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Abstract

We develop a machine learning (ML) approach to establish new insights into how

memory affects financial market participants’ belief formation processes in the field.

Using analyst forecasts as proxies for market beliefs, we extract analysts’ mental con-

texts and recalls that shape forecasts by training an ML memory model. First, we

find that long-term memories are salient in analysts’ recalls. However, compared to an

ML benchmark trained to fit realized earnings, analysts pay more attention to distant

episodes in regular times but less during crisis times, leading to recall distortions and

therefore forecast errors. Second, we decompose analysts’ mental contexts and show

that they are mainly shaped by past earnings and forecasting decisions instead of cur-

rent firm fundamentals as indicated by the ML benchmark. This difference in contexts

further explains the recall distortion. Third, our comprehensive memory model reveals

the significance of specific memory features and channels in analysts’ belief formation,

including the temporal contiguity effect and selective forgetting.
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1 Introduction

Financial agents make investment and economic decisions based on their beliefs about the

future state of the economy. Thus, how financial agents’ form their beliefs is crucial to the

understanding of asset prices and economic decisions. The vast majority of economic models

assume that agents hold rational expectations in the sense that agents have the full knowledge

of the underlying dynamics of the economy and behave rationally, or at least, they exploit

all relevant information to form expectations (Brunnermeier et al., 2021; Jiang et al., 2022).

However, ample evidence in behavioral finance has shown that many psychological principles

deviate agents’ beliefs from the classical rational expectations. One of the burgeoning studies

in behavioral finance literature is investigating the importance of memory in belief formation

process (Bordalo, Gennaioli, and Shleifer, 2020; Wachter and Kahana, 2022). This area of

research builds off a wealth of evidence from the psychology literature which suggests that an

event that happens today might trigger the retrieval of certain similar past experiences from

the memory database. The process of retrieving relevant experiences from the memory is

called recall. Then the recalled episode serves as a reference point guiding the agents’ belief

formation today (Kahana, 2020). Until now, this research has mostly been theoretical and

there have been few empirical studies, leaving a gap in our understanding of how significant

the memory mechanisms are and how these mechanisms affect agents’ economic decisions in

the field. Therefore, we aim to fill this gap.

In this paper, we develop a new approach to show the impact of memory on financial

market participants’ belief formation processes by illustrating two essential but deep under-

water concepts in memory models - recall and context, and the role of memory features and

channels including the temporal contiguity effect and selective forgetting, with field evidence.

We study the sell-side analysts, whose forecasting decisions are usually taken as benchmarks

when analyzing financial market participants’ belief formation processes1.

We model analysts’ belief formation processes in the following way. First, we follow

van Binsbergen, Han, and Lopez-Lira (2020) and model the inputs that analysts exploit

when making forecasts are the high-dimensional public signals including firm-specific fun-

damentals, macroeconomic variables, historical earnings decisions and stock market returns.

Second, analysts process the public signals through a memory system, and the memory sys-

tem outputs analysts’ current mental context which is the analysts’ perceived state of the

1For example, Bordalo et al. (2019), De La O and Myers (2021), and Brunnermeier et al. (2021).
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covered firm. Third, analysts make forecasting decisions based on a linear function of the

mental context.

We employ a machine learning memory model called Long Short-Term Memory model

(LSTM, hereafter) by Hochreiter and Schmidhuber (1997) to model the analysts’ memory

system. By adapting LSTM, we are able to leverage the indispensable properties of both

neuroscience and machine learning research in this study. First, LSTM is supported by

evidence from neuroscientific research and contains multiple memory features and channels.

Specifically, LSTM is a valid memory model because it can produce the three major laws

of human memory: recency, temporal contiguity, and semantic similarity2. The three laws

are well-documented in numerous empirical and laboratory settings, also in financial mar-

kets (Charles, 2022). Second, in contrast to traditional memory experiments conducted in

laboratory settings, the memory systems of agents in financial markets need to cope with

high-dimensional and non-stationary features that exhibit complicated functional forms. As

machine learning methods have been designed specifically to tackle such challenges, they

are better suited to our empirical studies than other memory models introduced in finance

and economic literature, which make over-simplified assumptions, for example, Wachter and

Kahana (2022) and Bordalo, Gennaioli, and Shleifer (2020).

LSTM is a type of neural network architecture that comprises one dynamic memory cell

and three control gates. The memory cell represents the agent’s memory state, while the

three gates control how much information should be allowed to pass through to update the

memory cell (forget and input) and output the mental context. With its recurrent struc-

ture, in each period, LSTM processes input features with the agent’s existing memory and

mental context, updating the memory and mental context accordingly, and using them for

processing the next set of information. The context vector in LSTM is dynamic and evolves

endogenously in response to the feature and memory stimuli, which reflects the evolving

internal mental state. This dynamic context structure is advocated by recent memory lit-

erature (Howard and Kahana, 2002; Polyn, Norman, and Kahana, 2009) emphasizing the

importance of context as an evolving internal mental state, as opposed to a static context

setting in Bordalo, Gennaioli, and Shleifer (2020).

Using the data on public signals and analysts’ forecasting decisions from 1986 to 2020,

we train our memory model to fit the analysts’ consensus forecast revisions, and extract

2Recency means people refer to recently experienced events while retrieving memory, temporal contiguity
indicates people tend to recall an event that occurred contiguously in time to presently-recalled event, and
semantic similarity means people are more likely to access the events that are most similar to that they are
experiencing.
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the analysts’ latent memory and mental context vectors. The training process follows the

standard approach in the machine learning literature (Gu, Kelly, and Xiu, 2020). Our

memory model outperforms the baseline logistic regression in fitting the analysts’ forecasts

both in-sample and out-of-sample. The comparison provides strong support for incorporating

rich memory mechanisms in understanding financial market participants’ behaviors.

We present the analysts’ recalled episodes based on the extracted analysts’ mental con-

texts. We adopt the standard approach in memory literature and define the process of

contextual-cued recall as searching for the most similar context vector in history (Kahana,

2020). We denote the recalled episodes as pairs of firm and time. For example, when think-

ing of firm A today, analysts may recall firm B at time t since the context for today’s firm

A is similar to the context for firm B at time t. In this case, pB, tq is considered the re-

called episode for today’s firm A. To demonstrate the impact of memory on the aggregate

market, we focus on the consensus forecasts and assume a representative analyst who knows

the entire market history and can recall any firms in the same industry. By examining the

representative analyst’s recalled episodes, our approach provides detailed evidence of how

to quantify the relative impact of past experiences under different market conditions. We

find that the well-established rules of human memory retrieval, such as recency effect and

temporal contiguity, are significant. Analysts typically focus on recent episodes and recall

those that occurred contiguously in time with recently-recalled episodes. Moreover, the im-

pact of past experiences is, on average, decreasing in year gaps, which is consistent with the

assumption made in the experience effect literature (Malmendier and Nagel, 2011). How-

ever, this assumption is challenged by the evidence that long-term experiences and memories

are salient and even dominate the recent episodes in certain periods. For example, during

the COVID pandemic in 2020, the market focused more on the crash and recovery period

of the 2008 global financial crisis than the recent quarters3. Our findings thus present new

disciplines of modeling the impact of past experiences in different time periods.

The question of whether analysts recall the appropriate historical episodes in response to

current events remains unanswered. But this is of utmost importance since although forming

beliefs or making decisions based on these recalled episodes may be rational, deviation from

full rationality may occur if the recalled episodes are misleading or distorted. To answer

this question, we follow van Binsbergen, Han, and Lopez-Lira (2020) and provide a machine

learning benchmark. The benchmark recalls are defined as the econometrician’s recalled

3Such results are also reconciled with the survey evidence shown in Jiang et al. (2022) that investors tend
to recall both recent episodes and dramatic episodes.
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episodes, who just replicates the true data-generating process of the realized earnings revision

decisions (In what follows, we will use the terminology “machine learning benchmark” and

“econometrician” interchangeably). The process of searching for the benchmark recalls is

analogous to the process of searching for the representative analyst’s recalls, but we apply

the memory model to fit the realized earnings revisions instead of the analysts’ consensus

forecast revisions. Our results indicate that, compared to the benchmark recalls, analysts

tend to pay more attention to distant episodes in regular times but less during crisis periods.

This suggests that analysts may underreact to changes in external conditions, which can

be rationalized by the confirmation bias. We further find robust evidence that analysts

may recall the wrong episodes. For example, during the 2010-2014 period, analysts recalled

episodes more related to the end of the boom period (before 2008), but the benchmark

recalls rarely fell into that period. A paired t-test presents that such recall distortions are

significant. This comparison reinforces the importance of incorporating long-term memory

and distant experiences into the modelling of financial market participants’ belief formation

processes and highlights the deviation of agents’ belief formation from the full rationality.

To study the economic impact of these wrong recalls, we develop a test and show that

analysts’ misleading recalls could explain their forecast errors. The positive relation between

the recall distortion and forecast errors suggests that when analysts recall over-optimistic

(over-pessimistic) episodes, they tend to make over-optimistic (over-pessimistic) forecasts.

Specifically, a 10% increase in recall distortion leads to a 7.88% increase in the probability

of jumping to a more optimistic level of forecast revisions.

To gain a better understanding of the analysts’ contextual-cued recalls and recall distor-

tions, we need to investigate the formation of mental contexts. Mental context is essential

in memory models, as it links the encoding and retrieval of information in the memory

system (Wachter and Kahana, 2022). However, mental context as agents’ internal mental

state, is latent in many memory models, including those introduced by Kahana (1996) and

Wachter and Kahana (2022). In this paper, we are the first to systematically explore the

black-box of mental context and memory cell in the domain of financial markets, providing

insights into how the variable importance of contexts and memories changes over time. We

divide all the features into four groups: firm fundamentals, macroeconomic variables, stock

market returns, and historical earnings-related variables. Then we evaluate the importance

of each group by calculating the reduction in the R-squared when the covariates in that

group were set to zero one at a time4. The regression is performed based on the 1-year

4The method follows Gu, Kelly, and Xiu (2020).
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rolling window. By examining the time-series plot of the group variable importance of the

analysts’ and the machine learning benchmark context and memory vectors, we make the

following findings. First, we show that during the recession period, macroeconomic vari-

ables are particularly salient, confirming the prediction of the limited attention theory by

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) that agents pay more attention to

aggregate news during economic downturns. Second, we document that the analysts and

the machine learning benchmark differ in the composition of their contexts and memories.

Analysts over-weight the importance of historical earnings and forecasting decisions, whereas

the machine learning benchmark mainly focuses on current firm fundamentals. These differ-

ences in context composition explain recall distortions among analysts and provide support

for encoding errors (Woodford, 2020), self-herding bias (Hirshleifer et al., 2019) and limited

attention (Hirshleifer and Teoh, 2003) in the field. These results shed new light on how

future research on memory in financial markets should conceptualize mental contexts.

Mental context also serves as a powerful representation of an agent’s past experiences

and the information they have processed. To demonstrate this, we conduct a test that reveal

how the different mental contexts formed through analysts’ different covering experiences

can lead to variations in their forecasting decisions. Conversely, when we attempt to explain

the analysts’ forecast dispersion using the lengths of their respective covering experiences,

we found no significant correlation. These results provide compelling evidence that memory

models and mental contexts can help us better study the financial market participants’ expe-

rience effect (Malmendier and Nagel, 2011) when navigating complex and high-dimensional

problems.

The human memory system is complex, with multiple features and channels. However,

our approach which employs the a comprehensive memory model - LSTM, allows us to

examine the role of specific memory features. First, we quantify the significance of the

temporal contiguity effect in the field, in addition to the theoretical argument made by

Wachter and Kahana (2022). Through a simulation study using the model trained to fit

the representative analyst’s forecasting decisions, we demonstrate that the results align with

the prediction of the temporal contiguity effect, emphasizing the need for a valid memory

model like LSTM to capture analysts’ belief formation processes5. Second, we perform a

counterfactual analysis to show how selective forgetting works. We systematically break

5Charles (2022) documents the temporal contiguity effect in the setting of market responses to earnings
announcements. We study temporal contiguity effect in the setting of analyst forecasts and belief formation,
and further indicate the significance of forward asymmetry which is an important property of the temporal
contiguity effect (Howard and Kahana, 2002). For details, see Section 6.1.
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down the forget gate in LSTM and assess which experiences the representative analyst and

the machine learning benchmark selectively forget. Without the forget gate, the recency

effect for the machine learning benchmark is attenuated, while for the analysts, the recency

effect is reinforced. The results suggest that analysts tend to ignore more recent experiences

than the distant experiences, and indicate that for analysts, the distant experiences have

a stronger long-lasting effect than for the machine learning benchmark. Such differences

can contribute to explaining the recall distortion between analysts and the benchmark. The

pattern of selective forgetting is also reconciled with the evidence that analysts perceive the

world as more stationary than it is (De La O and Myers, 2022). This counterfactual analysis

is not feasible in other empirical memory studies so far.

This paper contributes to the growing literature on application of human memory in

economics and finance. We provide strong empirical evidence in support of the theoretical

memory literature in this field (Bordalo, Gennaioli, and Shleifer, 2020; Wachter and Ka-

hana, 2022; Nagel and Xu, 2022), and introduce a novel structural approach to studying

the impact of memory with field evidence. This approach offers a distinct advantage over

survey-based methods (Jiang et al., 2022) and reduced-form analyses (Charles, 2022; Goet-

zmann, Watanabe, and Watanabe, 2022) by allowing us to extract agents’ memories, recalls

and contexts at any specific historical time, an otherwise infeasible task with other methods.

By illustrating how financial market participants’ memories look and how they influence

belief formation, we establish the new disciplines of memory modelling in financial markets

that are guided by the extracted recalls and mental contexts, as well as the role of specific

memory channels. Our approach is unparalleled in its ability to derive these new disciplines,

and is easily translatable to other settings to study the impact of memory in the field.

The paper strengthens the literature on experience effects by developing a micro-founded

and unified approach to studying the impact of various types of experiences on agents’ be-

havior. While previous research, such as the work of Malmendier and Nagel (2011, 2016), has

employed reduced-form identification strategies to examine specific types of past experiences,

our approach incorporates neuroscientific underpinnings and memory mechanisms to avoid

over-simplified assumptions. By leveraging the context derived from our memory model, we

are able to simultaneously study the impact of and interaction between multiple types of

experiences in a high-dimensional and realistic setting. This approach is more reflective of

the complex nature of experiences in the real world, where multiple types of experiences can

interact with each other to influence agents’ beliefs and behavior.

This paper also adds to an emerging literature that applies machine learning methods
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in finance and economics. Gu, Kelly, and Xiu (2020) and Chen, Pelger, and Zhu (2023)

bring neural networks to this field and use them to predict the panel of individual U.S.

stock returns and estimate the stochastic discount factor (SDF), respectively. Chen, Pelger,

and Zhu (2023) also exploit LSTM to extract the low-dimensional hidden state from the

non-stationary, cyclical, and high-dimensional macroeconomic variables. We jump out of

the framework of predicting and explaining cross-section returns, and develop the neural

network to uncover the underlying mechanisms that drive financial market participants’ be-

haviors. This paper also builds on van Binsbergen, Han, and Lopez-Lira (2020) and Bianchi,

Ludvigson, and Ma (2022). They both use machine learning approaches to provide a real-

time unbiased and optimal benchmark for interested financial indexes, and then demonstrate

how analysts’ beliefs or behaviors are distorted compared to the benchmark. In contrast,

we use machine learning methods to replicate the analysts’ expectation formation processes

directly; in such a way, we can show which attributes exactly lead to agents’ biased beliefs,

and specifically, we suggest that memory can explain the biased beliefs.

In general, this paper inspires a new research avenue of applying machine learning meth-

ods to behavioral finance, as neural networks and reinforcement learning are designed to

replicate the human brain and mimic how humans make decisions. Similar concepts are just

beginning to emerge in the behavioral literature. In their theoretical work, Barberis and

Jin (2021) analyze the framework with model-free and model-based learning in asset pric-

ing, which is consistent with the main principles of reinforcement learning in the machine

learning literature. We show that by exploiting machine learning’s virtues of dealing with

high-dimensional problems and neuroscientific foundations, we can empirically analyze the

deep underwater but important mechanisms in the domain of behavioral finance.

The remainder of the paper is organized as follows. Section 2 illustrates the structure of

the model. Section 3 describes the data and how we proceed the training, validation and

testing of the machine learning memory model. Section 4 defines the process of contextual-

cued recall, and find the recalled episodes. Section 5 shows how mental contexts vary over

time and its role in belief formation process. Section 6 discusses the significance of spe-

cific memory channels - the temporal contiguity effect and selective forgetting. Section 7

concludes.
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2 Model

This section introduces the long short-term model (LSTM) and how it works in analysts’

belief formation process. One of key features in belief formation process is memory’s long-

term dependence. Past experiences is able to affect analysts’ decision right now. LSTM

model is designed to tackle down the vanishing gradient problem which is crucial when the

model exists long-term dependence (Pascanu, Mikolov, and Bengio, 2013).

2.1 Whole Model Structure

Figure 1 presents the LSTM aggregate model structure of one analyst and one firm as time

progresses from left to right. The basic block of a LSTM aggregate model is a LSTM cell.

The input of a LSTM cell are mental context in the last period ht´1, memory in the last

period ct´1 and input features Xt while the output are mental context in the current period

ht and memory in the current period ct. After receiving new information, analysts update

their long-term and short-term beliefs ct and ht and make new forecasts. In our model,

short-term mental context ht is an efficient representation for an analyst to make decisions

but long-term memory ct can affect ht in the future dates. LSTM model is a recurrent model,

which means that the output of a LSTM cell at period t ´ 1 are used as the input of the

LSTM cell at period t. The output of the aggregate LSTM model AFt depends on a softmax

function of a linear model of the mental context ht.

To be specific, we suppose analyst i started to cover firm j from time si,j
6, after observing

the history of input features Xj,si,j , Xj,si,j`1, ..., Xj,t, the analyst i encodes these observed

features and forms a latent context vector

hi,j,t “ LSTM cellphi,j,t´1, ci,j,t´1, Xi,j,tq “ LSTMpXj,si,j , Xj,si,j`1, ..., Xj,tq

from the memory model for firm j in month t. Then following So (2013), the analysts decode

the mental context vectors and makes final forecast decision AFi,j,t simply by a linear decision

function of the context vector. Specifically, AFi,j,t is the classification decision of forecast

revision (revise up, revise down, or remain the same), and AFi,j,t is obtained by a softmax

6We define the analyst’s experiences on the covered firms from the time when the analyst started to
cover the firm. Since we consider analysts as experts on the financial market, we are interested in their
professional experiences, in contrast with Malmendier and Nagel (2011) which focus on the household’s
life-time experience.
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function with a linear combination of hi,j,t

Prob pAFi,j,t “ kq “
eh

T
i,j,t,kβ

řK
l“1 e

hT
i,j,t,lβ

.

The framework can be easily extended to more complicated models7 if one is interested in

other specific memory or neuroscientific channels.

LSTM LSTM LSTM LSTM

Linear Linear Linear Linear

c0

h0

c1

h1

c2

h2

. . .

. . .

X1 X2 X3 Xt

h1 h2 h3 ht

AF1 AF2 AF3 AFt

Figure 1: Whole Structure

Next, we introduce the variables in the model in detail, before demonstrating the memory

model.

2.2 Variables

First, let Xj,t P RM denote the public signals that analysts rely on to make forecasts in month

t for firm j, where M is the dimension of the input features. Xj,t include macroeconomics

variables, historical earnings-related variables, stock market return, and firm fundamentals,

the details of these input features will be demonstrated in next section. The model aims

to replicate and describe analysts’ forecasting process, hence the input features are chosen

to be available to analysts before month t (before the first day of each month) to avoid the

look-ahead bias. That is to say, although that Xj,t are the input features that analysts may

use to make forecasts in month t, all of them are actually publicly announced before month

t and most of them are published during month t ´ 1.

7Beyond LSTM, for example, Vaswani et al. (2017), Weston, Chopra, and Bordes (2014) and Graves
et al. (2016) incorporate more comprehensive memory or neuroscientific channels into their models to mimic
human decision-making processes.
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Second, let AFi,j,t denote the earnings forecasting decision made by analyst i in month t

for firm j. We set AFi,j,t as the discrete forecast revision as:

AFi,j,t “

$

’

’

’

&

’

’

’

%

´1 if AFleveli,j,t ă AFlevelj,t´1,

0 if AFleveli,j,t “ AFlevelj,t´1,

1 if AFleveli,j,t ą AFlevelj,t´1,

where AFleveli,j,t denote analyst i’s EPS level forecast for firm j in month t, and AFlevelj,t´1

denote analysts’ mean forecast (consensus forecast from last period). In other words, AFi,j,t “

´1, if analysts revise down the forecast; AFi,j,t “ 1, if analysts revise up the forecast; and

AFi,j,t “ 0, if the forecast is remained the same. Since individual analysts may not issue

forecasts every month, in order to keep most of the data, we compare individual analyst’s

forecasts available today with the consensus forecasts obtained from last period. Similarly,

we define consensus analyst’s forecasting decision as:

AFj,t “

$

’

’

’

&

’

’

’

%

´1 if AFlevelj,t ă AFlevelj,t´1,

0 if AFlevelj,t “ AFlevelj,t´1,

1 if AFlevelj,t ą AFlevelj,t´1.

(2.1)

We also follow van Binsbergen, Han, and Lopez-Lira (2020) and provide an unbiased bench-

mark for firms’ earnings expectations in real-time conditional on the same information set

that analysts hold in month t, this can be taken as the view of an econometrician or a ma-

chine learner who replicates the data-generating process of realized earnings decisions. The

realized earnings revision decisions are analogously defined as shown in Equation (2.1):

REj,t “

$

’

’

’

&

’

’

’

%

´1 if EPSj,t ă AFlevelj,t´1,

0 if EPSj,t “ AFlevelj,t´1,

1 if EPSj,t ą AFlevelj,t´1,

(2.2)

where EPSj,t denote the realized annual earnings per share of firm j at the same fiscal

end date as that for AFlevelj,t´1. Thus, by comparing EPSj,t with AFlevelj,t´1 (instead

of EPSj,t´1), REj,t is interpreted as the correct forecast revision decision that the analysts

should have made conditional on the consensus forecast in the preceding period.

Third, let hi,j,t denote the K-dimensional latent vector that analyst i has in mind and uses

to make forecasts for firm j at time t according to their past experiences of input features

and the memory process. K is a model hyperparameter, which will be tuned according

to the model performance in the validation sample (See Section 3.1). Vector h stands for
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the short-term highly generalized information from the past experiences and current inputs,

and is the analysts’ mental context vector. One example of the short-term generalized

information is the default rate of one-year corporate bond. Bordalo, Gennaioli, and Shleifer

(2020) first introduce the importance of context on economic decisions, they consider the

static context which represents for the external physical state, such as the locations or the

weather. However, as pointed out by Wachter and Kahana (2022), the notion of context

should go beyond the physical environment and be more abstract. Hence in this paper, we

follow Wachter and Kahana (2022) and denote the context vector h as the analysts’ mental

account, or the agent’s perceived internal state. As will be shown in the details of LSTM, the

context is dynamic and evolving endogenously according to the feature and memory stimuli,

such properties are consistent with the recent memory literature (Glenberg and Swanson,

1986; Howard and Kahana, 2002; Polyn, Norman, and Kahana, 2009; Kahana, 2020) which

addresses the importance of taking context as an evolving internal mental state, so that the

model could incorporate the time dimension of memory-driven decisions and support several

major memory evidences (e.g., recency, contiguity effects and effects of early-life experience).

Lastly, let ci,j,t denote the K-dimensional memory cell. It records the information people

store in their memory. In contrast to the context vector h, the memory cell c stores the

relatively long-term generalized information, such as the firm’s position in the product-life

cycle and whether the firm is growth firm or value firm.

2.3 Long Short Term Memory Networks

2.3.1 Recurrent Neural Network

LSTM is a modified version of Recurrent Neural Network (RNN), which overcomes the

shortcoming of RNN that can not learn the long-term dependency. To better understand

the advantage of LSTM, we first introduce RNN.

Building on the traditional neural network, RNN is capable of dealing with sequence

(e.g. time-series) data, especially using its reasoning about previous state to predict current

decisions. RNN has a chain-like structure and its components are RNN cells. Figure 2

shows an unrolled structure of RNN. The RNN cells (the green box in the figure) in each

period remains the same, but it allows the information obtained and concluded from previous

period to be sent to next period. Then, according to current inputs Xt and messages from

last period, the network will generate the new output and pass new messages ht`1 to next
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RNN cell RNN cell RNN cell . . . RNN cell

X0 X1 X2 Xt

h0 h1 h2 ht

Figure 2: The Structure of RNN

cell. In a nutshell, RNN has the advantage of capturing time-series dependencies. Comparing

to Hidden Markov Models (HMM), RNN shares the same intuition, but allows more flexible

function forms and without imposing strong distribution assumptions. RNN has achieved

success in the areas that need to deal with sequential data, for example, translation and

speech recognition.

However, RNN’s advantage is also its weakness: in practice, only short-term dependen-

cies could be captured, and RNN is hard to handle long-term dependencies. That is the

reason why researchers refer to RNN as the “short-term memory” model. This issue is well

studied in theory, for example Bengio, Simard, and Frasconi (1994). Literature on behavioral

finance has found solid evidence on the effect of very-long-term dependencies on economic

decisions as well. For instance, Malmendier and Nagel (2011) show that life-time experiences

on market returns affect agents’ investment decisions, Wachter and Kahana (2022) also state

that long-term memory does not disappear and might influence agents’ decisions today once

retrieved. Thus, modelling long-term dependencies is crucial in this paper’s setting which

studies financial market participants’ expectation formation processes. More importantly,

as argued in Howard and Kahana (2002), the RNNs of the kind developed by Elman (1990)

are not capable of implementing one of the fundamental memory principals - temporal con-

tiguity8. This further dampens the validity of RNN as a memory model. However, LSTM

can solve these issues.

8Section 6.1 explains this issue with details on theory, and Section A.5 provides field evidences.
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2.3.2 The Structure of LSTM

LSTM is introduced by Hochreiter and Schmidhuber (1997). LSTM in general, is a variant of

RNN model. LSTM also has a chain-like structure but with different cells. A typical LSTM

cell consists of one memory cell c P RK , one hidden context h P RK and three gates: forget

gate, input gate and output gate. The key innovation of LSTM is having a memory cell to

store information for long periods of time, while the three gates control which information

to be erased, stored and output from the memory cell.

σ

Forget

σ

Input

Tanh σ

Output

ˆ +

ˆ ˆ

Tanh

ct´1

Memory Cell

ht´1

Hidden Context

XtInput Features

ct

Memory Cell

ht

Hidden Context

htHidden Context

Figure 3: The Structure of LSTM

Figure 3 presents the structure of one LSTM cell. The three gates are shown in the

orange boxes, which are all controlled by the sigmoid activation function displayed in orange

boxes. The sigmoid activation function is an element-wise sigmoid function (σ), it outputs

numbers between zero and one, and then controls the extent to which information should

be passed through the gates. The operators “ˆ” and “`” shown in the pink circles are the

element-wise multiplication operation and the element-wise addition operation, respectively.

“Tanh” in the yellow boxes is the hyperbolic tangent activation function9.

9The incorporation of these activation functions (tanh and sigmoid) has several advantages: first, they
introduce the non-linearity to the structure which fits more closely to empirical economic and financial data
(Teräsvirta, 2006); second, they further standardize the variables and reduce the impact of outliers; third,
they make model estimation more accurate and efficient according to machine learning literature (Dubey,
Singh, and Chaudhuri, 2022; Jagtap, Kawaguchi, and Karniadakis, 2020).
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The memory process takes following steps. First, the forget gate controls the extent

to which the information remains in the memory cell, an output of zero from the sigmoid

function means the information should be completely erased while an output of one means

the information should be completely retained in the memory cell.

forgett “ σpW f
h ht´1 ` W f

xXt ` wf
0 q

The output of the sigmoid function is determined by the linear combination of current input

Xt and previous hidden state ht´1. Including both Xt and ht´1 is important, for example,

in a natural language processing environment, the same word “apple” (Xt) may refer to the

fruit or the technology company under different semantic context ht´1.

Second, the input gate controls the extent to which the information should be stored into

the memory cell, similarly, the information will be determined meaningless and will not be

passed to the memory cell if the sigmoid function outputs zero, while it will be completely

stored into the memory cell if the sigmoid function outputs one. Before the information goes

through, it will be encoded by the tanh function (the values are now between -1 and 1),

denoted as c̃t:

c̃t “ tanhpW c
hht´1 ` W c

xXt ` wc
0q

inputt “ σpW i
hht´1 ` W i

xXt ` wi
0q.

Third, according to the forget gate and input gate, we can update the memory cell

ct “ forgett ˆ ct´1 ` inputt ˆ c̃t,

by erasing contents from the memory cell that should be forgotten and adding in new values

that are considered valuable.

Finally, the output gate controls the extent to which the information should be elicited

from the updated memory cell through a similar sigmoid function:

outt “ σpW o
hht´1 ` W o

xXt ` wo
0q.

Then, the final output, current context vector ht will be chosen by the output gate and the

information from the current memory cell through the tanh function:

ht “ outt ˆ tanhpctq.
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2.3.3 Why LSTM?

The contribution of adapting LSTM in this paper’s setting is twofold. First, LSTM is a

valid model of human memory and provides a structural form to study the memory process.

As suggested by the memory literature and ample experimental and field evidence (Howard

and Kahana, 2002; Kahana, 1996; Wachter and Kahana, 2022), a valid model of human

memory should incorporate the three basic laws of human memory system: recency, temporal

contiguity, and semantic similarity. Recency means people refer to recently experienced

events when accessing memory, temporal contiguity means people tend to recall an event

that occurred contiguously in time to presently-recalled event, and semantic similarity means

people are more likely to access the events that are most similar to that they are experiencing.

LSTM adapts the retrieved-context model (Wachter and Kahana, 2022) in two ways: first,

the context h is evolving according to the association of external feature stimuli, inner

memory process and previous mental context state, and h generally has an autoregressive

structure; second, incorporating a memory cell helps store past information and generate

long-term dependency. In terms of producing the three major laws of human memory,

according to Howard and Kahana (2002), theoretically, the autoregressive structure of mental

context h can help implement recency, the combination of autoregressive context and memory

cell embeds the channel of temporal contiguity, and the semantic similarity arises naturally

from the definition of contextual-cued recalls (see Section 4.1). Beyond Wachter and Kahana

(2022), LSTM first has the advantage of admitting more flexible functional forms. For

example, they only model the input features as basis vectors which is impractical for empirical

analysis in a high-dimensional environment, but our framework is suitable for any types of

inputs. Furthermore, LSTM contains more structural memory channels which allows for

the comprehensive counterfactual analysis (see Section 6). For instance, forget gate controls

explicitly the content to fade away from the memory bank, which is not embedded in the

model of Wachter and Kahana (2022).

Second, analysts need to deal with non-stationary and high-dimensional financial vari-

ables that may exhibit complicated functional forms. LSTM inherits the advantages that

most machine learning techniques possess in dealing with these difficulties. For example,

machine learning methods are capable of feature selection and dimension reduction (Nagel,

2021). The three gates filter out the redundant information and features. This is more flexi-

ble and more realistic than the model shown in Bordalo, Gennaioli, and Shleifer (2020), they

apply all kinds of external environmental variables to represent context and then get the

cued recall for decision-making accordingly. However, it is obvious that not all the features,
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especially external ones are used by agents for their decision-making and belief formation.

LSTM presents a solution to this problem. We also assign a small number to the dimension

of hidden context vector, specifically we have 79 input features, but for the analyses below

we set K “ 10 as the dimension of the final mental context vector. LSTM is also capable

of capturing underlying dynamics from high-dimensional variables, as documented by Chen,

Pelger, and Zhu (2023)10.

In summary, we model the analysts’ forecasting process as:

1. Current public signals Xt, previous context vector ht´1 and memory state ct´1 flow

into the memory system LSTM;

2. The memory system LSTM update the memory state ct, and output current context

vector ht;

3. Analysts make forecasts according to current context ht with a linear decision function.

3 Data and Model Training

3.1 Input Features and Analyst Forecasts

Following van Binsbergen, Han, and Lopez-Lira (2020), we exploit an extensive set of

monthly public signals as input features, including financial ratios from WRDS11, other

firm-specific fundamentals from COMPUSTAT, Macroeconomic variables from the Federal

Reserve Bank of Philadelphia, and earnings-related variables from I/B/E/S. The full list of

input features is shown in Table A1, there are 79 variables in total. The sample period spans

January 1986 to December 2020. In order to minimize the effect of extreme data points, all

variables are winsorized at the 2.5% level in cross-section at each time point. For detailed

explanations and data processing, one can refer to van Binsbergen, Han, and Lopez-Lira

(2020).

The realized earnings and analysts’ EPS forecasts are from the I/B/E/S database. We

obtain both the consensus forecasts (mean forecasts) and individual forecasts, and focus on

just the one-year-head forecasts for annual earnings (IBES FPI of 1).

10Chen, Pelger, and Zhu (2023) present that LSTM could successfully extract the hidden states from the
non-stationary and cyclical dynamic structure of macroeconomic variables.

11https://wrds-www.wharton.upenn.edu/pages/grid-items/financial-ratios-firm-level/

https://wrds-www.wharton.upenn.edu/pages/grid-items/financial-ratios-firm-level/
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3.2 Training, Validation, and Test

We are interested in whether certain memory mechanisms work out at the aggregate level

and due to the limit of computational power, we train the model by considering the view of a

representative analyst. We assume that the representative analyst knows all the information

in the market about all the firms and at any time. Thus, we pool all the firms from the entire

market history together, then estimate the generalized model from the consensus forecasts

AFj,t.

We follow the setup in Gu, Kelly, and Xiu (2020) and standard approach for classification

problem in machine learning literature to employ the sample splitting and performance

evaluation schemes, as well as design the model training process. The base training sample

is from January 1990 to December 2004. The validation sample spans January 2005 to

December 200612. The model training process is as following: we employ the Adam algorithm

as the optimization algorithm for stochastic gradient descent (Kingma and Ba, 2014) with

default hyperparameters; implement the early stopping scheme with patience equals to 5

to avoid over-fitting; set the batch size to 10,000; use the negative log-likelihood as the

loss function since the final decision function is the logistic regression. Thus, the only

hyperparameter needs to be tuned is the dimension of the latent context and memory vector-

K. To elicit optimal K, we pick a set of candidates, then train the model with the training

sample and evaluate the model performance with the candidate hyperparameter K in the

validation sample. Table 1 presents the model performance for fitting and predicting both

the analysts’ forecast revision (AF , see (2.1)) and realized earnings revision (RE, see (2.2))

in the base training and validation samples with different choices of K. According to the

prediction accuracy in the validation sample, K “ 10 is the best choice for analysts’ forecast

revision (AF ) and K “ 5 for realized earnings revision (RE), although the difference between

models is marginal. Since we are mostly interested in interpreting analysts’ behaviors and to

keep comparison between analysts and the benchmark shown in later sections away from the

impact of hyperparameters, we then pick K “ 10 for both the models of analysts’ forecast

revision (AF ) and realized earnings revision (RE) throughout the paper.

Beyond the base training sample, we also follow Gu, Kelly, and Xiu (2020) and employ the

recursive scheme to train the rest of the samples and evaluate the performance. Specifically,

12All variables are standardized following the recommended guidelines in the literature: each variable is
subtracted off by the mean and divided by the standardized deviation that calculated using all data points
in the base training sample. Then apply the mean and standardized deviation to the validation and test
sample.
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Table 1: Model performance with different hyperparameter K

Part I. Analysts’ Forecast Revision (AF )

K 5 10 15 20

Training 59.58% 61.42% 62.26% 62.04%

Validation 54.22% 55.45% 55.15% 54.72%

Part II. Realized Earnings Revision (RE)

K 5 10 15 20

Training 68.68% 71.22% 72.33% 71.74%

Validation 59.58% 59.95% 57.73% 57.58%

This table presents the model performance for fitting and predicting both the analysts’ forecast
revision (AF , see (2.1)) and realized earnings revision (RE, see (2.2)) in the base training and
validation samples with different choices of dimension of the latent context and memory vectors
(K). The training sample is from January 1990 to December 2004. The validation sample is
from January 2005 to December 2006.

after setting the best hyperparameters K, we first train the model using data from January

1990 to December 2004, and perform out-of-sample analysis over 2005, then we increase

the training sample by the data points in 2005, next we re-train the model starting from

previously trained model and perform out-of-sample analysis over 2006, repeat this process

recursively until 2020. Such a recursive scheme has two advantages: first, recursively fitting

the model adapts the changing economic environment and financial market, as well as delivers

more accurate model estimates; second, analysts’ cognition is also evolving, recursive scheme

could simulate people’s re-cognition process when they accept new information. Table 2

shows the model out-of-sample performance with the recursive scheme, this includes both

the validation sample and test sample, hence it starts from 2005 to 2020. For comparison

purpose, a baseline logistic regression is also included, which simply regresses AFj,t or REj,t

on Xj,t directly with the same recursive scheme and the identical dataset used by LSTM.

For replicating analysts’ forecast revision (AF ), LSTM is significantly performing better in

prediction accuracy than the baseline logistic regression, the gap is above 8%. But for the

realized earnings revision (RE), the performance of the LSTM and the logistic regression is

close13. The models’ different prediction performance between analysts’ forecast revision and

realized earnings revision is reconciled with our findings in later sections that the analysts

are more deeply influenced by the long-term memory and experiences than the machine

learning benchmark is. The results also buttresses the superiority of LSTM in describing

13For in-sample performance, LSTM outperforms the logistic regression with around 10% for both the
analysts’ forecast revision and the realized earnings revision.



19

analysts’ expectation formation process over the simple logistic regression and importance

of the memory channels in modeling analysts’ belief formation processes.

Table 2: Out-of-sample prediction accuracy of LSTM and Logistic regression

Model Analysts’ Forecast Revision (AF ) Realized Earnings Revision (RE)

LSTM 56.68% 59.52%

Logistic 48.21% 58.46%

This table shows the average out-of-sample prediction accuracy of LSTM and Logistic regression for
both the aanalysts’ forecast revision (AF , see (2.1)) and realized earnings revision (RE, see (2.2)) over
the year 2005 to 2020. We apply the recursive scheme to evaluate the out-of-sample performance.

4 Recall

“In response to current events, people often reach for historical analogies, and this occasion

was no exception. The trick is to choose the right analogy.” - Bernanke (2015)

In this section, we present the “historical analogies” that the analysts reach for when

making forecasts, the “right analogies” that the analysts should have chosen, and the impli-

cations of choosing the “wrong analogies” by analysts.

4.1 Analysts’ Contextual-Cued Recalls

To find the analysts’ recalled episodes when making forecasts, we follow the memory litera-

ture and several applications in finance to define the process of contextual-cued recall. An

associative recall is the process of searching for similar past experiences from the contents

of memory when we are encountering previously experienced item. This is the process of

how brain generates familiarity. In this paper, we extract the recalls based on the context

cue. Context is commonly exploited as a retrieval cue in literature, for example the Search

of Associative Memory (SAM) retrieval model by Gillund and Shiffrin (1984). Similarly,

Bordalo, Gennaioli, and Shleifer (2020) define the context cue based on the external en-

vironmental context such as locations, as well as a full cue which adds the interested key

features: price and quality. The process defined in this paper is similar to these approaches.

We first use the analyst’s mental context (h) defined in Section 2 as the cue. Second, we get

the recalls by searching for the most similar historical episodes with the similarity is defined
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as the negative Euclidean distance between the current context ht and historical context hτ

(τ ă t)14.

To show how the analysts’ recalled “historical analogies” look like, for simplicity, we

present the representative analyst’s recalls15. The representative analyst is defined in Sec-

tion 3.2. The process of searching for the representative analyst’s recalled episodes is formally

defined as following: first, for each firm j at each time t, we extract the representative ana-

lyst’s context vector hA
j,t from the trained model; second, since we assume the representative

analyst knows the entire market history, we then search for the pair plA, τAq and the model

induced latent context vector hA
lA,τA which stands for firm lA at time τA, that maximizes the

similarity to hA
j,t:

plA, τAq “ argmaxpm,sq SimilarityphA
m,s, h

A
j,tq for all s ă t and Industrypmq “ Industrypjq16.

The similarity function Similarityp¨, ¨q is the negative Euclidean distance between the two

context vectors

SimilarityphA
m,s, h

A
j,tq “ ´

g

f

f

e

K
ÿ

k“1

´

h
A,pkq

j,t ´ h
A,pkq
m,s

¯2

, (4.1)

where h
A,pkq

j,t is the k-th component of the vector hA
j,t and h

A,pkq
m,s is the k-th component of the

vector hA
m,s. We also introduce another similarity measure, for example cosine similarity:

Similarityphm,s, hj,tq “
hm,s ¨ hj,t

}hm,s}}hj,t}
“

řK
k“1 h

pkq
m,sh

pkq

j,t
c

řK
k“1

´

h
pkq
m,s

¯2
c

řK
k“1

´

h
pkq

j,t

¯2
, (4.2)

where ¨ is the dot product operation. The following results are robust to both similarity mea-

sures. Without loss of generality, we then mainly report the results based on the similarity

definition shown in (4.1). We present some robustness check based on the cosine similarity

14To illustrate the general process of contextual-cued recall, we suppress the subscript (i, j) for the analysts
and firms, then we have

Similarityphτ , htq “ ´

g

f

f

e

K
ÿ

k“1

´

h
pkq
τ ´ h

pkq

t

¯2

,

where h
pkq

t is the k-th component of the vector ht. As shown in Kahana (2020), the general definition of
similarity is of the form: Similarityphτ , htq “ exp p´ξ}hτ ´ ht}γq, where γ is the distance metric, with γ “ 2
denotes the Euclidean norm, and ξ ě 0 measures how quickly similarity decays with distance. In this paper,
we just apply the Euclidean norm and set the distance decay ξ “ 1 for simplicity, the exponential function
then can be ignored as we focus on the relative distance in the following analyses.

15One can easily extend our framework to study the heterogeneity among analysts, e.g., showing potentially
different recalls from different age groups. We explore the heterogeneity to some extent in Section 5 by
showing different covering experiences may lead to forecast dispersion.

16The industries are defined as in Fama-French 49 industry portfolios.
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measure in Appendix A.2.

We show the extracted representative analyst’s recalls in Figure 4. The darker blue

gradients indicate that from the view of the aggregate market, the episodes at time y (cor-

responding to the rows) are being recalled more often when analyzing each firm at current

time x (corresponding to the columns). The findings are summarized as following. First,

we observe the well-established rules of human memory retrieval - strong recency effect and

temporal contiguity17. Most of the time, the recent episodes are being focused more fre-

quently, usually the last quarter or the same quarter in the preceding year. And the agent

recalls the episodes that occurred contiguously in time to recently-recalled episodes. Second,

during the COVID in 2020, the GFC got recalled. Specifically, Figure 5 shows the details

of the recalls in 2020. In the second quarter of 2020, the market crash period of the GFC

was being recalled. But going to the third quarter of 2020, instead of focusing on the next

quarter to the quarter just got recalled in the second quarter of 2020, the aggregate market

shifted quickly to look at the recovery period of the GFC, which is intuitive since the eco-

nomic stimulus policies were enforced starting from the third quarter of 2020. Turning to the

fourth quarter of 2020, the GFC was seldom recalled while the market considered the COVID

should be unprecedented and concentrated on what happened in the most recent periods.

Third, being consistent with the theoretical memory literature (Wachter and Kahana, 2022)

and the experience effect literature (Malmendier and Nagel, 2011), we notice that long-term

experiences and memories are salient most of the time in some periods, for instance the GFC

happened in 2008 was non-trivial to analysts in 2020. The overall pattern of the analysts’

recalls is also reconciled with (Jiang et al., 2022) which present that the investors are more

likely to recall both the recent and dramatic episodes in a survey.

17We observe the pattern that is consistent with the temporal contiguity effect, but we can not conclude
the importance of the temporal contiguity effect here. We examine the significance of temporal contiguity
effect with a simulation study in Section 6.1.
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Figure 4: The representative analyst’s recalled episodes
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Figure 5: The representative analyst’s recalled episodes during COVID

Furthermore, we compute for each period, the frequency of the recalled episodes happened

in each of the past 15 years. Figure 6 shows the the average results for all periods during

2005-2020, the average results for periods during 2008 GFC and during the COVID. Being

consistent with assumption made in the experience effect literature (Malmendier and Nagel,

2011), on average, the impact of past experiences is decreasing in the number of years before



24

today. However, such assumption does not hold during certain periods. For example, during

the COVID pandemic, the impact of GFC on analysts is salient. Moreover, we can see from

Figure 5, and the impact of GFC even dominate the recent episodes during the second and

the third quarter of 2020. These results derived by our neuroscientific-founded approach

suggest more robust disciplines of modeling the impact of past experiences from different

time periods.

Figure 6: The frequency of recalled episodes happened in each of the past 15 years

4.2 Benchmark Recalls and Misleading Recalls

Given the analysts’ recalls, we are interested in whether or not, the analysts recall the

misleading episodes and thus make wrong forecasting decisions. Making decisions or forming

belifs based on the recalled episodes (reference point) itself may be rational. Deviation from

full rationality comes from the possibility that the contextual-cued recalls are misleading

or distorted, i.e., reminding the agent of the wrong episodes. For example, Walters and

Fernbach (2021) survey the investors and find that their memories are biased in the sense

that the investors tend to recall their own portfolio returns as higher than achieved, then

this leads to overconfidence in their investment decisions. Hence, in this section, we aim
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to examine whether the analysts’ recalls are biased and the implication of the misleading

recalls.

We first need the benchmark recalls, i.e., the episodes that the analysts should have

recalled in order to make accurate forecasts. Thus, we let the same memory model that

is used to fit the analyst’s forecasting decisions re-fit the realized earnings decisions REj,t,

and we can get the econometrician’s context vector hE
j,t. Then, we find the econometrician’s

(benchmark) recalled episodes plE, τEq following the analogous process of memory retrieval

for the representative analysts as described in Section 4.1.

Figure 7 presents the benchmark recalls. Compared with the analysts’ recalls shown

in Figure 4 and Figure 5, the benchmark recalls in each period are more concentrated. In

general, the econometrician pays more attention to the recent episodes and most of the

experiences happened in the distant past are irrelevant, while the analysts are affected more

deeply by long-term memories. Moreover, sometimes the analyst’s recalls are obviously

wrong compared with the benchmark recalls. For instance, during 2010 to 2014, analysts

recalled more episodes related to the end of the boom period, while the benchmark recalls

did not fall into that period. Another example is during the COVID pandemic, the machine

learning benchmark highly concentrated on the 2008 GFC whereas the analyst’s recalls were

more distracted.

Compared to the machine learning benchmark, analysts’ recency effect is weaker during

the regular time but stronger during the crisis time. It suggests that analysts do not fully

react to environment changes. During the regular time, environment changes are represented

by new input features and therefore the machine learning benchmark rapidly switch to recent

similar scenarios. On the contrary, analysts focused on distant episodes which are actually

less correlated with current situation. During the crisis time, macroeconomics conditions

dramatically change and the machine learning benchmark rapidly changes its focus while

analysts still immerse themselves in the old days. Both underreaction phenomenon can be

explained by analysts’ confirmation bias. During regular time, analysts overvalue their past

experience and therefore they recall more distant episodes. On the other hand, they do not

believe they need to change too much during the crisis time, resulting more recent recalls

compared to the benchmark.
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Figure 7: The benchmark recalled episodes

We develop a simple paired t-test to formally examine whether the analyst’s recalls are

different from the benchmark recalls. In other words, we wish to test if the analysts’ recall

plA, τAq is significantly different from the benchmark recall plE, τEq. However, the distance

between plA, τAq and plE, τEq is not directly measurable. Thus, we project the recalls into the

same measurable space´we compare the realized earnings revisions in the recalled episodes.

To be specific, for each firm j at each time t, let
␣

plAj,t,1, τ
A
j,t,1q, plAj,t,2, τ

A
j,t,2q, ..., plAj,t,P , τ

A
j,t,P q

(
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and
␣

plEj,t,1, τ
E
j,t,1q, plEj,t,2, τ

E
j,t,2q, ..., plEj,t,P , τ

E
j,t,P q

(

denote the top P 18 recalled episodes from the

analysts’ view and the econometrician’s view, respectively (top P solutions that maximize

the similarity to hA
j,t and hE

j,t, respectively). Further, we define the analysts’ recall distortion

as:

RDj,t “
1

P

P
ÿ

p“1

RElAj,t,p,τ
A
j,t,p

´
1

P

P
ÿ

p“1

RElEj,t,p,τ
E
j,t,p

. (4.3)

Then the null hypothesis that overall the analyst’s recalls are indifferent from the benchmark

recalls is equivalent to that the mean of the recall distortion is zero, RD “ 0. The simple

paired t-test shows that the t-statistics is -3.6419, which indicates that overall, the analysts’

recalls are significantly distorted from the benchmark recalls. Put differently, analysts are

making mistakes in choosing the “right analogies.”

4.3 Recall Distortion and Forecast Errors

Given that analysts may choose the “wrong analogies,” we next demonstrate the implication

of the misleading recalls. Specifically, we show that the recall distortion could help explain

and predict the analysts’ forecast errors.

The forecast error of firm j in month t is defined as:

FEj,t “ AFj,t ´ REj,t.

Since both AFj,t and REj,t take the value of -1, 0, or 1, we have that FEj,t P t´2,´1, 0, 1, 2u.

That is, the forecast error is zero, when the analysts make the right revision decision; and

the forecast error will reach the maximum, when the analysts make the opposite revision

decision, e.g. the analysts revise up the forecast while the realized earning is actually smaller

than the analysts’ consensus forecast from last period.

We then perform the test nested in the following predictive regression:

FEj,t “ β ˆ RDj,t ` εj,t, (4.4)

in which we also include several fixed effects, e.g., month fixed effects, firm fixed effects,

and industry and month cross fixed effects. Note that, although the time subscript for the

regressor RD is the same as the one for the dependent variable, we still perform the analysis

in a predictive regression fashion. That is because, RDj,t is constructed using all the available

information before time t as the model inputs Xj,t are the public signals that were announced

18In the analysis shown below, we set P “ 10, but the results are robust to the choice of P .
19The standard errors are clustered on both industry and year dimension.
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before time t and the model is trained using all the data points before time t as well, while

FEj,t is available in month t or even after t. In this first regression, we are interested

in whether β is significantly positive. The intuition of a positive β is that the analysts

are making over-optimistic (over-pessimistic) forecasts when recalling over-optimistic (over-

pessimistic) episodes.

We also study the case where we take the absolute values for both the regressor RD and

dependent variable FE :

|FEj,t| “ β ˆ |RDj,t| ` εj,t, (4.5)

in this sense, we only focus on the magnitude and explore whether the severer recall distortion

predicts larger forecast errors.

Another way to study the relationship between FEj,t and RDj,t is to use the ordered

logit model in reason that the regressor FEj,t is a ordinal variable with 5 different values:

FE˚
j,t “ β ˆ RDj,t ` εj,t

FEj,t “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´2 FE˚
j,t ‰ µ´2

´1 µ´1 ă FE˚
j,t ‰ µ´2

0 µ0 ă FE˚
j,t ‰ µ´1

1 µ0 ă FE˚
j,t ‰ µ1

2 µ1 ă FE˚
j,t

(4.6)

A key assumption of the ordered logit model is the odd ratio (OR) keeps constant for any

value, i.e.
ProbpFEj,t ą k ` 1q

ProbpFEj,t ą kq
“ OR @ k ă 2.

Table 3 reports the estimation results of regression (4.4), (4.5), and (4.6). In both

regressions, we find a strongly significant positive relation between recall distortion and

the forecast error. The size of the association barely changes when we control for several

fixed effects. Therefore, we claim that, compared with the machine leaning benchmark,

when analysts recall over-optimistic (over-pessimistic) episodes, they tend to make over-

optimistic (over-pessimistic) forecasts as well. Besides, when the analysts’ recalled episodes

are distorted far away from the benchmark recalls, their forecast errors are larger. Column (3)

and (6) perform the ordered logit regression and we can calculate the economic magnitude.

10% increase in the level of recall distortion lead to 7.88%(“ e0.1ˆ0.759 ´ 1) probability

increases of jumping to the relatively more optimistic level. Similarly, 10% increase in the

absolute value of recall distortion lead to 1.08%(“ e0.1ˆ0.108 ´ 1) probability increases of
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jumping to the next level representing larger errors. In a nutshell, through this memory

test, we provide a memory interpretation of the forecast errors - empirically what analysts

have recalled could help explain their misbehavior and deviated expectations. The above

results are based on the similarity measure (4.2), for robustness check, we also perform the

analogous regression analysis based on the similarity measure (4.2), the corresponding results

are reported in Appendix A.2. Since the machine learning model training process involves

randomness, we also perform the robustness check for 100 different random seeds, and the

results are shown in Appendix A.4.

Table 3: Analysts’ recall distortion and forecast errors

Forecast Error (FEj,t) Forecast Error (|FEj,t|)

(1) (2) (3) (4) (5) (6)

Linear Linear Ologit Linear Linear Ologit

Recall Distortion RDj,t 0.293*** 0.283*** 0.759***

(0.013) (0.014) (0.021))

Recall Distortion |RDj,t| 0.043*** 0.042*** 0.108***

(0.006) (0.007) (0.019)

Observations 277,487 277,245 277,487 277,487 277,245 277,487

Month fixed effects Yes No No Yes No No

Firm fixed effects Yes Yes No Yes Yes No

Industry*Month fixed effects No Yes No No Yes No

This table presents results for regressions of the form

FEj,t “ β ˆ RDj,t ` εj,t,

where the dependent variable is the analyst (consensus) forecast revision error for firm j at time t and FEj,t P t´2,´1, 0, 1, 2u,
the independent variable is the analyst’s recall distortion which are predicted by the model with all the information available
before time t as defined in Equation (4.3). Recalls are found based on the similarity measure shown in (4.1). Column (4)-(6)
report the results that take the absolute value of both the dependent variable and the independent variable. Column (3) and
(6) shows the results of the ordered logit model while the rest of the columns are associated with the linear regression model.
Data are from the period 2005 to 2020. Standard errors are clustered at both the industry and year level, and reported in
parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

5 Context

5.1 Decomposition of Contexts and Memories

Memory and context play the essential roles in memory models such as serving as the cue

for recalls, getting better understanding of how memory and context actually look like from

the field could gain us the insight of how the underlying memory mechanisms work out and

guide the future memory modelling.
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Both memory cells and the mental contexts are latent in the LSTM, therefore in this

section, we provide the interpretation of the memory and context vectors by showing how

the variable importance of the memory and context vary over time. The concept of variable

importance is analogous to the notion as shown in Gu, Kelly, and Xiu (2020) and Kelly,

Pruitt, and Su (2019). The linear variable importance of covariate j, V Ij is approximated

by the average reduction in panel R2 of linearly regressing each of K dimension of the

extracted memory (c) and context (h) vectors on all input features (X) from setting all

values of the covariate j to zero, while holding the remaining model estimates fixed. Then,

to better illustrate the time series of variable importance, we perform the linear regression

based on the 1-year rolling window, and put all 79 covariates into four groups. Each of the

four groups contains the firm characteristics (Part 1 and Part 2 of Table A1 except for the

monthly stock return and P/E ratio related variables such as pe exi, pe inc, peg trailing,

capei), macroeconomics conditions (Part 3 of Table A1), market conditions (the firms’ stock

return over the previous month) and the historical earnings and forecasts (Part 4 of Table

A1 and pe exi, pe inc, peg trailing, capei), respectively.

(a) Benchmark - Context (b) Benchmark - Memory

(c) Analyst - Context (d) Analyst - Memory

Figure 8: Decomposition of Context and Memory Vectors
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Figures 8a - 8d demonstrate the time-series plot of the group variable importance of the

representative analyst’s and the machine learning benchmark context and memory vectors.

Since different groups consist of different number of variables, we do not over-interpret the

difference between group variable importance within each figure and at each point of time.

However, we focus on the time-series variation in the variable importance and different pat-

terns between figures. The findings are three-fold. First, the linear variable importance is

time-varying. Regardless of analysts or benchmark, memory or context, when the economy

is in recession, macroeconomic variables become more essential but firm fundamentals and

historical earnings-related variables are less important. This pattern matches the intuition

that the recession has the market-wide and systematic impact. The finding also provides ev-

idence for the prediction by the theory of limited attention (Kacperczyk, Van Nieuwerburgh,

and Veldkamp, 2016) which states that investors would allocate more attention to aggregate

news during recession20. Second, we observe that context is more volatile than memory. This

coincides with the interpretation that the context is considered as the short-term generalized

information while the memory is taken as the long-term generalized information. Third, the

analyst and the machine learning benchmark focus on different aspects, i.e., for the bench-

mark, firm fundamentals play the most important role in both context and memory, but for

the analyst, firm fundamental and the historical earnings-related variables are almost equally

weighted. The potential implications and explanations of different focuses of the analyst and

the benchmark may include that analysts are subject to the encoding errors (early noise by

Woodford, 2020), self-herding bias (Hirshleifer et al., 2019) as analysts overly focus on their

past decisions and limited attention (Hirshleifer and Teoh, 2003). The difference between the

decomposition of representative analyst’s and the machine learning benchmark context and

memory indicates that the analysts have distorted recalls due to the fact that they process

the information experienced in their memory differently from the benchmark.

5.2 Experiences, Contexts, and Forecast Dispersion

To illustrate the importance and validity of mental context and memory in describing agents’

information processing procedure, we systematically examine whether different mental con-

texts brought by analysts’ different past experiences lead to dispersion in the forecasting

decisions in a micro-founded way.

20Kwan, Liu, and Matthies (2022) show that institutional investors pay their attention to aggregate news
during economic downturns with data on daily internet news reading.
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A voluminous literature shows that financial market participants’ different past experi-

ences cause various financial decisions. For example, Malmendier and Nagel (2016) suggests

that different experiences in inflation will significantly change investors’ inflation expectation.

In addition, being specific to analysts, Bradley, Gokkaya, and Liu (2017) and Hirshleifer et al.

(2021) state that pre-analyst experiences in certain industry and analysts’ first impressions

indicate different forecast performances, respectively. Building on this literature but being

different from previous work that examines the low-dimensional experiences in the reduced-

form, in this section we present a systematic and comprehensive way of studying experience

effect, in the sense that we show how to characterize the high-dimensional experiences within

a structural and neuroscientific-founded model.

Specifically, for each firm j at each time t, we are interested in whether variations in the

model-induced context vectors for all the analysts who are issuing forecasts for this firm at

this moment, can explain and predict the dispersion in their forecasting decisions.

Following Diether, Malloy, and Scherbina (2002), we define the forecast dispersion as the

standard deviation of analysts’ forecast revision decisions21, that is

AF Disj,t “

d

řNj,t

i“1

`

AFi,j,t ´ µAF
j,t

˘2

Nj,t ´ 1
,

where Nj,t is the number of analysts who are making forecasts for firm j in month t, and

µAF
j,t “ 1

Nj,t

řNj,t

i“1 AFi,j,t is the mean forecast revision decision22.

The context dispersion is computed from hi,j,t which is the analyst i’s context vector

for firm j in month t. Thus, in order to define the context dispersion, we need to trace

out the latent hi,j,t from the model. We first define that the individual analyst’s covering

experience starts from the date si,j (analyst i’s first time covering the firm) up to date. Then

we can compute hi,j,t “ LSTMpXj,si,j , Xj,si,j`1, ..., Xj,tq from our well-trained model. Next,

the context dispersion Context Disj,t is measured as the total variation23, which is the trace

of the variance-covariance matrix of vectors thi,j,tu
Nj,t

i“1 . The variance-covariance matrix is

K ˆ K, where K is the dimension of the vector hi,j,t.

21In Diether, Malloy, and Scherbina (2002), the dispersion is defined as the standard deviation of earnings
forecast divided by the absolute value of the mean earning forecast. Here, we are not scaling the standard
deviation by the absolute value of the mean because the analysts’ forecast decisions under this paper’s setting
have already been scaled as they are defined as the classification choices.

22We only keep the firms that are covered by two or more analysts. For the multiple forecasts made by
the same analyst in the same month, we only keep the last one.

23The usual dispersion measure of multivariate variables is the generalized variance Wilks (1932), which is
the determinant of the variance-covariance matrix. However, in this paper, the determinant is usually just
zero since in many cases, Nj,t ă K and it leads to the singular variance-covariance matrix.
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To further demonstrate that context is a better proxy for the experiences, we include

the length of covering experiences as another proxy. The length of covering experiences is

defined as

Length Cov Expi,j,t “ t ´ si,j ` 1.

Then we take the standard deviation of the lengths of covering experiences for firm j at time

t as another dispersion measure Length Disj,t.

We perform the analysis based on the following predictive regression:

AF Disj,t “ βc ˆ Context Disj,t ` βl ˆ Length Disj,t ` εj,t, (5.1)

in which we also include the firm and month time fixed effect. Regression (5.1) is the

predictive regression in terms of the interested variable Context Disj,t, since Context Disj,t

is computed from hi,j,t which is derived from the information available before time t and the

model trained with the data before time t, while AF Disj,t is the dispersion of the realized

analysts’ forecast decisions that are available in month t.

Table 4: Dispersion of Covering Lengths, Contexts, and Analysts Forecast Revisions

AF Dis

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Context Dis 0.225*** 0.264*** 0.202*** 0.226*** 0.268*** 0.209***

(0.029) (0.029) (0.029) (0.029) (0.030) (0.030)

Length Dis 0.031 -0.179 -0.325*** -0.008 -0.234 -0.382***

(0.109) (0.140) (0.049) (0.109) (0.142) (0.052)

Observations 179,956 179,911 179,911 179,956 179,911 179,911 179,956 179,911 179,911

Month fixed effects Yes No Yes Yes No Yes Yes No Yes

Firm fixed effects No Yes Yes No Yes Yes No Yes Yes

This table presents results for regressions of the form

AF Disj,t “ βc ˆ Context Disj,t ` βl ˆ Length Disj,t ` εj,t,

where the dependent variable is the dispersion (standard deviation) of analysts’ forecast revisions for firm j at time t, the first independent
variable is the dispersion (trace of the variance-covariance matrix) of analysts’ mental contexts hi,j,t which are predicted by the model
with all the information available before time t, and the second independent variable Length Disj,t is the dispersion (standard deviation)
of lengths of the analysts’ covering experiences. Data are from the period 2005 to 2020. Standard errors are clustered at both the industry
and year level, and reported in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Table 4 reports the significantly positive relation between the dispersion in contexts and

the dispersion in analysts’ forecasting decisions. That is to say, the dispersion in analysts’

mental contexts induced by different covering experiences could explain and predict the dis-

persion in their final forecasting decisions. However, without the memory model and the

context, the dispersion of past experiences which is represented by the standard deviation of

the lengths of the covering experience could not significantly explain the analysts’ forecast

dispersion, and the coefficients even become negative when including multiple fixed effects.
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The results associated with the length of covering experiences are counter-intuitive which

state that when analysts have more dispersed experiences they would make more consistent

forecasts, which are in contrast with the experience effect (Malmendier and Nagel, 2011).

The results indicate that the memory-model-induced mental contexts are efficient in charac-

terizing generalized information that are applied to decision-making or expectation formation

from different personal experiences.

For robustness check, we also generate another memory dispersion measure based on

cosine-distance. The definition and the corresponding estimation results are shown in Ap-

pendix A.3. We also perform the robustness check for 100 different random seeds to rule out

the possibility that the results are led by the randomness in the training process and the

results are shown in Appendix A.4.

6 Role of Specific Memory Channels

LSTM is a comprehensive memory model that contains multiple memory channels. In this

section, we examine the contribution of the specific memory feature and channel - temporal

contiguity and selective forgetting, to analysts’ belief formation processes.

6.1 Temporal Contiguity

Compared to other models, LSTM has a unique feature that it stores the long-term memory.

Then combined with the autoregressive structure of mental context, LSTM has the channel of

displaying temporal contiguity - one of the fundamental principles of human memory system.

Temporal contiguity refers to the evidence that when people recall an event, they also tend

to recall other temporally successive events. In the psychology experiments, Kahana (1996)

first details the tendency that after an item is recalled from a specific serial position, the item

recalled next mostly comes from a neighboring serial position. Two properties of the temporal

contiguity effect are also documented: the forward asymmetry that it is more likely to make

next recalls in the forward direction than in the backward direction, and invariant across

time scales in the sense that contiguity effect is significant even for recalled events in the

distant past (that’s also one of the reasons why we need to incorporate long-term memory).

Beyond the discussion in psychology literature, Wachter and Kahana (2022) illustrate the

temporal contiguity effect in a theoretical financial setting, but without presenting empirical
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results of the importance and existence of temporal contiguity24. In this section, we step

further and provide empirical evidence to show the significance of temporal contiguity effect

in analyst’s belief formation processes.

To clearly show empirical evidence of temporal contiguity, we need to distinguish the tem-

poral contiguity effect from the nature of similarity between two adjacent vectors of economic

and financial variables in time. Hence, we design a simulation study to avoid the correlation

among input features. But the simulation is based on the empirically estimated model from

fitting the representative analyst’s forecasting processes (the same recursively trained model

shown in Section 3.2), in order to emphasize that the findings from the simulation study

directly reflect the analyst’s belief formation processes.

The design of the simulation study is as following. In each simulation, first, we generate

a set of input vectors:

Xsim
t “ E rXs ` 10ut ˆ σ pXq , t “ 1, 2, ..., T,

where E rXs and σ pXq represent the time-series mean, and the standard deviation (the

square root of diagonal elements of the covariance matrix) of the original input features X,

respectively. And ˆ is element-wise product operator. ut are randomly drawn and mutually

orthogonal vectors whose L2 norms are 1. The inner product of any two simulated input

vectors Xsim
t is a fixed number (the square of the L2 norm of the feature expected value

∥E rXs∥2), in this way we maximally exclude the correlation between input features and

keep the simulated inputs close to the true distribution (the multiplier 10 on ut also serves

for this purpose)25. We simulate T “ 70 periods for Xsim
t

26.

Second, in period T `1, we duplicate the simulated input vector in period τ , i.e., Xsim
T`1 “

Xsim
τ . τ is randomly selected from the interval p10, T ´ 10q. The first 10 periods and the last

24Wachter and Kahana (2022) provide a memory explanation for the narratives that depression would come
right after seeing the financial crisis. Specifically, they show that in agents memory, the Great Depression
in 1930 came right after the stock market crash of 1929. Then the re-appearance of a financial crisis today
retrieves their memory on crisis in 1929, as well as the memory on the depression since the state of financial
crises and depressions are associated in time in their memory, even the features of crisis and depression are
assumed orthogonal. The temporal contiguity effect elicits all events happened around 1929.

25Our simulation results are robust with the selection of the inner product. If simulated input vectors are
completely orthogonal to each other (the inner products are equal to 0), i.e.,

Xsim
t “ 10ut,

the temporal contiguity effect still prevails.
26Since the dimension of the original input features X is 79, we can only maximally generate 79 mutually

orthogonal vectors.
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10 periods are excluded to avoid the potential impacts of the primacy effect and the recency

effect.

Third, we use the empirically estimated model to simulate all mental contexts thsim
t u

T`1
t“1

according to the set of simulated input features tXsim
t u

T`1
t“1 , then use hT`1 as the cue to search

for the recalls. Next, we study the similarity around τ to examine the temporal contiguity27.

We use the similarity of mental contexts Similarityphτ`l, hT`1q defined in (4.1) as a measure

of the likelihood that the episode in period τ ` l is recalled according to the cue of hT`1.

If the temporal contiguity effect exists, it is expected to find similarity is decreasing in

the distance to K with a forward asymmetry. In other words, temporal contiguity implies

the following conditions should hold:

@ 0 ă i ă j, Similarityphτ`i, hT`1q ą Similarityphτ`j, hT`1q,

@ 0 ă i ă j, Similarityphτ´i, hT`1q ą Similarityphτ´j, hT`1q,

@ i ą 0, Similarityphτ`i, hT`1q ą Similarityphτ`i, hT`1q. (6.1)

Figure 9: Temporal Contiguity of LSTM

Figure 9 displays the estimated average temporal contiguity effect of our trained LSTM

model using simulated data. The simulation is implemented 10000 times. Similarityphτ , hT`1q

27The process is similar to the standard memory experiment that the participants are shown T different
words successively, and then asked to recall one of the word (the τ -th) they have studied. Next, the
participants are asked to make free recalls. See for example, Healey, Long, and Kahana (2019)
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is abstracted from the figure as it is the highest (this confirms the model’s ability of finding

the right recall) and irrelevant from the examination of temporal contiguity. The X-axis

stands for l which is the number of positive or negative lag on τ , while the Y -axis shows

Similarityphτ`l, hT`1q which are min-max normalized and the figure indicates that the high-

est similarity appears right after recall (l “ 1) and the similarity decreases with the absolute

value of the lag, while the overall similarity is smaller with negative lags than positive lags.

In general, the similarity pattern shown in Figure 9 is consistent with the conditions (6.1)

implied by temporal contiguity. This confirms that our LSTM model can not only theoreti-

cally but also empirically display the fundamental memory principal - temporal contiguity,

and the temporal contiguity effect is indeed essential in modeling analysts’ belief formation

processes28. On the other hand, the findings indicate the need of a memory model like

LSTM which can implement temporal contiguity to describe the analysts’ belief formation

processes.

6.2 Selective Forgetting

In this part, we break down the forget gate in the full LSTM to understand the role of for-

getting in the analysts’ and the econometrician’s expectation formation process, in the spirit

of performing counterfactual analysis. Literature has shown that forgetting affects agents’

decision making. For example, Walters and Fernbach (2021) argue that selective forgetting29

as a memory bias is presented among investors which is associated with misleading recalls

and then leads to investors’ overconfidence. In what next, we demonstrate what episodes

in the representative analyst’s and the econometrician’s memory are fading away, and those

are consistent with the discrepancy between their recalls.

In the full LSTM, the forget gate chooses the content and extent to erase from the existing

memory cell. Now we remove the forget gate and the structure of the new memory model

28We argued that LSTM contains the channels of long-term memory and autoregressive context structure,
and the two channels should jointly work to generate temporal contiguity. But the two channels are not
necessarily salient, i.e., the two channels can diminish according to different model parameters and the
empirical data the model fits in. For example, if the model parameters make forget gate always empty the
memory cell in the sense that the channel of long-term memory is blocked, then LSTM collapses to RNN,
which we show in Appendix A.5 does not produce temporal contiguity. Thus, employing the empirically
estimated model in the simulation study indicates that actually two channels are both significant and generate
temporal contiguity in analysts’ forecasting processes.

29In their study, selective forgetting refers to that participants are more likely to readily forget consequential
losing trades than the consequential winning trades, then less likely to recall the losing trades than the
winning trades.
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is showing in Figure 10. In this new memory model, the memory cell is only updated by

inputting new information and without selective forgetting:

ct “ inputt ˆ c̃t.

Next, we fist re-estimate the new model, then extract the latent context vectors and get

the analyst’s and the benchmark recalls according to this new memory model. The process

is analogous to what is described in Section 4. It means that agents are no longer able

to selectively forget any information. But it does not mean that agents can have complete

knowledge of past experience. They are still subject to the limited space of memory or mental

context: new information flushes in and old information shrinks and squeezes. selective

forgetting is not compatible with this setting.

σ
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+

ˆ ˆ

Tanh

ct´1
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Figure 10: The Structure of LSTM without Forget Gate

To better illustrate the impact of the forget gate and the difference it brings in, we first

define the magnitude of the recency effect. For each month, we compute the percentage of

recalls which are the episodes that happened within the past three years30. Then we average

across months (from January 2005 to December 2020), and get the overall magnitude of the

30We can alternatively define “recency” as past one year or five years, but the following patterns and
conclusions remain unchanged.
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recency effect:

Magnitude Recency “
1

T

ÿ

t

# of month t1 recalled episodes within the last three years

# of month t1 total recalls
.

Table 5 reports the magnitude of the recency effect for the analysts and the benchmark

under the full LSTM and LSTM without forget gate.

Table 5: The overall magnitude of the recency effect with and without forgetting mechanism

Analyst Benchmark

LSTM - Full 38.99% 75.97%

LSTM - No Forget 50.70% 65.23%

This table presents results for the overall magnitude of the recency effect for the representative analyst and

the machine learning benchmark under the full LSTM or the LSTM without forget gate. The recency effect

is defined as the average percentage of recalls which are the episodes that happened within the past three

years.

The recency effect for analysts increases when forget mechanism is blocked while the

recency effect for the machine learning benchmark decreases when the same intervention

is implemented. An explanation is the machine learning benchmark is able to selectively

forget the past experience in an optimal way and blocking the forgetting mechanism makes

it wrongly recall the distant episodes which should be forgotten. On the other hand, a

different story happens when analysts’ forgetting mechanism is blocked. It is possible that

analysts selectively forget all other scenarios but misleading images in their memory. When

they are able to keep a full view of the past and realize that the distant experience actually

does not fit the current situation, they recall recent experiences more often and the recency

effect of analysts gets increased. The difference between contents that the analysts and the

machine learning benchmark selectively forget provides an interpretation of analysts’ recall

distortion relative to the machine learning benchmark.

The results are also reconciled with the findings in De La O and Myers (2022) that the

analysts consider the world more stationary than it truly is31. Then it is reasonable that

analysts choose not to forget and rely too much on past experiences to extrapolate and form

their expectation today.

31De La O and Myers (2022) show that a structural model of fundamental extrapolation where agents
form their expectation from a slowly adjusted weighted sum of current and past realizations could replicate
the empirical evidence accurately.
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7 Conclusion

In this paper, we present a novel approach to shed light on the impact of memory on

financial market participants’ belief formation processes. We extract the analysts’ recalls and

mental contexts by adapting the machine learning memory model - LSTM. We also provide

a machine learning benchmark for the recalls and mental contexts to examine whether the

analysts’ memory deviates them away from the full rationality. Our analysis shows that

analysts’ recalls are significantly distorted from the benchmark, which contributes to their

forecast errors. Such recall distortion can be explained by the evidence that analysts’ mental

context are mainly influenced by past earnings and forecasting decisions, rather than current

firm fundamentals, and that analysts tend to selectively ignore recent episodes.

Our detailed investigation of recalls and mental contexts offers new insights for theoretical

modeling and empirical research on memory in financial markets. Additionally, our approach

is well-suited for complex real-world scenarios where agents confront high-dimensional and

non-stationary conditions with non-linear interactions between variables, and it can be read-

ily customized to explore the influence of memory in other settings. Our application also

highlights the potential of machine learning techniques in analyzing economic agents’ behav-

ior in the age of big data.
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Appendix

A.1 Input Features

The following table reports all 79 input features applied in this paper. For detailed data

processing (e.g. imputation), one can refer to van Binsbergen, Han, and Lopez-Lira (2020).

Table A1: Input Features

Part 1. Firm Fundamentals´WRDS Financial Ratios

Variable Definition Variable Definition

Accrual Accruals/Average Assets adv sale Advertising Expenses/Sales

aftret eq After-tax Return on Average

Common Equity

aftret equity After-tax Return on Total Stock-

holders Equity

aftret invcapx After-tax Return on Invested Cap-

ital

at turn Asset turnover

bm Book/Market capei Shillers Cyclically Adjusted P/E

ratio

capital ratio Capitalization Ratio cash debt Cash Flow/Total Debt

cash lt Cash Balance/Total Liabilities cash ratio Cash Ratio

cfm Cash Flow Margin curr debt Current Liabilities/Total Liabili-

ties

curr ratio Current Ratio debt asset Total Debt/Total Assets

debt at Total Debt/Total Assets debt capital Total Debt/Capital

debt ebitda Total Debt/EBITDA debt invcap Long-term Debt/Invested Capital

divyield Dividend Yield dltt be Long-term Debt/Book Equity

dpr Dividend Payout Ratio efftax Effective Tax Rate

equity invcap Common Equity/Invested Capital evm Enterprise Value Multiple

fcf ocf Free Cash Flow/Operating Cash

Flow

gpm Gross Profit Margin

GProf Gross Profit/Total Assets int debt Interest/Average Long-term Debt

int totdebt Interest/Average Total Debt intcov After-tax Interest Coverage

intcov ratio Interest Coverage Ratio inv turn Inventory Turnover

invt act Inventory/Current Assets lt ppent Total Liabilities/Total Tangible

Assets

npm Net Profit Margin ocf lct Operating CF/Current Liabilities

opmad Operating Profit Margin After De-

preciation

opmbd Operating Profit Margin Before

Depreciation

pay turn Payables Turnover pcf Price/Cash flow

pe exi P/E (Diluted, Excl. EI) pe inc P/E (Diluted, Incl. EI)

PEG trailing Trailing P/E to Growth ratio pretret earnat Pre-tax Return on Total Earning

Assets

pretret noa Pre-tax return on Net Operating

Assets

profit lct Profit Before Deprecia-

tion/Current Liabilities

ps Price/Sales ptb Price/Book

ptpm Pre-tax Profit Margin quick ratio Quick Ratio (Acid Test)

RD SALE Research and Development/Sales rect act Receivables/Current Assets

rect turn Receivables Turnover roa Return on Assets

roce Return on Capital Employed roe Return on Equity
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sale equity Sales/Stockholders Equity sale invcap Sales/Invested Capital

sale nwc Sales/Working Capital short debt Short-Term Debt/Total Debt

totdebt invcap Total Debt/Invested Capital

Part 2. Other Firm Fundamentals

Variable Definition Variable Definition

asset g Growth Rate in Total Assets invest g Growth Rate in Capital Expendi-

ture

sales g Growth Rate in Sales return Monthly Stock Return

Part 3. Macroeconomic Variables

Variable Definition Variable Definition

con g Log Difference of Consumption in

Goods and Services

IPT g Log Difference of Industrial Pro-

duction Index

GDP g Log Difference of Real GDP unemployment Unemployment Rate

Part 4. Earnings-Related Variables

Variable Definition Variable Definition

Realized EP ANN Realized Annual Earnings from

Last Period/Stock Price from Last

Month

Realized EP QTR Realized Quarter Earnings from

Last Period/Stock Price from Last

Month

AF EP lag Mean Analyst Forecast from Last

Period /Stock Price from Last

Month

NUMEST lag Number of Forecasts from Last Pe-

riod

Realized ANN g Growth Rate in Realized Annual

Earnings

Realized QTR g Growth Rate in Realized Quarter

Earnings

AF g lag Lag 1 Growth Rate in Mean Ana-

lyst Forecast

Maturity Months to Fiscal End Date/12
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A.2 Robustness Check - Recall Distortion and Fore-

cast Errors

Table A2 reports the results of the analogous regression analysis to that shown in Table 3,

but the recalls are found based on the similarity measure defined in (4.2). The estimation

results are robust to the choice of the similarity measure.

Table A2: Analysts’ recall distortion and forecast errors with cosine similarity

FEj,t |FEj,t|

(1) (2) (3) (4) (5) (6)

Linear Linear Ologit Linear Linear Ologit

RDj,t 0.290*** 0.279*** 0.747***

(0.014) (0.015) (0.022))

|RDj,t| 0.047*** 0.047*** 0.130***

(0.006) (0.006) (0.023)

Observations 277,487 277,245 277,487 277,487 277,245 277,487

Month fixed effects Yes No No Yes No No

Firm fixed effects Yes Yes No Yes Yes No

Industry*Month fixed effects No Yes No No Yes No

This table presents results for regressions of the form

FEj,t “ β ˆ RDj,t ` εj,t,

where the dependent variable is the analyst (consensus) forecast revision error for firm j at time t and FEj,t P t´2,´1, 0, 1, 2u,
the independent variable is the analyst’s recall distortion which are predicted by the model with all the information available
before time t as defined in Equation (4.3). Recalls are found based on the similarity measure shown in (4.1). Column (4)-(6)
report the results that take the absolute value of both the dependent variable and the independent variable. Column (3) and
(6) shows the results of the ordered logit model while the rest of the columns are associated with the linear regression model.
Data are from the period 2005 to 2020. Standard errors are clustered at both the industry and year level, and reported in
parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.
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A.3 Robustness Check - Dispersion of Context and

Forecasts

For robustness check, we present an alternative context dispersion measure. Let hj,t “

1
Nj,t

řNj,t

i“1 hi,j,t denote the mean vector of thi,j,tu
Nj,t

i“1 , then the alternative memory dispersion

is defined as the mean of the cosine distance between each hi,j,t and hj,t:

Context Disaltj,t “
1

Nj,t

Nj,t
ÿ

i“1

ˆ

1 ´
hi,j,t ¨ hj,t

}hi,j,t}}hj,t}

˙

.

Table A3 then reports the estimation results, the interested relation remains significantly

positive.

Table A3: Dispersion of Covering Lengths, Contexts, and Analysts Forecast Revisions

AF Dis

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Context Disalt 0.750*** 0.697*** 0.599*** 0.750*** 0.710*** 0.625***

(0.084) (0.085) (0.083) (0.084) (0.089) (0.087)

Length Dis 0.031 -0.179 -0.325*** -0.003 -0.223 -0.378***

(0.109) (0.140) (0.049) (0.108) (0.143) (0.052)

Observations 179,956 179,911 179,911 179,956 179,911 179,911 179,956 179,911 179,911

Month fixed effects Yes No Yes Yes No Yes Yes No Yes

Firm fixed effects No Yes Yes No Yes Yes No Yes Yes

This table presents results for regressions of the form

AF Disj,t “ βc ˆ Context Disaltj,t ` βl ˆ Length Disj,t ` εj,t,

where the dependent variable is the dispersion (standard deviation) of analysts’ forecast revisions for firm j at time t, the first independent
variable is the dispersion (cosine distance) of analysts’ mental contexts hi,j,t which are predicted by the model with all the information
available before time t, and the second independent variable Length Disj,t is the dispersion (standard deviation) of lengths of the
analysts’ covering experiences. Data are from the period 2005 to 2020. Standard errors are clustered at both the industry and year
level, and reported in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.



45

A.4 Robustness Check - Random Seeds

For robustness check, we present estimation results in table 3 and table 4 with 100 differ-

ent random seeds. Figure A1 shows the point estimates of Forecast error FEj,t on recall

distortion RDj,t with and without taking absolute values of the dependent variable and the

independent variable. Figure A2 shows the point estimates of analyst forecast revision dis-

persion (AF Dis) on mental context distance Context Dis with and without controlling for

covering experience distance Length Dis. Figure A3 shows the point estimates of analyst

forecast revision dispersion (AF Dis) on covering experience distance Length Dis with and

without controlling for mental context distance Context Dis. In sum, all of these three

figures show that our estimation results are robust to different random seeds.

Figure A1: Point estimates on Recall Distortion RDj,t with 100 random seeds
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Figure A2: Point estimates on Context Dis with 100 random seeds

Figure A3: Point estimates on Length Dis with 100 random seeds
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A.5 Temporal Contiguity - RNN

In this section, we present the simulation results for RNN which examine the temporal

contiguity effect. The simulation design is analogous to what described in Section 6.1, the

only difference is now we employ the trained RNN model instead of LSTM. The RNN model

is also recursively trained to fit the represent analyst’s forecasting decisions as stated in

Section 3.2.

Figure A4: Temporal Contiguity of RNN

Figure A4 demonstrates that RNN does not produce temporal contiguity. The similarity

presented in Figure A4 is not consistent with the conditions (6.1) implied by temporal

contiguity. However, as indicated in Figure 9, temporal contiguity should be significant in

analysts’ forecasting processes. As implied by Howard and Kahana (2002), the channel of

long-term memory is essential in generating temporal contiguity. Lack of the channel of

long-term memory disables RNN to produce temporal contiguity despite of containing the

autoregressive context structure. This also makes RNN inferior to model analysts’ belief

formation processes, compared to LSTM.
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