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Abstract

We show that short-term debt in a firm’s optimal capital structure reduces investment under

asymmetric information. Investors’ interpretation of underinvestment as a positive signal about

the quality of the assets in place allows the equity holders to profit from short-term debt

repricing at the rollover stage. Thus, underinvestment is more pronounced at shorter maturities,

in contrast to Myers (1977). Low types’ incentives to mimic put an endogenous constraint on

high types’ underinvestment payoff via a duration floor. Perhaps most strikingly, because cash

lowers the duration floor, an increase in a firm’s retained earnings can decrease investment.
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1 Introduction

What is the relation between a firm’s liabilities and its investments? Myers (1977) famously argued

that if long-term debt matures after investment opportunities dry out, it can lead to underinvest-

ment. This long-term debt overhang is completely solved if firms issue short-term debt leading to

the empirical prediction that underinvestment should be associated with longer-maturity liabilities

(e.g., Barclay and Smith (1995)).1 Diamond and He (2014) cast doubt on this prediction, showing

that — among all securities that mature after the investment decision — underinvestment is non

monotonic in debt maturity. However, issuing debt that matures before investment takes place

remains optimal in their setting, leading to efficient investment.

Our paper uncovers a new kind of overhang, which arises when firms make multiple investments

over time under asymmetric information. In the presence of private information, the market often

interprets lack of investment as a positive signal about the quality assets in place (see, e.g., Myers

and Majluf (1984)). A high-quality firm with short-term debt that matures before growth options

dry out can take advantage of this positive market inference by rolling over short-term debt at more

favorable terms. As a result, short-term debt makes the firm less likely to undertake the growth

option. Had the firm issued longer-term debt instead, part of the value from information revelation

would accrue to the long-term debt holders, providing the firm with stronger incentives to invest

in the growth option.

As a result, our model suggests that adverse selection is associated with short-term debt over-

hang. That is, as in Myers (1977), in our model (i) the maturity of a firm’s liabilities drives its

investment policy; and (ii) there exist debt maturity structures that lead the firm to underinvest

in growth options that have a positive net present value. We show that this type of overhang

arises even if firms can use optimal mechanisms to allocate resources, unlike in Myers’ case. This is

because it maximizes the ex-ante value of high-quality firms. Thus, it cannot be contracted away.

To make our point in the simplest possible way, we extend the Myers and Majluf (1984) setting,

henceforth MM, in which firms make one investment having better information about the value of

their past investments—which they call ‘assets in place.’ MM implicitly assumes that assets in place

have been financed with inside equity (i.e., the firm’s cash). In contrast, we model both the initial

investment and financing decision, as well as MM’s follow-on investment problem. Two properties

of this environment drive our results. First, conditional on an investment policy, indifference

1Callable debt can also resolve long-term debt overhang without exposing the firm to rollover risk.
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curves across types coincide. Thus, separation requires underinvestment by high types. Second,

the second-best allocation maximizes the high-type firms’ payoff, subject to incentive compatibility

and feasibility.

The following example helps with intuition. There are three dates t = 0, 1, 2. At t = 0, a firm

needs to raise $2 to finance a project that yields either $10 or zero. The probability of receiving

$10 is the firm’s private information, and it can either be high pH = 0.7 or low pL = 0.2. Funds

are raised from competitive investors, who know that there is a 15% chance that p = pH . If the

firm invests at t = 0, it can invest again $0.7 at t = 1 in order to boost its probability of receiving

$10 by 25 percentage points, irrespective of its type. Note that 15% · 0.7 + (1− 15%)0.2 = 0.275.

If at t = 0 all firms raise $2 via short-term debt, which matures at t = 1, then this debt will

always be rolled over successfully at t = 1, and as a result, it is risk-free. At t = 1, either the high

type invests further, in which case the low type does so as well, and the total promised repayment

is $2.7
0.275+0.25 = $5.14, which yields a high type’s payoff equal to (0.7 + 0.25)($10 − $5.14) = $4.62.

Or the high type does not invest further, signaling its type, and rolls over existing short-term debt

at $2
0.7 = $2.86. In this case, its payoff is 0.7($10 − $2.86) = $5, which is higher than the payoff

from undertaking the growth option $4.62. Whether the high type can separate itself from the

low type depends on the incentives of the low type to mimic. If the low type mimics the high and

does not invest as well, its payoff is 0.2($10 − $2.86) = $1.43, while if it separates and invests, its

payoff is (0.2 + 0.25)
(
$10− $2.7

0.2+0.25

)
= $1.8 > $1.43. So, separation is incentive compatible, and

if short-term debt is issued at t = 0, the high type underinvests.

Next, suppose that long-term debt was issued at t = 0, with maturity t = 2. The face

value of the long-term debt depends on equilibrium investment at t = 1. Raising long-term debt

in anticipation of future underinvestment is suboptimal for the high type since long-term debt

is underpriced by the market from the high type’s perspective. If pooling with investment is

anticipated, long-term debt face values are $2
0.275+0.25 = $3.81 at t = 0 and $0.7

0.275+0.25 = $1.33 at

t = 1. If the high type decides to invest at t = 1, its payoff is again (0.7 + 0.25)($10 − $5.14) =

$4.62. However, if at date t = 1 the high-type forgoes the investment opportunity, it receives

0.7($10− $3.81) = $4.33, which is lower than the payoff from undertaking the growth option $4.62.

Hence, if long-term debt is issued at t = 0, the high type prefers to invest at t = 1.

This example clarifies that, depending on the duration of its liabilities — which, in our model,

is endogenous — the firm may or may not have incentives to invest at t = 1. As we will show, such
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a short-term debt overhang arises even when optimal mechanisms can be used to allocate resources.

The reason is that short-term debt minimizes the subsidy a high-type firm needs to pay to lower

types to achieve separation. Any liability structure with a longer duration would cost more, as

some of the value of the information a high type produces by forgoing the growth option would

accrue to the holders of long-term securities — which become more valuable — rather than going

to the firm’s owners. As a consequence, and in sharp contrast to Myers’ underinvestment story, the

short-term debt overhang: (1) is dynamically consistent — that is, firms anticipate the overhang

when issuing short-term debt; and (2) it maximizes the high-type firm’s value — that is, there does

not exist a feasible mechanism that would improve its payoff relative to issuing short-term debt.

In the example, it is possible for the high type to separate issuing only short-term debt since

the low type’s payoff from mimicking ($1.43) is lower than the payoff from undertaking the growth

option ($1.8). However, this is not always the case. For example, when the net present value of the

growth option is small relative to outstanding short-term debt, the low type would prefer to forgo

investment to capture the benefits of rolling over short-term debt at an inflated valuation. This gives

rise to the notion of a firm’s duration floor, that is, the lowest duration of a firm’s liabilities, such

that short-term debt can be rolled over at the high-type full-information rate without undermining

the low-type firm’s incentives to invest.

We show that a firm’s duration floor is an important determinant of investment. While the

payoff associated with full investment is independent of debt maturity, the payoff associated with

underinvestment is endogenously pinned down by the firm’s duration floor. A higher duration

floor raises the cost of underinvestment for high-type firms, as it requires issuing more underpriced

long-term debt,to subsidize low types and achieve separation. Thus, contrary to Myers (1977), a

lower duration of liabilities makes the underinvestment problem more severe in our setting.

The endogeneity of the firm’s payoff when it does not invest in the growth option dramatically

alters conventional wisdom on how cash is related to investment. For example, in Myers and Majluf

(1984), having more cash reduces the aggregate mispricing of raising external funds for high-quality

firms. It follows immediately that cash, or retained earnings, should be positively related to invest-

ment. In sharp contrast, in our model, the relation between cash and investment depends on the

net present value of the growth option. When the NPV is high, then cash unambiguously promotes

investment, as in MM. However, when growth options are weaker, there are two countervailing

forces. On the one hand, as in MM, the mispricing of external funds conditional on investment

falls, which stimulates investment. On the other hand, the duration floor also falls. A high type can
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substitute costly long-term debt with cheaper short-term debt without attracting low types at the

rollover stage because their skin in the game has increased. As a result, the high type’s separating

payoff also increases with cash. Strikingly, in this region, the second effect always dominates, which

implies that the relation between cash and investment becomes not monotonic.

When underinvestment is optimal for the high-type firm, the duration floor pins down the

optimal debt maturity. We show that the duration floor decreases with the net present value of

growth options because a higher NPV makes it more attractive for low types to invest at t = 1,

increasing their skin in the game. For similar reasons, the duration floor increases in the date-zero

debt issuance, net of cash. That is, it rises when either the initial investment is more expensive or

when it generates less cash early on that can be reinvested. The observation that cash relaxes a

firm’s duration floor is key to pinning down a firm’s investment cash flow sensitivity. Finally, the

floor increases with the severity of the adverse selection problem: it rises when lower-quality firms

are either more abundant or less productive.

Our paper contributes to several strands of the literature. Theoretically, we explicitly introduce

multiple investment and financing dates in the Myers and Majluf (1984) static adverse selection

model, which is similar to the Akerlof (1970) lemons problem. This highlights the bite of two

implicit assumptions of MM’s model: (i) a firm’s assets in place have been financed with inside

equity, i.e., the firm owners’ cash; and (ii) all financing and investment choices except the current

one are exogenous.2 Relaxing these two assumptions leads to the discovery of short-term debt

overhang, which arises at the optimal mechanism and therefore changes our predictions on the

relation between cash and investment under asymmetric information. This exercise complements

a growing literature that introduces different types of dynamics in the MM’s model. For instance,

Daley and Green (2012), Zryumov (2015), Asriyan, Fuchs and Green (2017) and Martel, Mirkin

and Waters (2022), among others, focus on the timing of investment, while Bond and Zhong (2016)

and Bond, Yuan and Zhong (2019) on multiple share-trading rounds.

Our paper is also related to the literature that studies the relation between liabilities and

investment, which started with Myers (1977). Several papers explored the consequences of Myers’

long-term debt overhang in various settings — see, e.g., He (2011), Philippon and Schnabl (2013).

Similar to us, Diamond and He (2014) also explore investment distortions created by debt with

small maturities. However, in their setting debt always matures after the investment decision.

2In Akerlof, this corresponds to the implicit assumptions that (i) good cars are owned by the seller, as opposed
to having been leased, for instance; and (ii) the buy vs. lease decision is not modeled.
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More recently, debt overhang is at the heart of the leverage ratcheting papers, such as Admati,

DeMarzo, Hellwig and Pfleiderer (2018), Demarzo (2019), and DeMarzo and He (2021). While in

these settings issuing short-term (or callable) debt always solves the underinvestment problem, in

our model it is precisely the possibility of issuing short-term debt which drives underinvestment,

due to the presence of persistent asymmetric information.

Our theory has implications for the optimal debt maturity chosen by firms. Specifically, it

predicts that asymmetric information drives high-quality firms towards issuing short-term liabilities,

because they benefit at the rollover stage when they reveal their type by underinvesting. This

channel differs from the maturity-signaling hypothesis of Flannery (1986) and Diamond (1991),

according to which high-quality firms signal their identity by issuing short-term debt, which would

be too costly for the low type to issue because it is more likely to face (costly) default. In our

model, all firms pool on issuing short-term debt at the outset. Thus, the maturity choice does

not convey any information to the market. Market beliefs are affected only by underinvestment in

growth options, as in MM. Alternatively, it has been argued that short-term debt helps in resolving

commitment problems (see, e.g., Calomiris and Kahn (1991), He and Milbradt (2016) and Hu,

Varas and Ying (2021)), absent informational asymmetries, or that it optimally solves a trade-off

between early termination and incentives provisions (Huang, Oehmke and Zhong (2019)).

The paper proceeds as follows. Section 2 presents both the primitives of the model and the

game played. Section 3 offers a few preliminary results, which include a full characterization of the

second investment and financing game, for an exogenous debt-maturity structure. This allows to

compare the static MM model, which starts at the second date, with our dynamic extension that

takes us one step back to the financing of a firm’s future ‘assets in place’. Section 4 characterizes the

equilibrium of the game and the short-term debt overhang. Section 5 studies the determinants of

both a firm’s maturity structure, and its investment policy. Section 6 provides a strong justification

for our game, showing that it implements the competitive planner’s allocation. As a result, the

short-term debt overhang cannot be eliminated by the use of alternative, superior mechanisms for

allocating resources, without violating feasibility or incentive compatibility. Section 7 concludes.
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2 The model

Environment. There are three dates: t = 0, 1, 2. At t = 0, a continuum of risk-neutral firms

have a project that requires raising I0 > 0 from external investors. The investment yields two cash

flows: a certain C ≥ 0 at t = 1 and a stochastic X̃ ∈ {0, X > 0} at t = 2. Each firm privately

knows its probability of success Pr.[X̃ = X] = pθ ∈ {pL, pH}. The investors only know the fraction

of each type in the population: Pr.[θ̃ = θH ] = α0 ∈ (0, 1). At t = 1, all firms receive a second

investment opportunity, which requires investing I1 > 0 to increase the probability of success to

pθ +∆, for some ∆ ∈ (0, 1− pH). With a slight abuse of notation, define pθ(a) = pθ +1 {a = i} ·∆

to be the probability of success following the firm’s t = 1 action a ∈ {i, n} to invest or not, i.e.,

pθ(n) = pθ and pθ(i) = pθ +∆. To make the problem interesting we assume that: (i) investment at

t = 0 is positive-NPV, irrespective of the firm’s type: C + pHX > C + pLX > I0; (ii) investment

at t = 1 is positive-NPV, and it requires external financing: ∆X > I1 > C;3 and (iii) when the

high type does not invest, it is more productive than a low type that invests: pH > pL + ∆. We

normalize all agents’ outside options as well as the risk-free rate to zero.

Game. At each investment date t = 0, 1 competitive investors and firms interact through the

following three-stage screening game. In the first stage, the investors offer contracts to the firms.

Each contract describes the cash flows that investors receive in return for their capital, and it may

also specify a break-up option for investors, which we describe below. In the second stage, firms

either select one contract, or reject all contracts. Whenever firms are indifferent between contracts,

they choose each contract with equal probability. If the accepted contract has no break-up option,

then the third stage is not played: both the firm and the investors proceed to the next period

committed to the accepted contract. If the accepted contract comes with a break-up option, then

in the third-stage of the game investors have the right to withdraw their offer, based on their

updated belief about the firm’s type. If investors exercise their break-up option, then the accepted

contract is withdrawn and the firm stays at its endowment. If they do not exercise it, then both

the firm and the investors proceed to the next period committed to the accepted contract.

This three-stage game resembles standard practice in financial markets, where lenders typically

propose rates but do not commit to accept all applications that qualify for their offers. As we will

show in the next section, considering this game is without loss of generality, as it implements the

3While the NPV is independent of the firm’s type, this is not needed for our qualitative results.
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optimal allocation. The presence of the third stage ensures that an equilibrium always exists, which

is not the case with a standard two-stage screening game.

Date-zero contracts. At t = 0, lenders can offer a mixture of short- and long-term debt in

exchange for I0. The face value of the short-term debt is D1 ≥ 0 and that of the long-term debt is

D2 ≥ 0. Let this debt be senior to any future claim. Thus, a contract is a tuple K0 = (D1, D2, γ0),

where γ0 ∈ {c, nc} denotes whether the investor is committed to its offer (γ0 = c), or whether it

retains the break-up option (γ0 = nc). A date-zero contract is feasible if D1 +D2 ≤ X + C. We

model rejection at t = 0 as the acceptance of a “zero contract”, which does not provide funding to

the firm and does not generate any cash flows for the investors. That is, all face values are zero

and the firm does not undertake the investment opportunity. Thus, the set of contracts offered by

lenders at date zero is K0
def
= {K0|K0 was offered at t = 0} ∪ {K∅}, where K∅ is the zero contract.

Date-one contracts. At t = 1, the firm raises capital using short-term debt. Formally, a t = 1

contract is a tuple (Q1, F2, a, γ1) that specifies the amount of capital Q1 raised at t = 1, the face

value of the short-term debt F2 ≥ 0 to be repaid at t = 2, the investment action a ∈ {i, n} at t = 1,

and break-up option γ1 ∈ {c, nc}. A date-one contract is feasible if the capital raised is sufficient to

cover the firm’s short-term liabilities, as well as its investment needs Q1 = 1 {a = i} I1 − C +D1,

and the promised face value to be repaid when the project succeeds F2 ≤ X − D2.
4 We allow

date-one investors to offer menus of contracts K1 = {(Qa
1, F

a
2 , a, γ

a
1 )}a∈{i,n} with two options, one

per investment action. Denote the set of menus offered by competitive lenders at date one by

K1
def
= {K1|K1 was offered at t = 1}∪{K∅} where, with a slight abuse of notation, K∅ = (0, 0, n, c)

denotes a zero contract at t = 1. That is, a contract in which the firm does not receive any capital

from t = 1 investors, the face value of the date-one debt is zero and the firm does not invest.

Payoffs. When a type-θ firm selects a sequence of non-zero contracts (K0,K1) and an investment

option a, the firm’s payoff (in the absence of future withdrawal by investors) is

Uθ(K0,K1, a)
def
= pθ(a)[X −D2 − F a

2 ]

4Notice that, whenever a = n and D1 < C, taking the no-investment option requires the firm to pay some positive
amount of cash to the lenders C−D1 > 0 at date one, as well as another positive amount of cash at date two Fn

2 ≥ 0.
Thus, whenever D1 < C this option is clearly dominated by taking the zero contract, which is always feasible.

8



The expected profits for date-zero investors are

πθ,0(K0,K1, a)
def
= D1 + pθ(a)D2 − I0.

The above equation reflects the fact that the short-term debt with face value D1, in this case, is

risk-free. That is, if the firm does not default this face value is always repaid. The expected profits

for date-one investors in this case are

πθ,1(K0,K1, a)
def
= pθ(a)F2 −Q1.

When a type θ firm selects a sequence of contracts (K0,K∅), or when the investors exercise the

break-up option at t = 1, the expected insiders’ payoff is

Uθ(K0,K∅, a)
def
=


pθ(n)[X + C −D1 −D2] + (1− pθ(n))[C −D1 −D2]

+ if D1 ≤ C;

0 if D1 > C,

while the expected profits for date-zero investors are

πθ,0(K0,K∅, a)
def
=


pθ(n)(D1 +D2) + (1− pθ(n)) ·min[C,D1 +D2]− I0 if D1 ≤ C;

C + pθ(n)X − I0 if D1 > C.

In the above payoffs, we implicitly assumed that the failure to pay D1 at t = 1 results in the firm

defaulting and transferring all assets to time t = 0 debt holders. When a type θ firm selects a zero

contract at t = 0, or the time t = 0 investors exercise their break-up option, all parties receive 0.

Equilibrium. As our screening game has three stages, investors observe the firm’s choices in the

second stage and they might update their beliefs about the firm’s quality before exercising the

break-up option. Thus, the appropriate equilibrium concept is Perfect Bayesian Equilibrium. Due

to the dynamic nature of the model, we define equilibrium recursively, starting at t = 1.

Definition. For any given set of offered contracts K0 and chosen contract K0 at t = 0, which

implements the initial investment, a date-one equilibrium consists of a set of menus K∗
1, a

chosen menu K∗
1 , firm actions (a∗H , a∗L) and withdrawal policy w∗

1 that satisfy:

1. Contract optimality: there does not exist another set K′
1, a menu K ′

1 ∈ K′
1 with associated
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firm actions (a′H , a′L) and withdrawal policy w′
1 which is weakly more attractive to at least

one type of the firm, and generates strictly higher expected profits to investors than K∗
1 , given

their updated belief α1 = Pr.[θ = H|K0,K0].

2. Firm’s optimality: Uθ(K0,K
∗
1 , a

∗
θ) ≥ Uθ(K0,K1, a) for every a and every K1 ∈ K1, anticipat-

ing contract K1 possible future withdrawal w∗
1.

3. Break-up optimality: for every menu K1 ∈ K∗
1, and every chosen action within the menu a,

if the menu has a break-up option, then w∗
1 = 1 (i.e., there is no withdrawal) if and only if

α2πH,1(K0,K1, a) + (1− α2)πL,1(K0,K1, a) ≥ 0,

where α2 = Pr.[θ = H|K0,K0,K∗
1, (K1, a)] denotes the investors’ posterior belief at t = 1,

given that the firm chose a contract K0 from K0, and chose (K1, a) from K∗
1.

The date-one equilibrium has the following features: menus are offered optimally by competitive

investors; firms choose the optimal menu among those that have been offered; investors exercise

optimally their break-up option (if any such option is part of the optimal menu that has been

chosen by the firm). We can now define equilibrium at date zero.

Definition. At t = 0, a date-zero equilibrium consists of a set of offered contracts K∗
0, a chosen

contract K∗
0 and a withdrawal policy w∗

0 that satisfy:

1. Contract optimality: there does not exist another set K′
0, a menu K ′

0 ∈ K′
0 and a withdrawal

policy w′
0 which is weakly more attractive to at least one type of the firm, and generates

strictly higher expected profits to investors than K∗
0 , given the date-one equilibrium induced

by (K∗
0,K

∗
0 ), which is (K∗

1,K
∗
1 , a

∗, w∗
1), and that induced by (K′

0,K
′
0), which is (K′

1, a
′, w′

1,K
′
1).

2. Firm’s optimality: Uθ(K
∗
0 ,K

∗
1 , a

∗
θ) ≥ Uθ(K0,K1, a) for every K0 ∈ K0, and every (K1, a)

induced by K0, anticipating contract withdrawals (w∗
0, w

∗
1).

3. Break-up optimality: for every contract chosen by the firm K0 ∈ K∗
0, if the contract contains

a break-up option, then w∗
0 = 1 (i.e., there is no withdrawal) if and only if

α1πH,0(K0,K1, a) + (1− α1)πL,0(K0,K1, a) ≥ 0,

where α1 = Pr.[θ = H|K0,K0], as defined before.
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The date-zero equilibrium concept mirrors that for date one. The key difference is that choices are

made anticipating what equilibrium will be played subsequently.
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3 Preliminary Analysis

In this section, we characterize the mapping between each possible history at date zero—which

consists of (K0,K0), as well as a posterior belief α1—and the corresponding equilibrium at t = 1,

assuming that investment at t = 0 takes place. Given that we allow for D1 = D2 = 0, this analysis

nests the Myers and Majluf case, in which the firm finances itself at date zero with inside equity.

The following Lemma states that: (i) the equilibrium allocation maximizes the payoff of the

best firm type, subject to incentive compatibility and feasibility; (ii) lender profits must be zero in

expectation (ZP); and (iii) lenders cannot make strictly positive profits on low types (NPL).

Lemma 1. An equilibrium pair (K∗
1,K

∗
1 ), an action profile (a∗H , a∗L) and a withdrawal policy w∗

1

solve the following problem, for any given non-zero contract K0 accepted at t = 0:

(K∗
1,K

∗
1 , a

∗
H , a∗L, w

∗
1) ∈ argmaxK′,K′,a′H ,a′L,w

′ UH(K0,K
′, a′H) subject to: (1)

Uθ(K0,K
′, a′θ) ≥ Uθ(K0,K

′, â), ∀θ and ∀(K ′, â) s.t. K ′ ∈ K′ (ICθ)

α1 · πH,1(K0,K
′, a′H) + (1− α1) · πL,1(K0,K

′, a′L) = 0 (ZP )

πL,1(K0,K
′, a′L) ≤ 0 (NPL)

(K′,K ′) is feasible

Proof. All proofs are in the Appendix.

Competition among investors and the fact that all firm types have a positive net present value

project drives investor profits to zero in equilibrium.5 Moreover, low-quality firms can always

achieve their full-information payoff, because the incentive compatibility constraint of high-quality

firms does not bind. It follows that investors cannot make profits on low-quality firms in any zero-

profit equilibrium menu. Finally, the equilibrium maximizes the high-quality firms’ payoff because

of competition among investors, coupled with the fact any other allocation would offer high types

deviations that signal their type, breaking the equilibrium.

We now consider a few cases separately, depending on the characteristics of the date-zero capital

structure, which is exogenous in the date-one game. We start from the case in which the firm did

not issue any outside debt at date zero, which is the MM’s case.

5Notice that we do not impose zero-profits on a contract by contract basis, but rather we allow for cross-
subsidization across types.
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Lemma 2 (Myers-Majluf). If D1 = D2 = 0, then, the date-one equilibrium features investment by

all types when

∆X − I1︸ ︷︷ ︸
NPV1

>
(pH − p1)

(p1 +∆)
(I1 − C)︸ ︷︷ ︸

Investment mispricing

. (2)

If inequality (2) is strictly reversed, the equilibrium features investment only by low types, while

high types take the zero contract. If (2) holds as an equality, both allocations are equilibria.

Inequality (2) reproduces the analysis by Myers and Majluf in our setting. In equilibrium,

the growth option is undertaken by high-type firms if and only if its net present value exceeds

the mispricing associated with financing it for high types. Notice that, when a firm has higher

retained earnings, which corresponds to a higher cash flow C at t=1, inequality (2) is relaxed,

which stimulates investment. That is, MM predicts a positive investment-cash flow sensitivity.

From this viewpoint, however, the case of D1 = D2 = 0 appears rather special: very few firms

are able to grow without requiring any external financing early on. Thus, the next Lemma considers

the more plausible case in which a firm contracted some liability t = 0 and new forces are at play:

Lemma 3. Suppose that D1 ≤ C. Then, in a date-one equilibrium all types invest when

∆X − I1︸ ︷︷ ︸
NPV1

>
(pH − p1)

(p1 +∆)
(I1 − (C −D1))︸ ︷︷ ︸

Investment Mispricing

+ ∆D2︸ ︷︷ ︸
LT debt overhang

− (1− pH)min(D2, C −D1)︸ ︷︷ ︸
Dilution of LT debt

(3)

If inequality (3) is strictly reversed, high types take the zero contract and low types invest when

∆X − I1︸ ︷︷ ︸
NPV1

> ∆D2︸ ︷︷ ︸
LT debt overhang

− (1− pL)min(D2, C −D1)︸ ︷︷ ︸
Dilution of LT debt

. (4)

If both (3) and (4) are strictly reversed, then all types take the zero contract and do not invest.

The presence of a small amount of short-term debt D1 increases the external capital required

to invest at t = 1. As a result, it increases the hurdle for the growth option to be undertaken by

high-type firms. In contrast, as highlighted in inequalities (3) and (4), long-term debt D2 affects

investment incentives in two opposite ways, regardless of the firm’s type. On the one hand, it

reduces the incentives of the equity holders to invest through Myers (1977) long-term debt overhang

channel. On the other hand, it makes investment more attractive through the dilution channel.

That is, by investing the remaining cash C −D1 in the growth option, equity holders increase the
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riskiness of the long-term debt outstanding, and benefit from this shifting of risk.

The two opposing forces created by long-term debt can make the equilibrium level of investment

non-monotone in D2. With a small amount of long-term debt, the dilution effect is stronger than

the overhang because ∆ < 1− pH . Thus, an increase in the face value of the long-term debt makes

investment more attractive for high types, as the l.h.s. of (3) is decreasing in D2. In contrast, for

large values of D2 (i.e., such that D2 > C −D1), the overhang effect dominates and an increase in

D2 makes the growth option less attractive for high types, which become less likely to invest.

The next lemma characterizes the t = 1 continuation equilibrium when the level of short-term

debt D1 exceeds C and, as a consequence, the amount D1 −C needs to be rolled over regardless of

the investment decision, as otherwise the firm defaults and the inside equity holders get zero.

Lemma 4. Suppose that D1 > C. Then, equilibrium investment can be broken down in two cases:

1. If ∆(X −D2)− I1 > 0, then the date-one equilibrium features investment by all types when

∆X − I1︸ ︷︷ ︸
NPV1

≥ ∆D2︸ ︷︷ ︸
LT debt overhang

+
(pH − p1)

(p1 +∆)
(I1 − C)︸ ︷︷ ︸

Investment mispricing

+
(pH − p1)

(p1 +∆)
D1︸ ︷︷ ︸

ST debt overhang

− (1− α)pH
p1

[pH − pL
pH

(D1 − C)− (∆(X −D2)− I1)
]+

︸ ︷︷ ︸
ST debt rollover subsidy to L type

.

(5)

Otherwise, if inequality (5) is reversed, then only low type firms invest.

2. If ∆(X−D2)−I1 ≤ 0, then the date-one equilibrium features no investment by any firm type.

The characterization of the equilibrium investment depends on the amount of long-term debt

issued at date zero D2. In case (1), the Myers’ long-term debt overhang is not too strong, and as

a consequence efficient investment is possible. In contrast, in case (2) the face value of long-term

debt is so high that the Myers’ long-term debt overhang channel prevents further investment.

Case (1) has two sub-cases, depending on the amount of short-term debt D1 − C that needs

to be rolled over with external funds at t = 1. As in MM, lack of investment in equilibrium is a

positive signal about the quality of the assets in place. However, whether or not investment occurs

is determined by inequality (5), which differs from MM’s inequality (2) in three important ways.

First, the face value of long-term debt D2 makes investment relatively less profitable through

the Myers’ long-term debt overhang channel.
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Second, the amount of short-term debt that needs to be rolled over with external funds D1−C

reduces the incentives to invest by increasing the profitability of debt rollover without investment.

We call this force short-term debt overhang, because in equilibrium it leads to less investment by

high-type firms. However, in Proposition 2 we adopt a more precise notion of short-term debt

overhang, which is identical to Myers’. That is, we explicitly show that, when underinvestment

occurs in equilibrium, there is a set of firms that underinvests because it issues short-term debt,

while it would have invested if at t = 0 it had issued long-term debt.

Third, D1 − C affects the incentives of low-type firms. When D1 − C is small relative to the

NPV of the growth option, net of long-term debt, the short-term debt rollover subsidy that is

required for incentive compatibility to hold is zero. As a result, high types can separate by forgoing

the growth option and rolling over the short-term debt at its full-information price. In contrast,

when D1 −C is large enough, high types are forced to rollover their short-term debt at a discount

relative to the full information price, in order to deter low types from mimicking. This discount

makes pooling with investment more attractive, as can be seen in (5). Mimicking high types is

more attractive when either D1 − C is high—i.e., when there is a large amount of liabilities to be

rolled over at date one—or when the NPV of the growth option is low. Thus, the rollover discount

is increasing in D1 − C and decreasing in the NPV.
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4 Equilibrium and Short-term Debt Overhang

Having characterized all possible continuation equilibria in the sub-game at date t = 1, we now

turn our attention to date t = 0. We begin by showing three useful properties of the date-zero

equilibrium, summarized in the next Lemma, that simplify the characterization.

Lemma 5. Any date-zero equilibrium must be pooling, i.e., α1 = α0. Moreover, the equilibrium

contract delivers zero profits to investors and maximizes the payoff of the high-type firm.

The intuition behind pooling at date t = 0 is straightforward, as date-zero separation can

only be achieved via the participation constraint of one of the types.6 However, the firm’s outside

option is zero, irrespective of its type, while all investment opportunities (at t = 0 and t = 1) have

a positive net present value. Thus, there always exists a contract—e.g., fairly priced long-term

debt—which generates a strictly positive payoff to the firm, a non-negative payoff to the investors,

and avoids defaults at t = 1. Thus, separation at t = 0 is impossible.

That lenders break even follows immediately from the absence of menus at date t = 0 and

competition. A different lender would undercut any contract that makes positive profits due to

free entry. The zero-profit condition, together with the pooling belief α0, creates a link between

the time t = 0 financing decision which results in some debt mixture (D1, D2) and a date t = 1

continuation game. This link, together with Lemmas (3) and (4), allow us to characterize the

equilibrium outcome of the date t = 0 game.

Finally, as standard in screening games, the equilibrium contract maximizes the payoff of high-

type firms. Intuitively, if this was not the case, then there would exist a profitable deviation for

high types that would still generate zero profits for investors. A slightly modified version of this

contract would still be more profitable for high types relative to the equilibrium contract, and it

would generate positive profits for investors. Because of free entry of investors, any strictly positive

profits would attract them to post such a contract, which destroys the conjectured equilibrium.

Equilibrium. The properties highlighted in Lemma 5 allow us to evaluate equilibrium outcomes

from the point of view of the high-type firm and to reduce the space of potential continuations.

First, we argue that it is (weakly) suboptimal to issue short-term debt below min(I0, C). Any

amount of short-term debt below C moves cash from date t = 1 to date t = 0 and allows the high

6Because at date t = 0, investors offer single contracts, not menus.
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Figure 1: Date t = 1 equilibrium outcomes together with date t = 0 zero profit line. Model
parameters are X = 10, pH = 0.6, pL = 0.2, α = 0.3, I0 = 2.9, I1 = 1.4, C = 1.0, ∆ = 0.25

type to reduce its reliance on costly long-term debt. Thus, a continuation game with D1 < C, as

characterized in Lemma 3, is only possible when the initial amount of investment I0 is below C.

Whenever I0 > C, a high type always prefers the continuation game of Lemma 4, with D1 ≥ C.

Second, we show that the low-type firm always undertakes the growth option in any equilibrium.

That is, the equilibrium contract (D1, D2) cannot be in the red area of Figure 1. Surprisingly, the

intuition for this result stems from the incentives of the high-type firm. As shown in Lemmas 3

and 4, any continuation outcome in which the low type firm does not invest at date t = 1 requires

a substantial amount of long-term debt to create long-term debt overhang for low types. Within

the no-investment region, the high type can swap long-term debt for short-term debt and weakly

increase its payoff. Such a reduction of debt maturity can be performed until one reaches the

boundary of the no-investment region—i.e., when the long-term debt overhang just binds ∆(X −

D2)− I1 = 0. The date t = 0 zero-profit line that sustains investment in the growth option by low

types is necessarily flatter than the one where no firm invests. That is, it requires a lower face-value

of long-term debt for the same amount of short-term debt. Moreover, as the high-type firm strictly

prefers a lower D2, the no-investment outcome is dominated by either both types undertaking the

growth option, or only the low type doing it.
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Having excluded the no-investment outcome, the remaining candidate allocations are (a) pool-

ing with both types undertaking the growth option, and (b) separating where only the low type

invests at t = 1. Conditional on date t = 1 investment, the equilibrium payoff of the high-type

firm depends only on the total quantity of debt I0 + I1 − C issued. Thus, if in the continuation

equilibrium all types invest, the substitution of long- for short-term debt does not affect the final

payoff of high-type firms, and it is therefore irrelevant.

In contrast, debt maturity plays a crucial role when the high-type firm does not invest at date

t = 1. In this case, the high type would want to reduce the quantity of long-term debt issued at

date t = 0 and raise short-term debt D1 > C, whenever the excess short-term debt D1 − C can

be rolled over without a discount. The maximal quantity of short-term debt and, consequently,

the duration floor of the high-type firm’s liabilities is disciplined by the incentives of low-type firm.

Lemma 4 shows that if high types issue too much short-term debt, they need to roll it over at a

discount to deter the low types from mimicking. This point is illustrated in Figure 1: as the amount

of short-term debt rises, the zero-profit line crosses from the orange region, where short-term debt

can be rolled over without a discount, into the light-orange region, where the discount on short-term

is unavoidable.

We define the duration floor MacD as the lowest (Macaulay) duration of the date t = 0

liabilities along the lender’s zero-profit curve D1+(p0+(1−α)∆)D2 = I0 that allows the high-type

firm to roll over its excess debt D1 − C without a discount. Lemma 4 shows that the excess debt

can be rolled over without subsidy whenever (1 − pL/pH)(D1 − C) ≤ ∆(X −D2) − I1. Thus, the

shortest duration is given by

MacD
def
= 1 +

1

I0
· pH(p0 + (1− α)∆)

p0(pH − pL −∆)
·
[
pH − pL

pH
(I0 − C)− (∆X − I1)

]+
. (6)

The duration floor plays an essential role in characterizing the equilibrium level of investment,

because it affects the maximal payoff the high-type firm can achieve when it chooses to separate

from low types by not investing in the growth option.

Proposition 1. In any date t = 0 equilibrium the low type firm always invests in the date t = 1

growth option. Whether the high type firm undertakes the growth option is determined by the
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following inequality:

∆X − I1︸ ︷︷ ︸
NPV1

≥ (pH − p0)

(p0 +∆)
(I1 − C)︸ ︷︷ ︸

Investment mispricing

+
(pH − p0)

(p0 +∆)
I0︸ ︷︷ ︸

ST Debt Overhang

− I0 · (MacD − 1) · pH − p0 − (1− α)∆

p0 + (1− α)∆︸ ︷︷ ︸
Mispricing of LT debt

.

(7)

When inequality (7) does not hold, we have the following two cases:

1. When MacD = 1, then both firms issue only short-term debt at date t = 0. At t = 1,

high types separate by repaying min(I0, C) and rolling over the remaining short-term debt

(I0 > C)+ without investment, at fair terms;

2. When MacD > 1, then both firms issue a mixture of short- and long-term debt at date t = 0.

At t = 1, high types separate by repaying C and rolling over the remaining short-term debt

without investment, at fair terms.

Proposition 1 describes how the date t = 1 equilibrium investment decision of high type firms

depends on the primitive model parameters, under the optimal date t = 0 capital structure. When

the duration floor MacD equals 1, inequality (7) differs from MM’s comparison of NPV in (2)

because of the presence of one additional term, which reflects short-term debt overhang. This

stems from the fact that, absent investment, the high-type firm would issue D1 = I0 short-term

debt at date t = 0, and subsequently roll it over at fair terms. Therefore, the presence of short-term

debt in the optimal capital structure creates an overhang and might preclude the high-type firm

from undertaking an ex-post efficient investment.

When the duration floor MacD is greater than 1, a new determinant of the high-type firm’s

investment arises. Lack of investment necessitates using some long-term debt, in order to prevent

low-type firms from mimicking. Long-term debt is too expensive to issue for high types, and so it

makes separating without investment less attractive. The higher is the duration floor MacD, the

larger the aggregate mispricing of long-term securities required for separation and underinvestment,

and the easier it is to satisfy the investment constraint (7). Thus, in sharp contrast with the Myers’

long-term debt overhang channel, this channel implies that underinvestment occurs when a firm’s

liabilities have shorter maturity.
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Short-term debt overhang. Thus far, we have identified parameter conditions that lead to

underinvestment in equilibrium and have highlighted the novel role played by short-term debt.

However, underinvestment does not immediately imply a presence of a debt overhang. Due to

adverse selection in our model, the high-type firm might not undertake the growth option regardless

of the securities issued at date zero.

To clarify that our model does indeed generate a short-term debt overhang, in the following

proposition, we characterize the conditions under which (i) in equilibrium, the high type issues

only short-term debt at t = 0 and does not want to invest at t = 1; and (ii) if a high type were to

issue enough long-term debt at t = 0 (which would be suboptimal), it would subsequently prefer

to invest at t = 1. In other words, underinvestment is driven precisely by the short maturity of the

firm’s debt, as in Myers (1977). There is short-term debt overhang in the sense that high-quality

firms issued too much short-term debt to be able to invest in their growth options later on.

Proposition 2 (Short Term Debt Overhang). Suppose that there is a cross-section of firms that

have cash holdings C with full support on [0, I0 + I1) and that for some C the high-type firm does

not undertake the growth option in equilibrium. Define C̄ as the highest level of cash holdings that

features equilibrium underinvestment.

Then, there exists a set of firms with cash levels C ∈ (C, C̄) that suffers from short-term debt

overhang—that is, these firms would have undertaken the growth option if had they issued enough

long-term debt—i.e., if either (a) C̄ > I0, or (b) C̄ ≤ I0 and pH − p0 ≥ ∆.

Consider the marginal high-type firm with cash holdings C̄ that is indifferent between under-

taking the growth option or not. When C̄ > I0, the firm would end up with C̄ − I0 > 0 cash if

it does not invest at date t = 1. A small tilt towards long-term debt in the date t = 0 capital

structure would make investment more attractive, due to the dilution effect highlighted in Lemma

3.

When C̄ < I0, the date t = 1 investment decision of the high-type firm is characterized in

Lemma 4. A small tilt towards long-term debt in the date t = 0 capital structure would worsen

the long-term debt overhang problem, but it would also reduce the short-term debt overhang. A

capital structure with longer-maturity debt will generate more investment if and only if the latter

effect dominates. For this to happen, the rate at which the firm can substitute short-term debt for

long-term debt (the slope of the zero profit line) needs to be sufficiently high (the slope needs to

be sufficiently flat).
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5 Comparative Statics

We have defined MacD as the duration floor, that is, the shortest duration that allows high-type

firms to separate from low types by rolling over short-term debt without investment. Next, we show

how the duration floor changes with the model parameters. Such comparative statics allows us to

investigate the properties of the optimal debt maturity (or capital structure) in the absence of high-

type investment, and it is crucial for understanding whether investment happens in equilibrium.

Proposition 3. The duration floor MacD is

(i) decreasing in the NPV of the date t = 1 growth option, i.e., decreasing in X and ∆ and

increasing in I1;

(ii) increasing in the date t = 0 net debt issuance, i.e., increasing gross date t = 0 debt issuance

I0 and decreasing in date t = 1 retained earnings C;

(iii) increasing in the severity of the adverse selection, i.e., decreasing in α and pL.

To see the intuition behind Proposition 3, recall that the incentives of low-type firms pin down

the duration floor. A higher NPV of the time t = 1 project makes the low type more willing to

undertake the growth option—that is, it increases its skin in the game. Thus, a deviation to rollover

without investment becomes relatively less attractive for a low type. High types can exploit this

slack in the low type’s incentive constraint by increasing the amount of short-term debt in their

capital structure, reducing long-term debt. As a result, MacD is decreasing in the NPV of the

growth option. This intuition exactly describes the economic forces associated with an increase

in the project payoff X and a decrease in the project cost I1. The probability of success ∆ has

an additional driving force, which operates through the t = 0 zero-profit constraint. A higher ∆

lowers the face value of long-term debt D2 for any given D1. A smaller D2 alleviates the long-term

debt overhang problem, and it further increases the low type’s incentives to undertake the growth

option. Thus, an increase in ∆ decreases the duration floor via both the NPV channel and the

long-term debt overhang channel.

When a firm has higher retained earnings C, the excess short-term debt D1 −C that needs to

be rolled over is lower. As a result, mimicking high types by rolling over short-term debt without

investment becomes relatively less attractive for low types. Thus, high types can increase the face

value of short-term debt one-for-one with retained earnings without attracting low types. Moreover,
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an increase in the face value of short-term debt reduces the amount of long-term debt required at

t = 0, which alleviates the long-term debt overhang problem and makes undertaking the growth

option more appealing for low types. This allows high types to further shorten their debt maturity.

This virtuous feedback effect implies that an increase of $1 in retained earnings reduces the duration

floor and it allows low types to increase the face value of short-term by more than $1.

Finally, the level of adverse selection affects the duration floor through the t = 0 zero-profit

constraint of investors. A higher fraction of high types α, or a higher quality of low types pL, lowers

the face value of long-term debt D2 and, consequently, alleviates the long-term debt overhang

problem. Moreover, a higher pL reduces the incentives for low types to mimic high types, as the

benefits of pooling are proportional to pH − pL. Stronger incentives for low types to undertake the

growth option imply that high types can shorten their debt maturity, which implies that MacD is

decreasing in α.

Next, we characterize how equilibrium level of investment depends on firm’s retained earnings.

Proposition 4. A marginal increase in retained earnings C makes the growth option more likely

to be undertaken if MacD = 1 and less likely to be undertaken if MacD < 1.

As low-type firms always undertake the growth option, the equilibrium level of investment

is determined by the incentives of high-type firms. As a consequence, to uncover the impact of

retained earnings C on investment, one needs to understand whether a marginal increase in C

tightens or relaxes the constraint (7).

When the duration floor MacD equals 1, a variation in retained earnings affects only the

investment mispricing. With higher retained earnings, the high-type firm needs to raise less external

costly capital and is more likely to invest. This is the standard intuition that is present in MM and

is illustrated in the right side of Figure 2.

However, when the duration floor MacD is greater than 1, a variation in retained earnings

affects both the investment mispricing and the duration floor itself. As shown in Proposition 4,

higher retained earnings C reduce the duration floor. This allows the high-type firm to use less

long-term debt, if it chooses to separate by not investing. A smaller burden of costly long-term debt

makes not investing more attractive. Thus, the overall effect of retained earnings on investment

depends on whether the mispricing channel or the duration-floor channel dominates. Figure 2 shows

numerically, and Proposition 4 argues analytically, that the second channel is the dominant one.

The key intuition for why an increase in retained earnings C increases investment stems from
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Figure 2: Payoff of the high-type firm depending on the investment decision. Model parameters
are X = 10, pH = 0.6, pL = 0.2, α = 0.62, I0 = I1 = 2, ∆ = 0.25.

the way retained earnings affect the total amount of debt issued, as opposed to the composition of

debt. The impact on the total amount of debt is straightforward: an extra $1 of retained earnings

reduces the need for outside financing precisely by $1. The impact on the composition of debt

features a virtuous cycle. When the firm has an extra $1 of retained earnings, it can increase

the amount of short-term debt by $1 and reduce the amount of long-term debt by $1. Such a

re-balancing does not affect the low-type firm’s benefits of mimicking the high-type firm, because

the excess short-term debt D1 −C remains constant. However, such it reduces the long-term debt

overhang and it increases the low-type firm’s incentives to undertake the growth option. This extra

slack in the incentive constraint implies that high-type firms can further shorten their debt maturity

and improve their separating payoff. As a result, an extra $1 of retained earnings allows the firm

to increase the amount of short-term debt by more than $1.

Proposition 4 shows that retained earnings can either positively or negatively affect the high-

type firm’s incentives to undertake the growth option. However, it does not specify whether those

two cases are mutually exclusive or can coexist for the same set of parameters. The following result

shows that the latter holds true in our setting.

Corollary 1 (Non-Monotone Investment). Suppose that (a) MacD > 1 for C = 0, (b) inequality
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(7) holds for C = 0, and (c) ∆X − I1 < pH−p0
αpH+∆I1. Then there exist 0 < C < C < I0 + I1 such

that the equilibrium features full investment for C ∈ [0, C) ∪ (C, I0 + I1] but only the low-type firm

invests when C ∈ (C,C). That is, equilibrium investment is non-monotone with respect to retained

earnings. If either of the conditions (a)-(c) fails, the equilibrium investment is monotone with

respect to retained earnings.

Corollary 1 highlights that both cases of Proposition 4 can co-exist for the same set of model

parameters and, consequently, that the investment by high-type firms can be non-monotone in

retained earnings. Non-monotonicity of investment occurs under the following three conditions.

First, to observe the negative impact of retained earnings on investment, the duration floor needs

to be greater than 1 for some levels of C. If MacD equals 1 for all C, then retained earnings always

(weakly) increase investment. Second, there has to be a region where MacD > 1 and the high-type

firm prefers to undertake the growth option. If this condition is violated, then an increase in C

coupled with MacD > 1 would make investing in the growth option even less attractive but would

not change the ultimate investment decision of the firm. Finally, with the first two conditions

in hand, one needs to make sure that separating without investment is the best outcome for the

high-type firm for some level of C—or, equivalently, that the NPV of the growth option is not too

high.
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6 Optimal Allocation

In this section, we show that the restriction to just short- and long-term debt, or the inability of the

firm to commit to the time t = 1 investment decision at date t = 0, are without loss of generality.

To do so, we consider the problem of a planner that seeks to maximize the expected payoff of a

high-quality firm, subject to incentive compatibility, feasibility and participation constraints. We

show that the solution to this relaxed problem, in which the planner can offer arbitrary contracts,

coincides with the equilibrium allocation characterized in Proposition 1.

In full generality, a contract for the planner is a triple (z, s, a) of (i) cash transfers z = (z0, z1, z2)

from the investors to the firm7, where the transfer zt is paid at date t = 0, 1, 2; (ii) payment s ∈ [0, X]

from the firm to investors when the project succeeds at t = 2; and (iii) prescribed investment choice

a ∈ {i, n}, where a = i denotes investment at t = 1.

Definition. A contract is feasible if s ∈ [0, X] and the cash transfers z satisfy limited liability.

That is: (a) z0 ≥ I0; (b) z1 ≥ 1(a = i)I1−C−(z0−I0); (c) z2 ≥ −C−(z0−I0)−(z1−1; (a = i)I1);
8

To understand conditions (a)− (c) in the above definition, note that any feasible contract that

implements investment at date zero must satisfy z0 ≥ I0, as otherwise the firm does not have enough

resources to invest. Moreover, we need z1 ≥ 1(a = i)I1 − C − (z0 − I0), because the firm receives

earnings at date one equal to C and carries a cash balance from date zero equal to z0 − I0 ≥ 0, so

it cannot be required to pay lenders more than this amount of cash at t = 1. For similar reasons,

we must have that, at date two, z2 ≥ −C − (z0 − I0)− (z1 − 1(a = i)I1).

The planner offers a (possibly degenerate) menu of contracts to the firm, which we denote by

M = {(zaθ , saθ , a)}
a∈{i,n}
θ∈{H,L}. A menu consists of four contracts indexed by type θ and investment

action a. Upon observing all offered menus, the firm either accepts one, or rejects all of them. If

the firm accepts a menu, it then gets to pick a contract within the menu by sending a message

m = (θ̂, â) that reports it’s type θ̂ and preferred investment action â. Thus, the firm can effectively

commit to investment action â at date t = 0.

When a type θ firm accepts a menu M and picks a contract by sending a message m = (θ̂, â),

7These are the net payments from the investors to the firm. We allow the payments to be negative, i.e., the firm
might be paying investors rather than the other way around.

8The indicator variable 1(a = i) equals to 1 if the firm takes the investment action i and equals 0 if the firms
takes investment action is n.
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the expected payoff of the firm’s insiders is

Uθ(M, θ̂, â)
def
= (pθ + 1(â = i)∆)[X − sâ

θ̂
] + C + zâ

θ̂,0
+ zâ

θ̂,1
+ zâ

θ̂,2
− I0 − 1(â = i)I1,

while expected investors’ profits are

πθ(M, θ̂, â)
def
= (pθ + 1(â = i)∆) · sâ

θ̂
− zâ

θ̂,0
− zâ

θ̂,1
− zâ

θ̂,2
.

Observe that, because of competition, the outside option of a low-quality firm is to secure its

full-information payoff. Thus, the planner’s problem can be formulated as follows:

max8M,aH , aL UH(M, θ, aH) ∈ subject to: (8)

Uθ(M, θ, aθ) ≥ Uθ(M, θ̂, â) ∀θ, θ̂, â (ICθ)

α · πH(M, θ, aH) + (1− α) · πL(M,L, aL) ≥ 0 (IR)

πL(M
′, L, a′L) ≤ 0 (NPL)

M ′ is feasible

Furthermore, the next Propositions shows that the high-type’s optimal allocation coincides

with the one described in Proposition 1.

Proposition 5. The high-type optimal allocation that solves the program (8) coincides with the

equilibrium allocation of Proposition 1.

Proposition 5 shows that allowing for arbitrary contracts and dynamic commitment does not

affect equilibrium investment decisions and payoffs. It highlights that underinvestment that Propo-

sition 1 generates through the reliance on short-term debt is the optimal behavior of the firm, and

that issuing short-term debt is one way of achieving the highest possible payoff without undertaking

the growth option. Proposition 5 also hints that other securities, e.g. callable debt, that imple-

ment the optimal allocation would also generate underinvestment. Such securities would reduce

the effective maturity of the firm’s liabilities and would allow it to take advantage of the favorable

repricing in absence of investment.
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7 Conclusion

We have studied a dynamic adverse selection model in which firms make multiple investment

decisions. We found that underinvestment is associated to the issuance of short-, not long-term

debt, because it is driven by the favorable repricing of short-term debt at the rollover stage, when

high quality firms convey information about their type to the market by not re-investing. Had

these firms chosen longer-term debt, they would have continued to make positive net present value

investments. Thus, these firms have issued too much short-term debt for them to have an incentive

to take on positive NPV projects, and there is short-term debt overhang. However, in contrast to

Myers’ story, in our model having a short-term debt overhang ex post might be optimal from an

ex ante standpoint, as it maximizes the firm owners payoff. So, this type of overhang cannot be

contracted around, and it arises under the optimal mechanism. The amount of short-term debt that

can be issued without violating incentive constraints determines the high type’s separating payoff.

Because the duration floor of a firm’s liabilities is relaxed when firms have higher cash (or retained

earnings), it follows that cash has a non-monotonic effect of investment. That is, when growth

options have a high NPV, more cash leads to more investment, as in MM. However, when growth

options are weaker, then the duration-floor effect dominates, and more cash is associated to less

investment. Therefore, our findings have implications that are relevant to both the investment-cash

flow sensitivity literature, and the literature on regulation under adverse selection.

27



References

Admati, Anat R, Peter M DeMarzo, Martin F Hellwig, and Paul Pfleiderer, “The

leverage ratchet effect,” The Journal of Finance, 2018, 73 (1), 145–198.

Akerlof, George A, “The Market for “Lemons”: Quality Uncertainty and the Market Mecha-

nism,” The Quarterly Journal of Economics, 1970, 84 (3), 488–500.

Asriyan, Vladimir, William Fuchs, and Brett Green, “Information spillovers in asset markets

with correlated values,” American Economic Review, 2017, 107 (7), 2007–40.

Barclay, Michael J and Clifford W Smith, “The maturity structure of corporate debt,” the

Journal of Finance, 1995, 50 (2), 609–631.

Bond, Philip and Hongda Zhong, “Buying high and selling low: Stock repurchases and persis-

tent asymmetric information,” The Review of Financial Studies, 2016, 29 (6), 1409–1452.

, Yue Yuan, and Hongda Zhong, “Share Issues versus Share Repurchases,” Available at

SSRN 3489555, 2019.

Calomiris, Charles W and Charles M Kahn, “The role of demandable debt in structuring

optimal banking arrangements,” The American Economic Review, 1991, pp. 497–513.

Daley, Brendan and Brett Green, “Waiting for News in the Market for Lemons,” Econometrica,

2012, 80 (4), 1433–1504.

Demarzo, Peter M, “Presidential address: Collateral and commitment,” The Journal of Finance,

2019, 74 (4), 1587–1619.

DeMarzo, Peter M and Zhiguo He, “Leverage dynamics without commitment,” The Journal

of Finance, 2021, 76 (3), 1195–1250.

Diamond, Douglas W, “Debt maturity structure and liquidity risk,” the Quarterly Journal of

economics, 1991, 106 (3), 709–737.

and Zhiguo He, “A theory of debt maturity: the long and short of debt overhang,” The

Journal of Finance, 2014, 69 (2), 719–762.

Flannery, Mark J, “Asymmetric information and risky debt maturity choice,” The Journal of

Finance, 1986, 41 (1), 19–37.

28



He, Zhiguo, “A model of dynamic compensation and capital structure,” Journal of Financial

Economics, 2011, 100 (2), 351–366.

and Konstantin Milbradt, “Dynamic debt maturity,” The Review of Financial Studies, 2016,

29 (10), 2677–2736.

Hu, Yunzhi, Felipe Varas, and Chao Ying, “Debt maturity management,” Technical Report,

Working Paper 2021.

Huang, Chong, Martin Oehmke, and Hongda Zhong, “A theory of multiperiod debt struc-

ture,” The Review of Financial Studies, 2019, 32 (11), 4447–4500.

Martel, Jordan, Kenneth Mirkin, and Brian Waters, “Learning by owning in a lemons

market,” The Journal of Finance, 2022.

Myers, Stewart C, “Determinants of corporate borrowing,” Journal of Financial Economics,

1977, 5 (2), 147–175.

and Nicholas S Majluf, “Corporate financing and investment decisions when firms have

information that investors do not have,” Journal of Financial Economics, 1984, 13 (2), 187–221.

Philippon, Thomas and Philipp Schnabl, “Efficient recapitalization,” The Journal of Finance,

2013, 68 (1), 1–42.

Zryumov, Pavel, “Dynamic adverse selection: Time-varying market conditions and endogenous

entry,” Available at SSRN 2653129, 2015.

29



A Appendix

A.1 Proof of Lemma 1

Proof. The proof that lender profits must be zero and that lenders cannot make profits on low

types are straightforward. Formal arguments can be found in the proof of Lemma ?? . Thus, we

now proceed in proving that the equilibrium must maximize the utility of high types subject to

constraints.

Clearly, any date-one equilibrium (K∗
1,K

∗
1 , a

∗
H , a∗L, w

∗
1) must satisfy all the constraints of pro-

gram (1). Suppose, however, that the equilibrium (K∗
1,K

∗
1 , a

∗
H , a∗L, w

∗
1) does not solve (1), i.e. that

it does not maximize the payoff of the high type. Let (K′,K ′, a′H , a′L, w
′) be a solution to (1).

Evidently, this is possible only when UH(K0,K
′, a′H) > 0, as otherwise every contract must be

equivalent for the high type, keeping it at its participation constraint. Then, anticipating the

future equilibrium withdrawal policies associated to both contracts, we must have that

UH(K0,K
′, a′H) > UH(K0,K

∗
1 , a

∗
H).

Case 1: First, it could be that UL(K0,K
∗
1 , a

∗
L) ≥ UL(K0,K

′, a′H). It follows from (ZP ) and

(NPL) that in K ′ investors are making either positive or zero profits on the high type. Consider

a menu with commitment K̂ in which the (a′H) contract is the ϵ modified contract from K ′ (to

deliver ϵ > 0 more profits to investors) and the other option is a zero contract. We know that this

is feasible because of our Conjecture. The menu K̂ attracts the high type because

UH(K0, K̂, a′H) = UH(K0,K
′, a′H)− ϵ > UH(K0,K

∗
1 , a

∗
H),

as long as ϵ > 0 is small enough, while it does not attract low types because

UL(K0, K̂, a′H)
ϵ
< UL(K0,K

′, a′H)
case 1
≤ UL(K0,K

∗
1 , a

∗
L).

Moreover, the menu K̂ is guaranteed to deliver at least ϵ > 0 profits to investors. As a result, its

existence contradicts K∗
1 being an equilibrium.

Case 2: Now consider the case in which UL(K0,K
∗
1 , a

∗
L) < UL(K0,K

′, a′H). We have two

sub-cases.
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Case 2.1: First, suppose that UL(K0,K
′, a′L) > UL(K0,K

′, a′H). In this case, consider a devia-

tion menu K̂ constructed as follows. The contract (a′H) is the same as in the K ′ menu. The option

(a′L) is an ϵ modified contract from K ′ that generates ϵ > 0 higher profits for the investors. The

menu K̂ attracts the high type who chooses (a′H) as

UH(K0, K̂, a′L)
ϵ
< UH(K0,K

′, a′L)
IC
≤ UH(K0,K

′, a′H) = UH(K0, K̂, a′H).

Moreover, the menu K̂ attracts the low type who picks (a′L) for small enough ϵ because

UL(K0, K̂, a′L) = UL(K0,K
′, a′L)− ϵ

case 2.1
> UL(K0,K

′, a′H)
case 2
> UL(K0,K

∗
1 , a

∗
L).

Finally, the menu K̂ is guaranteed to deliver strictly higher profits to investors that the menu K ′

(which itself is a zero profit menu). Hence, the existence of K̂ contradicts K∗
1 being an equilibrium.

Case 2.2: Otherwise, the only remaining is the case UL(K0,K
′, a′L) = UL(K0,K

′, a′H). In this

case, consider a deviation menu (with commitment) K̂, constructed as follows. The contract (a′L)

is the same as in K ′. Option (a′H) is an ϵ-modified contract from the menu K ′ that generates ϵ > 0

higher profits for investors. K̂ attracts the high type who chooses (a′H) as

UH(K0, K̂, a′L) = UH(K0,K
′, a′H)− ϵ > UH(K0,K

∗
1 , a

∗
H),

as long as ϵ > 0 is sufficiently small. Moreover, K̂ attracts the low type who picks (a′L) as

UL(K0, K̂, a′L) = UL(K0,K
′, a′L)

case 2.2
= UL(K0,K

′, a′H)
ϵ
> UL(K0, K̂, a′H)

UL(K0, K̂, a′L) = UL(K0,K
′, a′L)

case 2.2
= UL(K0,K

′, a′H)
case 2
> UL(K0,K

∗
1 , a

∗
L)

Finally, K̂ is guaranteed to deliver strictly higher profits to investors than K ′ (which itself is a zero

profit menu). Thus, the existence of K̂ contradicts K∗
1 being an equilibrium.

A.2 Proof of Lemma 2

Proof. The payoff for a type-θ firm associated to investment is (pθ+∆)[X−F i
2], while that associated

to taking the zero contract is pθX+C. Thus, type θ invests if and only if (pθ+∆)[X−F i
2] ≥ pθX+C,

or ∆X − C ≥ (pθ + ∆)F i
2. As the left-hand side is independent of θ, while the right-hand side

increases in θ, if the inequality holds for the high type it holds for the low type. Thus, competition
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implies that F i
2 = I1−C

p0+∆ , and investment takes place if and only if inequality (2) holds weakly.

Now, suppose that inequality (2) is strictly reversed. Then, the high type chooses the zero

contract and gets a payoff of pHX − C. If the equilibrium is such that a low type does not

invest, then the low type must be taking the zero contract as well, receiving a payoff of pLX + C.

Consider now a deviation (with commitment) in which a date-one lender offers to a low type only

an investment option with face value F i
2 = I1−C

pL+∆ + ϵ, for a small ϵ > 0. A low type deviates from

the zero contract when pLX + C ≤ (pL + ∆)
[
X − I1−C

pL+∆ − ϵ
]
, or (pL + ∆)ϵ ≤ ∆X − I1, which

is possible given that ∆X > I1. Therefore, irrespective of what a high type does, lenders make

strictly positive profits at the deviation, which contradicts the presumption that a low type does

not invest.

A.3 Proof of Lemma 3

We prove this Lemma using by splitting splitting the space D1 ≤ C into two regions and verifying

the statement of the lemma in each region separately.

Lemma A.1. If 0 < D1 +D2 ≤ C, then, the equilibrium features investment by all types when

∆X − I1︸ ︷︷ ︸
NPV1

+(1− (pH +∆))D2︸ ︷︷ ︸
Dilution of D2

>
(pH − p1)

(p1 +∆)
(I1 − C)︸ ︷︷ ︸

Investment Mispricing

+
(pH − p1)

(p1 +∆)
D1︸ ︷︷ ︸

Rollover Mispricing

. (A.1)

If inequality (A.1) is strictly reversed, the equilibrium features investment only by low types, while

high types take the zero contract. If (A.1) holds as an equality, both allocations are equilibria.

Proof. The payoff for a type-θ firm associated to investment is (pθ +∆)[X −D2 − F i
2], while that

associated to taking the zero contract is pθX +C −D1 −D2. Therefore, as we have argued before,

investment requires pooling and F i
2 = I1−C+D1

p0+∆ . Thus, the payoff associated to investment reads

(pθ+∆)
[
X −D2 − I1−C+D1

p1+∆

]
. A high type prefers to invest only if (pH+∆)

[
X −D2 − I1−C+D1

p1+∆

]
≥

pHX +C −D1 −D2, or ∆X −C + (1− (pH +∆))D2 ≥ (pH +∆) I1−C+D1
p1+∆ + pH−p1

p1+∆ D1, as in (A.1).

The case in which (A.1) does not hold mirrors previous analysis for the case D1 = D2 = 0,

and indifference arises when (A.1) holds as an equality, in which case we have two equilibrium

allocations.
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Lemma A.2. If D1 +D2 ≥ C and D1 ≤ C, then all types invest in equilibrium when

∆X − I1︸ ︷︷ ︸
NPV1

− ∆D2︸ ︷︷ ︸
Overhang

+(1− pH)[C −D1]︸ ︷︷ ︸
Partial dilution of D2

>
(pH − p1)

(p1 +∆)
(I1 − C)︸ ︷︷ ︸

Investment mispricing

+
(pH − p1)

(p1 +∆)
D1︸ ︷︷ ︸

Rollover mispricing

. (A.2)

If (A.2) is strictly reversed, then low types invest and high types take the zero contract when

∆X − I1︸ ︷︷ ︸
NPV1

− ∆D2︸ ︷︷ ︸
Overhang

+ (1− pL)[C −D1]︸ ︷︷ ︸
Partial dilution of D2

> 0, (A.3)

If both (A.2) and (A.3) are strictly reversed, then all types take the zero contract. Whenever (A.2)

and/or (A.3) hold as equality, there are multiple equilibria.

Proof. The payoff for a type-θ firm associated to investment is (pθ +∆)[X −D2 − I1−C+D1
p1+∆ ], while

that associated to taking the zero contract is pθ[X+C−D1−D2], as all cash goes to date-zero debt

holders if the firm does not getX. Thus, investment requires (pH+∆)[X−D2− I1−C+D1
p1+∆ ] ≥ pH [X+

C−D1−D2], or ∆[X −D2]−C+(1− pH)[C−D1] ≥ (pH +∆) I1−C
p1+∆ + pH−p1

p1+∆ D1. If this inequality

does not hold, then high types do not invest. As for low types, they prefer investment under full

information rather than taking the zero contract whenever inequality (A.3) holds, and this is always

feasible. To check feasibility, observe that investment at date one requires X−D2 ≥ I1−C+D1
pL+∆ . This

constraint binds before inequality (A.3) only if I1+D1−C
pL+∆ > I1−(1−pL)(C−D1)

∆ , which can be rewritten

as 0 > I1 − C +D1 + (pL +∆)(C −D1) ≥ 0, which is a contradiction.

Together Lemmas A.1 and A.2 constitute the proof of Lemma 3 since they cover the whole

space D1 < C. Inequalities (A.1) and (A.2) are collapsed into inequality (3), and inequality (A.3)

is equivalent to (4).

A.4 Proof of Lemma 4

We prove this Lemma using by splitting splitting the space D1 > C into two regions and verifying

the statement of the lemma in each region separately.

Lemma A.3. Suppose that D1 > C and ∆(X − D2) − I1 > 0. Then the date-one equilibrium
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features investment by all types when

∆X − I1 ≥ ∆D2 +
(pH − p1)

(p1 +∆)
(I1 − C) +

(pH − p1)

(p1 +∆)
D1

− (1− α)pH
p1

[pH − pL
pH

(D1 − C)− (∆(X −D2)− I1)
]+

.

(A.4)

Otherwise, if inequality A.4 is reversed, then only low type firms invest.

Proof. In this region we have (at most) 4 different types of allocations which result in the following

payoffs to the High (H) and Low (L) type firms

1. Both H and L roll over their debt, in which case a type-θ firm’s payoff reads

Uθ = pθ

(
X −D2 −

D1 − C

p1

)

2. Both H and L invest, receiving a payoff equal to

Uθ = (pθ +∆)

(
X −D2 −

I1 +D1 − C

p1 +∆

)

3. H rolls over and L invests. In this case, we have two sub-cases, depending on whether the firms

are offered a pooling menu with cross-subsidies, or two zero-profit separating contracts.

3a. In the event of separating contracts without cross-subsidization, payoffs read

UH = pH

(
X −D2 −

D1 − C

pH

)
UL = (pL +∆)

(
X −D2 −

I1 +D1 − C

pL +∆

)
,

and the incentive constraint for a low type not to mimic the high type reads

ICL : (pL +∆)

(
X −D2 −

I1 +D1 − C

pL +∆

)
≥ pL

(
X −D2 −

D1 − C

pH

)
.

3b In the case of a zero-profit menu with cross-subsidization, payoffs are

Uθ = pθ

(
X −D2 −

D1 − C − (1− α)[∆(X −D2)− I1]

p1

)
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where the utilities above follow after solving for Fn
2 and F i

2 from


α(D1 − C) + (1− α)(I1 +D1 − C) = αpHFn

2 + (1− α)(pL +∆)Fn
2

(pL +∆)(X −D2 − F i
2) = pL(X −D2 − Fn

2 )

4. H invests and L rolls over. Again, we have to consider two sub-cases:

4a Without cross-subsidization

UH = (pH +∆)

(
X −D2 −

I1 +D1 − C

pH +∆

)
UL = pL

(
X −D2 −

D1 − C

pL

)
ICL : pL

(
X −D2 −

D1 − C

pL

)
≥ (pL +∆)

(
X −D2 −

I1 +D1 − C

pH +∆

)
.

4b With cross-subsidization

Uθ = (pθ +∆)

(
X −D2 −

I1 +D1 − C + (1− α)[∆(X −D2)− I1]

p1 +∆

)
.

Notice that the allocation 4a is not feasible, since the ICL constraint does not hold when

∆(X −D2)− I1 > 0. Observe that UH(4b) < UH(2) and UH(1) < UH(3b). Moreover, whenever 4b

is feasible, so is 2; and whenever 1 is feasible, so is 3b. Hence, only 3 allocations can deliver the

highest possible payoff to a high type UH : (2), (3a), or (3b).

The allocation (3a) exists whenever the ICL is satisfied. Incentive constraint of the low type

can be rewritten as

∆(X −D2)− I1 ≥
pH − pL

pH
(D1 − C).

Whenever this inequality holds, it can be checked that allocation 3b cannot be an equilibrium,

as investors would make strictly positive profits on low types (which we know from Lemma ?? is

impossible). If allocation (3a) exists, then the H type prefers to invest, i.e., prefers allocation (2)

to allocation (3a) whenever

∆(X −D2)− I1 ≥
pH − p1

p1
(I1 +D1 − C), (A.5)

otherwise the allocation (3a) delivers the highest utility. Notice that the inequality above is equiv-
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alent to (A.4) since the last term is zero.

If allocation (3a) does not exist, then the H type prefers to invest, i.e., prefers allocation (2) to

allocation (3b) whenever

pH(1− α)

p1

[
∆(X −D2)− I1 −

pH − pL
pH

(D1 − C)

]
≤ ∆(X−D2)−I1−

pH − p1
p1

(I1+D1−C). (A.6)

Notice that the inequality above is equivalent to (A.4).

Lemma A.4. Suppose that D1 > C and ∆(X − D2) − I1 < 0. Then the date-one equilibrium

features no investment by either type.

Proof. As D1 > C, taking the zero contract leads to default and a firm payoff equal to zero.

Using the notation from the previous lemma we notice the following. First, allocation 3b is

dominated by allocation 1

UH(3b) = pH

(
X −D2 −

D1 − C − (1− α)[∆(X −D2)− I1]

p1

)
< pθ

(
X −D2 −

D1 − C

p1

)
= UH(1)

and whenever allocation 3b is feasible then allocation 1 is also feasible. Hence, allocation 3b cannot

be an equilibrium.

Second, allocation 2 is dominated by allocation 4b

UH(2) = (pH +∆)

(
X −D2 −

I1 +D1 − C

p1 +∆

)
< (pH +∆)

(
X −D2 −

I1 +D1 − C + (1− α)[∆(X −D2)− I1]

p1 +∆

)
= UH(4b)

and whenever allocation 2 is feasible then allocation 4b is also feasible. Hence, allocation 2 cannot

be an equilibrium.

Third, the ICL constraint for allocation 3a is never satisfied: the low type does not want

to invest in the negative NPV project at the full information price and would prefer to roll over

existing short-term debt by pretending to be the high type.

Hence, the only candidate allocations are (1) - both type roll over, (4a) and (4b) - high type

invests and low type rolls over.
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D1

D2

0
C

X

IR(1)

C + p1X

X − I1
pH+∆

IRH(4a)

C + pHX +∆X − I1

X

IRL(4a)

C + pLX

ICL(4a)

X − I1
∆

UH(4a) = UH(1)

Figure 3: Region where allocation (4a) exists.

We next claim that allocation 1 exists and dominates allocation 4a whenever 4a exists. We

begin by looking at the feasibility (IR) constraints of the two allocations:

X −D2 ≥
D1 − C

p1
(IR(1))

X −D2 ≥
D1 − C

pL
(IRL(4a))

X −D2 ≥
I1 +D1 − C

pH +∆
(IRH(4a))

All three lines here have a negative slope in D1.

Next, for allocation 4a to exist, the ICL constraint needs to be satisfied as well:

I1 −∆(X −D2) ≥
pH − pL
pH +∆

(I1 +D1 − C)

D2 ≥ X − I1
∆

+
pH − pL

∆(pH +∆)
(I1 +D1 − C) (ICL(4a))

This IC constrain has a positive slope in D1. Moreover, this line goes through the intersection of

IRH(4a) and IRL(4b) since at that point the low type gets exactly 0 through separating and not

investing, or though mimicking the high type and investing, and is indifferent as a result.

Hence, the allocation 4a exits within the triangular shaped region shown in Figure 3. Next,
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check when the allocation 4a dominates 1, i.e.

UH(1) = pH

(
X −D2 −

D1 − C

p1

)
< (pH +∆)

(
X −D2 −

I1 +D1 − C

pH +∆

)
= UH(4a)

I1 −∆(X −D2) <
pH − p1

p1
(D1 − C)

D2 < X − I1
∆

+
pH − p1
∆ · p1

(D1 − C)

Notice that whenD1 = C then it simplifies toD2 < X− I1
∆ , the region which is strictly below the

red triangle. To see whether any part of the triangle lies inside of the half-space UH(4a) > UH(1) it is

necessary and sufficient to check whether the right vertex of the triangle (intersection of IRL(4a),

IRH(4a), and ICL(4a)) lies in that half-space. But at that point UH(4a) = 0 and UH(1) > 0.

Hence, the triangle where 4a is feasible and the half-space UH(4a) > UH(1) do not intersect. This

proves that whenever 4a is feasible, the high type prefers allocation 1.

Finally, we prove that allocation 1 exists and dominates allocation 4b whenever 4b exists. We

D1

D2

0
C

X

IR(1)

C + p1X

X − αI1
p1+α∆

IRH(4b)

C + p1X + α(∆X − I1)

X − I1
∆

Figure 4: Region where allocation (4b) exists.

begin by looking at the feasibility (IR) constraints of the two allocations. Allocation 1 has IR(1)

as its feasibility constraint and allocation 4b has

X −D2 ≥
I1 +D1 − C + (1− α)[∆(X −D2)− I1]

pL
. (IRH(4b))

Both lines here have a negative slope in D1 and IR(1) is steeper than IRH(4b) and these lines cross

exactly at ∆(X −D2) = I1
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Since we are interested in the parametric region ∆(X −D2) < I1 the region where allocation

4b exists is the shaded triangle shown in Figure 4. Hence, when the allocation 4b exits allocation

1 exists as well.

Next, check when the allocation 4b dominates 1, i.e.

UH(1) = pH

(
X −D2 −

D1 − C

p1

)
< (pH +∆)

(
X −D2 −

I1 +D1 − C + (1− α)[∆(X −D2)− I1]

p1 +∆

)
= UH(4b)

To check whether the shaded triangle in Figure 4 has a non-empty intersection with the half-

space UH(1) < UH(4b) it is necessary and sufficient that at least one vertex of the triangle lies inside

of that half-space. First, check the top left vertex: there UH(4b) = 0 < UH(1), hence it lies outside

of the half-space. Second, check the right vertex: there UH(4b) = 0 = UH(1) hence it lies on the

edge of the half-space. Finally, check the bottom left vertex where D1 = C and ∆(X −D2) = I1:

UH(1) vs. UH(4b)

pH (X −D2) vs. (pH +∆)

(
X −D2 −

I1
p1 +∆

)
0 vs. ∆(X −D2)−

pH +∆

p1 +∆
I1

0 > I1 −
pH +∆

p1 +∆
I1.

Hence this vertex also lies outside of the half-plane. As a result, the whole triangle lies outside of

the half-plane and the allocation 1 always dominates allocation 4b whenever the latter exists.

Lemmas A.3 and A.4 jointly cover all cases of Lemma 4.

A.5 Proof of Lemma 5

Proof. Suppose, by contradiction, that the date-zero equilibrium was separating. Then, given that

K0 consists of single contracts, it follows that the equilibrium strategy of one type, say θ′ is to reject

all offers and not invest at date zero. This strategy yields a payoff equal to zero to type θ′. As for

the other type, θ′′, investment yields a payoff equal to pθ′′
(
X −D2 − D1−C

pθ′′

)
if this type anticipates

that it will rollover at date one, while it gives a payoff of (pθ′′ + ∆)
(
X −D2 − I1+D1−C

pθ′′+∆

)
if this

type anticipates investment. If either of these two payoffs is positive, then default can be avoided.
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Moreover, it cannot be a date-zero equilibrium to induce default at date one, as this is dominated

by a feasible pooling offer F i
2 = I1+D1−C

p0+∆ + ϵ, for some ϵ > 0 that represents lender profits. Further,

the payoff of the investing type is strictly positive at F i
2 as all projects have strictly positive net

present value. Given that the equilibrium payoff of the investing type must be strictly positive,

type θ′ mimics, incentive compatibility fails and there cannot be separation at date zero.

Zero profits and maximization of the high-type firm’s payoff can be shown using similar argu-

ments to Lemmas 1 and ??.

A.6 Proof of Proposition 1

We again break down the proof of into several lemmas.

Lemma A.5. If I0 ≤ C then in any equilibrium the low type always invests and the high-type

invests if

∆X − I1 ≥
(pH − p0)

(p0 +∆)
(I1 + I0 − C) (A.7)

Proof. If the high-type firm invests at date t = 0 the zero profit condition reads D1+(p0+∆)D2 =

I0. Plugging the former condition in the expected payoff of a high type under full investment yields

UH = (pH +∆)

(
X − I0 −D1

p0 +∆
− I1 +D1 − C

p0 +∆

)
= (pH +∆)

(
X − I0 + I1 − C

p0 +∆

)
.

Observe that this expression does not depend on D1.

If only the low type invests, the zero profit condition reads D1+(α+(1−α)(pL+∆))D2 = I0.

Clearly in this case the high-type is better off issuing D1 = I0 and avoiding costly long-term debt.

Separating with short-term debt generates

UH = pHX + C − I0,

Comparison between the pooling and the separating payoffs gives the inequality (A.7).

Case I0 > C. There are two possible ways for the firm to finance its time-zero investment in this

event. First, the firm might consider issuing riskless short-term debt D1 ≤ C. Lemma A.6 shows

that in this case the firm would want to issue D1 = C. Next, the firm might want to issue D1 ≥ C.

In this case, Lemma A.7 shows that, without loss, the firm might go all in on the short-term debt,
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i.e. put D1 = I0. Date zero equilibrium immediately follows from Lemma A.7 via comparing the

payoffs of the high type firm with D1 = I0 and D2 = 0.

Lemma A.6. When I0 > C, the only candidate date-zero equilibrium allocation such that D1 ≤ C

is one in which D1 = C. It is never optimal for both types to rollover, and there is investment by

all types if and only if

∆X − I1 >
pH − p0
p0 +∆

I1 + (I0 − C)
∆(1− α)(pL +∆)

(p0 +∆)(p0 + (1− α)∆)
(A.8)

Proof. Observe that, because I0 > C, we need D1 +D2 > C, as otherwise date-zero lenders could

not break even. Therefore, when D1 ≤ C we have the following possibilities. First, it could be

that there is investment by all types, which implies that the zero-profit condition for lenders read

D1 + (p0 +∆)D2 = I0. In this case, the expected payoff of a high type reads

UH = (pH +∆)

(
X − I0 −D1

p0 +∆
− I1 +D1 − C

p0 +∆

)
= (pH +∆)

(
X − I0 + I1 − C

p0 +∆

)
,

and it is independent of the firm’s debt maturity structure. Therefore, we can set without loss of

generality D1 = C in this case. Second, it could be that only the low type invests, while the high

type takes the zero contract. The zero-profit condition reads D1 + (1−α)(pL +∆)D2 +α[pHD2 +

(1 − pH)(C − D1)] = I0. Solving for D2 and plugging in the utility function of a high type that

takes the zero contract yields

UH = pH(X + C −D1 −D2) = pH(X + C)− pHD1 − pH
I0 − (1− α)αC −D1(1− α(1− pH))

p0 + (1− α)∆
.

Taking the derivative with respect to D1 yields −pH + pH
(1−α(1−pH))
p0+(1−α)∆ . The derivative is positive

if and only if −1 + (1−α(1−pH))
p0+(1−α)∆ > 0, or 1−(p0+∆)

1−(pH+∆) > α. We know that this inequality must hold

because we have both 1−(p0+∆)
1−(pH+∆) > 1 and α < 1. Thus, in this case it is strictly optimal for a

high type to choose D1 = C and D2 = I0−C
p0+(1−α)∆ , and the payoff received by a high type reads

UH = pH

(
X − I0−C

p0+(1−α)∆

)
. Finally, all types might pool and roll over. The zero-profit condition

in this case reads p0(D1 + D2) + (1 − p0)C = I0, and the high-type’s payoff at the zero contract

becomes UH = pH

(
X + C − I0−(1−p0)C

p0

)
= pH

(
X − I0−C

p0

)
, which is again independent of D1. As

a result, we can set D1 = C without loss of generality, as claimed in the Lemma.

Comparing the high type’s payoff at the pooling allocation in which all types roll over and do

not invest at date one (which is UH = pH

(
X − I0−C

p0

)
), with the one achieved when low types
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invest and high types roll over (which is UH = pH

(
X − I0−C

p0+(1−α)∆

)
), it is immediate that a high

type prefers the latter, and as feasibility never binds pooling with rollover cannot be an equilibrium.

So, there are two possible allocations remaining: pooling with investment and separating in

which only low types invest. The high type prefers pooling with investment if and only if

(pH +∆)

(
X − I0 + I1 − C

p0 +∆

)
> pH

(
X − I0 − C

p0 + (1− α)∆

)
,

which can be rewritten as in inequality A.8.

Finally, we need to consider the case in which I0 > C and the firm chooses to raise risky

short-term debt D1 > C.

Lemma A.7. When I0 > C, the candidate date-zero equilibrium when D1 > C is such that:

1. If ∆X − I1 ≥ pH−pL
pH

(I0 − C), then there is investment by all types if and only if inequality

(A.7) holds. If (A.7) does not hold, then only low type invests. All agents receive the full

information payoff associated to their chosen investment;

2. If ∆X − I1 <
pH−pL

pH
(I0 − C), then there exist investment by all types if and only if

(pH +∆)

(
X − I1 + I0 − C

p0 +∆

)
≥ pH

(
X − I0 − C − (1− α)(∆X − I0)

p0

)
. (A.9)

Otherwise only the low type invests.

Moreover, regardless of parameter values, the date-0 equilibrium payoff can be achieved with only

issuing short-term debt, i.e., D1 = I0 and D2 = 0.

Proof. First we show that no investment by both types cannot be an equilibrium. To see that,

notice along the zero profit line with no investment

D1 + p0D2 = I0 (ZP∅)

the payoff of the high type

U∅
H = pH

(
X −D2 −

D1 − C

p0

)
= pH

(
X − I0 − C

p0

)
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is constant. Next, consider the point (D1, D2) = (I0, 0) that is on the ZP∅ and on

D1 + (p0 + (1− α)∆)D2 = I0 (ZPL)

D1 + (p0 +∆)D2 = I0 (ZPHL)

simultaneously. At this point pooling with no investment is a feasible allocation. However, it is

dominated by either pooling with investment or one of the separating allocations because ∆(X −

D2) > I1. Since (D1, D2) = (I0, 0) is on all zero-profits lines simultaneously, one of the separating

allocations or the pooling with investment one can be supported as a time 1 equilibrium with higher

profits to the high-type than the pooling with no investment. Hence, pooling with no investment

cannot be a time-0 equilibrium.

Now that we have ruled out pooling with no investment, we can limit our analysis to only one

of the two zero profit conditions ZPL and ZPHL. In separation without cross-subsidy equilibrium

region (in the (D1, D2) space) the payoff of the high type along ZPL is

U sep−no−cs
H = pH

(
X −D2 −

D1 − C

pH

)
= pH

(
X − I0 −D1

p0 + (1− α)∆
− D1 − C

pH

)
∼ D1

(
1

p0 + (1− α)∆
− 1

pH

)
∼ D1[pH − p0 − (1− α)∆]

∼ D1(1− α)[pH − pL −∆]

and this payoff is increasing in D1.

In separation with cross-subsidy equilibrium region the payoff of the high type along ZPL is

U sep−with−cs
H = pH

(
X −D2 −

D1 − C − (1− α)[∆(X −D2)− I1]

p0

)
=

pH
p0

(p0X − p0D2 − (D1 − C) + (1− α)[∆(X −D2)− I1])

=
pH
p0

(p0X − (p0 + (1− α)∆)D2 −D1 + C + (1− α)[∆X − I1])

=
pH
p0

(p0X − I0 + C + (1− α)[∆X − I1])

and this payoff is constant.
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Hence, when we increase D1 along ZPL the separating payoff of the high type is either strictly,

or weakly increases. Consequently, along the ZPL the highest separating payoff for the high type

is achieved at D1 = I0 and D2 = 0.

Consider two cases. Case 1: suppose that (D1, D2) = (I0, 0) is in the separating region, then

the separating payoff to the high type at this point is

U sep
H =


pH

(
X − I0−C

pH

)
if ∆X − I1 ≥ pH−pL

pH
(I0 − C)

pH

(
X − I0−C−(1−α)[∆X−I1]

p0

)
if ∆X − I1 <

pH−pL
pH

(I0 − C)

Clearly, the pooling with investment is a feasible allocation at (D1, D2) = (I0, 0). Since the

point with (D1, D2) = (I0, 0) is in the separating equilibrium region it must be that the separating

payoff to the high type at (D1, D2) = (I0, 0) is higher than the pooling with investment payoff at

D1 = I0 and D2 = 0

Upool−inv
H = (pH +∆)

(
X − I1 + I0 − C

p0 +∆

)
.

But pooling with investment payoff does not change along the ZPHL, hence, the separating payoff

to the high type at (D1, D2) = (I0, 0) is higher than the pooling payoff anywhere along ZPHL.

Hence, the separating payoff to the high type at (D1, D2) = (I0, 0) is the highest among all payoffs

consistent with time zero ZP conditions and, therefore, it is the equilibrium payoff.

Case 2: suppose that (D1, D2) = (I0, 0) is in the pooling region. Then at this point either

separating with or without cross-subsidy is a feasible payoff. Hence, U sep
H is feasible for the high type.

Moreover, U sep
H is also the highest separating payoff among all consistent with ZPL. However, it is

dominated by the Upool−inv
H at (D1, D2) = (I0, 0) and this payoff can be achieved since (D1, D2) =

(I0, 0) is on the ZPHL. Hence, U
pool−inv
H (which does not change along ZPHL) is the highest among

all payoffs consistent with time zero ZP conditions and, therefore, it is the equilibrium payoff.

It is immediate to see that the statement of the Proposition 1 follows.

A.7 Proof of Proposition 2

Proof. We know that there exists a high-type firm with cash C that does not invest. Moreover, we

know that when the firm has cash equal to I0 + I1 it always invests. Given the shape of our value

functions, it follows immediately that there exists a C̄ ∈ (0, I0 + I1) such that a high-type firm
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with cash C̄ is indifferent between separating without cross-subsidies with full short-term debt, or

pooling and investment. There are two cases.

First, it could be that C̄ > I0. In this case, because D1 = I0 and D2 = 0, we have D1 =

D1 +D2 < C̄. From our equilibrium characterization, we know that that long term debt generates

a dilution effect that incentivizes investment whenever D1 + D2 < C. The indifference frontier

between separation without cross-subsidies and investment is given by the following equation:

∆X − I1 =
(pH − p0)

(p0 +∆)
(I1 +D1 − C) + ∆D2 − (1− pH)min(D2, C −D1),

where min(D2, C − D1) = D2. Therefore, we have that dD2
dD1

= (pH−p0)
(p0+∆)

1
1−pH−∆ > 0. Because

any zero-profit condition yields dD2
dD1

< 0, we conclude that the firm with cash C̄ suffers from a

short-term debt overhang: issuing even an ϵ > 0 of long-term debt would lead this firm to invest.

Evidently, by continuity the same argument applies to firms with C − C̄ = δ > 0, for δ small.

Second, it could be that C̄ < I0. As D1 = I0 > C̄, the indifference frontier between separation

without cross-subsidies and investment is given by the following equation:

∆X − I1 =
(pH − p0)

(p0 +∆)
(I1 +D1 − C) + ∆D2,

and therefore the slope is dD2
dD1

= p0−pH
∆(p0+∆) < 0. In contrast, the slope of the zero-profit line

corresponding to pooling and investment (which is D1+(p0+∆)D2 = I0) reads
dD2
dD1

= − 1
p0+∆ < 0.

In this case, there is short-term debt overhang if and only if the slope of the zero-profit line is

flatter, or − 1
p0+∆ > p0−pH

∆(p0+∆) , which can be re-written as (1 − α)(pH − pL) ≥ ∆. Evidently, by

continuity the same argument applies to firms with C − C̄ = δ > 0, for δ small.

Proof of Proposition 3.

Proof. Recall that MacD is defined as

I0 ·MacD = 2I0 −D1 = I0 +
pH(p0 + (1− α)∆)

p0(pH − pL −∆)

[
pH − pL

pH
(I0 − C)− (∆X − I1)

]+
.

It is trivial to see that I0 · MacD, and hence MacD is decreasing in X, increasing in I1,
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decreasing in C. To see the dependence of I0 notice that

MacD = 2− D1

I0
= 1 +

pH(p0 + (1− α)∆)

I0 · p0(pH − pL −∆)

[
pH − pL

pH
(I0 − C)− (∆X − I1)

]+
= 1 +

pH(p0 + (1− α)∆)

p0(pH − pL −∆)

[
pH − pL

pH
− pH − pL

pH
· C
I0

− ∆X − I1
I0

]+
.

Since −(1− pL/pH)C − (∆X − I1) < 0, MacD is increasing in I0.

To see the dependence on α notice that

d

dα
(I0 ·MacD) ∼ d

dα

(
p0 + (1− α)∆

p0

)
∼ d

dα

(
(1− α)

p0

)
=

−p0 − (1− α)(pH − pL)

p20

=
−pH
p0

< 0.

Hence, MacD is decreasing in α or, equivalently, increasing in 1− α.

Finally, to see the dependence of ∆ notice that MacD comes from the indifference of the low

type and zero profit conditions, i.e.

∆(X −D2)− I1 =
pH − pL

pH
(D1 − C)

∆

(
X − I0 −D1

p0 + (1− α)∆

)
− I1 =

pH − pL
pH

(D1 − C)

∆

(
X − I0

p0 + (1− α)∆

)
− I1 =

(
pH − pL

pH
− ∆

p0 + (1− α)∆

)
D1 −

pH − pL
pH

C

∆

(
X − I0

p0 + (1− α)∆

)
− I1 =

p0(pH − pL −∆)

pH(p0 + (1− α)∆)
D1 −

pH − pL
pH

C

The l.h.s. of the last equation is increasing in ∆, and the r.h.s. is decreasing in ∆. Hence, to

make the equation hold D1 has to rise in response to higher ∆, i.e. D1 is increasing in ∆. Since

I0MadD = 2I0 −D1, the shortest separating maturity in decreasing in ∆.

Comparative statics w.r.t. pL easily follows from examining the date t = 0 zero profit constraint

and the low type IC constraint separately.
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Proof of Proposition 4

Proof. When MacD = 1 an increase in C first keeps MacD = 1 (due to the fact that MacD is

weakly decreasing in C, see Proposition 3) and second relaxes the inequality (7) since it only affects

the (pH−p0)
(p0+∆) (I1 − C) term.

When MacD > 1 a marginal increase in C keeps MacD > 1 and affects r.h.s. the inequality

(7) by

−pH − p0
p0 +∆

+
(1− α)pH

p0
· pH − pL

pH
= (pH − p0)

(
− 1

p0 +∆
+

1

p0

)
> 0

Proof of Corollary 1

Proof. The only need to show that condition (c) guarantees that separating without investment is

the best outcome for some C.

Notice that condition (a) implies that as a function of C the separating value function of the

high type is piece-wise linear with a slope of pH/p0 for low C (where MacD > 1) and slope of 1

for high C (where MacD = 1). In order for the separating value function to be higher than the

pooling (linear) value function it is necessary and sufficient for it to higher at the kink. The kink

occurs at the point C∗ where MacD becomes one, i.e.

pH − pL
pL

(I0 − C∗) = ∆X − I1.

At C∗ we need to make sure that

∆X − I1 <
pH − p0
p0 +∆

(I1 + I0 − C∗)

∆X − I1 <
pH − p0
p0 +∆

I1 +
(1− α)pL
p0 +∆

(∆X − I1)

(∆X − I1)

(
1− (1− α)pL

p0 +∆

)
<

pH − p0
p0 +∆

I1

∆X − I1 <
pH − p0
αpH +∆

I1

which is exactly condition (c)
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B Optimal Allocation Proofs

B.1 Proof of Lemma ??

Proof. First, note that if the equilibrium menu M∗ makes strictly positive profits, another lender

could enter and offer an menu M̂ that is identical to M in all respects, with the only difference

that now we increase ẑaθ,2 = zaθ,2 + ϵ by ϵ > 0 for all θ ∈ {H,L} and a ∈ {i, n}. Evidently, this

has no effects on incentive constraints, and if ϵ is small it will be profitable for the entrant, who

anticipates that all types will prefer the deviation contract relative to the equilibrium contract.

Second, suppose by contradiction that πL(M
∗, L, a∗L) > 0. Consider a deviation menu M̂ in

which the (L, a∗L) option differs from the original (L, a∗L) contract only in z2 such that ẑ
a∗L
L,2 = z

a∗L
L,2+ϵ.

And all other options in M̂ are zero contracts. That is, in (L, a∗L) contract the investors pay the

firm an ϵ > 0 more at t = 2 relative to the original (L, a∗L) contract and in all other options the

investors provide just enough funds for to cover I0 and I1 receive all generated cash flows.

Clearly such menu attracts the low type since UL(M̂, L, a∗L) = UL(M,L, a∗L) + ϵ. Moreover,

the low type firm would prefer to pick the (L, a∗L) contract in the menu M̂ since all other options

deliver zero payoff. If only the low type firm switches to the new menu M̂ then investors would

make positive profits on it since πL(M̂, L, a∗L) = πL(M
∗, L, a∗L)− ϵ > 0 for sufficiently small ϵ > 0.

If the high type also switches to M̂ then (a) it will pick the (L, a∗L) and (b) investors would make

even more profits since πH(M̂, L, a∗L) > πL(M̂, L, a∗L) = πL(M
∗, L, a∗L)− ϵ > 0.

Thus, we have proved that the constraints to the program must hold. Now we show that

the equilibrium must maximize the utility of a high type. Suppose, by contradiction, that the

equilibrium (M∗, a∗H , a∗L) does not solve (1), i.e. that it does not maximize the payoff of the high

type firm. Let (M,a′H , a′L) be a solution to (1). Then we must have

UH(M ′, H, a′H) > UH(M∗, H, a∗H).

Case 1: First, it could be that UL(M
∗, L, a∗L) ≥ UL(M

′, H, a′H). It follows from (ZP ) and

(NPL) that in M ′ investors are making either positive or zero profits on the high type. Consider a

menu M̂ in which the (H, a′H) contract is the ϵ modified contract from M ′ (to deliver ϵ > 0 more

profits to investors) and all other options are zero contracts. The menu M̂ attracts the high type

because

UH(M̂,H, a′H) = UH(M ′, H, a′H)− ϵ > UL(M
∗, H, a∗H),
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as long as ϵ > 0 is small enough, while it does not attract low types because

UL(M̂,H, a′H)
ϵ
< UL(M

′, H, a′H)
case 1
≤ UL(M

∗, L, a∗L).

Moreover, the menu M̂ is guaranteed to deliver at least ϵ > 0 profits to investors. As a result, its

existence contradicts M∗ being an equilibrium.

Case 2: Now consider the case in which UL(M
∗, L, a∗L) < UL(M

′, H, a′H). We have two sub-

cases.

Case 2.1: First, suppose that UL(M
′, L, a′L) > UL(M

′, H, a′H). In this case, consider a deviation

menu M̂ constructed as follows. The contract (H, a′H) is the same as in the M ′ menu. The option

(L, a′L) is an ϵ modified contract from M ′ that generates ϵ > 0 higher profits for the investors. The

two other options are zero contracts. The menu M̂ attracts the high type who chooses (H, a′H) as

UH(M̂,H, a′L)
ϵ
< UH(M ′, H, a′L)

IC
≤ UH(M ′, H, a′H) = UH(M̂,H, a′H).

Moreover, the menu M̂ attracts the low type who picks (L, a′L) for small enough ϵ because

UL(M̂, L, a′L) = UL(M
′, L, a′L)− ϵ

case 2.1
> UL(M

′, H, a′H)
case 2
> UL(M

∗, L, a∗L).

Finally, the menu M̂ is guaranteed to deliver strictly higher profits to investors that the menu M ′

(which itself is a zero profit menu). Hence the existence of M̂ contradicts M∗ being an equilibrium.

Case 2.2: Otherwise, the only remaining is the case UL(M
′, L, a′L) = UL(M

′, H, a′H). In this

event, consider a deviation menu M̂ constructed as follows. The contract (L, a′L) is the same as

in M ′. Option (H, a′H) is an ϵ-modified contract from the menu M ′ that generates ϵ > 0 higher

profits for investors. All other options are zero contracts. M̂ attracts the high type who chooses

(H, a′H) as

UH(M̂,H, a′L) = UH(M ′, H, a′H)− ϵ > UH(M∗, H, a∗H),

as long as ϵ > 0 is sufficiently small. Moreover, M̂ attracts the low type who picks (L, a′L) as

UL(M̂, L, a′L) = UL(M
′, L, a′L)

case 2.2
= UL(M

′, H, a′H)
ϵ
> UL(M̂,H, a′H)

UL(M̂, L, a′L) = UL(M
′, L, a′L)

case 2.2
= UL(M

′, H, a′H)
case 2
> UL(M

∗, L, a∗L)
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Finally, M̂ is guaranteed to deliver strictly higher profits to investors than M ′ (which itself is a

zero profit menu). Thus, the existence of M̂ contradicts M∗ being an equilibrium.

B.2 Proof of Proposition 5

We prove the proposition via a sequence of lemmas that increasingly better characterize the optimal

allocation.

Lemma B.1. Suppose that M∗ and a∗H = a∗L = i is an equilibrium. Then, we must have that

πH(M∗, H, i) > 0 > πL(M
∗, L, i). That is, the equilibrium must involve subsidization across types.

Proof. Suppose the contrary, i.e., that πH(M∗, H, i) = 0 = πL(M
∗, L, i). An L-type firm’s expected

payoff after sending a message (θ̂, i) is

UL(M
∗, θ̂, i) = (pL +∆)X − I0 − I1 − πL(M

∗, θ̂, i).

Incentive compatibility ensures that UL(M
∗, L, i) ≥ UL(M

∗, H, i), which, in turn, implies that

πL(M
∗, H, i) ≥ πL(M

∗, L, i) = 0. We have two cases to consider.

Case 1: Suppose first that UL(M
∗, L, i) > UL(M

∗, H, i). It follows immediately πL(M
∗, H, i) >

πL(M
∗, L, i) = 0. However, we know that πH(M∗, H, i)

siH≥0

≥ πL(M
∗, H, i) > 0, which contradicts

the fact that investors must make zero profits on the high type.

Case 2: Alternatively, suppose that UL(M
∗, L, i) = UL(M

∗, H, i). It follows immediately that

πL(M
∗, H, i) = πL(M

∗, L, i) = 0. Moreover, the fact that πH(M∗, H, i) = πL(M
∗, H, i) = 0 implies

that siH = 0. However, then the contract option (H, i) cannot break even for investors because

C < I0 + I1 and, as a result, ziH,0 + ziH,1 + ziH,2 > 0. Thus, another contradiction is reached.

Lemma B.2. There does not exists an equilibrium (M∗, a∗H , a∗L) with a∗H = i and a∗L = n.

Proof. We break down our argument in two main cases.

Case 1: first, suppose that there is no cross-subsidy across types i.e. that πH(M∗, H, i) = 0 =

πL(M
∗, L, n). In this case, consider a deviation menu M̂ with the (L, i) contract being characterized

by ẑiL,0 = I0, ẑ
i
L,1 = I1, ẑ

i
L,2 = 0 and ŝiL such that

UL(M̂, L, i) = (pL +∆)(X − ŝiL) + C = UL(M
∗, L, n) + ϵ = pLX − I0 + C + ϵ,
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while all other options in the menu M̂ are zero contracts. By construction, this menu attracts low

type firms who choose the option (L, i). Moreover, investors make profits on low types in M̂ as

πL(M̂, L, i) = (pL +∆)ŝiL − I0 − I1 = ∆X − I1 − ϵ > 0

for a sufficiently small ϵ > 0. In addition, as πH(M̂, L, i) > πL(M̂, L, i) > 0, this menu makes

profits for investors regardless of whether the H type accepts it or not. Thus, the existence of M̂

contradicts M∗ being an equilibrium.

Case 2: suppose now that there is a subsidy across types, i.e. that πH(M∗, H, i) > 0 >

πL(M
∗, L, n). We now divide the argument further in two sub-cases.

Case 2.1: suppose that UL(M
∗, L, n) > UL(M

∗, H, i). In this case, consider a deviation menu

M̂ where the (H, i) contract is an ϵ-modification of the (H, i) contract from M∗ that delivers ϵ > 0

less profits to investors, for example by increasing z2. All other options in M̂ are zero contracts.

M̂ attracts the H type as UH(M̂,H, i) = UH(M∗, H, i) + ϵ. It does not attract the low type for a

sufficiently small ϵ > 0, because UL(M̂,H, i) = UL(M
∗, H, i) + ϵ

case 2.1
< UL(M

∗, L, n). Finally, M̂

makes positive profits for investors as πH(M̂∗, H, i) = πH(M∗, H, i)− ε > 0, for a sufficiently small

ϵ > 0. Thus, the existence of M̂ contradicts M∗ being an equilibrium.

Case 2.2: the only remaining case is UL(M
∗, L, n) = UL(M

∗, H, i), which implies that πL(M
∗, H, i) =

∆X−I1+πL(M
∗, L, n). In this event, consider again a deviation menu M̂ where the (H, i) contract

is an ϵ-modification of the (H, i) contract from M∗ that delivers ϵ > 0 less profits to investors, for

example by increasing z2. All other options in M̂ are zero contracts. M̂ attracts the H type as

UH(M̂,H, i) = UH(M∗, H, i)+ ϵ. It attracts the low type as UL(M̂,H, i) = UL(M
∗, H, i)+ ϵ

case 2.2
=

UL(M
∗, L, n) + ϵ > UL(M

∗, L, n). Investor profits from M̂ are

α · πH(M̂,H, i) + (1− α) · πL(M̂,H, i) = α · πH(M,H, i) + (1− α) · πL(M,H, i)− ϵ

= α · πH(M,H, i) + (1− α) · [πL(M,L, n) + ∆X − I1]− ϵ

= (1− α)[∆X − I1]− ϵ > 0,

where the last inequality holds for sufficiently small ϵ > 0 . Thus, the existence of M̂ contradicts

M∗ being an equilibrium.

At this point, we show that there cannot be an equilibrium in which none of the firm types

invest at date one. This and the previous Lemma jointly imply that low types must be investing in
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any equilibrium, and that the only remaining investment choice to be characterized pertains high

types.

Lemma B.3. There does not exists an equilibrium (M∗, a∗H , a∗L) with a∗H = a∗L = n.

Proof. We break down the argument in two cases.

Case 1: Suppose first that πH(M∗, H, n) = 0 = πL(M
∗, L, n) The low type’s expected payoff

after sending a message (θ̂, n) is

UL(M
∗, θ̂, n) = pLX − I0 − πL(M

∗, θ̂, n).

Incentive compatibility ensures that UL(M
∗, L, n) ≥ UL(M

∗, H, n), which, in turn, implies that

πL(M
∗, H, n) ≥ πL(M

∗, L, n) = 0. We consider two sub-cases separately.

Case 1.1: Suppose first that UL(M
∗, L, n) > UL(M

∗, H, n). It follows that πL(M
∗, H, n) >

πL(M
∗, L, n) = 0, and therefore πH(M∗, H, n)

snH≥0

≥ πL(M
∗, H, n) > 0 which contradicts the as-

sumption that investors make zero profits on the high type.

Case 1.2: Alternatively, suppose that UL(M
∗, L, n) = UL(M

∗, H, n). It follows that πL(M
∗, H, n) =

πL(M
∗, L, n) = 0. The fact that πH(M∗, H, n) = πL(M

∗, H, n) = 0 implies that snH = 0. However,

then the contract option (H,n) cannot break even since C < I0 and so znH,0 + znH,1 + znH,2 > 0.

Case 2: Otherwise, we must have πH(M∗, H, n) > 0 > πL(M
∗, L, n). Again, we consider two

sub-cases depending on whether the incentive constraint of the low type is slack or it binds.

Case 2.1: Suppose first that UL(M
∗, L, n) > UL(M

∗, H, n). In this case, consider a deviation

menu M̂ where the (H,n) contract is an ϵ-modification of the (H,n) contract from M∗ that delivers

ϵ > 0 less profits to investors, for example by increasing z2. All other options in M̂ are zero

contracts. M̂ attracts the H type as UH(M̂,H, n) = UH(M∗, H, n)+ ϵ. It does not attract the low

type for sufficiently small ϵ > 0, as UL(M̂,H, n) = UL(M
∗, H, n) + ϵ

case 2.1
< UL(M

∗, L, n), and it

makes positive profits for investors because πH(M̂∗, H, n) = πH(M∗, H, n) − ε > 0 for sufficiently

small ϵ > 0. Thus, the existence of M̂ contradicts M∗ being an equilibrium.

Case 2.2: The only remaining case is UL(M
∗, L, n) = UL(M

∗, H, n). First, we will construct

a modification of the (H,n) contract from M∗ where z0 = I0, z1 = −C, and z2 = znH,0 + znH,1 +

znH,2− (I0−C). Notice that this modification is feasible (it simply moves all the transfers in excess

of investment needs to period t = 2) and does not affect the incentive constraints. Next we argue

that z2 = 0. Suppose the contrary, i.e. that z2 > 0 (z2 < 0 is not feasible). Then we can lower z2
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by ϵ > 0 and simultaneously lower snH by ϵ/(p0 +∆) (this is always possible since C < I0 implies

snH > 0 for the investors to make positive profits on the high type). This modification increases the

utility of the high type (since pH > p0) and decreases the utility of the low type (since p0 > pL).

As a result, only the high type would be attracted to this contract. Since investors made strictly

positive profits on the high type in M∗, they would also make positive profits with the modified

contract for sufficiently small ϵ > 0. So, we can construct a menu M̂ that consists of the modified

contract and zero contracts and which attracts only the high type, making positive profits for

investors. Thus, M∗ cannot be an equilibrium, and we can pin down snH through the zero-profit

condition

απH(M∗, H, n) + (1− α)πL(M
∗, L, n)

case 2.2
= απH(M∗, H, n) + (1− α)πL(M

∗, H, n)

= p0 · snH − (I0 − C) = 0

Finally, offer a deviation menu M̂ with the (θ, i) investment contract being z0 = I0, z1 = I1−C,

z2 = 0 and s = (I0 + I1 − C)/(p0 +∆) + ϵ, and all other (θ, n) being the zero options. Evidently,

such menu delivers a higher payoff to both high and low types (because ∆X − I1 > 0) when

ϵ > 0 is sufficiently small. Moreover, it generates positive profits for investors, contradicting the

presumption that M∗ was an equilibrium.

Lemmas B.1 and B.3 restrict the possible equilibrium investment policies to: (1) both types

investing at both dates under a pooling contract; or (2) the low type investing at both dates, while

the high type only invests at date zero. Henceforth, we refer to the former case as implementing the

Full Investment allocation, while the latter case features Partial Investment. We now characterize

the optimal contracts for these two possible allocations separately. This will then allow us to run

a horse-race between these contracts and pin down optimal allocations. We begin with case (2), in

which only the low types invest at t = 1.

Lemma B.4. If an equilibrium features Full Investment (i.e., a∗H = a∗L = i) then

UFI
θ

def
= Uθ(M

∗, θ, i) = (pθ +∆)

(
X − I0 + I1 − C

p0 +∆

)
∀ θ ∈ {H,L}. (B.1)

Moreover, without loss, the menu M∗ consists of ziθ,0 = I0, z
i
θ,1 = I1 − C, ziθ,2 = 0, siθ = I0+I1−C

p0+∆

for θ ∈ {H,L}, and zero contracts for a = n
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Proof. First, for any menu M we can construct a modification of the (θ, i) contract, for each θ,

where zθ,0 = I0, zθ,1 = I1 − C, and zθ,2 = ziθ,0 + ziθ,1 + ziθ,2 − (I0 + I1 − C), while s is unchanged.

Notice that such modification is feasible (it simply moves all the transfers in excess of investment

needs to period t = 2) and does not affect the incentive constraints. From now onward, we restrict

attention to menus of this sort without loss of generality. For convenience, from now onward (in

this proof) we omit the superscript i as both types invest.

Second, we claim that a high-type contract must be such that zH,2 = 0 Suppose the contrary,

i.e. there exists an equilibrium menu M∗ in which zH,2 > 0 (zH,2 < 0 is infeasible). Then we can

lower zH,2 by ϵ and simultaneously lower sH by ϵ/(p0 + ∆) (this is always possible since C < I0

implies sH > 0 for the investors to make positive profits on the high type). This modification

increases the utility of the high type (since pH > p0) and decreases the utility of the low type (since

p0 > pL). As a result, only the high type would be attracted to this modified contract. Since

investors made strictly positive profits on the high type in the menu M∗, they would also make

positive profits with the modified contract for sufficiently small ϵ > 0. Hence we can construct a

menu M̂ that consists of the modified contract and zero contracts that attracts only the high type

and makes positive profits to investors - a contradiction to M∗ being an equilibrium.

Incentive constraints read:

(pH +∆)[X − sH ] + zH,2 ≥ (pH +∆)[X − sL] + zL,2

(pL +∆)[X − sL] + zL,2 ≥ (pL +∆)[X − sH ] + zH,2

Adding up the two constraints yields: −pHsH − pLsL ≥ −pLsH − pHsL, or simply sL − sH ≥ 0.

If sL − sH = 0, then incentive compatibility requires that zL,2 = zH,2, and so we have a

pooling contract where the investment option is the same across types, and we can restrict attention

to a degenerate menu with just one contract, which leads to investment. In this case, lenders

make zero profits if (p0 + ∆) · s − z0 − z1 − z2 = 0. Therefore, the utility of a high type reads:

UH = (pH +∆)[X − s] +C + (p0 +∆) · s− I0 − I1. Taking the derivative ∂UH/∂s = p0 − pH < 0,

which implies that to maximize the utility of a high type, one needs to minimize s. As a result, we

need to minimize the sum of the zs, which, by feasibility, implies that we have z0 = I0, z1 = I1−C

and z2 = 0, while from the lender’s zero profit condition we get s = I0+I1−C
p0+∆ .

Now, suppose that sL − sH > 0. Incentive compatibility implies that zL − zH < 0, but this is
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impossible since zH = 0 and feasibility requires zL ≥ 0.

In order to characterize the the optimal contract that implements investment at t = 1 only by

the low type, it is useful to break the analysis in two separate lemmas, depending on whether the

incentive constraint for a low type to mimic a high type binds or not.

Lemma B.5. If an equilibrium features Partial Investment (i.e., a∗H = n, a∗L = i) and the incentive

constraint of the low type is slack, then

UPI−slack
H

def
= UH(M∗, H, n) = pHX − I0 + C,

UPI−slack
L

def
= UL(M

∗, L, i) = (pL +∆)X − I0 − I1 + C.
(B.2)

Moreover, without loss, the menu M∗ consists of

znH,0 = I0, znH,1 = −C, znH,2 = 0, snH =
I0 − C

pH
,

ziL,0 = I0, ziL,1 = I1 − C, ziL,2 = 0, siL =
I0 + I1 − C

pL +∆
,

and zero contracts for (H, i) and (L, n)

Proof. First we argue that in such equilibrium investors should break even on a type-by-type

basis, i.e, that πH(M∗, H, n) = πL(M
∗, L, i) = 0. If it is not the case, then πH(M∗, H, n) > 0 >

πL(M
∗, L, i), i.e., investors make positive profits on the high type. Then consider a menu M̂ where

the (H,n) contract is an ϵ modification of the (H,n) contract from M∗ that delivers ϵ less profits

to investors, for example by increasing z2. All other options in the menu M̂ are zero contracts.

The menu M̂ attracts the H type firm since UH(M̂,H, n) = UH(M∗, H, n) + ϵ. It does not

attract the low type firm for sufficiently small ϵ > 0 since UL(M̂,H, n) = UL(M
∗, H, n) + ϵ <

UL(M
∗, L, n), and it makes positive profits for investors since πH(M̂∗, H, n) = πH(M∗, H, n)−ε > 0

for sufficiently small ϵ > 0. Hence the existence of M̂ contradicts M∗ being an equilibrium.

Since the zero-profits hold type-by-type the expected payoff to firm insiders is simply

UH(M∗, H, n) = pHX − I0 + C UL(M
∗, L, i) = (pL +∆)X − I0 − I1 + C.

Without loss, we can move all the transfers above the investment needs to the period t = 2,
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i.e. set znH,0 = I0, z
n
H,1 = −C and ziL,0 = I0, z

i
L,1 = I1 − C. Zero profit conditions become

pHsnH = znH,2 − (I0 − C) and (pL +∆)siL = ziL,2 − (I0 + I1 − C).

In the relevant case pH > pL + ∆ parameters znH,2 = 0 and snH = (I0 − C)/pH maximize the

parameter range for which the IC constraint of the low type is slack. Higher znH,2 and, consequently

higher snH , would increase the low type deviation payoff UL(M
∗, H, n) and, hence, reduce the

likelihood that UL(M
∗, H, n) < UL(M

∗, L, i) = (pL +∆)X − I0 − I1 + C.

Finally, we consider the case in which the incentive constraint for a low type to mimic the high

type is binding in equilibrium.

Lemma B.6. If an equilibrium features investment only by the low type (i.e., a∗H = n, a∗L = i) and

the IC constraint of the low type is tight, then

UPI−binds
H

def
= UH(M∗, H, n) = pH

(
X − I0 − C − (1− α)(∆X − I1)

p0

)
,

UPI−binds
L

def
= UL(M

∗, L, i) = pL

(
X − I0 − C − (1− α)(∆X − I1)

p0

)
.

(B.3)

Moreover, without loss, the menu M∗ consists of

znH,0 = I0, znH,1 = −C, znH,2 = 0, snH =
I0 − C − (1− α)(∆X − I1)

p0
,

ziL,0 = I0, ziL,1 = I1 − C, ziL,2 = 0, siL = (pL +∆)−1

[
αpH
p0

(∆X − I1) +
pL
p0

(I0 − C)

]
,

and zero contracts for (H, i) and (L, n)

Proof. In this case, we have UL(M
∗, L, i) = UL(M

∗, H, n). We again use the fact that, for any

menu M , we can construct a modification of the (θ, a) contract, for each θ and a, where zθ,0 = I0,

zθ,1 = 1(â = i)I1−C, and zθ,2 = zaθ,0+zaθ,1+zaθ,2−(I0+1(â = i)I1−C), while s is unchanged. Notice

that such modification is feasible (it simply moves all the transfers in excess of investment needs to

period t = 2) and does not affect the incentive constraints. From now onward, we restrict attention

to menus of this sort without loss of generality, and we have that UL(M
∗, L, i) = UL(M

∗, H, n) ⇐⇒
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(pL +∆)[X − siL] + ziL,2 = pL[X − snH ] + znH,2, and the zero profit condition reads:

α · (pHsnH − I0 + C − znH,2)+(1− α) · ((pL +∆)siL − I0 + C − I1 − ziL,2) =

= p0s
n
H + C − I0 + (1− α)(∆X − I1)− znH,2 = 0.

Therefore, the utility function of a high type reads UH = pH(x − snH) + p0s
n
H + C − I0 + (1 −

α)(∆X − I1), and we obtain that: ∂UH/∂snH = −pH + p0 < 0. Therefore, optimal contracts will

minimize snH , setting znH,2 = 0, which yields: snH = I0−C−(1−α)(∆X−I1)
p0

. From the utility function of

a low type we get UL = (pL+∆)[X−siL]+ziL,2 = pL(X− I0−C−(1−α)(∆X−I1)
p0

), independently of the

specific choice of siL and ziL,2, and there always exists a feasible pair that can be chosen, because

the low type has a positive net present value investment project, at both t = 0 and t = 1.

One final thing to notice regarding the two separating allocations in Lemmas B.5 and B.6

is that whenever UPI−slack
H > UPI−binds

H the allocation PI − slack is infeasible because the IC

constraint of the low type is violated. Similarly, whenever UPI−slack
H < UPI−binds

H the PI − binds

allocation is impossible. Hence, the payoff of the high-type firm in the separating allocation is

min(UPI−binds
H , UPI−slack

H ).

Consequently, optimal allocation features investment by both types of firms whenever

UFI
H ≥ min(UPI−binds

H , UPI−slack
H ), (B.4)

which is exactly inequality (7).
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