, growth stocks, and recent winners, although none of the coefficients

are statistically significant.

[Table 10 about here]

Nevertheless, as size heterogeneity played an important role in the previous analysis,

Panel B of Table 10 constructs the High-Low portfolio without the largest 25% of banks.

The table only reports the intercepts, but as previously, column (1) includes no control,

column (2) adds the market factor, column (3) controls for the three Fama and French

(1993) return factors, and column (4) reports results for the Carhart (1997) four factors.

The magnitude of the alpha jumps to -0.56 or -56 bps per month and remains unchanged,

even when controlling for other asset pricing factors—and even though the sample includes

fewer banks, the statistical significance also increases, with t-statistics ranging from -2.1

to -2.5. The alpha implies that the High-Low portfolio loses, on average, 6.9% per year.

For completeness, Panel C of Table 10 constructs the High-Low portfolio, using only

the largest 25% of banks. The monthly return difference flips sign and averages 1 bps

but is not statistically significant, as reported in column (1). Sequentially including the

additional factors does not change the magnitude or significance by much. This finding

validates the hypothesis that investors are able to better price the exposure for larger

banks. The return differences for the sample of large banks are consistent with other

findings based on bank heterogeneity.

Along the same lines, Figure 7 plots the cumulative return of the High-Low portfolio

for the two size-sorted subsamples using exposure-weighted and equal-weighted cumula-

tive returns. Using only small banks, the portfolio loses more than 60% over the sample

(or almost 100% if we consider the Covid-related drop in 2020). The pattern is very

similar for the equal-weighted portfolio but less steep. For both portfolios, the cumu-

lative return decreases almost monotonically until 2016, when it increases slightly for a

few quarters before decreasing again in 2019. The two return series suggest the steady

underperformance of high-exposure banks that is not solely driven by an outlier. The

flatter curve around 2016 could be due to changes in the regulatory environment. As Re-

publicans gained control of both houses and the presidency, fewer new climate bills were
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passed—and some were even scrapped—which reduced regulatory shocks and rendered

the introduction of new legislation less likely. The cumulative return of the High-Low

portfolio based on the 25% largest banks is flat over the sample. Equal-weighted and

exposure-weighted cumulative returns increase until 2016, when they reach around 15%.

The equal-weighted cumulative return remains at this level, while the exposure-weighted

cumulative return decreases back to 0%.

[Figure 7 about here]

4.5 Time-series Variation of the Flood Risk Factor

To complement Table 8, I estimate how much of the return variation of the flood factor

can be attributed to flood damage:

(10) rFF
t = α + βFlood Damagest + εt,

where rFF
t is the monthly return on the flood factor and Flood Damages is either the

total monthly amount of flood damage, the monthly average across all counties, or an

indicator variable for large disasters.

[Table 11 about here]

Estimates for the full sample of banks are reported in Panel A of Table 11. Again,

three measures of damage exposure are used. Column (1) uses flood-related damage,

column (2) is again an indicator variable equal to 1 if the damage is in the top decile, and

column (3) aggregates costs across all types of disasters. The variables in columns (1)

and (3) are defined as changes, because the damages are now summed up across the U.S.

every month. The flood realization enters with the expected negative sign in all three

specifications. It is also significant in columns (1) and (3). R-squared is low in all three

regressions.

The key measure of interest is the estimate of the regression intercept. The magnitude

of the estimate is still in line with previous findings, but it is no longer statistically
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significant, which might be, albeit weak, evidence that flood risk exposure measures

disaster realizations to some extent. However, if we only focus on the sample of smaller

banks, this finding again vanishes, which suggests that underperformance for the sample

of small banks is likely driven by other unanticipated shocks or investor mispricing.

Panel B of Table 11 presents results for small banks. While the sign on flood realization

is still negative in all specifications, it is never significant. The estimated intercept remains

negative and significant, as in results from the previous sections, which highlights the

conclusion that the underperformance has other sources.

4.6 Climate Change Concerns

As knowledge about and attention to climate change increases, investors’ preference for

safer, unexposed assets increases, which leads to a shift in asset demand. The shift drives

up the prices of safer assets while simultaneously decreasing the price of exposed assets

(Pastor et al., 2022). This is tested by analyzing whether periods of high attention to

climate change explain the overall underperformance of flood-risk-exposed banks. To the

extent that we would expect higher returns of stocks with high exposure to flood risk

as compensation for that risk, we should find that the stocks of high flood risk banks

perform significantly worse than unexposed stocks in periods of increased attention to

and concerns about climate change risk. This conjecture is tested by examining the

performance of bank stocks when explicitly controlling for attention to climate change

and natural disasters. An alternative interpretation with the same implications is that

climate change concern is a relatively new phenomenon, as Pastor et al. (2021) point out.

Therefore, it is likely affecting returns. The last decade has been a transition period in

which investors’ preferences and demands for assets that allow hedging climate risks have

changed considerably. So, while the expected return of a bank highly exposed to flood

risk should be positive compared with a bank without exposure, the changing nature of

climate concerns leads to lower realized performance of the exposed bank—or, in other

words, investors may move away from assets highly exposed to future risk as news about

climate change becomes public. This leads exposed stocks to underperform during this
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transition period because of the shift in asset demand.

Both conjectures are tested using a selection of measures that capture attention to

climate change. First, I download frequency data from the Google Search Volume Index

(SVI) for the topic of “Climate Change” and the topic “Flood” more specifically. In the

literature, SVI has been shown to be a reliable proxy for investor attention to different

risks (e.g., Da et al., 2011). The data are used as a proxy for widespread awareness of

climate change and its potential effects. It is available at the national level at monthly

frequency for the entire sample from 2004 to 2020.

Second, I use the monthly version of the Media Climate Change Concerns (MCCC)

index based on climate change-related newspaper articles introduced by Ardia et al.

(2022).17 The index is available from January 2003 to June 2018 and is constructed from

10 newspapers and two newswires. The rationale for using this measure is that the media

have been shown to be an important driver of public awareness. Following Ardia et al.

(2022), I use a measure of unexpected media climate change concerns (UMC), defined

as the prediction errors from an AR(1) regression model calibrated on the MCCC index.

A benefit of their data is that an index is available for various components that capture

differences between transition and physical risks.18 While the focus is on the aggregated

measure, the results for an index focused on flood-related concerns, climate summits,

and global warming are shown separately. This allows for disentangling concerns about

physical risks from transition risks. So, using the different proxies for climate change

concerns, the following regression is estimated:

rbt − rft = α + β1Flood Risk Exposurebt + β2∆CCbt

+ β3Flood Risk Exposurebt ×∆CCbt

+ β4log(Assets)bt + β5log(ME)bt

+ β6Leveragebt + β7rbt−1 + εbt,

(11)

17The MCCC index is available for download at https://sentometrics-research.com.
18An additional advantage of the MCCC index is that it captures negative sentiment in news articles,

as opposed to a measure introduced by Engle et al. (2020).
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where ∆CC is the change in climate change concerns. If climate change concerns drive

the underperformance of flood-risk-exposed banks, then the estimate on the interaction

(β3) is negative, and β1 should become insignificant or even positive.

[Table 12 about here]

Estimates from these regressions are reported in Table 12. In columns (1) and (2),

∆CC is based on the SVI topics “Climate Change” and “Floods”, while in columns (3) to

(5), it is based on the MCCC index data. The measures have been standardized to ease

comparison across regressions. Panel A of Table 12 reports results for the entire sample

of banks. Estimates on the interaction term do not present a clear pattern. Only when

using the measure based on the “Flood” topic from Google is the interaction significantly

negative. Also, in all specifications, flood risk exposure estimates remain statistically

significant and negative, which is evidence that climate change attention does not subsume

flood risk exposure. Furthermore, the measure of climate change concern enters negatively

in all specifications and is significant, with t-statistics between -3.2 and -11.9 in all but

one regression. The estimate provides evidence that the effect of climate change concern

holds for all banks (exposed and non-exposed), which suggests that investors might view

banks as a bad hedge against climate change-related risks in general. Findings from the

total sample of banks are echoed in the sample of small banks, as reported in Panel B of

Table 12. Coefficients on Flood Risk Exposure are always negative and significant, with

t-statistics below -3.2. Magnitudes of ∆CC for the entire sample and the sample of small

banks are also very similar for the different measures.

The evidence shows that climate change concerns matter for the performance of bank

stocks, but fail to explain the negative return predictability of flood risk exposure.

4.7 Regulatory Risks

Flood-risk-exposed banks are more likely to be exposed to changes in climate regulations.

For instance, Democratic administrations are more likely to introduce new climate leg-

islation. I test this by examining banks that are mostly lending in Democratic-leaning
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counties and states compared with those lending in mostly Republican-leaning counties

and states.

Climate change and beliefs about climate change have become strongly political in the

United States. Typically, Republican voters believe that climate change is real to a lesser

extent than Democratic voters (Pew Research Center, 2016). This could affect banks

in several ways. First, Democrats are more likely to introduce new climate legislation

and regulate business activities, which negatively affects banks in majority Democratic

counties or states. Therefore, the pricing of flood risk exposure might differ depending

on which party controls the political agenda and the locations of banks. Alternatively,

investors who believe less in climate change are worse at pricing the flood risk exposure of

banks. I test the two hypotheses using election data to estimate the following regression:

rb,t − rf,t = α + β1Flood Risk Exposureb,t + β2Political Indicatorb,t

+ β3Flood Risk Exposureb,t × Political Indicatorb,t

+ β4log(Assets)b,t + β5log(ME)b,t

+ β6Leverageb,t + β7rb,t−1 + εb,t,

(12)

where Political Indicator is either based on county-level presidential election results or

captures the party affiliation of the current president. The estimate on the interaction

term is positive if unanticipated regulatory shocks that are more likely in majority Demo-

cratic counties drive the underperformance. In the case of pricing differences because of

climate change beliefs, the underperformance should be stronger in majority Republican

counties—i.e., the interaction term is negative. When using county-level data, vote shares

are aggregated at bank level using the mortgage share.19 If the majority of counties voted

Republican, the indicator variable equals 1. For the party affiliation of the current pres-

ident, the indicator variable is equal to 1 if the sitting president is a Republican (i.e.,

during the terms of President Bush and President Trump in the sample).

[Table 13 about here]

19Results are similar using simple means.
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Results from the regression are tabulated in Table 13. Columns (1) to (3) use county-

level election outcomes as the indicator variable for (i) all banks, (ii) small banks, and

(iii) large banks. In all three specifications, flood risk exposure has a negative coefficient,

which suggests that banks active in mostly Democratic counties underperform, no matter

the size. Estimates on the interaction between flood risk exposure and political indicator

are surprising. The coefficient is positive and significant in the first and third columns,

which suggests that banks in Republican counties underperform to a lesser extent and

even outperform other banks in the case of large banks. This finding can be explained

by the fact that Democratic-majority counties and states were more likely to introduce

regulations that negatively affected exposed banks’ stock prices.

In columns (4) to (6), the indicator variable reflects views at the federal level. Again,

the coefficients suggest that the underperformance is strongest in years when a Demo-

cratic president was in office. During those years, public attention to climate risks and the

probability of climate-related policies was higher than during President Bush’s and Pres-

ident Trump’s terms. Along the same line, Panel A in Table 14 separately investigates

control of the House of Representatives, the Senate, and the presidency. As previously,

the underperformance is insignificant if Republicans control Congress or the presidency.

As the measures correlate, Panel B in Table 14 estimates the regression using three or-

thogonal indicator variables: Republican control of Congress, only the Senate, or only the

House of Representatives. The effect is strongest if Republicans control neither house or

only the Senate. The control of Congress nullifies the coefficient on flood risk exposure.

This finding is explained by the fact that new climate legislation at the federal level can

only be initiated by the House of Representatives and the president.

Overall, the evidence in this section supports the view that regulatory shocks, which

are typically introduced by Democrats, lead to the underperformance of assets that are

more exposed to climate risks.
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5 Robustness

This section examines whether other potentially confounding factors drive the poor return

performance of flood-risk-exposed banks.

5.1 Implied Cost of Capital

So far, realized returns have proxied for expected returns. As discussed, realized returns

may diverge from expected returns for several reasons. An additional concern is that

unobserved bank characteristics might drive the measured underperformance of banks

exposed to flood risk. In this section, I use the implied cost of capital (ICC) as a measure

of expected return. The ICC is based on ex ante data—in contrast to realized returns,

which are based on ex post information—and is defined as the discount rate that sets

today’s stock price equal to expected future cash flows. I follow Dick-Nielsen et al. (forth-

coming), who use the estimation approach of Gebhardt et al. (2001) in which expected

cash flows are based on analysts’ earnings forecasts.

Figure A1.3 in the Appendix plots the time series of the ICC. Panel A plots the series

of the portfolio of high flood-exposed banks and the series of low flood-exposed banks.

Both series are very similar, suggesting little difference in expected returns between both

samples. This is tested more rigorously in Table A2.3. When running baseline regression

1, using the ICC as the dependent variable, the estimated coefficient on flood risk ex-

posure is positive but statistically insignificant. This finding alleviates concern that the

underperformance is driven by unobserved fundamental differences between exposed and

non-exposed banks. Further, it is suggestive evidence that unanticipated shocks cause

the underperformance of exposed banks.

5.2 Heterogeneity of Effects

As seen in Section 3.3, bank heterogeneity plays an important role in the relation between

bank performance and flood realization.

To examine the importance of heterogeneity for the return predictability, Table A2.4
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presents separate estimates of equation 7 for banks with a high share of mortgage lending

(High) compared with banks with a lower share of mortgage lending (Low), and small

banks compared with large banks. The partitioning is based on the median mortgage

lending share and size.

Panel A of Table A2.4 reports estimates from regressing excess return on the Flood

Risk Exposure for mortgage share-sorted banks. Columns (1) and (2) report the coef-

ficients for the subsamples, and the result in column (3) includes an interaction term

between Flood Risk Exposure and an indicator variable for whether the bank has a large

share of mortgages. Coefficients on Flood Risk Exposure are negative for the two sub-

samples, but only significantly for the subsample of banks that specialize in mortgage

lending. The point estimate in column (1) is almost double the magnitude of the point

estimate in column (2). For the sample of banks that specialize in mortgage lending, a

one-standard-deviation increase in exposure reduces the excess return by -25 bps, or -3%

annualized. However, the interaction in column (3) is not statistically significant. This

suggests that flood risk exposure also captures the exposure to floods through other bank

activities, such as other retail or commercial loans. Hence, the measure is a good proxy

for total bank-level flood risk exposure beyond mortgage lending.

Panel B of Table A2.4 reports results for the flood risk exposure-sorted samples. This

exercise is a confidence check that the previous findings are really driven by banks with

high exposure to exante flood risk. The estimate in column (1) is for the sample of

banks with above-median flood risk exposure. The coefficient on Flood Risk Exposure

is negative, with a value of −0.18, and is statistically significant at the 1% level. The

relation between excess return and flood risk exposure is not significant for banks with

low exposure; if anything, it would be slightly positive. This is evidence that the negative

relation is driven by high-exposure banks and does not capture the bank characteristics

of low-exposure banks.

The results suggest that the effect is not driven by sample differences but is stronger

for specific subsamples. The negative predictability of flood risk exposure is concentrated

in banks with a higher share of mortgage lending and banks with high-risk exposure.
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5.3 Flood Insurance

Flood insurance could be another cause for the stock return underperformance of flood-

risk-exposed banks. Banks have been shown to increase their lending following major

natural disasters, because household and firm demand increase for rebuilding purposes

(e.g., Cortés and Strahan, 2017; Rehbein and Ongena, 2020). So if all potential losses are

covered by insurance, a bank could, in theory, benefit from a disaster. Section 3 shows

that this is most likely not the case, since bank performance measured by diverse variables

deteriorates after a flood disaster. Nevertheless, in this section I discusses the U.S. flood

insurance market and test for potential bias in the results by explicitly controlling for

different insurance proxies.

In the United States, the standard home insurance contract covers some natural dis-

asters, such as a fire, but explicitly excludes floods (Oh et al., 2022).20 Flood insurance

is taken out separately and is provided federally by the National Flood Insurance Pro-

gram (NFIP), administered by FEMA. Flood insurance is technically required by law for

most mortgage borrowers in FEMA-designated flood zones. However, there are a couple

of important caveats. Federal flood insurance only covers mortgages up to $250,000 in

flood damage, and virtually no private insurers are available for the remaining cover-

age. Further, insurance contracts are short-dated with yearly renewals, leading to many

borrowers to drop out. Also, flood insurance is only mandatory in officially designated

flood zones, which leaves many properties at risk. The NFIP has, on average, 4 million

active contracts compared with 15 to 36 million homes that are estimated to be exposed

to disaster risk.21 An additional reason for the diverging numbers between insured and

at-risk homes is that climate change has led to significant changes in the underlying risk

and increased risk-sensitive regions. Therefore, keeping up with these changing patterns

is important if insurance coverage is to match actual risks. Although FEMA is mandated

to update its maps at a 5-year intervals, most are older. This results in a mismatch of

20The most widespread home insurance contract, called HO3, accounts for 95% of all sold contracts
and does not cover flood damage.

21Flavelle et al. (2020) estimate that 15 million properties are at risk from a 100-year flood, and
RealtyTrac (2016) estimate 36 million homes at risk from natural disasters.

42



insured and exposed homes.

To formally test the effect of flood insurance, I use the publicly available NFIP-flood

insurance policy published by FEMA. The data are available in two separate files. The

first file includes information on the universe of active policies and is available from

2009 to 2022. It provides information such as the coverage and premium of individual

policies. On average, the data contain around 4 million active policies, compared with

the estimated 15 million homes at high risk of flooding. The total insured amount is $1

trillion, with building coverage of roughly $750 billion; around $250 billion in contents is

covered, compared with a total estimate of $5-10 trillion actually at risk from flooding

(RealtyTrac, 2016). The number of active policies has slightly decreased in recent years.

As expected, Gulf Coast regions have the highest number of active policies. The second

NFIP file contains information on policy claims after flood disasters; as before, claims

are concentrated around the Gulf Coast. The assumption to be tested is that banks

exposed to counties with more extensive insurance coverage should be less affected by

floods. Therefore, the unanticipated shocks captured by flood risk exposure should be

attenuated—i.e., the coefficient on the interaction should be positive when analyzing

flood insurance policies.

Columns (1) and (2) of Table A2.5 report estimates of the cross-sectional regressions

that include variables for flood insurance penetration. In column (1), Flood Policies

is the retained mortgage-weighted average of the number of active flood policies from

the NFIP, which reduces potential fallout from future floods for exposed banks. The

control in column (2) is based on policy payouts for insured buildings and captures flood

realization. For the three samples of banks, controlling for flood insurance does not alter

the magnitude or significance of the estimate of flood risk exposure. Small flood risk-

exposed banks underperform by about 30 bps per month. Exposure to more or fewer

flood insurance policies does not seem to have any predictive power, which alleviates

concerns that differences in flood insurance take-up might be driving the negative risk

premium. Flood claims load significantly negatively. However, this effect is reassuring,

because flood claims are also highly correlated with flood disasters and the intensity of a
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disaster.

The evidence suggests that banks remain exposed to floods, even if they partly manage

flood risk when originating mortgages and some borrowers are insured against floods. The

finding also highlights the likelihood that mortgage-based flood risk exposure proxies

for general exposure to flood-prone regions, and captures the risk of general economic

downturns’ affecting exposed banks.

5.4 Mortgage Delinquencies

All explanatory variables used in the analysis are based on a bank’s mortgage lending

activity. An additional worry is that the findings are not driven by the flood damage or

risk exposure component but by the mortgage aspect of the measures. For instance, the

variables could simply be picking up varying performance of local real estate markets.

Columns (3) and (4) of Table A2.5 test this conjecture by controlling for banks’ expo-

sure to foreclosures or defaults. Again, the baseline results persist through the different

samples: In the full sample and for small banks, flood-risk-exposed banks underperform

with a monthly flood discount of 20 to 30 bps. Defaults load negatively in the three

samples, which suggests that, as hypothesized, poor real estate performance is associated

with lower future returns.

5.5 Regional Shocks

To rule out the possibility of other shocks, I control for additional regional measures

and report the estimates in Table A2.6. Column (1) includes state-level macroeconomic

variables, such as log(GDP ), inflation, income per capita, and unemployment rate. State-

level variables are aggregated at bank level using the same method as for the county-level

flood probabilities presented in Section 2.5. Each state-level measure is weighted by the

dollar amount of mortgages retained by a bank in that state. Column (2) includes 50

state indicator variables. For a given bank, a state indicator takes on value of 1 if the

bank has originated a mortgage in that state. This approach can be viewed as a form

of manually including state fixed effects. Column (3) interacts state dummies with year
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dummies. Finally, column (4) includes Headquarters-state fixed effects.

Across the four specifications, the coefficient on Flood Risk Exposure is negative,

ranging from -0.24 to -0.12, which suggests that unobserved regional characteristics do

not drive the finding. Results from Table A2.6 show that the baseline finding is not

driven by unobserved regional characteristics captured by Flood Risk Exposure.

6 Conclusion

Climate change-related disasters are projected to become considerably more extreme.

While policymakers are increasingly concerned that these disasters could negatively affect

financial stability, the literature lacks clear evidence of the interaction between physical

risks from climate and bank equity.

I focus on flood disasters in this paper, and provide evidence that flood shocks neg-

atively affect banks’ loan performance and equity. The first contribution is constructing

a bank-level flood risk exposure measure that combines up-to-date flood risk maps with

bank mortgage lending data. Previous literature has focused on the physical location

of banks to measure their exposure to different types of shocks, but this paper shows

that balance sheet composition matters. I document that banks’ return on assets is

significantly lower following a flood disaster. Not only is the initial shock significant,

but the effects are also long-lasting, with lower returns on assets up to 1 year after a

flood. Floods affect bank performance in part through banks’ mortgage portfolios; non-

performing loans and loan charge-offs are significantly higher. Furthermore, I find that

disasters significantly negatively impact household delinquencies and foreclosures, which

directly spill over to bank operations. Together with the projected increase in the sever-

ity and frequency of flood disasters, this suggests that the negative impact of floods will

worsen.

The second contribution is assessing whether these risks are priced in bank stock re-

turns. I address this question by undertaking a cross-sectional stock returns analysis, with

bank-level flood risk exposure as the key bank characteristic. I reveal a puzzling find-
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ing: flood risk exposure predicts return underperformance. The negative predictability

is restricted to the sample of smaller banks and is sizeable. On average, a one-standard-

deviation increase in exposure results in a 3.6-percentage-point lower annualized excess

return. Consistent with previous findings on different physical risks from climate change

by Faccini et al. (2021), Hong et al. (2019), and Manela and Moreira (2017), the results

suggest that physical risk from flooding is not fully priced in the cross-section of bank

stock returns. A portfolio that goes long banks with high flood exposure and short a

portfolio of banks with low exposure loses around 20 bps per month in the full sample,

or 77 bps when only considering small banks. This return on the portfolio cannot be

explained by a selection of factors used in the asset pricing literature. Taken together

with the first set of results, this suggests that while large and small banks are affected by

flood realizations, flood risk exposure only predicts the stock returns of smaller banks.

I shed light on how flood risk exposure negatively relates to bank stock returns. The

underperformance is most likely driven by a combination of different unanticipated shocks.

First, past flood disasters cannot fully explain the negative predictability. While flood

disasters lead to weaker stock performance, the negative relation to flood risk exposure

decreases but persists. Second, the effect is not driven by investor attention or knowledge

of climate change. Using the MCCC index from Ardia et al. (2022) and search data from

Google, I find that climate change concern has negative predictability for bank stock

returns, regardless of the bank’s exposure to flood risk. Still, the negative predictability

of flood risk exposure persists. In a final exercise, I find that the underperformance

is concentrated in banks active in Democratic-leaning counties, and specifically during

President Obama’s administration.

The results suggest that banks are negatively affected by flood realizations but that

investors do not directly or entirely pay attention to physical risks from flooding. This

highlights concerns that markets might not have fully adapted to the “new normal” ush-

ered in by climate change. Further, investors are more worried about climate policy risks

rather than physical risks, in line with findings by Ardia et al. (2022). This could also

explain the lower predictability from 2016 to 2019, since regulatory changes were reduced
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during the Trump presidency. The negative return predictability of flood risk exposure

for smaller banks suggests that investors withdraw from this segment of the market. In

contrast, both types of banks are affected by disaster realizations. Therefore, the results

may warrant the view of by a number of policymakers, whereby exposure to physical risks

from climate change should be monitored.
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(b) Share of Damage Estimates

Figure 1: Property Damage Estimates from Natural Disasters. This figure
reports estimates of property damage from natural disasters in the United States. Panel
(a) reports annual sums for the different disaster categories. Panel (b) plots the share
of each category to total damage in a year. Shares are computed with a 10-year rolling
window.
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(a) Flood Damage Map

(b) Flood Risk Map

Figure 2: Flood Maps. Figure (a) plots county-level SHELDUS property damage
from floods for the years 1980 to 2020 in shaded blue. Figure (b) plots county-level flood
risk from the First Street Foundation and shows the number of properties with a 1%
probability of flooding by 2050. Orange dots represent bank branches and are obtained
from FDIC Summary of Deposits for the year 2020.
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(b) Cumulative Abnormal Return

Figure 3: Stock market response to Hurricane Katrina. This figure depicts the
stock market response to Hurricane Katrina in August 2005. Banks active in counties
that received individual disaster relief from the Presidential Declaration Disaster Relief
program are defined as treated. The counties are shown in orange in Panel A. Banks
active in blue-shaded counties (that received neither individual nor public relief, but are
located in the Gulf) are the control group. Panel B reports the cumulative abnormal
return of treatment (orange circles) and control group (blue triangles).
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(a) Return on Assets
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(b) Tier 1 Leverage Ratio

Figure 4: Effect of flood disasters on bank performance. This figure depicts
the relation between bank-level exposure to current flood damage and returns on assets
(Panel A) and Tier 1 leverage ratio (Panel B). The figure is estimated by regressing the
bank variable in t + h on the exposure to current (t) flood damage, where h runs from
-3 to +4 quarters. All regressions are run including Tier 1 leverage, log(assets), and the
Mortgage lending ratio, as well as bank and quarter fixed effects. Standard errors are
clustered at bank level. The solid line plots point estimates for Scaled Damages. Short
dashed lines denote 97.5% confidence intervals for this estimate.
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(a) Non-performing Loans
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(b) Loan Charge-offs

Figure 5: Effect of flood disasters on loan performance. This figure presents
the relation between bank-level exposure to current flood damage and non-performing
loans (Panel A) and loan charge-offs (Panel B) for banks with a high share of mortgage
lending. The figure is estimated by regressing the bank variable in t+h on the interaction
between exposure to current (t) flood damage and an indicator variable that equals 1 if
a bank has a mortgage lending ratio in the top quartile. h runs from -3 to +4 quarters.
All regressions are run including Tier 1 leverage, log(assets), and the Mortgage lending
ratio, as well as bank and quarter fixed effects. Standard errors are clustered at bank
level. The solid line plots the point estimates for Scaled Damages. Short dashed lines
denote 95% confidence intervals for this estimate.
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Figure 6: Cumulative Return of the Exposure-weighted Flood Factor. The
solid line plots the cumulative return of the flood factor constructed with bankśflood risk
exposure. The dotted blue line (High) plots the cumulative return of the portfolio of
banks with high flood exposure, while the dashed blue line (Low) reports the cumulative
return of the portfolio of banks with low flood risk exposure.
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Figure 7: Cumulative Return of the Exposure-weighted Flood Factor for Size-
sorted Samples. Orange solid and dotted lines plot the cumulative returns of the flood
factor from the sample restricted to small banks. The solid line is the exposure-weighted
cumulative return and the dotted line is the equal-weighted returns. The two blue lines
plot large banks’ exposure-weighted cumulative return (two-dash) and equal-weighted
cumulative return (dashed).
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Table 1:
Summary Statistics

This table provides sample means of the main variables used in the analysis. Means are computed for
two distinct samples sorted and split on BHCs’ flood risk exposure measure. Banks with a flood risk
exposure below the fourth quartile are defined as “Low”, while banks in the fourth quartile belong to the
group “High”. Ratios are reported in %. Mortgage-based variables come from a bank-year panel, while
bank balance sheet information is available at quarterly level and stock returns are monthly. Means
and differences are computed at the respective frequencies to avoid repetitions. Flood Risk Exposure
is a weighted average of regional flood probabilities, where the weights are based on banks’ mortgage
lending activity. The first measure is based on flood probabilities by 2050, and the second has a 2035
horizon. The third uses risk scores assigned to counties.

High Exposure Low Exposure

Mean Obs Mean Obs. Diff. t-Stat Signif.

Mortgage-based Variables
Application (Mn $) 129.7 1, 721 176.0 5, 157 −46.3 −1.3

Retained Amount (Mn $) 56.4 1, 721 83.0 5, 157 −26.7 −1.4

Active Counties 101.2 1, 721 115.7 5, 157 −14.5 −1.9 ∗
Active States 7.9 1, 721 8.9 5, 157 −1.0 −3.2 ∗∗∗
Average Origination (Thsd $) 519.7 1, 721 516.4 5, 157 3.3 0.1

Average Retained (Thsd $) 0.1 1, 721 0.1 5, 157 −0.03 −1.4

Flood Risk Exposure (2050) 20.7 1, 721 7.9 5, 157 12.8 49.9 ∗∗∗
Flood Risk Exposure (2035) 19.0 1, 721 7.6 5, 157 11.5 55.3 ∗∗∗
Flood Risk (Score-based) 2.4 1, 721 1.4 5, 157 1.0 53.6 ∗∗∗
Insurance Policies 11, 293.2 1, 721 3, 563.7 5, 157 7, 729.6 11.5 ∗∗∗

Continued on next page

62



Table 1 – Continued from previous page

High Exposure Low Exposure

Mean Obs Mean Obs. Diff. t-Stat. Signif.
Insurance Sum (Mn$) 2, 322.5 1, 721 725.8 5, 157 1, 596.7 11.6 ∗∗∗

Stock Variables
Return 0.3 8, 248 0.4 71, 911 −0.1 −1.1

Excess Return 0.1 8, 248 0.3 71, 911 −0.1 −1.0

Balance Sheet Variables
Total Assets (Bn) 20.5 5, 909 50.7 16, 511 −30.2 −12.4 ∗∗∗
Loan Ratio 68.0 5, 909 68.1 16, 511 −0.1 −0.4

Tier 1 Leverage 10.6 5, 909 10.0 16, 511 58.1 1.1

Deposit Ratio 77.3 5, 909 75.4 16, 511 1.9 11.6 ∗∗∗
Real Estate Loans Ratio 45.3 5, 909 44.8 16, 511 0.4 1.9 ∗
Mortgage Ratio 19.0 5, 909 18.6 16, 511 0.3 2.1 ∗∗
ROA 0.4 5, 909 0.4 16, 511 0.003 0.2

NPL Ratio 1.2 5, 909 1.2 16, 511 0.02 0.8

Z-score 21.9 5, 909 29.6 16, 511 −7.7 −4.8 ∗∗∗
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Table 2:
Return on Assets and Flood Disasters

This table reports results from pooled-OLS regressions with fixed effects. The main ex-
planatory variable is Scaled Damages, which captures banks’ exposure to flood disasters.
The measure is based on property damage estimates from SHELDUS available at county-
month level and aggregated at the bank level using different county weights. In columns
(1) and (2) damages are weighted by originated and retained mortgages, respectively.
Column (3) first multiplies county-level damage amounts in dollars by the bank’s market
share before dividing by total assets. Column (4) uses deposit shares. In column (5),
damages are weighted by headquarters counties. Further, in all columns, scaled dam-
ages have been standardized to allow for comparison across regressions. The dependent
variable is the one-quarter-ahead return on assets. Standard errors are clustered at bank
level. t-statistics are in parentheses. Statistical significance is given by ∗: p < 0.10;
∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

ROAt+1

County Weight Originated Retained Market-
Share

Deposits Headquarters

(1) (2) (3) (4) (5)

Scaled Damages -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗ -0.001 -0.001
(-3.76) (-4.24) (-2.42) (-0.600) (-0.617)

ROA 0.255∗∗∗ 0.255∗∗∗ 0.255∗∗∗ 0.255∗∗∗ 0.255∗∗∗
(5.11) (5.11) (5.11) (5.11) (5.11)

Leverage 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(3.44) (3.44) (3.43) (3.44) (3.44)

log(Assets) -0.169∗∗∗ -0.169∗∗∗ -0.170∗∗∗ -0.169∗∗∗ -0.169∗∗∗
(-4.27) (-4.27) (-4.27) (-4.26) (-4.26)

Loan Ratio -0.025 -0.025 -0.025 -0.025 -0.025
(-0.147) (-0.148) (-0.149) (-0.148) (-0.148)

Mortgage Ratio 0.078 0.078 0.080 0.078 0.077
(0.335) (0.335) (0.343) (0.332) (0.332)

Bank FE YES YES YES YES YES
Quarter FE YES YES YES YES YES
Obs. 19,126 19,126 19,125 19,126 19,126
R2 0.498 0.498 0.498 0.498 0.498
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Table 3:
Bank Performance and Flood Disasters

This table reports results from pooled-OLS regressions with fixed effects. The main explanatory variable is Scaled Damages, which captures
banks’ exposure to flood disasters. The measure is based on property damage estimates from SHELDUS available at county-month level
and aggregated at the bank level using a bank’s mortgage lending activity. Dependent variables are one-quarter-ahead measures. Leverage
and capital ratio are based on Tier 1 capital. Stable wholesale funding ratio (SWFR), non-performing loans, charge-offs, and loan-loss
provisions are divided by the total loans. Z -Score is a proxy for a bank’s default probability. Standard errors are clustered at bank level.
t-statistics are in parentheses. Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

ROAt+1 Leveraget+1 Capital
Ratiot+1

SWFRt+1 Z-Scoret+1 NPLt+1 Charge-
Offst+1

Loan
Losst+1

(1) (2) (3) (4) (5) (6) (7) c (8)

Scaled Damages -0.005∗∗∗ -0.022∗∗∗ -0.018∗∗ -0.049∗∗∗ -0.011∗∗∗ 0.002 0.0002 0.013∗∗∗

(-3.92) (-3.16) (-2.56) (-11.3) (-2.93) (0.405) (0.902) (3.44)
ROA 0.248∗∗∗

(4.78)
Capital Ratio 1.13∗∗∗

(21.3)
SWFR 0.638∗∗∗

(40.3)
Z-Score 0.859∗∗∗

(26.8)
NPL 0.843∗∗∗

(31.4)
Charge-Offs 0.369∗∗∗

(15.5)
Loan Loss 0.362∗∗∗

(9.28)
Continued on next page
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Table 3 – Continued from previous page

ROAt+1 Leveraget+1 Capital
Ratiot+1

SWFRt+1 Z-Scoret+1 NPLt+1 Charge-
Offst+1

Loan
Losst+1

(1) (2) (3) (4) (5) (6) (7) (8)
Leverage 0.002 0.023 -1.19∗∗∗ -0.003 -0.009 -0.0002 -0.0002 -0.001

(0.975) (0.470) (-13.0) (-0.887) (-0.973) (-0.120) (-0.942) (-0.869)
log(Assets) -0.227∗∗∗ -1.62∗∗∗ -1.31∗∗∗ 1.36∗∗∗ -0.007 0.430∗∗∗ 0.0004 0.251∗∗∗

(-4.25) (-4.68) (-3.88) (6.56) (-0.093) (6.34) (0.068) (5.95)
Loan Ratio 0.060 2.28 6.87∗∗∗ -3.09∗∗∗ -0.550 1.11∗∗∗ -0.004 0.706∗∗∗

(0.283) (1.53) (3.22) (-3.15) (-1.13) (3.60) (-0.152) (4.06)
Mortgage Ratio -0.033 -6.78∗ -10.1∗∗ -0.530 0.051 -0.661 0.086∗∗ -0.622∗∗∗

(-0.106) (-1.66) (-2.22) (-0.349) (0.105) (-1.62) (2.27) (-2.93)
Bank FE YES YES YES YES YES YES YES YES
Quarter FE YES YES YES YES YES YES YES YES
Obs. 15,012 14,485 14,475 15,012 9,053 15,012 14,438 15,010
R2 0.493 0.886 0.892 0.840 0.984 0.855 0.495 0.560
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Table 4:
Heterogeneity in Bank Returns on Assets

This table partitions results from Table 3 on mortgage loan share (High and Low) and
bank size (Small and Large). The main explanatory variable is Scaled Damages, which
captures banks’ exposure to flood disasters. The measure is based on property damage
estimates from SHELDUS available at county-month level and aggregated at bank level
using a bank’s mortgage lending activity. Dependent variables are one-quarter-ahead
measures. Bank controls include lagged dependent variables, leverage, log(assets), loan
ratio, and mortgage loan share. Standard errors are clustered at bank level. t-statistics are
in parentheses. Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Returns on Assets

Mortgage Loan Share Size

High Low Small Large
(1) (2) (3) (4)

Scaled Damages -0.011∗ -0.004∗∗∗ -0.004∗∗∗ -0.009∗∗∗
(-1.85) (-3.88) (-8.73) (-3.71)

Bank Controls YES YES YES YES
Bank FE YES YES YES YES
Quarter FE YES YES YES YES
Obs. 8,707 6,304 6,119 8,892
R2 0.461 0.567 0.466 0.528

Panel B: Non-performing Loans

Mortgage Loan Share Size

High Low Small Large
(1) (2) (3) (4)

Scaled Damages 0.018∗ 0.0010 -0.003∗ 0.016∗∗∗
(1.90) (0.169) (-1.85) (4.17)

Bank Controls YES YES YES YES
Bank FE YES YES YES YES
Quarter FE YES YES YES YES
Obs. 8,707 6,304 6,119 8,892
R2 0.868 0.865 0.857 0.863

Panel C: Loan Charge-offs

Mortgage Loan Share Size

High Low Small Large
(1) (2) (3) (4)

Scaled Damages 0.002∗∗ −4× 10−5 0.0001 0.0003
(2.31) (-0.268) (0.660) (1.22)

Bank Controls YES YES YES YES
Bank FE YES YES YES YES
Quarter FE YES YES YES YES
Obs. 8,403 6,034 6,106 8,331
R2 0.514 0.541 0.478 0.525
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Table 5:
Flood Risk Exposure and the Cross-section of Bank Stock Returns

This table reports results from regressing bank-level excess returns on the flood risk exposure. Baseline exposure is based on flood risk by
2050. Column (2) uses flood risk by 2035 using a second variable provided by the First Street Foundation. In column (3), the exposure
measure is based on risk scores assigned to the county rather than probabilities. Nb-weighted uses the number of mortgages rather than
mortgage amounts when computing the local exposure measure. Rolling measures are computed as 3-year rolling averages. Flood risk
exposure in the final column is constructed using local mortgage concentration and therefore captures a different channel. The dependent
variable is the difference between the bank’s stock return and the risk-free rate. Bank balance sheet data are from Call Reports. Equity
data are from CRSP. The Flood Risk Exposure is based on county-level flood risk from the First Street Foundation and aggregated at
bank level using local mortgage activity of a bank from Home Mortgage Disclosure Act (HMDA) data. Standard errors are clustered at
bank level. Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Excess Returns

2050 Flood
Risk

2035 Flood
Risk

Flood Risk
Score

Number-
weighted

Origination-
weighted

Rolling
Retained

Rolling
Origination

Competition-
weighted

(1) (2) (3) (4) (5) (6) (7) (8)

Flood Risk Exposure -0.174∗∗∗ -0.178∗∗∗ -0.133∗∗ -0.185∗∗∗ -0.173∗∗∗ -0.159∗∗ -0.182∗∗∗ 0.019
(-3.03) (-3.11) (-2.05) (-3.21) (-3.28) (-2.46) (-3.10) (0.657)

Leverage -0.002 -0.002 -0.003 -0.002 -0.002 -0.002 -0.002 -0.003
(-0.662) (-0.747) (-0.913) (-0.632) (-0.691) (-0.678) (-0.696) (-0.955)

log(Assets) -3.02∗∗∗ -3.03∗∗∗ -3.02∗∗∗ -3.03∗∗∗ -3.03∗∗∗ -3.02∗∗∗ -3.03∗∗∗ -3.01∗∗∗

(-15.1) (-15.1) (-15.1) (-15.1) (-15.2) (-15.1) (-15.1) (-15.2)
Loan Ratio -1.14 -1.14 -1.13 -1.16 -1.15 -1.14 -1.16 -1.13

(-1.56) (-1.56) (-1.55) (-1.58) (-1.59) (-1.56) (-1.59) (-1.59)
Mortgage Ratio 1.54∗∗∗ 1.55∗∗∗ 1.55∗∗∗ 1.55∗∗∗ 1.54∗∗∗ 1.58∗∗∗ 1.58∗∗∗ 1.47∗∗

(2.66) (2.69) (2.67) (2.68) (2.66) (2.73) (2.75) (2.50)
Continued on next page
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Table 5 – Continued from previous page

Excess Returns

2050 Risk 2035 Risk Risk Score Number-
weighted

Origination-
weighted

Rolling
Retained

Rolling
Origination

Competition-
weighted

(1) (2) (3) (4) (5) (6) (7) (8)
log(BE/ME) 2.86∗∗∗ 2.87∗∗∗ 2.86∗∗∗ 2.87∗∗∗ 2.86∗∗∗ 2.86∗∗∗ 2.87∗∗∗ 2.84∗∗∗

(15.8) (15.8) (15.7) (15.7) (15.9) (15.7) (15.7) (15.9)
Return -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗ -0.089∗∗∗

(-10.1) (-10.1) (-10.1) (-10.1) (-10.1) (-10.1) (-10.1) (-10.1)
Mortgage Exposure -1.48∗∗∗ -1.50∗∗∗ -1.52∗∗∗ -1.48∗∗∗ -1.48∗∗∗ -1.56∗∗∗ -1.60∗∗∗ -1.34∗∗∗

(-3.54) (-3.57) (-3.58) (-3.54) (-3.51) (-3.66) (-3.70) (-3.23)
Month FE YES YES YES YES YES YES YES YES
Obs. 43,227 43,227 43,227 43,227 43,227 43,227 43,227 43,227
R2 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
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Table 6:
Flood Risk Exposure in Size-sorted Samples

This table reports results from pooled-OLS regressions with fixed effects for different size-
sorted samples. The main explanatory variable is the Flood Risk Exposure, which captures
banks’ exposure to ex ante flood risk. The measure is based on expected flood risk estimates
from the FSF available at county level and aggregated at bank level using a bank’s mortgage
lending activity. Columns (1) to (3) are estimates for the sample of small banks defined as
either below median size, below top quartile size, or less than $50 billion in total assets.
Columns (4) to (6) are estimates for samples of large banks. The dependent variable
is excess return. All regressions include bank-level controls, such as log(book-to-asset),
Tier 1 leverage, mortgage ratio, loan ratio, log(assets), past-month return, and mortgage
exposure. Standard errors are clustered at bank level. t-statistics are in parentheses.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Excess Returns

Small Banks Large Banks

<Median <Top
Quartile

<$50 bn >Median >Top
Quartile

>$50 bn

(1) (2) (3) (4) (5) (6)

Flood Risk Exposure -0.218∗∗∗ -0.195∗∗∗ -0.149∗∗∗ -0.058 0.017 -0.188
(-3.24) (-3.23) (-2.66) (-0.648) (0.191) (-0.926)

Leverage -0.022∗ -0.002 -0.003 -0.0004 -0.004 0.002∗∗∗
(-1.91) (-0.538) (-0.757) (-0.231) (-0.688) (3.20)

log(Assets) -3.60∗∗∗ -3.55∗∗∗ -3.25∗∗∗ -2.45∗∗∗ -2.05∗∗∗ -2.73∗∗∗
(-11.7) (-16.2) (-17.1) (-8.72) (-6.00) (-3.89)

Loan Ratio -1.43∗ -1.09 -0.322 0.020 0.427 -1.60
(-1.83) (-1.46) (-0.453) (0.026) (0.545) (-1.31)

Mortgage Ratio 1.44∗ 1.15∗∗ 1.12∗∗ 0.470 0.225 0.044
(1.76) (2.02) (2.27) (0.956) (0.341) (0.022)

log(BE/ME) 3.15∗∗∗ 3.02∗∗∗ 2.86∗∗∗ 2.54∗∗∗ 2.29∗∗∗ 2.72∗∗∗
(14.8) (17.3) (16.8) (8.98) (6.59) (3.90)

lag Return -0.110∗∗∗ -0.105∗∗∗ -0.094∗∗∗ -0.043∗∗∗ -0.002 0.021
(-9.61) (-11.3) (-11.2) (-3.58) (-0.153) (0.669)

Mortgage Exposure -2.11∗∗∗ -1.75∗∗∗ -1.61∗∗∗ -0.331 -0.799 -19.2
(-4.20) (-4.10) (-4.04) (-0.521) (-0.382) (-1.28)

Month FE YES YES YES YES YES YES
Obs. 27,747 42,371 52,555 28,967 14,343 4,159
R2 0.207 0.260 0.296 0.483 0.544 0.613
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Table 7:
Flood Risk Exposure without Disaster Periods

This table reports results from regressing bank equity returns on the main flood risk
exposure for different samples. Columns (1) and (2) remove months around Hurricane
Katrina (August 2005) and other major storms. Column (3) focuses on banks that have
a damage exposure measure of zero. Column (4) restricts the sample further to banks
with high flood risk exposure but experiencing no damages from floods in a given month.
Disasters data come from SHELDUS. All regressions include Tier 1 leverage, log(assets),
loan ratio, mortgage loan ratio, log(market equity), and lagged return. The dependent
variable is the difference between the bank’s stock return and the risk-free rate. Bank
balance sheet data come from Call Reports. Equity data are from CRSP. The sample runs
from 2004 to 2020. Standard errors are clustered at bank level. Statistical significance is
given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: All Banks

Excess Returns

Without
Hurricane
Katrina

Without
Major Storms

Zero Damage Zero Damage
& High-Risk

(1) (2) (3) (4)

Flood Risk Exposure -0.130∗∗∗ -0.137∗∗∗ -0.210∗∗∗ -0.185
(-2.59) (-2.71) (-2.65) (-1.44)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 58,861 57,274 14,371 3,433
R2 0.306 0.305 0.261 0.339

Panel B: Small Banks

Excess Returns

Without
Hurricane
Katrina

Without
Major Storms

Zero Damage Zero Damage
& High-Risk

(1) (2) (3) (4)

Flood Risk Exposure -0.179∗∗∗ -0.185∗∗∗ -0.267∗∗ -0.236
(-2.68) (-2.78) (-2.58) (-1.29)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 29,238 28,562 9,905 2,500
R2 0.208 0.207 0.223 0.312

Continued on next page
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Panel C: Large Banks

Excess Returns

Without
Hurricane
Katrina

Without
Major Storms

Zero Damage Zero Damage
& High-Risk

(1) (2) (3) (4)

Flood Risk Exposure -0.047 -0.054 -0.029 0.032
(-0.615) (-0.687) (-0.265) (0.219)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 29,623 28,712 4,466 933
R2 0.484 0.482 0.450 0.556
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Table 8:
Realized Flood Disasters

This table reports results from regressing bank equity returns on the main flood risk
exposure and controlling for realized flood disasters. Disasters data come from SHELDUS.
Scaled Damages is a weighted average of property damage estimates, where the weights
are given by a bank’s mortgage lending activity. High Damage is an indicator variable
equal to 1 if Damage Exposure is in the top quartile. Total Damage is the unweighted
dollar amount of damage that occurred in the United States in a given month. All
regressions include bank-level controls Tier 1 leverage, log(assets), loan ratio, mortgage
loan ratio, log(market equity), and lagged return. Macro controls are log(GDP), CPI,
PCPI, and the unemployment rate. The dependent variable is the difference between
the bank’s stock return and the risk-free rate. Bank balance sheet data come from
Call Reports. Equity data are from CRSP. Standard errors are clustered at bank level.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: All Banks

Excess Returns Return
Residuals

Scaled Damages Weighted Damages High
Damage

Total
Damages

Weighted
Damages

(1) (2) (3) (4) (5)

Flood Risk Exposure -0.118∗∗ -0.118∗∗ -0.150∗∗ -0.124∗∗ -0.091∗

(-2.00) (-2.00) (-2.52) (-2.10) (-1.75)
Scaled Damages -0.085∗∗∗ -0.084∗∗∗ -0.238∗ -0.199∗∗∗

(-3.81) (-2.72) (-1.69) (-9.46)
Flood Risk Exposure -0.001 0.338∗∗ -0.016
× Scaled Damages (-0.078) (2.09) (-0.654)

Obs. 50,957 50,957 50,957 50,957 50,957
R2 0.054 0.054 0.054 0.055 0.033

Panel B: Small Banks

Excess Returns Return
Residuals

Flood Damages Weighted Damages High
Damage

Total
Damages

Weighted
Damages

(1) (2) (3) (4) (5)

Flood Risk Exposure -0.200∗∗∗ -0.200∗∗∗ -0.223∗∗∗ -0.202∗∗∗ -0.180∗∗

(-2.59) (-2.59) (-2.68) (-2.60) (-2.53)
Flood Damages -0.002 0.004 -0.550∗∗ -0.141∗∗∗

(-0.067) (0.080) (-2.41) (-4.20)
Flood Risk Exposure -0.004 0.347∗ 0.002

Continued on next page
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× Flood Damages (-0.254) (1.87) (0.077)
Obs. 24,677 24,677 24,677 24,677 24,677
R2 0.059 0.059 0.059 0.059 0.038

Panel B: Large Banks

Excess Returns Return
Residuals

Flood Damages Weighted Damages High
Damage

Total
Damages

Weighted
Damages

(1) (2) (3) (4) (5)

Flood Risk Exposure 0.031 0.033 0.003 0.018 0.025
(0.313) (0.331) (0.032) (0.181) (0.281)

Flood Damages -0.116∗∗∗ -0.101∗∗∗ -0.212 -0.252∗∗∗

(-5.42) (-4.12) (-1.20) (-10.4)
Flood Risk Exposure -0.021 0.220 -0.051
× Flood Damages (-1.54) (0.910) (-1.49)

Obs. 26,280 26,280 26,280 26,280 26,280
R2 0.057 0.057 0.057 0.058 0.033
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Table 9:
Risk-adjusted Returns on Flood Risk-sorted Portfolios

This table presents estimates from OLS regressions of monthly value-weighted excess
returns on each Flood Risk Exposure-sorted portfolio of banks on the Carhart (1997)
four-factor model and two bond risk factors from Gandhi and Lustig (2015). crd is the
excess return on an index of investment-grade corporate bonds, while ltg is the excess
return on an index of long-term government bonds. High-Low is a portfolio that goes
long the high exposure portfolio and short the low flood exposure portfolio. Standard
errors are Newey-West adjusted with three lags. Statistical significance is given by ∗:
p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Full Sample

Risk-adjusted Returns High-Low

(1) (2) (3) (4) (5)

(Intercept) 0.377 0.054 0.112 0.045 -0.434∗∗∗
(1.28) (0.208) (0.492) (0.178) (-3.27)

Mkt - R_f 0.537∗∗∗ 0.596∗∗∗ 0.634∗∗∗ 0.609∗∗∗ 0.074
(8.46) (12.1) (10.5) (10.7) (1.51)

SMB 0.543∗∗∗ 0.561∗∗∗ 0.530∗∗∗ 0.556∗∗∗ 0.016
(4.92) (6.00) (5.88) (5.80) (0.237)

HML 0.606∗∗∗ 0.612∗∗∗ 0.737∗∗∗ 0.681∗∗∗ 0.072
(7.21) (7.11) (9.12) (7.31) (1.34)

Mom -0.145∗ -0.070 -0.051 -0.063 0.080∗∗
(-1.96) (-0.968) (-0.824) (-0.861) (2.14)

ltg -0.539∗∗∗ -0.219∗∗ -0.127 -0.225∗∗ 0.310∗∗∗
(-3.48) (-2.29) (-0.989) (-2.27) (3.96)

crd 0.365 -0.217 -0.338 -0.257 -0.610∗∗∗
(1.34) (-0.947) (-1.35) (-1.18) (-3.81)

Obs. 190 190 190 190 190
R2 0.71 0.78 0.80 0.78 0.15

Panel B: Small Banks

Risk-adjusted Returns High-Low

(1) (2) (3) (4) (5)

(Intercept) 0.739∗∗ 0.235 0.131 0.067 -0.774∗∗∗
(2.16) (0.737) (0.453) (0.216) (-3.76)

Factors YES YES YES YES YES
Obs. 190 190 190 190 190
R2 0.57 0.61 0.61 0.63 0.14

Panel C: Large Banks

Risk-adjusted Returns High-Low

(Intercept) -0.067 0.101 -0.017 0.044 0.009
(-0.225) (0.320) (-0.058) (0.148) (0.062)

Factors YES YES YES YES YES
Obs. 190 190 190 190 190
R2 0.74 0.76 0.77 0.75 0.05
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Table 10:
Performance of the Exposure-weighted Flood Factor

This table reports monthly time-series regressions using data from January 2005 to De-
cember 2020. The dependent variable is the return on the exposure-weighted flood factor,
a portfolio that goes long a high-exposure portfolio and short a low flood-exposure port-
folio. Mkt is the market return. SMB and HML are the size and value factors of Fama
and French (1993). Mom is the momentum factor of Carhart (1997). Returns are in
percent per month. Standard errors are clustered Newey-West adjusted with three lags.
t-statistics are in parentheses. Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05;
∗ ∗ ∗:p < 0.01

Panel A: Full Sample

Flood Factor

(1) (2) (3) (4)

(Intercept) -0.237∗ -0.206 -0.234∗ -0.243∗
(-1.89) (-1.60) (-1.79) (-1.86)

Mkt -0.017 0.003 0.014
(-0.586) (0.087) (0.416)

SMB -0.058 -0.055
(-0.988) (-0.940)

HML -0.037 -0.011
(-0.762) (-0.212)

Mom 0.044
(1.33)

Obs. 192 190 190 190
R2 0.002 0.013 0.022

Panel B: Small Banks

Flood Factor

(1) (2) (3) (4)

(Intercept) -0.563∗∗ -0.556∗∗ -0.558∗∗ -0.579∗∗
(-2.10) (-2.46) (-2.43) (-2.53)

Factors None Mkt Mkt, SMB,
HML

Mkt, SMB,
HML, Mom

Obs. 192 190 190 190
R2 0.034 0.040 0.056

Panel C: Large Banks

Flood Factor

(1) (2) (3) (4)

(Intercept) 0.015 -0.018 0.022 0.019
(0.091) (-0.105) (0.129) (0.109)

Factors None Mkt Mkt, SMB,
HML

Mkt, SMB,
HML, Mom

Obs. 192 190 190 190
R2 0.006 0.018 0.019
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Table 11:
Flood Disasters and Flood Factor Performance

This table reports results from regressing the monthly return of the flood factor on differ-
ent measures of flood disasters. The flood factor is constructed as a long-short portfolio
that goes long banks with large exposure to flood risk and short banks with low risk.
Returns are in percent. The variable Flood Damage is the sum of flood-related property
damage estimates in a given month across the United States and comes from SHELDUS.
High Damage is an indicator variable with a value of 1 if the estimated monthly dam-
ages are within the top decile. In column (3), Total Damage are damage estimates for
all hazard types. Standard errors are Newey-West adjusted with three lags. Statistical
significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Full Sample

Flood Factor

(1) (2) (3)

(Intercept) -0.211 -0.165 -0.212
(-1.54) (-1.06) (-1.55)

∆log(Flood Damage) -0.107∗∗
(-2.32)

High Damage -0.389
(-1.08)

∆ log(Total Damage) -0.094∗∗
(-2.09)

Obs. 180 180 180
R2 0.029 0.005 0.024

Panel B: Small Banks

Flood Factor

(1) (2) (3)

(Intercept) -0.565∗∗ -0.528∗∗ -0.565∗∗
(-2.55) (-2.29) (-2.56)

∆ log(Flood Damage) -0.071
(-0.887)

High Damage -0.306
(-0.391)

∆ log(Total Damage) -0.066
(-0.873)

Obs. 180 180 180
R2 0.005 0.001 0.005
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Table 12:
Climate Change Concerns

This Table reports results from regressing bank equity returns on the main flood risk
exposure and controlling for changes in climate change concerns, ∆CC. SVI variables
are from the Google Search Volume Index for the topics “Climate Change” and “Flood”.
UMC are defined as unexpected media climate change concerns and are prediction errors
from an AR(1) regression model following Ardia et al. (2022). Measures are constructed
from newspaper and newswire articles for different climate change topics. The aggregated
measure captures the full concerns, while the measures on flood and summits proxy
for risk from floods and regulatory risks, respectively. The dependent variable is the
difference between the bank’s stock return and the risk-free rate. All regressions include
bank controls—log(assets), log(BE/ME), Tier 1 leverage, and the previous month’s stock
return—as well as macro controls (log(GDP), lo(PCE), log(PCPI), the unemployment
rate, and ∆VIX). Standard errors are clustered at bank level. Statistical significance is
given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Full Sample

Excess Returns

∆CC: SVI:
Climate
Change

SVI:
Flood

UMC:
Aggregate

UMC:
Flood

UMC:
Summits

(1) (2) (3) (4) (5)

Flood Risk Exposure -0.155∗∗ -0.150∗∗ -0.144∗ -0.144∗ -0.147∗
(-2.44) (-2.36) (-1.72) (-1.72) (-1.76)

∆CC -0.139∗∗∗ -0.761∗∗∗ -0.461∗∗∗ -0.032 -0.424∗∗∗
(-3.22) (-11.8) (-6.86) (-0.600) (-4.98)

Flood Risk Exposure 0.005 -0.161∗∗∗ 0.085 0.104∗ 0.078
× ∆CC (0.136) (-2.95) (1.08) (1.77) (0.869)

Obs. 42,499 42,499 35,008 35,008 35,008
R2 0.075 0.080 0.074 0.073 0.074

Panel B: Small Banks

Excess Returns

SVI:
Climate
Change

SVI:
Flood

UMC:
Aggregate

UMC:
Flood

UMC:
Summits

(1) (2) (3) (4) (5)

Flood Risk Exposure -0.262∗∗∗ -0.262∗∗∗ -0.295∗∗∗ -0.293∗∗∗ -0.298∗∗∗
(-3.37) (-3.35) (-3.27) (-3.24) (-3.32)

∆CC -0.054 -0.350∗∗∗ -0.634∗∗∗ -0.348∗∗∗ -0.750∗∗∗
(-0.824) (-4.23) (-7.01) (-4.45) (-6.57)

Flood Risk Exposure -0.042 -0.187∗∗∗ 0.002 0.024 -0.010
× ∆CC (-0.759) (-2.85) (0.016) (0.331) (-0.088)

Obs. 24,010 24,010 20,423 20,423 20,423
R2 0.073 0.074 0.078 0.077 0.079
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Table 13:
Political Landscape

This table reports results from pooled-OLS regressions with fixed effects. The main explanatory variable is Flood Risk Exposure, which
captures banks’ exposure to expected flood risk. The dependent variable is excess return. All regressions include bank-level con-
trols—log(market value), Tier 1 leverage, mortgage ratio, loan ratio, log(assets), past-month return, and mortgage exposure. The political
indicator is an indicator that equals one if the majority of the counties in which a given bank originated mortgages has Republican during
the most recent federal election or the president is Republican. Standard errors are clustered at bank level. t-statistics are in parentheses.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Excess Returns

Political Indicator: Majority Republican Counties Republican President

Full Small Large Full Small Large
(1) (2) (3) (4) (5) (6)

Flood Risk Exposure -0.288∗∗∗ -0.302∗∗ -0.235∗ -0.307∗∗∗ -0.345∗∗∗ -0.093
(-2.79) (-2.56) (-1.66) (-3.65) (-3.63) (-0.659)

Flood Risk Exposure × Political Indicator 0.192∗ 0.126 0.438∗∗ 0.295∗∗∗ 0.259∗∗ 0.293
(1.68) (0.967) (2.12) (2.93) (2.35) (1.43)

Political Indicator -0.088 -0.091 -0.109
(-0.824) (-0.692) (-0.700)

Bank Controls YES YES YES YES YES YES
Month YES YES YES YES YES YES
Obs. 57,126 42,668 14,458 57,126 42,668 14,458
R2 0.289 0.255 0.498 0.289 0.255 0.498
Within R2 0.029 0.034 0.023 0.029 0.034 0.022
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Table 14:
Flood Risk Exposure and Federal Control

This table reports results from pooled-OLS regressions with bank and month fixed ef-
fects. Flood Risk Exposure captures banks’ exposure to expected flood risk. The variables
Repub. House; Repub. Senate; or Repub. President equal one if the House of Represen-
tatives, Senate, or the presidency is controlled by Republicans. The variables Congress ;
Senate; or House equal one if Republicans control the Congress, only the Senate, or
only the House. All regressions control for Tier 1 leverage, mortgage ratio, loan ratio,
log(assets), past-month return, and mortgage exposure. Standard errors are clustered at
bank level. t-statistics are in parentheses. Statistical significance is given by ∗: p < 0.10;
∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Federal Control

Excess Return

Full Small Large
(1) (2) (3)

Flood Risk Exposure -0.451∗∗∗ -0.525∗∗∗ -0.045
(-2.90) (-2.95) (-0.162)

Flood Risk Exposure × Repub. House 0.454∗∗∗ 0.550∗∗∗ 0.147
(4.01) (4.41) (0.735)

Flood Risk Exposure × Repub. Senate -0.272 -0.351∗ 0.022
(-1.34) (-1.70) (0.065)

Flood Risk Exposure × Repub. President 0.590∗∗∗ 0.606∗∗∗ 0.377
(2.75) (2.64) (0.907)

Bank Controls YES YES YES
Bank YES YES YES
Month YES YES YES
Observations 57,126 42,668 14,458
R2 0.306 0.273 0.510

Panel B: Orthogonal Indicators

Excess Return

Full Small Large
(1) (2) (3)

Flood Risk Exposure -0.225∗ -0.321∗∗ 0.198
(-1.76) (-2.24) (0.925)

Flood Risk Exposure × Congress 0.466∗∗∗ 0.507∗∗∗ 0.311
(3.91) (3.77) (1.34)

Flood Risk Exposure × Senate -0.108 -0.143 -0.082
(-0.470) (-0.548) (-0.191)

Flood Risk Exposure × House 0.280∗∗ 0.393∗∗ -0.091
(1.97) (2.52) (-0.412)

Bank Controls YES YES YES
Bank YES YES YES
Month YES YES YES
Obs. 57,126 42,668 14,458
R2 0.306 0.273 0.510
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Table 15:
Institutional Investors

This table reports results from pooled-OLS regressions with fixed effects. The main explanatory variable is Flood Risk Exposure, which
captures banks’ exposure to expected flood risk. All regressions control for Tier 1 leverage, mortgage ratio, loan ratio, log(assets),
past-month return, and mortgage exposure. Investor indicator is equal to one if the change in the share held by institutional investors
is negative (columns (1)-(4)) or the level of shares held by institutional investors (columns (5) and (6)). The political indicator is an
indicator that equals one if the president is a Republican. Standard errors are clustered at bank level. t-statistics are in parentheses.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Excess Returns

Investor Indicator Negative ∆ Institutional Investors High Instit. Share

Full Small Large Full
(1) (2) (3) (4) (5) (6)

Flood Risk Exposure -0.145∗∗ -0.211∗∗ -0.219∗∗ -0.134 -0.160∗∗∗ -0.272∗∗∗

(-2.56) (-2.38) (-2.11) (-0.892) (-2.82) (-2.88)
Flood Risk Exposure × Inv. Indicator 0.033 -0.120 -0.148 -0.042 0.116∗ 0.095

(0.302) (-0.746) (-0.937) (-0.088) (1.73) (0.873)
Flood Risk Exposure × Pol. Indicator 0.148 0.083 0.238 0.258∗∗

(1.38) (0.672) (1.44) (2.21)
Flood Risk Exposure × Pol. Indicator × Inv. Indicator 0.414∗ 0.402∗ 0.436 -0.009

(1.93) (1.88) (0.708) (-0.060)
Investor Indicator -0.291∗∗ -0.417∗∗ -0.262 -0.884∗∗∗ -0.384∗∗∗ -0.611∗∗∗

(-2.32) (-2.16) (-1.11) (-2.72) (-4.32) (-4.27)
Political Indicator × Investor Indicator 0.310 -0.057 0.683∗ 0.466∗∗∗

Continued on next page
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Table 15 – Continued from previous page

(1) (2) (3) (4) (5) (6)
(1.22) (-0.186) (1.67) (2.73)

Bank Controls YES YES YES YES YES YES
Month YES YES YES YES YES YES
Obs. 48,469 48,469 34,586 13,883 50,788 50,788
R2 0.326 0.327 0.289 0.507 0.316 0.316
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A1 Additional Figures
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Figure A1.1: Counties and Mortgage Amounts by Flood Risk Groups. Panel
(a) plots the histogram of counties as a function of their flood risk measure. Share is the
percent of properties at a 1% flood risk i.e., risk of a 100-year flood. The figure uses data
from the First Street Foundation. Panel (b) plots the share of total mortgage origination
(from HMDA) at three different risk percentiles. The percentiles are based on the same
flood risk measure.
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Figure A1.2: NFIP Insurance Data. Panel (a) plots the total number of active
insurance policies from the National Flood Insurance Program (NFIP) by county. Panel
(b) plots the average insurance coverage calculated as the number of active NFIP policies
divided by the total housing stock from the Census data.
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Figure A1.3: Implied Cost of Capital. The equity cost of capital is calculated
using the ICC estimate based on analyst earnings forecasts. The mean estimate is across
all banks in a given month. The figure also shows the 10% and 90% percentiles in the
monthly distribution. The cost of capital is measured in percentage points.
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A2 Additional Tables

Table A2.1:
Flood Damages and Denied Mortgage Placebo

This table reports the results from pooled-OLS regressions with fixed effects. The main
explanatory variable is the Scaled Damages, which captures banks’ costs of realized floods.
Column (1) uses the baseline risk exposure based on originated mortgages. Columns (2)
and (3) are based on denied mortgages. Column (4) normalizes the denied mortgage
amount by application amount. The dependent variable is excess return. All regressions
include bank-level controls, such as log(book-to-asset), Tier 1 leverage, mortgage ratio,
loan ratio, log(assets), past-month return, and mortgage exposure. Standard errors are
clustered at the bank level. t-statistics are in parenthesis. Statistical significance is given
by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

ROA

Sample Full Small

Baseline Denied-
Exposure

Denied-
Exposure

Normalized
Denied

(1) (2) (3) (4)

Scaled Damages -0.002∗∗ -0.001 -0.002 -0.0010
(-2.46) (-0.991) (-0.998) (-0.296)

Tier 1 Ratio 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(3.36) (3.36) (3.82) (3.82)

log(Assets) -0.755∗∗∗ -0.755∗∗∗ -0.805∗∗∗ -0.805∗∗∗
(-14.1) (-14.1) (-10.6) (-10.6)

Loan Ratio -0.360∗ -0.360∗ -0.274 -0.274
(-1.73) (-1.73) (-1.02) (-1.02)

Mortgage Ratio -0.337 -0.337 -0.437 -0.437
(-1.47) (-1.47) (-1.54) (-1.54)

log(ME) 0.736∗∗∗ 0.736∗∗∗ 0.724∗∗∗ 0.724∗∗∗
(17.9) (17.9) (14.8) (14.8)

lagged Return 0.003∗∗∗ 0.003∗∗∗ 0.004∗∗∗ 0.004∗∗∗
(5.73) (5.73) (5.39) (5.39)

Average Retained Amount -0.137 -0.137 -0.178 -0.177
(-0.962) (-0.962) (-1.08) (-1.07)

HQ State-Month FE YES YES YES YES
Bank FE YES YES YES YES
Observations 48,548 48,548 35,021 35,021
R2 0.645 0.645 0.635 0.635
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Table A2.2:
Flood Risk Exposure and Denied Mortgage Placebo

This table reports the results from pooled-OLS regressions with fixed effects. The main
explanatory variable is the Flood Risk Exposure, which captures banks’ exposure to ex-
pected flood risk. Column (1) uses the baseline risk exposure based on originated mort-
gages. Columns (2) and (3) are based on denied mortgages. Column (4) normalizes
the denied mortgage amount by application amount. The dependent variable is excess
return. All regressions include bank-level controls, such as log(book-to-asset), Tier 1
leverage, mortgage ratio, loan ratio, log(assets), past-month return, and mortgage ex-
posure. Standard errors are clustered at the bank level. t-statistics are in parenthesis.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Excess Return

Full Sample Small Banks

Baseline Denied-
Exposure

Denied-
Exposure

Normalized
Denied

(1) (2) (3) (4)

Flood Risk Exposure -0.016∗∗ -0.044 -0.068 0.151
(-2.15) (-0.811) (-1.09) (0.594)

Tier 1 Ratio -0.003 -0.003 -0.002 -0.002
(-1.05) (-1.21) (-1.07) (-1.04)

log(Assets) -2.67∗∗∗ -2.66∗∗∗ -3.37∗∗∗ -3.38∗∗∗
(-13.2) (-13.2) (-12.7) (-12.7)

Loan Ratio -0.761 -0.762 -0.158 -0.119
(-1.15) (-1.15) (-0.174) (-0.131)

Mortgage Ratio 0.505 0.460 0.565 0.513
(0.893) (0.816) (0.853) (0.773)

log(ME) 2.52∗∗∗ 2.51∗∗∗ 2.78∗∗∗ 2.77∗∗∗
(13.5) (13.5) (13.3) (13.3)

lagged Return -0.105∗∗∗ -0.105∗∗∗ -0.123∗∗∗ -0.123∗∗∗
(-10.6) (-10.6) (-11.0) (-11.0)

Average Retained Amount -0.367 -0.289 -0.684 -0.635
(-0.802) (-0.642) (-1.23) (-1.14)

HQ State-Month YES YES YES YES
Obs. 57,126 57,126 42,668 42,668
R2 0.395 0.395 0.382 0.382
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Table A2.3:
Implied Cost of Capital

This table reports the results from pooled-OLS regressions with fixed effects with the
implied cost of capital as the dependent variable. The main explanatory variable is the
Flood Risk Exposure, which captures banks’ exposure to expected flood risk. The measure
is based on expected flood risk estimates from FSF available at the county level and is
aggregated at the bank level using a bank’s mortgage lending activity. Standard errors
are clustered at the bank level. t-statistics are in parenthesis. Statistical significance is
given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

ICC-rF

Full High
Mortgage
Share

Small Size Large High
Flood

(1) (2) (3) (4) (5)

Flood Risk Exposure -0.036 0.140 -0.036 -0.005 0.069
(-0.243) (0.567) (-0.158) (-0.038) (0.413)

Leverage -0.311∗∗∗ -0.236∗ -0.312∗∗ -0.260∗ -0.317∗∗
(-3.31) (-1.87) (-2.51) (-1.72) (-2.36)

log(Assets) 1.73∗∗∗ 2.11∗∗ 1.85∗ 1.24∗∗ 1.68∗∗
(3.31) (2.16) (1.80) (2.06) (2.54)

Loan Ratio 1.17 4.23 4.12∗ -0.825 1.27
(1.08) (1.52) (1.91) (-0.724) (1.16)

Mortgage Ratio -0.838 -0.329 -0.855 -0.387 -0.553
(-0.730) (-0.217) (-0.386) (-0.450) (-0.368)

log(BE/ME) -1.82∗∗∗ -2.10∗∗ -2.01∗∗∗ -1.37∗∗ -1.74∗∗∗
(-3.50) (-2.31) (-2.62) (-2.20) (-2.73)

Returnbt−1 -0.011 -0.003 -0.011 -0.014 -0.020∗
(-1.27) (-0.190) (-1.02) (-1.02) (-1.96)

Mortgage Exposure 0.852 2.33 0.645 1.15 0.462
(0.751) (1.40) (0.427) (0.723) (0.264)

Month YES YES YES YES YES
Obs. 37,265 18,310 18,552 18,713 18,848
R2 0.048 0.052 0.057 0.047 0.046
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Table A2.4:
Examination of Heterogeneity in Stock Returns

This table reports the results from pooled-OLS regressions with month fixed effects. The
main explanatory variable Flood Risk Exposure captures banks’ exposure to flood risk.
The measure is based on a flood probability map and is aggregated at the bank level using
a bank’s mortgage lending activity. The dependent variable is the excess stock return
over the risk-free rate. In Panel A, the sample is split in banks with high and low share
of mortgage loans to total assets. Panel B splits the sample into banks with above and
below median exposure to flood risk. All regressions control for log(market equity), Tier
1 capital ratio, mortgage ratio, loan ratio, log(assets), past-month return, and mortgage
exposure. Standard errors are clustered at the bank level. t-statistics are in parenthesis.
Statistical significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Mortgage Loan Share

Excess Returns

Sample High Low Full
(1) (2) (3)

Flood Risk Exposure -0.241∗∗∗ -0.126 -0.118
(-3.13) (-1.55) (-1.50)

High RE 0.288∗∗
(1.99)

Flood Risk Exposure × High RE -0.113
(-1.12)

Bank Controls YES YES YES
Month FE YES YES YES
Obs. 20,706 22,521 43,227
R2 0.248 0.325 0.283

Panel B: Flood Risk Exposure

Excess Returns

High Low Full
(1) (2) (3)

Flood Risk Exposure -0.177∗∗∗ 0.069 0.302
(-2.91) (0.313) (1.40)

High Flood -0.313∗∗
(-2.21)

Flood Risk Exposure × High Flood -0.488∗∗
(-2.22)

Bank Controls YES YES YES
Month FE YES YES YES
Obs. 23,273 19,954 43,227
R2 0.311 0.266 0.283
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Table A2.5:
Bank Stock Returns and Local Real Estate Markets

This table reports results from regressing bank equity returns on the main flood risk
exposure and controlling for local flood insurance or foreclosures. Data on flood policies
and claims come from NFIP. Policies are the number of active policies divided by the
number of homes in a county, weighted by a bank’s mortgage lending. Claim amounts
are monthly insurance claims after floods divided by total personal income in a county.
The claims are mapped to the different banks using mortgage lending patterns. All
regressions including bank controls and month fixed effects. The bank-level controls
include log(market equity), Tier 1 capital ratio, mortgage ratio, loan ratio, log(assets),
past-month return, and mortgage exposure. Macro controls are log(GDP), CPI, PCPI,
and the unemployment rate. The dependent variable is the difference between the bank
stock return and the risk-free rate. Bank balance sheet data comes from Call Reports.
Equity data from CRSP. Standard errors are clustered at the bank level. Statistical
significance is given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Full Sample

Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure -0.163∗∗∗ -0.166∗∗∗ -0.187∗∗ -0.185∗∗
(-2.78) (-2.81) (-2.47) (-2.46)

Flood Policies -0.035
(-0.642)

Flood Claim Amount -0.090∗
(-1.76)

Foreclosures 0.053
(1.34)

Defaults -0.038∗∗
(-2.23)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 43,227 43,227 31,785 31,785
R2 0.28 0.28 0.24 0.24

Panel B: Small Banks

Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure -0.290∗∗∗ -0.285∗∗∗ -0.311∗∗∗ -0.304∗∗∗
(-3.68) (-3.68) (-3.20) (-3.29)

Flood Policies -0.014
(-0.076)

Flood Claim Amount -0.192∗∗
(-2.06)

Foreclosures 0.137∗∗∗
(2.60)
Continued on next page
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Table A2.5 – Continued from previous page

Defaults -0.010
(-0.389)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 23,648 23,648 19,126 19,126
R2 0.20 0.20 0.20 0.20

Panel C: Large Banks

Dependent Variable: Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure 0.038 0.016 0.028 0.039
(0.482) (0.193) (0.241) (0.342)

Flood Policies -0.058∗
(-1.66)

Flood Claim Amount -0.038
(-0.765)

Foreclosures -0.081
(-1.47)

Defaults -0.040∗
(-1.77)

Bank Controls YES YES YES YES
Month FE YES YES YES YES
Obs. 19,968 19,968 12,878 12,878
R2 0.46 0.46 0.40 0.40

A3 The Role of Mortgage Market in Propagating Flood

Disasters

The previous sections can be seen as a reduced-form approach, where the bank-level

outcomes were directly regressed on the flood damage estimates. Implicitly, the local

real estate markets have been assumed to be the connecting link between realized floods

and bank performance. The first subsection provides evidence of the importance of this

channel by first highlighting the relationship between flood disasters and local mortgage

delinquency. The second part demonstrates that periods of higher mortgage delinquencies

are associated with lower bank performance.
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Table A2.6:
Regional Factors

This table reports results from regressing bank equity returns on the main flood risk
exposure and controlling for general regional exposure. Column (1) includes state-level
controls (GDP growth, inflation, unemployment rate, and the change in the house price
index) weighted by the bank’s exposure measure. Column(2) includes state dummies.
For each state, the variable takes a value of 1 if the bank has originated mortgages in
that state. Column (3) interacts the state dummies with year-dummies. Column(4)
includes headquarter-state fixed effects. All regressions include the bank level controls
Tier 1 leverage, log(assets), loan ratio, mortgage loan ratio, log(market equity), and
lagged return. The dependent variable is the difference between the bank stock return
and the risk-free rate. Bank balance sheet data comes from Call Reports. Equity data
from CRSP. Standard errors are clustered at the bank level. Statistical significance is
given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: All Banks

Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure -0.238∗∗∗ -0.148∗∗ -0.164∗∗ -0.122∗
(-3.49) (-2.37) (-2.53) (-1.84)

Obs. 38,507 43,227 43,227 43,227
R2 0.25 0.28 0.30 0.28

Panel B: Small Banks

Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure -0.389∗∗∗ -0.254∗∗∗ -0.282∗∗∗ -0.195∗∗
(-4.47) (-3.02) (-2.96) (-2.17)

Obs. 22,869 23,648 23,648 23,648
R2 0.19 0.20 0.22 0.20

Panel C: Large Banks

Excess Returns

(1) (2) (3) (4)

Flood Risk Exposure 0.051 0.012 0.023 -0.031
(0.480) (0.133) (0.246) (-0.314)

Obs. 16,024 19,968 19,968 19,968
R2 0.40 0.46 0.48 0.46

Bank Controls YES YES YES YES
State Controls YES NO NO NO
State Dummies NO YES NO NO
State-Year Dummies NO NO YES NO
Month FE YES YES YES YES
HQ FE NO NO NO YES
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A3.1 Relized Flood Disasters and Delinquencies

To test the first channel, the empirical approach involves regressing county (or Zip)

level mortgage performance ratios on flood damages. Formally, I estimate the following

equation:

Yc,t+h = βh
0 + βh

1Flood Damagesc,t

+ βh
2Yc,t−1 + γX + εc,t+k,

(A3.1)

where Yct represents the outcome of interest, foreclosures, and delinquency ratio. The

regression includes the lag Y . The main explanatory variable is Flood Damages con-

structed using property damage estimates at the county level and monthly frequency. To

account for the difference between urban and rural areas, Flood Damages are calculated

by dividing the county-level property damage estimates by the total personal income in a

county. The regression includes time (month) and county fixed effects, given by the vector

X. The county fixed effects ensure that results are unlikely to be driven by unobserved

county characteristics, while the time fixed effects alleviate concerns that the results are

driven by specific periods. Standard errors are clustered at the state level. Figure A3.1(a)

reports the coefficients βh
1 for h = −3 : 7 from regressing the county-level number of fore-

closures on the flood damages. The solid blue line reports the point estimates, while the

95% confidence interval is the dashed orange line. The coefficients are insignificant for

the periods before the shock (proxied by the property damages). Following the shock,

the coefficient increases to 1 and remains at that level over six months. The coefficient

indicates that a 1 percentage point shock leads to a 1 percentage point higher number of

foreclosures. Foreclosures are a powerful instrument, imply costly spillovers for a bank

(Favara and Giannetti, 2017), and require active intervention from the lender. To avoid

any influence by the banks and focus on the behavior of borrowers, Figure A3.1(b) re-

ports the coefficients βh
1 from regressing the county-level delinquency rate on the flood

damages. Again, the solid blue line reports the point estimates, and the 95% confidence

interval is the dashed orange line over the horizon h = −3 : 7. The coefficients are in-
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significant for the periods before the shock. Following the shock, the coefficient increases

to 0.025 before gradually decreasing again. The coefficients in period 1 imply that a 1

percentage point higher shock leads to a 2.5 percentage point higher delinquency rate,

which given an average delinquency rate of 3.3%, is an economically meaningful increase.

A3.2 Accounting Performance and Delinquencies

Having established a link between residential mortgage performance following natural dis-

asters, the next step involves linking foreclosures and delinquencies to bank performance

measures. Formally, the regression is:

Yb,t = β0 + β1Market Exposureb,t + β2Capital Ratiob,t−1

+ β3log(Employees)b,t−1 + β4log(Assets)b,t−1

+ β5ROAb,t−1 + γX + εb,t,

(A3.2)

where in the baseline Ybt is the quarterly return on assets for each bank. In the following

step, I replace ROA with the capital ratio, non-performing loans, and charge-offs. The

variable Market Exposure is either capturing the exposure to the delinquencies (Delin-

quency Exposure) or foreclosures (Foreclosure Exposure). Both are bank-level exposure

measures that synthesize the exposure degree to the counties.

Panel A of Table A3.1 reports the estimates for the exposure to foreclosures. Across

the four regressions, the estimates suggest that bank performance and foreclosures are

negatively correlated. For return on assets and leverage, the coefficients on the exposure

are negative and significant. Furthermore, non-performing loans and loan charge-offs have

a positive relation with foreclosures, albeit only significantly so in the latter case. The

findings are echoed in the regression with the exposure to the delinquency rate reported

in Panel B of Table A3.1. A 1% increase in the delinquency rate decreases returns on

assets by 4 basis points (or 10%), while leverage is 1% lower. As before, non-performing

loans and charge-offs are positively related to local delinquency rates. This short exercise

provides some indicative evidence that the performance of the local residential real estate

market is linked to bank-level performance. The findings are robust to using the level
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of delinquencies or focusing on foreclosure data. Disentangling the residential real estate

channel in its parts suggests that flood hazards can severely affect bank performance.
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(a) Mortgage Foreclosures

(b) Mortgage Delinquencies

Figure A3.1: Effect of flood disasters on loan performance. This figure presents
the relation between bank-level exposure to current flood damages and mortgage fore-
closures (Panel A) and mortgage delinquency rates (Panel B). Mortgage foreclosure data
is from RealtyTrac and is available from 2004 to 2012 at the county level. Mortgage
delinquency rates are computed from Fannie Mae’s Loans Performance data from 2004
to 2020 at the ZIP3 level. The solid line presents the point estimates for Flood Damages.
The short dashed lines present 95% confidence intervals on this estimate.
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Table A3.1:
Bank performance and Mortgage Delinquencies

This table reports the results from the analysis of bank performance and mortgage mar-
ket performance. The main explanatory variable in Panel A is the Foreclosures Exposure,
which captures banks’ exposure to local mortgage foreclosures using data from Realty-
Trac for the years 2004 to 2012. In Panel B, the independent variable is constructed
using delinquency data from Fannie Mae from 2004 to 2020. The county and Zip3 level
data is aggregated at the bank level using a bank’s mortgage lending activity. The de-
pendent variables are one-quarter-ahead measures. Leverage is Tier 1 capital ratio. Non-
performing loans and charge-offs are divided by the total loans. All regressions control
for log(assets), loan ratio, Tier 1 capital ratio, and mortgage loan ratio. Standard errors
are clustered at the bank level. t-statistics are in parenthesis. Statistical significance is
given by ∗: p < 0.10; ∗∗:p < 0.05; ∗ ∗ ∗:p < 0.01

Panel A: Foreclosure Exposure

ROAt+1 Leveraget+1 NPLt+1 Charge-
Offst+1

(1) (2) (3) (4)

Foreclosure Exposure -0.027∗∗ -0.173∗ 0.015 0.009∗∗∗
(-2.05) (-1.77) (0.606) (4.22)

Bank Controls YES YES YES YES
Bank FE YES YES YES YES
Quarter FE YES YES YES YES
Obs. 15,566 15,037 15,566 14,429
R2 0.501 0.886 0.854 0.496

Panel B: Delinquency Exposure

ROAt+1 Leveraget+1 NPLt+1 Charge-
Offst+1

(1) (2) (3) (4)

Delinquency Exposure -0.043∗∗ -0.169∗∗ 0.069∗ 0.011∗∗∗
(-2.43) (-2.15) (1.91) (4.20)

Bank Controls YES YES YES YES
Bank FE YES YES YES YES
Quarter FE YES YES YES YES
Obs. 15,566 15,037 15,566 14,429
R2 0.501 0.886 0.854 0.495
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A4 Systematic Risk Decomposition

In the previous subsection, I introduced the flood risk factor and analyzed this factor

together with the other risk factors. In the next step, I will identify the underlying risk

exposures of bank stock returns to the different (risk) factors. As these factors are an-

alyzed simultaneously within a time-varying regression setup, I can perform a variance

decomposition following Klein and Chow (2013). The technique borrows an approach

from the physics literature and consists in computing an orthogonalization of the fac-

tors of interest. This approach boasts several advantages over other risk decomposition

procedures. First, it addresses the correlation between the variables with a symmetric

procedure that identifies the underlying uncorrelated components for each factor simulta-

neously and not sequentially. Hence, the process eliminates any impact of the choice of a

particular starting vector. Second, Klein and Chow (2013) show that the symmetric de-

composition technique is superior to the often used Principal Component Analysis (PCA)

in maintaining a maximum resemblance between the original factors and transformed fac-

tor using the sequential orthogonalization procedure. The orthogonalized components of

factors retain their variances, while their cross-sectional correlations are equal to zero.

Further, using the orthogonalized factors in a multi-factor regression leads to the same

regression R2, as using the original (non-orthogonalized) factors. The method allows

disentangling the R-squared based on the factors’ volatilities and their corresponding be-

tas to decompose the systematic risk into separate contributions. In the first step, the

methodology consists of running the regression in A4.1, where the orthogonalized risk

factors and their related beta coefficients are given by F⊥T×K and β⊥.

(A4.1) rj,t − rf,t = α + β⊥j F
⊥
t + εj,t

where j represents the portfolio of interest.

Second, using the estimate of β⊥j , the coefficient of determination, R2, can be decom-

posed into the individual decomposed systemic risk. Because of the orthogonalization
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procedure, the decomposition can be defined as follows:

(A4.2) R2 =
K∑
k=1

DR2
k, where DR

2
k =

(
β̂⊥k

σk
σr

)2

where σk is the standard deviation of factor k, and σr is the standard deviation of the

dependent variable. The matrix F⊥T×K is derived following the steps in Klein and Chow

(2013). It is defined as:

(A4.3) F⊥T×K = FT×KSK×K

where FT×K are the original factors and SK×K is a symmetric matrix that represents

the inverse of the correlation matrix between the original and orthogonalized factors. In

short, it is a linear combination of the eigenvector matrix and eigenvalues of the original

factors.2. I estimate F⊥T×K for every subsample separately and use a fixed rolling window

of 48 months to conduct time-varying democratic variance decompositions for analyzing

the relative factor contributions over time.

The time-varying variance decompositions for the two portfolios sorted on their flood

risk are provided in the first row of figure A4.1. In general, we see that the risk factors can

explain a considerable share of the portfolios’ return variance. Second, the figure makes it

clear that there exists considerable time variation in the explanatory power. The total R2

lies between 75% to 85% over the sample in consideration. Next, the largest fraction over

the full sample is explained by the market risk factor. Its contribution is also the most

consistent across the different factors under consideration. Further looking at similarities

between the figures for the ’High Flood’ and ’Low Flood’ portfolios, we see that the value

factor is a relatively important factor for both samples, explaining roughly a fifth of the

variation. Its importance decreases in the middle of the last decade. Importantly there is

no clear difference between the High Flood and Low Flood samples suggesting that the

sample does not differ in its integration with the market. The size factor also exhibits

2For further information, I refer the reader to the original paper by Klein and Chow (2013)
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a very similar pattern in both samples. It’s almost irrelevant in the first half. In either

sample, the flood risk factor contributes very little to the return variation.

The second row of figure A4.1 reports the graphs for the size-sorted portfolios. Again,

R-squared varies over the sample. For the portfolio based on the largest banks, market

risk has the largest explanatory power over the time frame under consideration, followed

by the value risk factor. Flood risk is irrelevant throughout. In the case of the portfolio

of small banks, the exposure of the different factors is divided more equally. Even though

market risk still contributes an important fraction of the variance, so does flood risk, size,

and value. For some periods, even credit risk is an important contributor. Exposure to

flood risk increases until 2015 before it almost disappears. The finding that the flood

factor is more important for smaller banks is in line with the previous findings. Larger

banks are active in a wider set of counties compared to smaller banks and can use their

internal capital markets to redistribute funds to offset shocks. Simultaneously, they

manage to diversify their exposure to single counties with large flood risk, while a local

bank active in a single county at risk may not have this possibility. The two figures

are supportive evidence for this hypothesis. The explanation is that overall larger banks

are more active in securitization, and manage to reduce their exposure to the different

types of risk. Market risk in their case proxies undiversifiable systemic risk. Hence, the

rationale for the observed differences between the exposures of large and small banks is

the same in the case of flood risk, as in the case of the remaining risk factors.

Finally, I split the sample into highly levered and low levered firms. Market, value,

and size are important risk factors for the lowly capitalized bank sample. The exposure

to flood risk does not matter too much. This finding might be explained by the findings

in Rehbein and Ongena (2020). Levered banks are less able to raise additional funds, and

thus can benefit less from increased loan demand following disasters.

A.19



0.00

0.25

0.50

0.75

1.00

2012 2016 2020

High Flood

0.00

0.25

0.50

0.75

1.00

2012 2016 2020

Low Flood

0.00

0.25

0.50

0.75

1.00

2012 2016 2020

Big

0.00

0.25

0.50

0.75

1.00

2012 2016 2020

Small

0.00

0.25

0.50

0.75

1.00

2012 2016 2020

High Leverage

0.00

0.25

0.50

0.75

1.00

2012 2016 2020

Low Leverage

Risk Type Flood Risk
Market Risk

SMB
HML

Interest rate risk
Credit risk

Figure A4.1: Variance Decomposition. Rolling variance decompositions for US
bank portfolios. This figure shows variance decompositions for portfolios of US banks
depending on bank characteristics. In the first row, the graphs plot the variance for the
portfolio divided along their flood risk (above and below median); in the second row,
portfolios are divided along market capitalization; third, the graphs use median leverage
to split banks into two portfolios. The democratic variance decompositions are based on
a rolling window of 48 months. All figures are presented in their scaled form.
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