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1 Introduction

Machine learning algorithms have been available for a long time. However, due to increased

computing power and data availability, decreased data storage costs, and algorithmic inno-

vations in recent years (cf., Rasekhschaffe and Jones, 2019), machine learning methods see

increasing popularity in research fields such as economics, finance, and accounting.1

This paper compares various machine learning models to predict the cross-section of

emerging market stock returns. More specifically, we analyze the predictive power of nine

algorithms: ordinary least squares regression and elastic net as examples for traditional

linear models; tree-based models such gradient boosted regression trees and random forest;

and neural networks with one to five layers. Furthermore, we investigate the performance of

an ensemble comprising the five different neural networks and an ensemble of methods that

allow for non-linearities and interactions, i.e., the two tree-based models and the ensemble

of neural networks. In the remainder of the paper, we often use the term ‘machine learning’

only for the two tree-based methods, the neural networks, and the two ensembles. Our data

set contains stocks from 32 emerging market countries and the 36 firm-level characteristics

from Kelly et al. (2019) and Windmüller (2022) falling into categories such as value, past

returns, investment, profitability, intangibles, and trading frictions. The data sample covers

the sample period from July 1995 to December 2021, while our 20-year out-of-sample period

is from January 2002 to December 2021.

Our main findings can be summarized as follows. First, we document that the different

1For instance, machine learning methods are applied to predict stock returns in Moritz and Zimmermann
(2016), Rasekhschaffe and Jones (2019), Freyberger et al. (2020), Gu et al. (2020), Tobek and Hronec
(2020), Chen et al. (2021), Drobetz and Otto (2021), Leippold et al. (2022), Azevedo et al. (2022), Cakici
et al. (2022a), and Rubesam (2022), stock market betas in Drobetz et al. (2021), country stock returns in
Cakici and Zaremba (2022), industry stock returns in Rapach et al. (2019), option returns in Bali et al.
(2022a), corporate bond returns in Kaufmann et al. (2021) and Bali et al. (2022b), the equity premium in
Rossi (2018), Treasury bond returns in Bianchi et al. (2021b) and Bianchi et al. (2021a), commodity returns
in Struck and Cheng (2020), short-term bitcoin returns in Jaquart et al. (2021), cryptocurrency returns
in Cakici et al. (2022b), (changes) in future company profitability in Anand et al. (2019), Van Binsbergen
et al. (2020) and Chen et al. (2022), peer-implied market capitalizations in Hanauer et al. (2022), mutual
fund selection in Kaniel et al. (2022), hedge fund selection in Wu et al. (2021), mortgage risk in Sadhwani
et al. (2021), or corporate directors in Erel et al. (2021).
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prediction algorithms pick up similar characteristics. However, we observe that tree-based

methods and neural networks also identify non-linearities and interactions of characteris-

tics. In contrast, linear methods are restricted to linear relationships and do not allow for

interactions among characteristics.

Second, return forecasts based on machine learning models lead to economically and

statistically superior out-of-sample long-short returns compared to traditional linear models.

Furthermore, the Fama and French (2018) six-factor model can only partly explain these

long-short returns, and their alphas remain highly significant. These findings are robust to

several methodological choices and for emerging market subregions. Finally, we document

that machine learning forecasts beat linear models consistently over our sample period, and

we cannot observe a decline in predictability over time.

Third, developed market long-short returns based on machine learning forecasts derived

in the same way as their emerging market counterparts cannot explain emerging market

out-of-sample returns. However, models estimated solely on developed markets data also

predict emerging market stock returns. These findings indicate that similar relationships

between firm characteristics and future stock returns exist for developed and emerging mar-

kets but that the pricing of these characteristics is not fully integrated between developed

and emerging markets.

Fourth, the high returns of the machine learning strategies in emerging markets do not

primarily stem from higher-risk months and do not revert quickly, suggesting that an under-

reaction explanation is more likely than a risk-based explanation. Furthermore, both linear

and machine learning models show higher predictability for stocks associated with higher

limits to arbitrage. However, we also document that this effect is less pronounced for ma-

chine learning forecasts than for linear regression forecasts, indicating that the superiority

of machine learning models in emerging markets does not stem from limits to arbitrage.

Finally, accounting for transaction costs, short-selling constraints, and limiting our invest-

ment universe to big stocks only, we document that machine learning-based return forecasts
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can lead to a significant net outperformance over the market and net alphas, at least when

efficient trading rules are applied.

This paper contributes to the literature in at least three aspects. First, we contribute to

the rapidly expanding literature on predicting the cross-section of stock returns with machine

learning methods. Rasekhschaffe and Jones (2019), Freyberger et al. (2020), and Gu et al.

(2020) document that more complex machine learning models are superior to linear models

for the U.S. Tobek and Hronec (2020) and Drobetz and Otto (2021) find similar evidence

for developed markets and Europe, respectively. However, none of the studies mentioned

above investigates emerging markets. Emerging markets are important as they account for

around 58% of the global gross domestic product (GDP), which is forecasted to rise to 61%

by 2026.2 Furthermore, under the hypothesis that developed markets are integrated, the

same risk factors should apply to these markets. Therefore, similar results within developed

markets are not surprising, and emerging markets provide an attractive alternative for out-

of-sample tests in terms of independent and new samples.

Two contemporaneously written papers, Azevedo et al. (2022) and Cakici et al. (2022a),

also include emerging markets in their analysis next to developed markets. While Azevedo

et al. (2022) also find that most machine learning models outperform a linear combination of

anomalies, their results do not discriminate between emerging and other markets. Therefore,

their results are mainly driven by developed markets. In contrast to our study, Cakici et al.

(2022a) do not find superior forecasts for machine learning models compared to linear models.

A potential reason for this difference might be that they train their models for each country

separately while we train our models on a pooled sample of countries. However, more

data might be necessary for more complex models to robustly identify non-linearities and

interactions in the data.3 We provide some supportive evidence for this claim by documenting

2See, IMF, World Economic Outlook database, April 2022, https://www.imf.org/en/Publications/WEO/
weo-database/2022/April.

3While a linear model asks for a single parameter for each predictor, in the case of non-linear models,
the number of parameters to estimate rapidly expands even with a moderate number of predictors (cf.,
Gu et al., 2020; Hanauer et al., 2022). As such, pooling data across countries will arguably improve the
observations-to-parameters ratio.
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that models trained on emerging market subregions underperform models that are trained

on the pooled sample of emerging market subregions and that the performance loss is more

pronounced for machine learning models and smaller subregions. Finally, Leippold et al.

(2022) show that machine learning models dominate linear models for Chinese A-shares.

In contrast, our sample purposely excludes Chinese A-shares to represent an international

investor’s investable emerging market universe: for the majority of our sample period, the

China A-share market was only accessible to local investors and only gradually opened up

to international investors (cf., Jansen et al., 2021).

Second, we add to the literature on the drivers of emerging market stock returns. Bekaert

and Harvey (1995) and Harvey (1995) were among the first to investigate emerging market

country returns and their market integration. First studies on the cross-section of emerg-

ing market stocks, such as Rouwenhorst (1999), van der Hart et al. (2003), van der Hart

et al. (2005), Griffin et al. (2010), Cakici et al. (2013), and Hanauer and Linhart (2015)

mainly focus on size, value, and momentum. Later studies such as Zaremba and Czapkiewicz

(2017) and Hanauer and Lauterbach (2019) also investigate firm characteristics belonging

to categories such as profitability, investment, intangibles, and trading frictions. Our study

includes characteristics from all these groups, but machine learning models can also take

non-linearities and interactions into account next to linear relationships.

Finally, our paper also contributes to the understanding of the source of return pre-

dictability from machine learning forecasts. Avramov et al. (2022) show that return forecasts

from deep learning models for the U.S. extract their profitability mainly from difficult-to-

arbitrage stocks and during high limits to arbitrage market states. The authors also argue

that the performance of machine learning forecasts further deteriorates when microcaps are

excluded and when reasonable transaction costs are considered. Similarly, Leung et al.

(2021) find that the economic gains of a gradient boosting machine model for developed

market stocks tend to be more limited and critically dependent on the ability to take risk

and implement trades efficiently. Furthermore, Cakici et al. (2022a) document that machine
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learning strategies work best for small stocks, as well as in countries with many listed firms

and high idiosyncratic risk. In our paper, we follow Hou et al. (2020) and exclude microcaps

from our analysis. While we also find that both linear and machine learning models show

higher predictability for stocks associated with higher limits to arbitrage, we also document

that this effect is less pronounced for machine learning models. Furthermore, we also pro-

vide evidence that a positive and significant outperformance and six-factor alpha can be

achieved even when accounting for transaction costs, short-selling constraints, and limiting

the investment universe to big stocks only.

The remainder of the paper is structured as follows: Section 2 describes the data sources,

sample composition, and utilized firm-level characteristics. Section 3 outlines our method-

ology for predicting returns with machine learning algorithms, portfolio construction, and

benchmark models. Section 4 presents evidence of the superiority of more complex machine

learning models, while Section 5 strives to understand the source of this superiority better.

We provide our conclusions in Section 6.

2 Data

2.1 Stock market data

Our sample comprises data from emerging stock markets as classified by Morgan Stanley

Capital International (MSCI). The accounting data is from Refintiv Worldscope, and the

stock market data is from Refintiv Datastream. The sample period starts in July 1990 and

ends in December 2021. Countries are part of the sample only in those years in which they

are included in the MSCI Emerging Markets Index.4 Furthermore, the countries are only

part of the final sample in those months for which at least 10 stock-month observations are

available after screens. The following 32 countries fulfill these criteria: Argentina, Brazil,

Chile, China, Colombia, Czechia, Egypt, Greece, Hungary, India, Indonesia, Israel, Jordan,

4See https://www.msci.com/market-classification for details.
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Korea, Kuwait, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, Poland, Portugal,

Qatar, Russia, Saudi Arabia, South Africa, Sri Lanka, Taiwan, Thailand, Turkey, and the

UAE.5

Several static and dynamic screens are applied to ensure that our sample comprises ex-

clusively of common stocks and provides the highest data quality. First, stocks are identified

using Refinitiv Datastream constituent lists, particularly Refinitiv Worldscope lists, research

lists, and - to eliminate survivorship bias - dead lists. Following Ince and Porter (2006),

Griffin et al. (2010), Schmidt et al. (2019), and Hanauer (2020), non-common equity stocks

are eliminated through generic and country-specific static screens. Furthermore, several

dynamic screens are applied to stock returns and prices to exclude erroneous and illiquid

observations. Appendix A provides a detailed description of the utilized constituent lists and

the associated static and dynamic screens. Furthermore, we require stocks to have market

capitalization data for the previous month.

We follow the size group methodology of Fama and French (2008, 2012, 2017) and

Hanauer and Lauterbach (2019) and assign stocks into three size groups (micro, small, and

big) separately for each country and month. Big stocks are defined as the biggest stocks,

which together account for 90% of a country’s aggregated market capitalization. Small stocks

are defined as those stocks that comprise the next 7% of aggregated market capitalization

(so that big and small stocks together account for 97% of the aggregated market size of a

country). Microcaps comprise the remaining 3%.6 Although micro stocks represent only 3%

of the total market capitalization of our emerging market universe, they account for 67% of

the number of stocks, which is similar to the portion reported in Fama and French (2008) and

Hanauer (2020) for the U.S. and developed markets, respectively. To avoid our results being

5The Chinese sample includes only stocks that are classified as non ”A”-shares to proxy the investment
universe for an international investor as for the majority of our sample period, the China A-share market
was only accessible to local investors (cf., Jansen et al., 2021).

6To distinguish between these size groups, Fama and French (2008) use the 20th and 50th percentiles of
end-of-June market cap on NYSE stocks as size breakpoints for the U.S. market, which on average are
bigger than AMEX or NASDAQ stocks. However, these breakpoints are applied to all (NYSE, AMEX,
and NASDAQ) stocks. For international markets, Fama and French (2012, 2017) propose to calculate
breakpoints based on aggregated market capitalization, as we do.
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driven by microcaps, we follow Hou et al. (2020) and Hanauer and Lauterbach (2019) and

exclude them. Finally, we cap the market capitalization of each stock within each month by

its 99% percentile to avoid our results being driven by erroneous data and a few mega-caps.

We calculate returns from the total return index in USD. Following Jacobs (2016) and

Hanauer and Lauterbach (2019), we winsorize all returns each month within a country at

0.1% and 99.9% to eliminate potential errors. To calculate the excess returns, we obtain the

risk-free rate from Kenneth R. French’s homepage.7

[Table 1 about here.]

The result is a comprehensive dataset spanning 15.152 unique stocks and more than

1.42 million stock-month observations. Table 1 depicts the descriptive statistics for the final

sample.

2.2 Firm-level characteristics

The 36 firm-level characteristics in this study are analogous to those in Kelly et al. (2019) and

Windmüller (2022) and constructed using data from Refinitiv Datastream and Worldscope.

Appendix B outlines the detailed construction of the characteristics. We follow Windmüller

(2022) and substitute the daily bid-ask spreads with the daily version of Amihud (2002)

illiquidity as a proxy for trading frictions. As shown by Fong et al. (2017), the Amihud

(2002) illiquidity measure increases the number of observations in the cross-section and is

the best daily cost-per-dollar-volume proxy for international data.

The 36 characteristics are: assets-to-market (A2ME), total assets (AT), sales-to-assets

(ATO), book-to-market (BEME), market beta (Beta), cash-and-short-term-investment-to-assets

(C), capital turnover (CTO), capital intensity (D2A), leverage (Debt2P), ratio of change in

property, plants, and equipment to change in total assets (DPI2A), earnings-to-price (E2P),

fixed costs-to-sales (FC2Y), cash flow-to-book (FreeCF), idiosyncratic volatility (Idiovol),

7See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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investment (INV), market capitalization (LME), turnover (LTurnover), net operating assets

(NOA), operating accruals (OA), operating leverage (OL), price relative to its 52-week high

(P2P52WH), price-to-cost margin (PCM), profit margin (PM), gross profitability (Prof), Tobin’s

Q (Q), momentum (r12−2), intermediate momentum (r12−7), short-term reversal (r2−1), long-

term reversal (r36−13), return on net operating assets (RNA), return on assets (ROA), return

on equity (ROE), sales-to-price (S2P), the ratio of sales and general administrative costs to

sales (SGA2S), unexplained volume (SUV), and Amihud (2002) illiquidity (Illiqu).

Moreover, in a robustness check, we add the following four characteristics that have been

shown to be strong return predictors for emerging markets (Hanauer and Lauterbach, 2019):

monthly updated book-to-market (BEMEm, Asness and Frazzini, 2013), composite equity is-

suance (CEI, Daniel and Titman, 2006), cash flow-to-price (CF2P, Lakonishok et al., 1994),

and gross profitability-to-assets (GP2A, Novy-Marx, 2013).

We do not exclude financial firms but set the following characteristics as missing as they

are not meaningfully defined for financials: ATO, C, D2A, DPI2A, FC2Y, FreeCF, CF2P, GP2A,

OA, PCM, PM, Prof, RNA, SGA2S, and NOA.

Following Freyberger et al. (2020), Gu et al. (2020), and Leippold et al. (2022), we cross-

sectionally rank all stock characteristics each month for every country into the [-1,1] interval

to limit the effect of outliers. These country-based ranks intend to control for different

accounting standards across countries, particularly in the earlier part of the sample period,

and therefore account for cross-country differences in characteristics. In case of missing

characteristics, we replace them with a 0 to ensure extensive cross-sectional coverage. The

annually updated characteristics incorporating balance sheet data from the fiscal year ending

in calendar year t-1 are used from end-of-June in year t to end-of-May in year t+1 to predict

stock returns from July in year t to end-of-June in year t+1.
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3 Methodology

3.1 Return prediction using machine learning

Rasekhschaffe and Jones (2019) stress that domain knowledge is essential to structure the

forecasting problem in a way that increases the signal-to-noise ratio. As we are interested

in the cross-section of stock returns and rank stocks in portfolio sorts later in a country-

neutral manner, we aim to forecast the outperformance of a stock relative to its country

market return. Therefore, we define the abnormal return of a stock i, i = 1, ..., N in month

t, t = 1, ..., T in the country c, c = 1, ..., C as

rabni,t,c = ri,t,c −Mktt,c, (1)

where ri,t,c is the return of stock i in month t of country c and Mktt,c is the value-weighted

market return in month t of country c.

Following Gu et al. (2020), we employ a general additive prediction model to describe

the one-month-ahead abnormal return of a stock rabni,t+1,c, which can be written as

rabni,t+1,c = Et[r
abn
i,t+1,c|xi,t] + ϵi,t+1,c, (2)

where Et[r
abn
i,t+1,c|xi,t] is the conditional expected abnormal return of stock i in month t for

month t + 1 given a vector of stock-specific p characteristics known at month t, xi,t ∈ Rp,

and ϵi,t+1,c is the prediction error term. Our objective is to model the expected abnormal

return by using an unknown function f ∗, f ∗ : Rp → R, which estimates the expected returns

independently of any other information besides the vector of p stock-specific characteristics

available in month t:

Et[r
abn
i,t+1,c|xi,t] = f ∗(xi,t). (3)

In the case of supervised machine learning, the unknown function f ∗(x) is approximated
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by some function f(x, θ, ρ), which is parameterized by a vector of coefficients θ and a set

of hyperparameters ρ. While θ is directly derived from the underlying training data with

respect to ρ and a specific loss function L, ρ itself depends on the user input but is optimized

concerning L based on available data. The exact functional form of f depends on the family

and can either be linear or non-linear, as well as parametric or non-parametric.

For this paper, we build on Rasekhschaffe and Jones (2019), Gu et al. (2020), Tobek

and Hronec (2020), Drobetz and Otto (2021), and Leippold et al. (2022) to select a repre-

sentative amount of machine learning models from the finance literature. We analyze the

predictive power of nine different algorithms: ordinary least squares (OLS) regression, elas-

tic net (ENet), gradient-boosted regression trees (GBRT ), random forest (RF ), and neural

networks with one to five layers (NN1, NN2, NN3, NN4, NN5). We also investigate the

performance of an ensemble of the five different neural networks (NN1−5) and the average

combination of the more advanced machine learning methods (ENS): GBRT , RF , and

NN1−5. We provide a more detailed description of the models in Appendix C.

Besides the model selection, we also follow the standard approach in the literature (Gu

et al., 2020; Leippold et al., 2022) for selecting the hyperparameter range, the training of the

models, and the performance evaluation. One of the most crucial things when estimating the

different machine learning models is to avoid data leakage. This happens when information

from exceeding the training dataset is used to create the model. Therefore, we divide our

data into three disjoint periods, which always maintain the temporal ordering: the training

sample, the validation sample, and the testing sample. We first estimate the models for a

range of hyperparameters based on the training data. Next, we determine the respective loss

of each hyperparameter set and model in the validation sample. The optimal hyperparameter

set minimizes the individual model’s respective loss function. Afterward, we retrain the

model with the optimal hyperparameter set on the combined training and validation data.

Next, the models are used to predict the monthly returns for the test dataset. We exemplary

describe this procedure for the first two years in our sample: we first estimate the models
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for a range of hyperparameters based on the training data from July 1990 to December

1995. Afterward, we determine the best hyperparameters through the validation sample

from January 1996 to December 2001. Finally, the model is retrained with the optimal

hyperparameter using the data from July 1990 to December 2001 and evaluated in the

testing sample using data from January 2002 to December 2002. To test our models from

January 2003 to December 2003, we extend the training sample by one year (July 1990

to December 1996) and roll the validation sample forward by one year (January 1997 to

December 2002). This procedure ensures that no future information is leaked from a previous

period. Since machine learning models are computationally intensive, we retrain them only

once a the end of every year but do the prediction every month using the latest model and

data. Appendix C.5 summarizes the hyperparameter tuning schemes for each model.

3.2 Machine learning portfolios

We rely mainly on portfolio sorts to evaluate the predictive performance of the different

machine learning models. For a given machine learning model, we adopt the following

approach: At the end of each month t, we predict the next month’s abnormal return (r̂abni,t,c).

To avoid that small stocks or certain countries dominating our results, we estimate the

quintile breakpoints for each country individually using the big-stock subsample based on

r̂abni,t,c as recommended in Hou et al. (2020) and applied in Hanauer and Lauterbach (2019).

Furthermore, the machine-learning-based signals should not only contain information on the

return predictability in equal-weighted sorts, which smaller stocks might drive but also in

value-weighted sorts, which on the other hand, are dominated by larger stocks. Finally, we

construct a zero-net investment portfolio (long-short) that goes long in the highest quintile

portfolio and short in the lowest quintile portfolio. For all the portfolios, reassignment and

rebalancing occur at the end of each month.
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3.3 Benchmark factor models

To benchmark the results of the different machine learning portfolio sorts, we consider the

Fama and French (2018) six-factor model, i.e., the Fama and French (2015) five-factor model

with a cash-based profitability factor and augmented with the Carhart (1997) momentum

factor. The corresponding six factors are market (RMRF ), size (SMB), value (HML),

profitability (RMW ), investment (CMA), and momentum (WML). Appendix D provides

a detailed description of the factor construction.

4 Empirical results

This section reviews the evidence on applying the different machine learning models within

emerging markets. We start by analyzing the out-of-sample R2
OOS of individual stock re-

turns. Afterward, we evaluate the importance of the different characteristics, the sensitivity

of the predicted return to different characteristics, and the sensitivity to the interaction

effects of various characteristics. In the next step, we utilize portfolio sorts to assess the

economic gains of the different machine learning models. Finally, we investigate the impact

of various methodological changes and the robustness of our findings within emerging market

subregions.

4.1 Prediction performance

Table 2 displays the predictive power for our set of machine learning models as measured

by the out-of-sample R2
OOS. In Panel B, we include the Newey and West (1987) adjusted

Diebold and Mariano (1995) test statistics, which enables us to compare the out-of-sample

stock-level prediction performance between each machine learning model. We measure the

pooled out-of-sample R2
OOS in Panel A as:

R2
OOS = 1−

∑T
t

∑N
i (r

abn
i,t,c − r̂abni,t,c)

2∑T
t

∑N
i (r

abn
i,t,c)

2
. (4)
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[Table 2 about here.]

The first row in Panel A of Table 2 reports the R2
OOS of the full sample. The OLS yields

a benchmark R2
OOS of 0.29%, which all other models improve besides the ENet (R2

OOS of

0.18%). As the ENet shrinks certain coefficients towards zero but doesn’t consider interac-

tions or non-linearities, it seems that this regularization does not increase the predictability.

The RF and GBRT are superior to the OLS, producing fits of 0.40% and 0.52%, respec-

tively. Only the NN1 underperforms the GBRT but outperforms all other linear and non-

parametric models and yields a R2
OOS of 0.49%. The NN2 till NN5 show R2

OOS between

0.53% and 0.55%, with the NN4 performing best. Creating an ensemble of neural networks

(NN1−5) and an ensemble of the non-linear machine learning models (ENS) produces fits

for both models of 0.60%.

A closer look at the second and third rows in Panel A of Table 2 reveals an interesting

pattern: in all the cases, the predictive performance is better for small firms than for large

firms. The ensemble of neural networks (NN1−5) and the ensemble of non-linear machine

learning models (ENS) yield a R2
OOS of 0.34% and 0.38% for large firms and 0.75% and

0.73% for small firms, respectively.

Whereas Panel A measures the individual predictive performance of the different machine

learning models, Panel B assesses the statistical significance of differences among the mod-

els using the Newey and West (1987) adjusted Diebold and Mariano (1995) test statistics

(DMkj) comparing a column model (k) versus a row model (j). We compute the Newey-West
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adjusted Diebold-Mariano test statistics as:

MSFEm
t =

1

Nt

Nt∑
i=1

(rabni,t,c − r̂abni,t,c,m)
2

dkj,t = MSFEk
t −MSFEj

t

d̄kj =
1

T

t=1∑
T

dkj,t

DMkj =
d̄kj

σ̂dkj ,NW (4)

,

(5)

where σ̂dkj ,NW (4) is the Newey and West (1987) standard error of dkj,t with four lags. The

Diebold-Mariano test statistic is normally distributed with a mean of 0 and a standard

deviation of 1 (N (0, 1)) with the null hypothesis that there exists no difference between

the models, which allows us to map the magnitudes of the test statistic to p-values. Bold

numbers indicate a statistical significance for each test at the 1% level (DM ≥ 2.60). An

asterisk indicates significance at the 1% level for 10-way comparisons via the conservative

Bonferroni adjustment, which increases the critical value to 3.33.

We conclude that besides the ENet, every machine learning model is superior to the OLS,

and every model surpasses the Bonferroni adjusted critical value of 3.33. Comparing the RF

to all the other non-linear models yields a similar result. Both the GBRT as well as all other

neural networks besides the NN1 are superior to the RF . In the case of the GBRT , only

the two ensembles can deliver statistically significant better predictions with a DM statistic

of 3.49 and 7.59, respectively. The different neural networks with one to five layers do not

differ much in their prediction performance. In the case of the NN1, the neural networks

with four and five layers are superior. The two best-performing machine learning models

are the two ensembles. Whereas the ensemble of neural networks (NN1−5) can significantly

outperform all other machine learning models, the other ensemble of the trees and neural

networks yields statistically significant outperformance measures when comparing it to the

OLS, ENet, RF , GBRT , NN1, NN3, and NN5.
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4.2 Characteristics importance and marginal relationships

We examine whether specific characteristics are more important than others to predict the

next month’s abnormal returns and the model-implied marginal impact of individual char-

acteristics on expected abnormal returns.

We define the importance of the characteristics for each model as the average reduction

in R2
oos by setting each value of the particular characteristic to zero and keeping the re-

maining model estimates fixed. Figure 1 visualizes the sum over the cross-sectional ranked

characteristics for the different machine learning models.8 A darker color indicates higher

importance of the characteristic for the individual model, while a lighter color indicates lower

importance for the R2
oos.

[Figure 1 about here.]

The most influential characteristics are similar among the different machine learning models.

Among the top 15, we find the following characteristics: turnover (LTurnover), idiosyncratic

volatility (Idiovol), price relative to its 52-week high (P2P52WH), Amihud (2002) illiquidity

(Illiqu), total assets (AT ), market capitalization (LME), and market beta (Beta) from the

trading frictions category; momentum (r12−2), short-term reversal (r2−1), and intermediate

momentum (r12−7) from the past returns category; and assets-to-market (A2ME), Tobin’s Q

(Q), book-to-market (BEME), and leverage (Debt2P ) from the value category. In contrast,

characteristics of the profitability and intangibles categories are not present among the top

15, except for return on asset (ROA).

Figure 2 visualizes the marginal impact of individual characteristics on expected abnor-

mal returns for the OLS, ENet, RF , GBRT , and NN1−5. We predict the returns for each

model and characteristic by iterating over the (-1,1) interval and holding all other charac-

teristics fixed at the value of zero. We do this for each time period and model individually

and calculate the average predicted return among the different machine learning models.

8We additionally show the most influential characteristics per model and the corresponding normalized
importance in Figure E.1 in the appendix.
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We exemplary select short-term reversal (r2−1), idiosyncratic volatility (Idiovol), turnover

(LTurnover), and operating leverage (OL) to visualize how the different machine learning

models associate the underlying characteristic with the expected abnormal returns.

[Figure 2 about here.]

Inspecting the relationships in Figure 2, we see that all methods identify the well-known

negative relationship of expected returns with short-term reversal (r2−1, top-left) or id-

iosyncratic volatility (Idiovol, top-right). While the two linear models are, per definition,

restricted to linear relationships, we see that tree-based methods and neural networks iden-

tify more pronounced short-term reversal patterns in the extremes.9 Similarly, these meth-

ods also find a rather flat relationship for low and medium levels of idiosyncratic volatility

(Idiovol) but an increasingly negative relationship for high idiosyncratic volatility, echoing

the empirical results in Ang et al. (2006). The differences are even more pronounced for

turnover (LTurnover, bottom-left). While both OLS and ENet find a positive slope, the

two tree-based models, RF and GBRT , and the neural network ensemble, NN1−5, identify

an inverted U-shape pattern: extreme positive and negative values of LTurnover are re-

lated to a lower expected return than the middle region in the interval, echoing the pattern

documented in Freyberger et al. (2020). Such differences in marginal relationships can, in

part, explain the divergence in the performance of linear and non-linear methods. However,

we also find that all methods agree on a nearly zero relationship of operating leverage (OL,

bottom-right) with expected returns.

A significant advantage of the tree-based models and the different neural networks is

that they can model complex interactions between the different characteristics. In Figure 3,

we exemplary visualize the NN1−5’s sensitivity of the expected monthly percentage returns

to the effects of the interactions for Amihud (2002) illiquidity (Illiqu) and idiosyncratic

volatility (Idiovol) with short-term reversal (r2−1) and market capitalization (LME) by

9This finding is consistent with the empirical pattern for short-term reversal deciles that can be found on
Kenneth R. French’s homepage.
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varying both pairs of characteristics while holding the predictors fixed. On the one hand,

we choose Illiqu and Idiovol as they are prominent hard-to-value proxies (cf., Kumar, 2009)

and on the other hand, r2−1 and LME as they are two main control characteristics in the

asset pricing literature.

[Figure 3 about here.]

The upper-left figure shows that for very illiquid stocks (purple line), the difference between

high and low previous month returns is the most considerable. In contrast, the lines are

mainly parallel in the case of the other values of Illiqu. This interaction resembles the

empirical findings in Medhat and Schmeling (2022) for the interaction between short-term

reversal with turnover. In the upper-right figure, we plot the interactions between the Ami-

hud (2002) illiquidity and a stock’s market capitalization. In the case of liquid firms (blue

and orange line), the expected return increases by increasing market capitalization, while

for illiquid firms (red and purple line), the relationship is reversed, indicating a decrease in

expected returns for larger firms. The bottom-left figure shows that the short-term reversal

effect is most substantial and S-shaped among risky stocks (purple line). Among less risky

stocks (blue and orange line), reversal is concave, yielding significantly lower returns when

the prior month’s return is considerable. Finally, the bottom-right figure shows that no

strong interaction effects exist between Idiovol and LME.

4.3 Portfolio performance

After providing evidence on the predictive ability of the different machine learning methods

for individual stock returns, we will continue with a general overview of the profitability of

machine learning signal-based portfolios.

Table 3 presents the results on equal- and value-weighted country-neutral quintile port-

folio sorts using big-stock breakpoints. In Panel A and Panel D, we provide results on the

predicted monthly returns for the long-short quintile (Pred), the average monthly return for
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the long-short quintile (Avg), Newey and West (1987) adjusted t-statistics with four lags

(t-stat), the monthly standard deviations (SD), and Sharpe ratios (SR). Panel B and Panel

E reports the alpha (α), corresponding Newey and West (1987) adjusted t-statistics with

four lags (t-statα), and R2 with respect to the Fama and French (2018) six-factor model:

rp,t,ML − rf,t = α + β1RMRFt + β2SMBt + β3HMLt

+ β4RMWt + β5CMAt + β6WMLt + ϵt.

(6)

We additionally provide detailed results on every quintile in Appendix F.1.10

Panel C and Panel F describe the maximum drawdowns (Max DD), the most negative

monthly return (Max 1M Loss), and the average monthly percentage change in holdings (TO)

of different machine learning-based long-short portfolios. We define maximum drawdowns

as

Max DD = max
0≤t1≤t2≤T

(Yt1 − Yt2), (7)

where Yt is the cumulative log return from date 0 through t. The strategy’s average monthly

turnover is defined as

TO =
1

T

T∑
t=1

(
Nt∑
i=1

∣∣∣∣∣wi,t+1 −
wi,t(1 + ri,t+1)

1 +
∑Nt

j=1wj,trj,t+1

∣∣∣∣∣
)
, (8)

where wi,t is the weight of stock i in the portfolio at time t.

[Table 3 about here.]

We start by analyzing the equal-weighted long-minus-short quintile returns in Panel A

of Table 3. All machine learning models yield positive and highly significant long-short

10We also include the performance of a strategy that uses the equal-weighted (1/N) average of all standardized
characteristics (µsign(c)) in this table. Thereby, characteristics are sorted in such a way that higher values
correspond to higher expected returns. The performance of this simple linear combination is slightly
worse (similar) than the performance of the other two linear strategies for equal-weighted (value-weighted)
portfolios.
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returns, and the order is similar to the one of the monthly out-of-sample stock-level prediction

performance in Table 2. The linear methods OLS and ENet yield a monthly return of

1.38% (t-stat 7.82) and 1.20% t-stat 6.83), respectively. However, the tree-based methods

RF and GBRT exhibit even higher long-short returns of 1.60% (t-stat 9.33) and 1.80% t-

stat 11.57), which themselves are outperformed by the neural networks with returns between

1.84% (NN3) and 1.91% (NN2) and t-statistics between 13.82 (NN4) and 15.75 (NN2). The

ensemble of the different neural networks (NN1−5) yields a similar performance as NN5, and

the ensemble of the tree-based methods and neural networks has a performance similar to

the GBRT .

The risk-adjusted performance displayed in Panel B leads to the same order as for the

raw long-short returns. However, the increase in the six-factor alpha for the machine learn-

ing models compared to the linear models is even more pronounced as the six-factor model

has less explanatory power for them. Furthermore, Panel C reveals that the neural network

portfolios exhibit a smaller maximum drawdown and a smaller maximum one-month loss

compared to the linear and tree-based models. The maximum drawdown (worst one-month

return) in the case of the ensemble of neural networks is 17.82% (10.75%), whereas this

number is 26.35% (13.97%) for the OLS. The superior performance of the machine learning

models comes at the cost of a somewhat higher turnover. However, compared to the perfor-

mance gains, this turnover increase from 89.27% for OLS to values between 89.61% for RF

and 102.02 for NN2 is relatively small.

Turning to the results for value-weighted portfolios in Panels D to E of Table 3 reveals

identical qualitative conclusions, but the return spreads, t-statistics, and Sharpe ratios are

substantially lower. Although the return forecasts derived from linear models already lead

to economically and statistically significant long-short mean returns and six-factor alphas,

the tree-based methods and neural networks do even better. Again, the neural network

with two layers exhibits the highest t-statistics and Sharpe ratios while suffering from the

mildest drawdowns. Comparing the ensemble of machine learning methods (ENS) with the
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linear OLS regressions shows performance gains of roughly 50% for the raw quintile returns

and even higher for the risk-adjusted performance. In sum, allowing for non-linearities and

interactions also leads to economically superior out-of-sample returns compared to traditional

linear models, as summarized in Figure 4.

[Figure 4 about here.]

Figure 5 illustrates the results of Table 2 by plotting the equal-weighted and value-

weighted cumulative performance of selected long-short strategies. We additionally include

the cumulative performance for the long and short sides for select strategies in Appendix E.2.

[Figure 5 about here.]

By using a value-weighted portfolio strategy, RF initially dominates the other methods,

while the outperformance of GBRT and NN1−5 mainly stems from the period after 2009.

As the ENS comprises all three methods, we observe a rather consistent outperformance

versus OLS that is not driven by a particular period. In the case of equal-weighted portfolios,

there are only small differences between the portfolio returns of GBRT , NN1−5, and ENS

till 2021. As for the value-weighted portfolios, the machine learning methods outperform the

linear approaches consistently over time. The model with the lowest cumulative return is the

ENet, whereby the underperformance versus the OLS is mainly driven by the first years of

the sample period. Besides a sharp drawdown in 2009, there are no other notable downturns

for all approaches. The drawdown in 2009 probably stems from the models’ exposure to

momentum that exhibited a momentum crash at that time (Daniel and Moskowitz, 2016).

The recent global shock due to the COVID-19 pandemic in early 2020 did not lead to a

significant portfolio-level downturn.

4.4 Robustness

To check the robustness of the results presented above, we will investigate (i) the impact of

various methodological changes and (ii) the robustness within emerging market subregions.
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In Table 4, we summarize the robustness tests for methodological changes. We include

several performance indicators for our equal-weighted and value-weighted machine learning

portfolio strategies. We will focus ourself on comparing the benchmark OLS model to the

ENS. We select the ENS to be not driven by a look-ahead bias in regard to the model

selection and its portfolio performance. Besides the individual long-short return and the

six-factor model of the two machine learning models, we include the results of the following

two regressions in the last two rows of each panel:

rLS,t,ENS = α + βOLSrLS,t,OLS + ϵt,

rLS,t,OLS = α + βENSrLS,t,ENS + ϵt.

(9)

A positive and significant alpha indicates that the returns of the strategy on the right-hand

side cannot fully explain the portfolio returns on the left-hand side.

[Table 4 about here.]

The first two rows in Panel A show again our baseline result for OLS and ENS as already

shown in Table 3. Furthermore, the last two rows of Panel A show that both for equal- and

value-weighted portfolios, the OLS long-short portfolios cannot span the ENS long-short

portfolio, but the ENS spans the OLS.

In Panel B, we construct our long-short trading strategy using decile instead of quintile

sorts. By focusing on the more extreme predicted abnormal returns and due to the monotonic

increase among the portfolios, the equal-weighted and value-weighted long-short returns of

the OLS increase to 1.84% (t-stat 10.09) and 1.18% (t-stat 5.91), whereas the Fama and

French (2018) six-factor alpha increases to 1.41% (t-stat 11.30) and 0.55% (t-stat 4.66),

respectively. The ENS shows an increase in the return to 2.50% (t-stat 13.93) and 1.66%

(t-stat 8.12) as well as in the risk-adjusted return to 2.02% (t-stat 18.31) and 1.10% (t-stat

10.30). Therefore, both OLS and ENS show stronger results when using decile sorts. Still,

the increase in returns of the ENS is higher than the OLS resulting in a larger α when
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regressing the ENS on the OLS compared to Panel A.

The robustness test in Panel C includes the additional predictive characteristics described

in Hanauer and Lauterbach (2019). Especially the OLS is profiting from this extended

feature set. The average equal-weighted and value-weighted long-short return increase by

9% and 4%, while only the equal-weighted return of ENS increases by 5%. In the case of

the value-weighted risk-adjusted return, the OLS alpha increases by 28% and the ENS by

6%.

Reducing the number of characteristics by applying a lasso regression, i.e., feature se-

lection, before training the machine learning models reduces the equal-weighted and value-

weighted long-short returns as well as the equal-weighted risk-adjusted returns of both ma-

chine learning models but increases the value-weighted alpha of the ensemble as presented

in Panel D.

In Panel E, we utilize machine learning models, which were never trained on emerging

market stock returns; instead, the models are trained on developed markets (as defined by

MSCI). Although the models were solely trained on developed markets, we surprisingly do

not observe a big performance loss but actually very similar returns. Furthermore, models

that allow for non-linearities and interactions (ENS) still significantly outperform linear

models (OLS). This indicates that machine learning models can create significant results

even if they are evaluated on data from a totally different region.

For the robustness test in Panel F, we exclude the high-turnover characteristics Idiovol,

LTurnover, r2−1, SUV, Illiqu from the feature set. Whereas the risk-adjusted returns of

the OLS decrease by 8% and 15%, the ensemble is even more affected as the alphas are

reduced by 19% and 31%. This indicates that these high-turnover features are relatively

more important for more complex methods. But even after excluding the characteristics, the

long-short portfolios based on the OLS cannot span the long-short portfolios constructed

based on the ENS.

In Panel G, we do not train our models on a pooled sample of all countries but separately
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for each of the following subregions: Central and Latin America (Americas); Asia; and

Europe, Middle East, and Africa (EMEA). On the one hand, this allows the models to

capture potential region-specific effects. On the other hand, each model is now trained on less

data, which might be a drawback, especially for identifying non-linearities and interactions.

We document that subregional training leads to inferior return forecasts than training models

on pooled data from all subregions. This finding indicates that region-specific effects play

a minor role compared to more data for out-of-sample returns. Furthermore, we find that

the performance decay is more pronounced for the machine learning ensemble (ENS), i.e.,

indicating that more data is better for robustly identifying non-linearities and interactions.11

Nevertheless, the OLS long-short portfolios cannot span the ENS long-short portfolio, but

the ENS spans the OLS.

Finally, we assess if the superior performance of the machine learning return forecasts is

robust across emerging market regions in Table 5. Therefore, we divide the countries of our

full sample into three regions: Central and Latin America (Americas); Asia; and Europe,

Middle East, and Africa (EMEA).

[Table 5 about here.]

Overall, the results are robust for the different sub-regions Americas, Asia, and EMEA.

Both OLS and ENS yield positive and significant long-short returns and alphas for both

weighting schemes, but ENS exhibit higher returns and t-statistics. Furthermore, significant

and positive alphas remain in the spanning regression of ENS on OLS for all sub-regions,

but no positive spanning alphas remain when regressing OLS on ENS. Comparing the

results across sub-regions, we find the strongest results for Asia and EMEA and a bit weaker

but still highly significant results for Americas.

11Table F.2 in the Appendix shows that the performance decline is most pronounced for the smaller regions
Americas and EMEA while smaller for Asia.
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5 Understanding the sources of return predictability

The results so far provide evidence that return forecasts based on machine learning models

lead to economically and statistically superior out-of-sample long-short returns compared to

traditional linear models. To further understand the source of return predictability, we first

investigate the performance of the two models in higher- versus lower-risk months. Second,

we explore how far developed markets’ long-short returns can explain emerging markets’

long-short returns. Third, we turn to the time-series properties of the long-short machine

learning portfolios over the next 36 months after portfolio formation. Fourth, we link the

profitability of the machine learning models to several proxies for limits to arbitrage. Finally,

we investigate the performance of an investment strategy that considers real-life investment

frictions such as short-selling restrictions and transaction costs.

5.1 Performance in higher-risk versus lower-risk months

The profitability of return forecasts based on machine learning models may reflect risks

beyond what we control so far. Therefore, we investigate the performance of OLS and

ENS forecasts in higher- versus lower-risk months. As proxies for risk, we apply whether

(i) emerging markets as a whole go up or down, (ii) the rate on long-term U.S. government

bonds is going up or down, (iii) the TED spread is below or above its median value, and (iv)

the time-varying risk aversion index proposed by Bekaert et al. (2022) (RAbex).12 Splitting

the sample period into up and down markets is done, for instance, by Chan et al. (1998),

van der Hart et al. (2005), or Asness et al. (2019). The change in the U.S. government bond

rate as a proxy for risk is motivated by the substantial financial instability emerging markets

experienced during the so-called ‘taper tantrum’ in 2013 when U.S. yields surprisingly surged

(cf., Estrada et al., 2016). Frazzini and Pedersen (2014) argue that the TED spread is a

12The TED spread is defined as the difference between the LIBOR rate and the 3-month U.S. T-bill rate.
The 10-year constant maturity U.S. Treasury rate (item DGS10) and the TED spread (item TEDRATE)
are from the FRED database of the Federal Reserve Bank of St. Louis, and the time-varying risk aversion
index RAbex is from Nancy Xu’s website: https://www.nancyxu.net/risk-aversion-index.
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measure of funding conditions. Finally, Bianchi et al. (2021b) apply RAbex to investigate

the link between time-varying risk aversion and excess bond returns.

[Table 6 about here.]

Table 6 summarizes the top-bottom quintile returns for OLS and ENS for the different

subsamples. For both equal- and value-weighted portfolios, we observe that the performance

is somewhat higher in down-market months and months with rising bond yields. However,

we also document higher returns when the TED spread is low, i.e., when funding conditions

are better and in months with below-median risk aversion. Nevertheless, the quintile spreads

are positive and significant for all subsamples, prediction models, and weighting schemes.

Furthermore, the difference between the subsamples is less pronounced for ENS than for

OLS, and significant and positive alphas remain in the spanning regression of ENS on OLS.

At the same time, the converse is not the case. This evidence suggests that the superiority

of machine learning models compared to linear models in our sample does not stem solely

from higher-risk months, at least for the definitions considered here.

5.2 Market integration

The robustness tests in Table 4 reveal an interesting finding: models estimated solely on

developed markets data predict emerging market stock returns similarly good as when the

models are trained with emerging markets data itself. This result could indicate that devel-

oped and emerging market pricing is more integrated, as suggested by the results for value

and momentum returns in Cakici et al. (2013) and Hanauer and Linhart (2015). If devel-

oped and emerging markets are integrated, the developed market machine learning long-short

portfolio returns would be able to explain the market machine learning long-short portfolio

returns for emerging markets, i.e., resulting in an insignificant α in the following regression
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for the global and regional emerging market samples:

rLS,RegionEM ,t,ENS = α + β1rLS,GlobalDev ,t,ENS + ϵt. (10)

However, the results in Table 7 reveal that this is not the case. All alphas remain highly

significant for both the equal-weighted and value-weighted portfolios. For the equal-weighted

factor, Asia has the highest alpha of 1.47% (t-stat 8.66), followed by EMEA with 1.24% (t-

stat 7.39). The value-weighted factor construction yields the highest alpha for Asia with

0.98% (t-stat 4.92), followed by EMEA with an alpha of 0.87% (t-stat 4.36). Furthermore,

the developed market long-short portfolio returns can only explain 32% and 28 % of the

variation in emerging market long-short portfolio returns when equal or value-weighting the

portfolio returns.

[Table 7 about here.]

Our interpretation of these results is as follows: Although similar relationships between

firm characteristics and future stock returns exist for developed and emerging markets, the

pricing of these characteristics is still not fully integrated between developed and emerging

markets. Furthermore, our results indicate potential diversification benefits of machine learn-

ing emerging market strategies for investors already applying such a strategy in developed

markets.

5.3 Performance for longer holding periods

Is the profitability of the machine learning forecasts the result of temporary or permanent

price changes? To answer this question, we analyze the long-run buy-and-hold returns follow-

ing the methodology in Smajlbegovic (2019). First, we identify stocks used for constructing

the long-short machine learning portfolios and calculate their value-weighted raw monthly

returns in the month t + k, where k ∈ {1, ..., 36}. Second, we run a time-series regression

for each holding period month k of the machine learning long-short factor on the six-factor
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model. The corresponding strategy average six-factor alpha at month k is the intercept (ak)

in the following regression:

rt+k,ML − rf,t+k = αk +

|f |∑
i

βi,kfi,t+k + ϵt+k, (11)

where rt+k,ML − rf,t+k is the raw long-short return in month t + k of stocks used for con-

struction of the long-short machine learning factor in month t and fi,t+k indicates the indi-

vidual factor returns of the six-factor model in month t+ k: RMRFt+k, SMBt+k, HMLt+k,

RMWt+k, CMAt+k, and WMLt+k. The intercept of the regression (αk) is the alpha of the

buy-and-hold strategy k months after portfolio formation, which added up to the cumulative

alpha in month k by ACRk:

ACRk =
k∑

t=1

αt. (12)

Figure 6 presents the value-weighted cumulative six-factor alpha of OLS and ENS over

a holding period of 36 months. The figure reveals that both OLS and ENS can predict

long-term returns and that their performance does not revert quickly. Together with the

fact that standard risk factors cannot explain the performance of the strategies and the

consistent performance over calendar time, we conclude that an underreaction explanation

is more likely than an overreaction explanation. We further document that the superior

performance of ENS compared to OLS is mainly driven by the first six months. Later both

lines show a relatively parallel trend. This observation is not surprising as the models are

trained on one-month ahead returns and not on longer periods.

[Figure 6 about here.]
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5.4 Limits to arbitrage

Our results so far suggest that the high returns of the machine learning strategies in emerging

markets are not explained by standard risk factors such as the factors from the Fama and

French (2018) six-factor model, consistent over time, do not primarily stem from higher-risk

months, and do not revert quickly. Therefore, a simple question arises: Why do investors

not arbitrage away these abnormal returns? If limits to arbitrage hinder investors from

doing that, we would expect that the predictability of the machine learning forecasts is

concentrated in stocks with the highest limits to arbitrage.

To test whether the predictability of machine learning methods arises, at least in part,

from such frictions, we interact the predicted returns of the machine learning models with

different proxies for limits to arbitrage within a Fama and MacBeth (1973) regression. We

additionally include both parts of the interaction term as controls as well as country dummies

to account for any country effect yielding the following regression framework:

ri,t+1 − rf,t+1 = α + β1MLi,t + β2LTAi,t + β3MLi,t × LTAi,t + β4Xi + ϵi,t+1, (13)

where LTAi,t denotes the cross-sectional and country-neutral standardized variable mea-

suring the limits to arbitrage of stock i while MLi,t is the predicted return based on the

underlying machine learning model.

The coefficient β3 is most relevant for this analysis as it indicates if the predictability

of the different machine learning models is increasing with higher limits to arbitrage. We

include three different variables that are closely related to limits to arbitrage and commonly

used in the literature: size as a measure of information ambiguity (Zhang, 2006), idiosyn-

cratic volatility as a proxy for arbitrage risk (Pontiff, 2006; Stambaugh et al., 2015), and

Amihud (2002) illiquidity as a potential proxy for transaction costs. If limits to arbitrage are

important for the persistence of mispricing, we expect that predictability is the strongest for

smaller stocks with high idiosyncratic volatility and low liquidity. Therefore, we additionally
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include the average of these three variables.

The results of this analysis are reported in Table 8. We first examine firm size’s role

in predicting future returns. Most small firms are less diversified and less fundamental

information is available. In the case of fixed information acquisition costs, small firms are

less attractive. The results in Columns (1) and (2) underline this hypothesis. The smaller

the stock, the higher the return predictability for both methods.

[Table 8 about here.]

We study how arbitrage risk affects the link between machine learning-based prediction

and future stock returns in the second specification. According to Pontiff (2006), arbitrageurs

prefer to hold fewer stocks with higher idiosyncratic stock return volatility. Columns (3)

and (4) provide empirical evidence that stocks with higher IV OL exhibit larger predictable

returns than stocks that are less volatile.

Next, we test how stock illiquidity relates to our previous findings. The intuition behind

this proxy is based on the tradeability of the stock. The more illiquid the stock, the slower

and more costly it should be to trade on the market. However, we are not able to provide

empirical evidence that the return predictability of the machine learning models is driven

by transaction costs.

In the last interaction setup, we combine all three limits to arbitrage proxies to measure

their mutual influence on the effect of future return predictability. Columns (7) and (8)

provide evidence that stocks that are associated with more substantial limits to arbitrage

characteristics exhibit stronger predictability independent of the underlying machine learning

model.

However, we also find that the higher predictability for stocks with higher limits of

arbitrage is less pronounced for the machine learning ensemble ENS than for the linear

OLS regression, indicating that the superiority of machine learning models in emerging

markets does not stem from limits to arbitrage.
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5.5 Further investment frictions

A common feature of the results presented above is that they are based on theoretical “zero-

investment” long-short portfolio returns. However, it is questionable whether these returns

can be realized in practice, as short-selling constraints may prevent the implementation of

long-short strategies, and transaction costs may erode the strategy’s profits. These con-

straints are particularly relevant for emerging markets (see, e.g., Roon et al., 2001). There-

fore, in this subsection, we limit ourselves to long-only portfolios of big stocks (i.e., also re-

move small stocks) and consider reasonable transaction costs. To estimate transaction cost,

we compute for each stock and month the efficient discrete generalized estimator (EDGE) of

the bid-ask spread, recently proposed by Ardia et al. (2022). These bid-ask spread estimates

vary considerably across time and stocks (cf., Figure E.3 in the appendix) and therefore

provide a more sophisticated estimate than the flat 100 basis points per single-trip used

in van der Hart et al. (2003) and Hanauer and Lauterbach (2019).13 The transaction cost

per single-trip is half of the estimated bid-ask spread, and we define the transaction cost of

portfolio L as:

T-CostL,t =

NL,t−1∪t∑
i=1

∣∣∣∣∣wi,t −
wi,t−1(1 + ri,t)

1 +
∑NL,t

j=1 wj,t−1rj,t

∣∣∣∣∣× Si,t

2

 , (14)

where wi,t is the weight of stock i at the end of month t, ri,t is the total return of stock i

in month t, and Si,t is the estimated bid-ask spread. Furthermore, the net portfolio returns

are defined as:

rL,t,net,ML = rL,t,gross,ML − T-CostL,t. (15)

In the final step, we calculate the Fama and French (2018) six-factor model alpha return

13Table F.3 in the appendix also provides the results for transaction cost estimates of 100 basis points per
single-trip.
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as:

rL,t,net,ML − rf,t = αnet +

|f |∑
i

βifi,t,net + ϵt, (16)

where fi,t,net is the risk factor return after transaction cost.

Furthermore, we also consider trading cost mitigation rules following Novy-Marx and Ve-

likov (2016) and Blitz et al. (2022), which are common among practitioners. Such buy/hold

strategies consist of the stocks that currently belong to the top X% plus the stocks selected

in previous months that are still among the top Y% of stocks. In Table 9, we compare the

quintile long-only strategy (20%/20%) with the transaction-cost-mitigation strategy buy-

ing the top 10% and holding them in our portfolio as long as they belong to the top 30%

(10%/30%).

[Table 9 about here.]

Table 9 reports the strategies’ average gross excess over the market, their turnover and

transaction costs, as well as the resulting net outperfomance. Limiting the investment uni-

verse to long-only portfolios of big stocks, we still see positive and significant gross out-

performance for the top quintile portfolio (20%/20%) for both OLS and ENS and both

weighting schemes. We observe similar gross outperformance when switching to the trans-

action cost mitigation strategies (10%/30%). However, the turnover and transactions are

reduced by roughly 40%. This reduction in transaction costs substantially positively affects

the net performance. For the equal-weighted strategies in Panel A, the net outperformance

for OLS increase from 0.19% (t-stat 2.11) to 0.28% (t-stat 3.30). The net outperformance

for ENS of 0.46% (t-stat 4.88) are also significant for the standard top quintile approach

but also increase to 0.59% (t-stat 5.63) when applying a more efficient portfolio construction.

Value-weighting the returns in Panel B leads to more challenging results. In this setup, the

top OLS quintile yields only an insignificant net return of 0.07% (t-stat 0.75). Applying

the trading-cost mitigation strategy increases the net returns to 0.19% (t-stat 2.08) for OLS
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and even to 0.34% (t-stat 3.31) for ENS. Similar results can be derived by comparing the

Fama and French (2018) net alphas for which only the turnover-reducing strategy for ENS

exhibits a significant net alpha of 0.34 (t-stat 5.18).14 Therefore, we conclude that machine

learning-based return forecasts can lead to significant net outperformance and net alphas,

at least when efficient trading rules are applied.

6 Conclusion

This paper compares the out-of-sample predictive power of various machine learning models

for a broad sample of 32 emerging market countries and a 20-year out-of-sample period. More

specifically, we utilize both linear and more complex algorithms that allow for non-linearities

and interactions.

We document that the different prediction algorithms pick up similar characteristics.

However, we also observe that tree-based methods and neural networks do identify non-

linearities and interactions of characteristics. Furthermore, return forecasts based on machine

learning models lead to economically and statistically superior out-of-sample long-short re-

turns compared to traditional linear models. This finding is robust to several methodological

choices and for emerging market subregions.

We also find that developed market long-short returns based on machine learning fore-

casts derived in the same way as their emerging market counterparts cannot explain emerging

market out-of-sample returns. However, models estimated solely on developed markets data

also predict emerging market stock returns. This finding indicates that similar relationships

between firm characteristics and future stock returns exist for developed and emerging mar-

kets but that the pricing of these characteristics is not fully integrated between developed

and emerging markets.

We also document that the high returns of the machine learning strategies in emerging

14When applying the more conservative transaction cost estimates of 100 basis points per single-trip, only
the machine learning ensemble in combination with transaction cost mitigation exhibits significant net
returns and alphas of 0.23% and 0.25%, respectively.
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do not primarily stem from higher-risk months and do not revert quickly, suggesting that an

underreaction explanation is more likely than a risk-based explanation. Although both lin-

ear and machine learning models show higher predictability for stocks associated with higher

limits-to-arbitrage, we also document that this effect is less pronounced for machine learning

forecasts than for linear regression forecasts. This finding indicates that the superiority of

machine learning models in emerging markets does not stem from limits to arbitrage. Fi-

nally, accounting for transaction costs, short-selling constraints, and limiting our investment

universe to big stocks only, we document that machine learning-based return forecasts can

lead to significant net outperformance over the market and net alphas, at least when efficient

trading rules are applied.
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Figure 1: Characteristic importance by model

This figure shows the ranked characteristic importance for the variables in each model. Characteristic
importance is an average over all training samples and importance within each model is normalized to sum
to one.
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Figure 2: Marginal association between expected returns and characteristics

The figure shows the sensitivity of expected returns (vertical axis) to the four following individual char-
acteristics (holding all other covariates fixed at their median values): short-term reversal (r2−1, top-left),
idiosyncratic volatility (Idiovol, top-right), turnover (LTurnover, bottom-left), and operating leverage (OL,
bottom-right).
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Figure 3: Expected returns and characteristic interactions (NN1−5)

The figure shows the sensitivity of the expected returns (vertical axis) to interactions effects for four selected
combinations in model NN1−5 (holding all other characteristics fixed at their median values of 0): Amihud
(2002) illiquidity (Illiqu) and short-term reversal (r2−1) (top-left), Amihud (2002) illiquidity and market
capitalization (LME) (top-right), idiosyncratic volatility (Idiovol) and short-term reversal (bottom-left),
and idiosyncratic volatility and market capitalization (bottom-right).
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Figure 4: Fama and French (2018) six-factor model alphas

This figure shows the Fama and French (2018) six-factor models alphas for various machine learning long-
short portfolios. Stocks are sorted into country-neutral and value-weighted quintiles based on their predicted
returns for the next month. The sorting breakpoints are based on big stocks only, which are in the top 90%
of a country’s aggregated market capitalization. The sample period is from January 2002 to December 2021.
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Figure 5: Cumulative return of machine learning portfolios

The figure shows the cumulative log returns of long-short quintile portfolios sorted on the out-of-sample
machine learning return forecasts. Panel A shows equal-weighted returns, while Panel B shows value-weighted
returns. The sample period is from January 2002 to December 2021.
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Figure 6: Long-horizon performance of machine learning forecasts

This figure shows the average cumulative risk-adjusted return of the different machine learning long-short
portfolios. First, we obtain the return of the portfolio formed at the end of month t for month t+k, where
k ∈ {1, ..., 36}. Second, we run a time-series regression with the Fama and French (2018) six-factor model
for the corresponding months. The regression intercept is defined as the average risk-adjusted portfolio
return for the long–short portfolio at month t + k. In the final step, we compute the average holding period
(cumulative) risk-adjusted return for the next k months since formation as the sum over the previous k
months.
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Table 1: Summary statistics by country

The table presents summary statistics for the 32 countries of our sample. Column 1 reports the country
names, and Columns 2, 3, 4, and 5 report the total, minimum, mean, and maximum number of firms per
country. Columns 6 and 7 state the average mean and median size per country-month. Column 8 shows the
average total size per country-month and column 9 reports these values in percentage of the respective total
across countries. Size is measured as market capitalization in million USD. The last two columns report the
actual beginning and ending dates during which each country is included in our sample.

Country Total
no.
firms

Min
no.
firms

Mean
no.
firms

Max
no.
firms

Mean
size

Median
size

Total
size

% of
total
size

Start
date

End
date

Argentina 96 11 30 45 832 376 25467 1.12 91-05 21-12
Brazil 289 17 65 154 3121 1500 247409 4.08 94-09 21-12
Chile 201 53 74 102 1740 826 125716 4.26 90-07 21-12
China 28 10 16 24 2772 1292 45063 0.10 16-05 21-12
Colombia 50 14 19 25 2791 2178 53710 0.95 94-07 21-12
Czechia 89 10 36 77 662 234 13541 0.24 97-07 05-08
Egypt 199 51 81 123 577 213 46194 0.59 01-07 21-12
Greece 334 37 90 224 471 178 39442 1.56 90-07 21-12
Hungary 41 10 12 22 1921 486 22053 0.44 97-07 21-12
India 2238 356 593 893 1242 334 788478 13.09 94-07 21-12
Indonesia 649 35 150 296 1019 324 181003 4.50 90-07 21-12
Israel 634 173 245 331 270 60 62659 1.31 95-07 10-06
Jordan 161 10 98 119 328 70 32467 0.08 06-04 09-06
Korea 2972 394 803 1343 622 134 572232 12.87 92-07 21-12
Kuwait 81 73 75 78 1504 396 113350 0.02 21-07 21-12
Malaysia 1173 177 389 534 641 154 242228 9.97 90-07 21-12
Mexico 181 25 54 70 2692 1316 156068 4.92 90-07 21-12
Morocco 57 24 31 37 1323 658 42758 0.41 01-07 14-06
Pakistan 362 73 139 205 190 68 28089 0.50 94-07 21-12
Peru 103 17 28 40 1100 643 31521 0.61 94-07 21-12
Philippines 270 23 80 113 1087 433 101378 2.70 90-07 21-12
Poland 591 26 135 232 653 143 100667 1.74 95-07 21-12
Portugal 99 35 51 60 394 155 18182 0.84 90-07 98-06
Qatar 32 25 27 29 4969 2880 134437 0.42 14-07 21-12
Russia 232 10 54 102 4711 1958 285849 3.77 98-07 21-12
Saudi Arabia 89 34 52 84 8189 4936 398893 0.36 19-07 21-12
South Africa 517 80 131 240 2445 1101 274534 6.31 95-07 21-12
Sri Lanka 150 88 98 105 15 7 1530 0.03 94-07 01-06
Taiwan 1912 339 743 978 772 223 596406 11.36 97-07 21-12
Thailand 823 133 237 387 728 188 194393 6.48 90-07 21-12
Turkey 430 50 134 237 862 243 125222 3.77 90-07 21-12
UAE 69 33 43 49 4703 1653 201327 0.61 14-07 21-12
Global 15152 594 3763 5690 901 209 3909693 100.00 90-07 21-12
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Table 2: Monthly out-of-sample stock-level prediction performance

This table summarizes the monthly out-of-sample stock-level prediction performance using OLS (OLS),
elastic net (ENet), random forest (RF ), gradient boosted regression trees (GBRT ), neural networks with
1 to 5 layers (NN1–NN5), an ensemble of the different neural networks (NN1−5), and an ensemble of the
different non-linear machine learning algorithms (ENSµ). Panel A reports the monthly R2

OOS statistics
for the full sample and within subsamples that include only large stocks or small stocks. Panel B reports
pairwise Newey and West (1987) adjusted Diebold-Mariano test statistics comparing the out-of-sample stock-
level prediction performance among each machine learning model. Positive numbers indicate the column
model outperforms the row model. Bold font indicates the difference is significant at 1% level or better
for individual tests, and an asterisk indicates significance at the 1% level for 10-way comparisons via our
conservative Bonferroni adjustment. The out-of-sample period is from January 2002 to December 2021.

OLS ENet RF GBRT NN1 NN2 NN3 NN4 NN5 NN1−5 ENSµ

Panel A: Percentage R2
OOS

Full Sample 0.29 0.18 0.40 0.52 0.49 0.53 0.53 0.55 0.54 0.60 0.60
Large firms 0.12 -0.01 0.25 0.30 0.19 0.24 0.27 0.31 0.31 0.34 0.38
Small firms 0.40 0.29 0.49 0.66 0.67 0.70 0.68 0.70 0.68 0.75 0.73

Panel B: Between-model comparison of predictive performance

OLS -2.13 3.45* 6.35* 5.57* 5.42* 5.64* 6.05* 6.65* 7.34* 8.25*
ENet 4.53* 6.50* 5.91* 6.08* 6.29* 7.21* 7.01* 7.68* 8.19*
RF 6.80* 2.96 3.96* 4.38* 5.27* 4.57* 6.59* 12.65*
GBRT -0.72 0.71 0.68 1.74 1.00 3.49* 7.59*
NN1 2.51 2.12 3.24 2.85 9.19* 4.38*
NN2 -0.23 1.69 0.25 6.01* 2.37
NN3 1.82 0.39 5.86* 2.82
NN4 -1.42 3.12 1.45
NN5 5.30* 2.60
NN1−5 -0.45
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Table 3: Drawdowns, turnover, and risk-adjusted performance of machine learning portfolios

This table reports the out-of-sample performance of the different machine learning long-short portfolios.
Stocks are sorted into country-neutral quintiles based on their predicted returns for the next month. The
sorting breakpoints are based on big stocks only, which are in the top 90% of a country’s aggregated market
capitalization. Panel A (Panel D) summarizes the quintile sort results from equal-weighting (value-weighting)
and provides the predicted monthly returns for the long-short quintile (Pred), the average monthly returns of
the long-short quintile (Avg), Newey and West (1987) adjusted t-statistics with 4 lags (t-stat), their standard
deviations (SD), and annualized Sharpe ratios (SR), respectively. Panel B (Panel E) reports the average
Fama and French (2018) six-factor model alpha (αFF6), corresponding Newey and West (1987) adjusted
t-statistics with 4 lags (t-statα), and corresponding R2 using equal-weighting (value-weighting). Panel C
(Panel F) describes the maximum drawdowns (Max DD), the most negative monthly return (Max 1M Loss),
and the average monthly turnover in % of the equal-weighted (value-weighted) long-short portfolio. The
sample period is from January 2002 to December 2021.

OLS ENet RF GBRT NN1 NN2 NN3 NN4 NN5 NN1−5 ENSµ

Panel A: Quntile sorts performance - Equal-weighted

Pred 1.93 1.97 1.50 1.80 2.61 2.60 2.41 2.29 2.25 2.30 1.71
Avg 1.38 1.20 1.60 1.82 1.89 1.91 1.84 1.86 1.85 1.88 1.86
t-stat 7.82 6.83 9.33 11.57 14.01 15.75 14.81 13.82 13.50 13.50 11.79
SD 2.04 2.12 2.04 1.88 1.68 1.58 1.60 1.66 1.69 1.72 1.87
SR 2.34 1.96 2.71 3.35 3.91 4.21 4.00 3.89 3.78 3.79 3.44

Panel B: Risk-adjusted performance - Equal-weighted

αFF6 0.97 0.83 1.19 1.40 1.47 1.55 1.49 1.48 1.44 1.46 1.43
t-statα 8.02 6.94 14.10 15.65 15.67 19.02 16.93 16.72 15.79 15.81 15.66
R2 62.42 55.79 59.81 60.89 53.21 48.65 52.70 54.66 56.15 55.67 58.17

Panel C: Drawdowns and turnover - Equal-weighted

Max DD (%) 26.35 26.23 21.69 18.84 16.70 13.45 16.00 16.07 17.61 17.82 19.04
Max 1M loss (%) 13.97 12.96 10.53 10.70 9.37 7.65 10.20 10.17 10.25 10.75 10.68
Turnover (%) 89.27 96.38 89.61 97.39 101.87 102.02 100.80 99.21 99.50 99.72 95.77

Panel D: Quntile sorts performance - Value-weighted

Pred 1.85 1.89 1.39 1.61 2.30 2.21 2.04 1.94 1.93 1.97 1.52
Avg 0.84 0.73 0.99 1.06 1.04 1.12 1.12 1.20 1.17 1.21 1.21
t-stat 4.64 4.01 5.28 6.14 7.00 9.47 7.91 8.35 8.17 8.55 7.04
SD 2.22 2.36 2.32 2.17 1.95 1.75 2.01 1.97 1.87 1.98 2.20
SR 1.31 1.07 1.48 1.69 1.85 2.23 1.93 2.11 2.17 2.12 1.91

Panel E: Risk-adjusted performance - Value-weighted

αFF6 0.28 0.27 0.47 0.57 0.57 0.71 0.66 0.73 0.71 0.72 0.67
t-statα 2.72 2.28 5.24 6.73 4.83 9.16 6.55 7.76 8.21 8.26 8.29
R2 68.25 56.39 67.61 68.50 52.97 48.50 51.79 58.50 59.39 56.86 67.17

Panel F: Drawdowns and turnover - Value-weighted

Max DD (%) 30.49 31.45 31.07 26.54 23.63 15.44 23.19 21.81 20.81 20.36 25.28
Max 1M loss (%) 16.60 17.82 14.46 14.73 16.45 9.58 17.36 15.90 12.83 14.81 14.81
Turnover (%) 91.28 97.18 90.46 101.10 103.81 106.35 106.02 104.35 104.43 101.46 96.85
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Table 4: Robustness

This table reports robustness tests for the out-of-sample performance of equal- and value-weighted long-short portfolios. All
stocks are sorted into country-neutral portfolios based on their predicted returns for the next month. We investigate predictions
from a linear OLS model and an ensemble (ENS) of non-linear machine learning models (RF , GBRT , and NN1−5). The
sorting breakpoints are based on big stocks only, which are in the top 90% of a country’s aggregated market capitalization.
Panel A summarizes the baseline results as presented in Table 3. Panel B reports results on using decile sorts. Panel C uses an
extended feature set following Hanauer and Lauterbach (2019). Panel D applies a feature selection before training the machine
learning algorithms. Panel E uses predictions stemming from machine learning algorithms only trained on developed market
data. Panel F excludes the high-turnover characteristics Idiovol, LTurnover, r2−1, SUV, Illiqu from the feature set. Pangel
G shows the results for models trained on emerging market subregions. The first two rows of each panel provide the average
monthly return of the long-short quintile (Avg), corresponding t-statistics (t), the average Fama and French (2018) six-factor
alpha (α), corresponding t-statistics (tα), and R2. The next two rows show spanning alpha (α), corresponding t-statistic (tα),
and R2 when regressing the long-short ENS returns on OLS returns and vice versa. All t-statistics are calculated using Newey
and West (1987) adjusted standard errors with 4 lags. The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

Panel A: Baseline

OLS 1.38 7.82 0.97 8.02 62.42 0.84 4.64 0.28 2.72 68.25
ENSµ 1.86 11.79 1.43 15.66 58.17 1.21 7.04 0.67 8.29 67.17
ENSµ ∼ OLS 0.73 9.01 80.28 0.49 7.83 74.66
OLS ∼ ENSµ -0.44 -2.10 80.28 -0.22 -1.50 74.66

Panel B: Decile sorts

OLS 1.84 10.09 1.41 11.30 52.39 1.18 5.91 0.55 4.66 62.37
ENSµ 2.50 13.93 2.02 18.31 54.16 1.66 8.12 1.10 10.30 57.37
ENSµ ∼ OLS 1.01 7.10 71.88 0.78 6.00 56.06
OLS ∼ ENSµ -0.38 -2.76 71.88 -0.07 -0.36 56.06

Panel C: Extended feature set

OLS 1.51 9.51 1.14 11.05 52.93 0.87 5.22 0.36 3.17 55.86
ENSµ 1.96 13.14 1.57 19.57 56.22 1.22 6.80 0.71 7.55 63.06
ENSµ ∼ OLS 0.69 9.72 80.98 0.45 5.37 73.16
OLS ∼ ENSµ -0.38 -2.43 80.98 -0.13 -1.26 73.16

Panel D: Feature selection

OLS 1.36 8.03 0.97 8.94 61.23 0.82 4.51 0.28 2.61 65.34
ENSµ 1.83 12.31 1.43 17.52 58.83 1.23 7.36 0.73 8.71 63.59
ENSµ ∼ OLS 0.75 8.96 80.53 0.60 9.09 69.83
OLS ∼ ENSµ -0.50 -2.34 80.53 -0.29 -1.60 69.83

Panel E: Trained on developed markets

OLS 1.29 6.71 0.93 6.76 62.40 0.89 4.67 0.38 3.37 68.17
ENSµ 1.67 10.55 1.23 10.12 59.97 1.20 6.64 0.62 5.31 61.15
ENSµ ∼ OLS 0.72 6.99 79.14 0.43 4.75 74.18
OLS ∼ ENSµ -0.50 -3.84 79.14 -0.15 -1.20 74.18

Panel F: Excluding short-term feature set

OLS 1.36 7.12 0.89 8.85 63.66 0.77 4.25 0.24 3.37 74.39
ENSµ 1.59 9.13 1.17 11.62 59.27 1.00 5.56 0.46 5.91 70.92
ENSµ ∼ OLS 0.45 7.31 88.62 0.32 3.93 82.31
OLS ∼ ENSµ -0.32 -4.99 88.62 -0.16 -2.18 82.31

Panel G: Subregional training

OLS 1.09 6.29 0.77 6.23 53.92 0.78 4.42 0.29 2.57 56.92
ENSµ 1.35 8.88 0.97 9.75 57.22 0.97 5.95 0.44 4.59 58.10
ENSµ ∼ OLS 0.49 7.78 77.56 0.28 4.46 75.77
OLS ∼ ENSµ -0.23 -1.76 77.56 -0.06 -0.51 75.77
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Table 5: Regional performance

This table reports the out-of-sample performance of equal- and value-weighted long-short portfolios for
emerging market subregions. All stocks are sorted into country-neutral portfolios based on their predicted
returns for the next month. We investigate predictions from a linear OLS model and an ensemble (ENS) of
non-linear machine learning models (RF , GBRT , and NN1−5). The sorting breakpoints are based on big
stocks only, which are in the top 90% of the country’s aggregated market capitalization. Panel A summarizes
the baseline results as presented in Table 3, and Panel B shows the result for all countries being part of
emerging Americas, Panel C combines all emerging Asian countries, and Panel D reports results for emerging
countries from Europe, the Middle East, and Africa. The first two rows of each panel provide the average
monthly return of the long-short quintile (Avg), corresponding t-statistics (t), the average Fama and French
(2018) six-factor alpha (α), corresponding t-statistics (tα), and R2. The next two rows show spanning alpha
(α), corresponding t-statistic (tα), and R2 when regressing the long-short ENS returns on OLS returns and
vice versa. All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4 lags.
The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

Panel A: Emerging Markets

OLS 1.38 7.82 0.97 8.02 62.42 0.84 4.64 0.28 2.72 68.25
ENSµ 1.86 11.79 1.43 15.66 58.17 1.21 7.04 0.67 8.29 67.17
ENSµ ∼ OLS 0.73 9.01 80.28 0.49 7.83 74.66
OLS ∼ ENSµ -0.44 -2.10 80.28 -0.22 -1.50 74.66

Panel B: Americas

OLS 0.70 2.73 0.51 2.56 39.51 0.75 2.83 0.37 1.70 39.83
ENSµ 0.88 4.06 0.69 3.90 25.45 0.85 3.20 0.57 2.73 33.47
ENSµ ∼ OLS 0.45 3.45 46.98 0.33 1.95 48.58
OLS ∼ ENSµ 0.03 0.15 46.98 0.16 0.82 48.58

Panel C: Asia

OLS 1.46 7.59 1.13 9.34 61.82 0.84 3.95 0.37 2.93 66.71
ENSµ 1.98 11.18 1.63 17.32 60.28 1.34 7.02 0.87 8.81 67.14
ENSµ ∼ OLS 0.74 7.97 79.70 0.62 6.85 75.00
OLS ∼ ENSµ -0.40 -1.83 79.70 -0.33 -1.64 75.00

Panel D: Europe, the Middle East and Africa

OLS 1.12 6.46 0.96 6.23 18.96 0.82 4.00 0.37 2.00 26.18
ENSµ 1.57 10.27 1.32 9.33 16.23 1.13 5.54 0.59 3.38 29.44
ENSµ ∼ OLS 0.83 7.42 51.63 0.57 4.21 46.30
OLS ∼ ENSµ -0.11 -0.58 51.63 0.05 0.38 46.30
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Table 6: Higher-risk versus lower-risk periods

This table reports the equal-weighted and value-weighted performance of the long-short prediction-sorted
portfolios over the 20-year out-of-sample testing period in higher- versus lower-risk months. All stocks are
sorted into country-neutral portfolios based on their predicted returns for the next month. The sorting
breakpoints are based on big stocks only, which are in the top 90% of the country’s aggregated market
capitalization. Risk proxies are whether emerging markets as a whole go up or down (Mkt), the rate on
long-term U.S. government bonds is going up or down (∆Y ield), whether the TED spread is below or above
its median value (TED), and whether the time-varying risk aversion index proposed by Bekaert et al. (2022)
(RAbex) is below or above its median value (RAbex). Panel A (Panel B) summarizes the quintile sort results
from equal-weighting (value-weighting). The first two rows of each panel provide the average monthly long-
short returns and corresponding t-statistics. The next two rows show spanning alpha and corresponding
t-statistic when regressing the long-short ENS returns on OLS returns and vice versa. All t-statistics are
calculated using Newey and West (1987) adjusted standard errors with 4 lags. The sample period is from
January 2002 to December 2021.

Model Mktup Mktdown ∆Y ieldup ∆Y ielddownTEDhigh TEDlow RAbexhigh RAbexlow

Panel A: Equal-Weighted

OLS 1.07 1.82 1.60 1.17 1.19 1.55 1.13 1.63
(3.82) (11.81) (7.25) (6.20) (3.60) (9.93) (3.55) (12.48)

ENSµ 1.73 2.06 2.00 1.74 1.68 2.02 1.70 2.02
(7.01) (14.26) (9.52) (9.85) (6.07) (12.72) (6.15) (14.41)

ENSµ ∼ OLS 0.84 0.47 0.63 0.81 0.73 0.68 0.80 0.56
(7.60) (5.43) (6.31) (6.60) (7.08) (4.95) (8.07) (4.25)

OLS ∼ ENSµ -0.64 0.03 -0.34 -0.52 -0.58 -0.13 -0.66 0.05
(-2.56) (0.23) (-1.46) (-2.13) (-2.38) (-0.81) (-2.93) (0.53)

Panel B: Value-Weighted

OLS 0.64 1.12 1.06 0.63 0.69 0.96 0.74 0.93
(2.13) (5.51) (4.69) (3.31) (2.03) (6.49) (2.29) (6.30)

ENSµ 1.12 1.34 1.40 1.03 1.12 1.29 1.07 1.35
(4.12) (5.84) (5.53) (6.40) (3.55) (7.95) (3.65) (8.38)

ENSµ ∼ OLS 0.57 0.41 0.47 0.52 0.53 0.45 0.45 0.48
(6.47) (3.88) (4.36) (6.37) (6.84) (5.03) (4.94) (5.27)

OLS ∼ ENSµ -0.37 0.08 -0.13 -0.30 -0.44 0.10 -0.27 -0.00
(-2.01) (0.54) (-0.71) (-1.78) (-3.35) (0.75) (-1.55) (-0.00)
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Table 7: Market integration

This table reports summary statistics for regressions of emerging market regions’ long-short returns on
developed market’s long-short returns. The long-short returns are based on ensemble (ENS) return forecasts
of non-linear machine learning models (RF , GBRT , and NN1−5) separately estimated for emerging and
developed markets. All stocks are sorted into country-neutral quintile portfolios based on their predicted
returns for the next month. The sorting breakpoints are based on big stocks only, which are in the top
90% of a country’s aggregated market capitalization. Panel A (Panel B) summarizes the results of equal-
weighting (value-weighting) of the prediction-sorted portfolios based on the different regional subsets. Each
Panel provides the average monthly return of the long-short quintile (Avg), the alpha (α), beta (β), their
corresponding t-statistics, and R2 with respect to the developed market ensemble machine-learning factor.
All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4 lags. The sample
period is from January 2002 to December 2021.

Avg t α tα β tβ R2

Panel A: Equal-weighted

GlobalEM 1.86 11.79 1.39 9.24 0.50 7.01 32.34
AMEEM 0.88 4.06 0.35 1.73 0.56 5.57 19.44
ASIAEM 1.98 11.18 1.47 8.66 0.55 6.71 28.42
EMEAEM 1.57 10.27 1.24 7.39 0.36 4.64 12.78

Panel B: Value-weighted

GlobalEM 1.21 7.04 0.89 5.73 0.49 4.95 28.17
AMEEM 0.85 3.20 0.53 2.30 0.49 3.68 14.37
ASIAEM 1.34 7.02 0.98 4.92 0.54 3.95 22.47
EMEAEM 1.13 5.54 0.87 4.36 0.40 4.55 10.73
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Table 8: Limits to abitrage

This table reports the results of a Fama and MacBeth (1973) regression of future returns on machine learning
return forecasts (ML), proxies for limits to arbitrage, and their interaction. Each month, we run a cross-
sectional regression of excess stock returns in month t + 1 on a firm’s ML value and on interaction terms
between ML and proxies for limits to arbitrage constructed at the end of the previous month t. The proxies
for limits to arbitrage are: -1 × market capitalization (SIZE), idiosyncratic volatility (IV OL), Amihud
illiquidity (ILLIQ), and a combination of the different proxies. All proxies for limits to arbitrage are ranked
into the [-1,1] interval for each month and country. The t-statistics in parentheses are the corresponding
Newey and West (1987) adjusted t-statistics with 4 lags. The sample period is from January 2002 to
December 2021.

SIZE IV OL ILLIQ COMBO

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 )

OLS 0.72 0.72 0.74 0.74
(9.43) (9.16) (9.55) (9.27)

ENSµ 1.11 1.13 1.15 1.13
(13.81) (14.31) (14.58) (12.88)

LTA×ML 0.27 0.19 0.48 0.21 0.01 -0.06 0.52 0.27
(5.36) (3.27) (9.65) (3.85) (0.23) (-0.90) (7.36) (2.80)

LTA 0.15 0.12 0.06 0.12 0.21 0.19 0.27 0.26
(2.42) (1.93) (0.68) (1.45) (2.78) (2.48) (3.06) (2.94)

Country Yes Yes Yes Yes Yes Yes Yes Yes
Adj. R2 (%) 15.00 15.22 15.10 15.30 15.10 15.34 15.01 15.23
Avg. Obs 4419 4419 4419 4419 4419 4419 4419 4419
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Table 9: Further investment frictions

This table reports results for returns on different buy/hold long-only strategies before and after transaction-
cost. We report the strategies’ gross returns in excess of the market, average turnover, transaction costs, net
returns in excess of the market, and net Fama and French (2018) six-factor models alphas. We estimate one-
way transaction costs as half of a stock’s bid-ask spread, estimated as in Ardia et al. (2022). All t-statistics
are Newey and West (1987) adjusted with 4 lags. Panel A summarizes results from equal-weighting, while
Panel B shows results from value-weighting. The sample period is from January 2002 to December 2021.

OLS ENSµ

20%/20% 10%/30% 20%/20% 10%/30%

Panel A: Equal-weighted

regross −Mkt 0.49 0.46 0.78 0.79
(5.46) (5.33) (8.07) (7.42)

TO (in %) 44.29 24.86 45.20 27.53
T-cost (in %) 0.31 0.18 0.32 0.20
renet −Mkt 0.19 0.28 0.46 0.59

(2.11) (3.30) (4.88) (5.63)
αFF6
net 0.29 0.39 0.55 0.67

(4.91) (6.19) (7.66) (8.28)

Panel B: Value-weighted

regross −Mkt 0.32 0.32 0.47 0.48
(3.39) (3.47) (4.88) (4.66)

TO (in %) 44.48 22.16 45.51 23.40
T-cost (in %) 0.25 0.13 0.26 0.14
renet −Mkt 0.07 0.19 0.21 0.34

(0.75) (2.08) (2.20) (3.31)
αFF6
net 0.06 0.17 0.22 0.34

(1.26) (3.15) (3.91) (5.18)
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Appendix A - Filter Datastream

Constituent lists

Datastream comprises three types of constituent lists: (1) research lists, (2) Worldscope lists, and

(3) dead lists. By using dead lists, we ensure that any survivorship bias is obviated. For each

country, we use the union of all available lists and eliminate any duplicates. As a result, one list

remains for each country to be used in the subsequent static filter process. Table A.1 provides an

overview of the constituent lists for emerging markets that are used in our study.

[Table A.1 about here.]

Static screens

We restrict our sample to common equity stocks by applying several static screens, as shown in

Table A.2. Screens (1) to (7) are straightforward to apply and common in the literature.

[Table A.2 about here.]

Screen (8) relates to, among others, to work by the following: Ince and Porter (2006), Campbell

et al. (2010), Griffin et al. (2010), Karolyi et al. (2012). The authors provide generic filter rules to

exclude non-common equity securities from Refinitiv Datastream. We apply the identified keywords

and match them with the security names provided by Datastream. A security is excluded from the

sample in the event that a keyword coincides with part of the security name. The following three

Datastream items store security names and are applied to the keyword filters: ‘NAME’, ‘ENAME’,

and ‘ECNAME’. Table A.3 gives an overview of the keywords used.

[Table A.3 about here.]

In addition, Griffin et al. (2010) introduce specific keywords for individual countries. The

keywords are thus applied to the security names of single countries only. For example, German

security names are parsed to contain the word ‘GENUSSSCHEINE’, which declares the security to

be a non-common equity. In Table A.4, we give an overview of country-specific keyword deletions

conducted in our study.
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[Table A.4 about here.]

Dynamic screens

For the securities remaining from the static screens above, we obtained return and market capi-

talization data from Datastream and accounting data from Worldscope. Several dynamic screens

that are common in the literature were installed in order to account for data errors, mainly within

return characteristics. The dynamic screens are shown in Table A.5.

[Table A.5 about here.]
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Table A.1: Constituent lists: Emerging markets

The table contains the research lists, Worldscope lists and dead lists of emerging markets countries in our
sample.

Country List Country List Country List

Argentina DEADAR Israel DEADIL Portugal WSCOPEPT
FARALL WSCOPEIS FPTALL
WSCOPEAR FILALL DEADPT

Brazil DEADBR Jordan DEADJO Qatar DEADQA
FBRALL FJOALL FQAALL
WSCOPEBR WSCOPEJO WSCOPEQA

Chile DEADCL Korea DEADKR Russia DEADRU
FCLALL FKRALL FRUSXALL
WSCOPECL WSCOPEKO WSCOPERS

China DEADCN Kuwait DEADKW Saudi Arabia DEADSA
FCNALL FKWALL FSAALL
WSCOPECH WSCOPEKW WSCOPESI

Colombia DEADCO Malaysia DEADMY South Africa DEADZA
FCOALL FACE FZAALL
WSCOPECB FMYALL WSCOPESA

Czechia DEADCZ WSCOPEMY Sri Lanka DEADLK
FCZALL Mexico DEADMX FLKALL
WSCOPECZ FMXALL WSCOPECY

Egypt DEADEG WSCOPEMX Taiwan DEADTW
FEGALL Morocco DEADMA FROCOALL
WSCOPEEY FMAALL FTWALL

Greece DEADGR WSCOPEMC WSCOPETA
FGRALL Pakistan DEADPK Thailand DEADTH
WSCOPEGR FPKALL FTHALL

Hungary DEADHU WSCOPEPK WSCOPETH
FHUALL Peru DEADPE Turkey DEADTR
WSCOPEHN FPEALL FTRALL

India DEADIN WSCOPEPE WSCOPETK
FINALL Philippines DEADPH UAE DEADAE
FINCONS FPHALL FAEALL
FXBOMALL WSCOPEPH FXADSALL
FXNSEALL Poland DEADPL FXDFMALL
WSCOPEIN FPLALL WSCOPEAE

Indonesia DEADID FPOLCM
FIDALL WSCOPEPO
WSCOPEID
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Table A.2: Static screens
The table displays the static screens applied in our study, mainly following Ince and Porter (2006),
Schmidt et al. (2017) and Griffin et al. (2010). Column 3 lists the Datastream items involved (on
the left of the equals sign) and the values which we set them to in the filter process (to the right of
the equals sign). Column 4 indicates the source of the screens.

Nr. Description Datastream item(s)
involved

Source

(1) For firms with more than one
security, only the one with the
biggest market capitalization and
liquidity is used.

MAJOR = Y Schmidt et al. (2017)

(2) The type of security must be eq-
uity.

TYPE = EQ Ince and Porter (2006)

(3) Only the primary quotations of a
security are analyzed.

ISINID = P Fong et al. (2017)

(4) Firms are located in the respec-
tive domestic country.

GEOGN = country
shortcut

Ince and Porter (2006)

(5) Securities are listed in the respec-
tive domestic country.

GEOLN = country
shortcut

Griffin et al. (2010)

(6) Securities whose quoted currency
is different to the one of the asso-
ciated country are disregarded.a

PCUR = currency
shortcut of the coun-
try

Griffin et al. (2010)

(7) Securities whose ISIN country
code is different to the one
of the associated country are
disregarded.b

GGISN = country
shortcut

Annaert et al. (2013)

(8) Securities whose name fields indi-
cate non-common stock affiliation
are disregarded.

NAME, ENAME,
ECNAME

Ince and Porter
(2006), Campbell
et al. (2010), Griffin
et al. (2010) and
Karolyi et al. (2012)

a In this filter rule, the respective pre-euro currencies are also accepted for countries within
the euro-zone. Moreover, in Russia ‘USD’ is accepted as currency, in addition to ‘RUB’.
b In Hong Kong, ISIN country codes equal to ‘BM’ or ‘KY’ and in the Czech Republic
ISIN country codes equal to ‘CS’ are also accepted.
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Table A.3: Generic keyword deletions
The table reports generic keywords searched for in the names of all stocks of all countries. If a
harmful keyword is detected as part of the name of a stock, the respective stock is removed from
the sample.

Non-common equity Keywords

Duplicates 1000DUPL, DULP, DUP, DUPE, DUPL, DUPLI,
DUPLICATE, XSQ, XETa

Depository receipts ADR, GDR
Preferred stock PF, ’PF’, PFD, PREF, PREFERRED, PRF
Warrants WARR, WARRANT, WARRANTS, WARRT, WTS, WTS2
Debt %, DB, DCB, DEB, DEBENTURE, DEBENTURES, DEBT
Unit trusts .IT, .ITb, TST, INVESTMENT TRUST, RLST IT, TRUST,

TRUST UNIT, TRUST UNITS, TST, TST UNIT, TST
UNITS, UNIT, UNIT TRUST, UNITS, UNT, UNT TST, UT

ETFs AMUNDI, ETF, INAV, ISHARES, JUNGE, LYXOR, X-TR
Expired securities EXPD, EXPIRED, EXPIRY, EXPY
Miscellaneous (mainly taken from
Ince and Porter (2006))

ADS, BOND, CAP.SHS, CONV, DEFER, DEP, DEPY,
ELKS, FD, FUND, GW.FD, HI.YIELD, HIGH INCOME,
IDX, INC.&GROWTH, INC.&GW, INDEX, LP, MIPS,
MITS, MITT, MPS, NIKKEI, NOTE, OPCVM, ORTF,
PARTNER, PERQS, PFC, PFCL, PINES, PRTF, PTNS,
PTSHP, QUIBS, QUIDS, RATE, RCPTS, REAL EST,
RECEIPTS, REIT, RESPT, RETUR, RIGHTS, RST,
RTN.INC, RTS, SBVTG, SCORE, SPDR, STRYPES,
TOPRS, UTS, VCT, VTG.SAS, XXXXX, YIELD, YLD

Table A.4: Country-specific keyword deletions
The table reports country-specific keywords searched for in the names of all stocks of the respective
countries. If a harmful keyword is detected as part of the name of a stock, the respective stock is
removed from the sample.

Country Keywords

Brazil PN, PNA, PNB, PNC, PND, PNE, PNF, PNG, RCSA, RCTB
Greece PR
Indonesia FB DEAD, FOREIGN BOARD
Israel P1, 1, 5
Korea 1P
Mexico ’L’, ’C’
Peru INVERSION, INVN, INV
Philippines PDR
South Africa N’, OPTS\\., CPF\\., CUMULATIVE PREFERENCE
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Table A.5: Dynamic screens
The table displays the dynamic screens applied to the data in our study, following Ince and Porter
(2006), Griffin et al. (2010), Jacobs (2016) and Schmidt et al. (2017). Column 3 lists the respective
Datastream items. Column 4 refers to the source of the screens.

Nr. Description Datastream item(s)
involved

Source

(1) We delete the zero returns at
the end of the return time-series
that exist because in the case
of a delisting, Datastream dis-
plays stale prices from the date
of delisting until the end of the
respective time-series. We also
delete the associated market cap-
italizations.

RI, MV Ince and Porter (2006)

(2) We delete the associated returns
and market capitalizations in case
of abnormal prices (unadjusted
prices > 1000000).

RI, MV, UP The screen originally
stems from Schmidt
et al. (2017), however
we employ it on unad-
justed price.

(3) We delete monthly (daily) returns
and the associated market capi-
talizations if returns exceed 990%
(200%).

RI, MV Griffin et al. (2010);
Schmidt et al. (2017)

(4) We delete monthly returns and
the associated market capitaliza-
tions in the case of strong return
reversals, defined as (1+rt−1)(1+
rt)−1 < 0.5 given that either rt−1

or rt ≥ 3.0.

RI, MV Ince and Porter (2006)

(5) We delete daily returns and the
associated market capitalizations
in the case of strong return rever-
sals, defined as (1+rt−1)(1+rt)−
1 < 0.2 with rt−1 or rt ≥ 1.0.

RI, MV Griffin et al. (2010);
Jacobs (2016)

(6) We delete observations of stocks
that show non-zero price changes
in less than 50% of the traded
months in the previous 12
months.

RI, MV Griffin et al. (2011)

(7) We delete observations of stocks
in the lowest 3% of a country’s
aggregated market capitalization.

MV Hanauer and Lauter-
bach (2019)
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Appendix B - Characteristics definition

This section outlines the construction of characteristic variables that we use in the paper. For each

characteristic, we give the respective Datastream and Worldscope items in parentheses, the cate-

gory (past returns, investment, profitability, intangibles, value, or trading frictions) and frequency

(monthly vs. yearly), plus the relevant reference. As described in Section 2, we use balance-sheet

data from December in year t-1 for the stock returns from July of year t to June of year t + 1 as

in Fama and French (1993).

A2ME (assets-to-market), Value, Yearly Assets-to-market cap is the ratio of total assets

(WC02999) to market capitalization as at December t-1, as in Bhandari (1988).

AT (total assets), Trading Frictions, Yearly Total assets measured in USD (WC02999)

as in Gandhi and Lustig (2015).

ATO (sales-to-assets), Profitability, Yearly As in Soliman (2008), we calculate net sales

(WC01001) over lagged net operating assets. Net operating assets are defined following Hirshleifer

et al. (2004) and are explained in the construction of NOA.

BEME (book-to-market), Value, Yearly Book-to-market is the ratio of book value of

equity to market value of equity. We define the book value of equity as common equity (WC03501)

plus deferred taxes (WC03263). If no deferred taxes are given, the book value of equity equals

common equity (WC03501). The market value of equity is as of December t-1. See Rosenberg

et al. (1985) and Davis et al. (2000).

BEMEm (monthly updated book-to-market), Value, Monthly Monthly updated

book-to-market is the ratio of book value of equity to the most recent market value of equity.

Book value of equity is defined as for BEME. The most recent market value of equity is of the

end of month t to predict returns of month t+1 as in Asness (2011).

Beta (market beta), Trading Frictions, Monthly Following Lewellen and Nagel (2006),

we calculate beta daily as the sum of the regression coefficients of daily excess returns on the local
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market excess return and one lag of the local market excess return for the past 12 months. We

require at least 126 observations for valid beta estimates, as in Welch (2020).

C (cash-and-short-term-investment-to-assets), Value, Yearly The ratio of cash and

short-term investments (WC02001) to total assets (WC02999), as in Palazzo (2012).

CbOPtA (cash-based operating profits-to-asset), Profitability, Yearly As in Ball

et al. (2016), cash-based operating profits-to-asset is operating profits converted to a cash basis

divided by total assets (WC02999). Following Ball et al. (2015), operating profits is net sales or

revenues (WC01001) minus cost of goods sold (WC01501) minus selling, general, and administrative

expenses (WC01101), excluding research and development expense (WC01201). The cash-based

adjustment is the year-on-year change in deferred income (WC03262), plus change in accounts

payable (WC03040), plus change in accrued expenses (WC03054 + WC03069), minus change in

accounts receivable (WC02051), minus change in inventory (WC02101), minus prepaid expenses

(WC02140), all divided by total assets. All changes are set to zero if missing.

CEI (composite equity issuance), Intangibles, Monthly Similar to Daniel and Titman

(2006), we define composite equity issuance as the growth rate in the market capitalization not

attributable to the total stock returnR: log(MCt−1/MCt−13)−R(t−13,t−1). To predict the returns of

month t, R(t−13,t−1) is the cumulative log return (calculated via the total return index, Datastream

item RI) from month t − 13 to month t − 1 and MCt−1 is the market capitalization (Datastream

item MV) from the end of month t− 1.

CF2P (cash flow-to-price), Value, Yearly Cash flow to price is the ratio of net cash

flow from operating activities (WC04860) to the market capitalization as at December t-1, as in

Lakonishok et al. (1994).

CTO (capital turnover), Profitability, Yearly We define capital turnover as the ratio of

net sales (WC01001) to lagged total assets (WC02999), as in Haugen and Baker (1996).
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D2A (capital intensity), Intangibles, Yearly Capital intensity is the ratio of depreciation

and amortization (WC01151) over total assets (WC02999), as in Gorodnichenko and Weber (2016).

Debt2P (leverage), Value, Yearly Following Litzenberger and Ramaswamy (1979), debt

to price is the ratio of total assets (WC02999) minus common equity (WC03501) to the market

capitalization as of December t-1.

DPI2A (ratio of change in property, plants & equipment to total assets), Invest-

ment, Yearly Following Lyandres et al. (2007), we define the changes in PP&E and inventory

as the annual change in gross property, plant, and equipment (WC02301) plus the annual change

in inventory (WC02101) over lagged total assets (WC02999).

E2P (earnings-to-price), Value, Yearly Earnings to price is the ratio of income before

extraordinary items (WC01551) to the market capitalization as at December t-1, as in Basu (1983).

FC2Y (fixed costs-to-sales), Profitability, Yearly As in Gorodnichenko and Weber

(2016), fixed costs to sales is the sum of selling, general and administrative expenditures (WC01101)

and research and development expenses (WC01201) over net sales (WC01001).

FreeCF (cash flow-to-book), Value, Yearly Following Hou et al. (2011), we define cash

flow to book as free cash flow to book value of equity. Free cash flow is calculated as net income

(WC01551) plus depreciation and amortization (WC01151) minus changes in working capital minus

capital expenditure (WC04601). The book value of equity is defined in the construction of BEME.

GP2A (gross profits-to-assets), Profitability, Yearly Gross profits-to-assets is net sales

(WC01001) minus costs of goods sold (WC01051) divided by total assets (WC02999), as in Novy-

Marx (2013).

Idiovol (idiosyncratic volatility with respect to the Fama and French (1993)

three-factor model), Trading Frictions, Monthly As in Ang et al. (2006), we define

idiosyncratic volatility as the standard deviation of the residuals from a regression of excess returns
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on a local Fama and French (1993) three-factor model. We use one month of daily data and require

at least fifteen non-missing observations.

INV (investment), Investment, Yearly Investment is the percentage year-to-year growth

rate of total assets (WC02999) following Cooper et al. (2008).

LME (market capitalization), Trading Frictions, Monthly Size is a stock’s market

capitalization at the end of the previous month and measured in USD, as in Fama and French

(1992).

LTurnover (turnover), Trading Frictions, Monthly Turnover is a stock’s trading volume

(VO) divided by its shares outstanding (NOSH) during the last month, as in Datar et al. (1998).

NOA (net operating assets), Investment, Yearly Following Hirshleifer et al. (2004),

net operating assets are defined as the difference between operating assets and operating liabili-

ties, scaled by lagged total assets. Operating assets are total assets (WC02999) minus cash and

short-term investments (WC02001). Operating liabilities are total assets (WC02999), minus total

debt (WC03255), minus minority interest (WC03426), minus preferred stock and common equity

(WC03995).

OA (operating accruals), Intangibles, Yearly Following Sloan (1996), operating accruals

are calculated as changes in working capital minus depreciation (WC01151) scaled by lagged total

assets (WC02999). Changes in operating working capital are changes in current assets (WC02201)

minus changes in cash and short-term investments (WC02001) minus changes in current liabilities

(WC03101), plus changes in debt in current liabilities (WC03051) plus changes in income taxes

payable (WC03063).

OL (operating leverage), Intangibles, Yearly We define operating leverage as the sum of

costs of goods sold (WC01051) and selling, general, and administrative expenses (WC01101) over

total assets (WC02999), as in Novy-Marx (2010).
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P2P52WH (price relative to its 52-week high), Trading Frictions, Monthly Rel

to high price is the ratio of the unadjusted stock price (UP) at the end of the previous calendar

month to the past 52-weeks high, as in George and Hwang (2004).

PCM (price-to-cost margin), Profitability, Yearly As in Gorodnichenko and Weber

(2016) and D’Acunto et al. (2018), the price-to-cost margin is net sales (WC01001) minus costs of

goods sold (WC01051), divided by net sales (WC01001).

PM (profit margin), Profitability, Yearly As in Soliman (2008), we calculate the profit

margin as operating income after depreciation or EBIT (WC18191) over sales (WC01001).

Prof (gross profitability), Profitability, Yearly Profitability is net sales (WC01001)

minus costs of goods sold (WC01051) divided by the book value of equity, following Ball et al.

(2015). The book value of equity is defined in the construction of BEME.

Q (Tobin’s Q), Value, Yearly As in Freyberger et al. (2020), we define Tobin’s Q as total

assets (WC02999) plus the market capitalization as of December t-1 minus cash and short-term

investments (WC02001) and minus deferred taxes (WC03263), scaled by total assets (WC02999).

r12-2 (momentum), Past Returns, Monthly Momentum is the cumulative return from

month t-12 to t-2 as in Fama and French (1996).

r12-7 (intermediate momentum), Past Returns, Monthly Intermediate momentum is

the cumulative return from t-12 to t-7 as in Novy-Marx (2012).

r2-1 (short-term reversal), Past Returns, Monthly Short-term reversal is the lagged

one-month return as in Jegadeesh (1990).

r36-13 (long-term reversal), Past Returns, Monthly Long-term reversal is the cumula-

tive return from t-36 to t-13 as in De Bondt and Thaler (1985).
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RNA (return on net operating assets), Profitability, Yearly As in Soliman (2008),

we calculate the return on net operating assets as the ratio of operating income after depreciation

or EBIT (WC18191) to lagged net operating assets. Net operating assets are defined following

Hirshleifer et al. (2004) and explained in the construction of NOA.

ROA (return on assets), Profitability, Yearly Following Balakrishnan et al. (2010),

return-on-assets is the ratio of earnings before extraordinary items (WC01551) to lagged total

assets (WC02999).

ROE (return on equity), Profitability, Yearly Following Haugen and Baker (1996),

return-on-equity are earnings before extraordinary items (WC01551) to lagged book equity. The

book value of equity is defined in the construction of BEME.

S2P (sales-to-price), Value, Yearly Following Lewellen (2015), sales-to-price is the ratio

of net sales (WC01001) to the market capitalization as of December t-1.

SGA2S (sales and general administrative costs to sales), Intangibles, Yearly As

in Freyberger et al. (2020), we define SG&A to sales as the ratio of selling, general and adminis-

trative expenses (WC01101) to net sales (WC01001).

Illiqu (Amihud (2002) illiquidity), Trading Frictions, Monthly We calculate illiq-

uidity according to Amihud (2002) as the arithmetic mean of the following ratio for the past month:

the daily absolute return divided by the product of the end-of-day stock price (UP) and the daily

trading volume (VO).

SUV (unexplained volume), Trading Frictions, Monthly Following Garfinkel (2009),

standard unexplained volume is the difference between actual volume and predicted volume in the

previous month. Predicted volume comes from a regression of daily volume on a constant and the

absolute values of positive and negative returns. We use two months of data to estimate the model

parameters (data from t-2 and t-1) and estimate the predicted volume using data from the previous
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month (t-1). I require at least fifteen daily observations in the previous month. Unexplained volume

is standardized by the standard deviation of the residuals from the regression.
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Appendix C - Methodology

C.1 Simple linear regression

The least complex method in our analysis and most widely used in the context of empirical asset

pricing is the simple linear regression model estimated via the ordinary least squares (OLS) method.

We will use it as a benchmark to compare the more complex machine learning models to it. In the

case of the simple linear regression, the conditional expectations f∗(x) can be modeled using the

following linear model:

f(xi,t,c, θ) = θTxi,t,c, (17)

where θ, θT = (θ1, θ2, ..., θp) ∈ Rp, is the column vector of coefficients that can be estimated with

OLS by minimizing the loss function:

LMSE(θ) =
1

NT

N∑
i=1

T∑
t=1

(rabni,t+1,c − f(xi,t,c, θ)
2, (18)

which is also known as the Mean Squared Error (MSE). The OLS has the big advantage that it

does not require any hyperparameter input from the user. Further, by minimizing the loss function

LMSE a unique analytical solution can be extracted, which is easy to interpret as the coefficients, θ

directly describe how a change in the stock characteristics affects the expected return. Additionally,

if the number of observations in the underlying dataset is larger than the number of coefficients that

need to be estimated, the OLS yields an efficient and unbiased estimator according to Wooldridge

(2001). But if the number of characteristics approaches the number of observations in the dataset,

the OLS has issues distinguishing between signal and noise. While the signal is the portion we can

understand, model, and predict, noise consists of the unpredictable component of price movements.

In the case of a small sample or a large number of characteristics, the OLS starts with over-fitting

the coefficients to noise rather than extracting the signal. This is of particular importance in the

field of asset pricing, which empirically relies on a low signal-to-noise ratio. This overfitting yields

a higher in-sample performance but a poor out-of-sample performance. Further, multicollinearity

between the different characteristics can lead to a fallacious interpretation of test statistics as well

as misleading coefficients. Lastly, the OLS does not model or evaluate any non-linearities of the
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characteristics nor any potential interactions between them. Any non-linearity would have to be

imputed by the user.

C.2 Regularized regression

To avoid overfitting in the case of empirical asset pricing, the user could increase the training

sample, reduce the number of characteristics used to predict future returns, or utilize regularized

regression techniques that identify which characteristics are informative and omits those that are

not. Classical regularized regression techniques are ridge regression, lasso regression, or elastic net.

To limit the number of machine learning methods, we concentrate on the elastic net, which is a

combination of ridge and lasso regression. While the different regularized regression models have

the same linear functional form as the simple linear regression, they differ with respect to the loss

function by adding a penalty term (ϕENet(θ, λ, α)) to it:

LENet(θ, λ, α) = LMSE(θ) + ϕENet(θ, λ, α). (19)

This penalty term reduces the model’s in-sample performance and increases its out-of-sample sta-

bility by shrinking the coefficients of noisy characteristics, improving the signal-to-noise ratio. The

penalty function of the elastic net is defined as:

ϕENet(θ, λ, α) = (1− α)λ

P∑
j=1

| θj | +
1

2
αλ

P∑
j=1

θ2j , (20)

where λ, λ ∈ R+ defines the magnitude of shrinkage and α, α ∈ {0, ..., 1} which determines the

relative weight between the two penalty components of the ridge and lasso regression. In the case

of λ = 0 the regularized regression models yield a simple linear regression model. The coefficients

are shrunk towards zero by setting λ > 0. As these two hyperparameters have to be set by the

user, we utilize our validation sample to find the optimal in-sample λ and α in the first run. We

determine the optimal θ in the second run using the full training and validation sample.
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C.3 Tree-based regression

Tree-based models represent the first non-parametric regression model as their structure is decided

by the training data. For our return prediction, we will utilize two tree-based methods: the

random forest, as well as the gradient boosted regression tree. Compared to the linear methods,

one advantage of these tree methods is that the user does not have to manually add any potential

non-linearities or interactions to the data as the tree methods build these by construction.

Regression trees follow the idea of sequentially partitioning the underlying data into groups that

behave similarly to each other based on a selected characteristic with regard to the future return.

By sequentially separating the data, the tree ”grows” and new ”branches” are created each time

the data is split into new groups. The tree can grow to a depth of D based on the user input. At

each new branch, the characteristic is picked that causes the biggest separation in the data based

on an optimized cut-off value.15 As soon as the data can not be split into subgroups or the depth

D is reached, a ”leave” is created. In asset pricing, the tree yields a return that is clustered by the

underlying characteristics.

The following equation describes a tree with a depth of D and K leaves:

f(xi,t,c, θ,D,K) =
K∑
k=1

θk1{xi,t,c∈Ck(D)}

θk =
1

Nk

∑
xi,t,c∈Ck(D)

rabni,t+1,c,

(21)

where D is the depth of the tree measured as the maximum number of separations following the

longest branch, Ck(D) indicates the k-th separation of the characteristics, θk is average abnormal

return within the partition, and 1{xi,t,c∈Ck(D)} indicates if xi,t,c is part of Ck(D). Following this

methodology, a tree of depth D can capture up to D− 1 interactions. To avoid overfitting, the tree

must be regularized. We follow two different approaches in our analysis.

The first regularization approach uses bootstrap aggregation, or “bagging,” developed by Breiman

(2001). In this approach, each of the T trees starts with a share of B bootstrap samples from the

data and fits an individual regression tree to the bootstrapped data. Afterward, the forecasts from

15In our case, for each separation, the characteristic is selected that minimizes the MSE.
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the individual trees are averaged. This reduces the variation in the prediction and stabilizes the

prediction performance. In the case of the random forest, the trees additionally use random sub-

sets R of characteristics to grow the branches. This reduces the impact of certain dominant return

characteristics and creates de-correlated trees.

The second regularization approach is ”boosting.” It starts by training a weak and shallow

regression tree on the full training data. In the next step, a second regression tree with the same

depth D is trained on the residuals of the first tree. The prediction of these two trees is then

averaged while the contribution of the second tree is shrunken by a factor LR (learning rate),

LR ∈ (0, 1) to avoid the model overfitting the residuals. At each new step b, till the model reaches

a total of B trees, a new shallow tree is fitted to the residual, which is based on the b− 1-th model

and added to it with a shrinkage weight of LR.

Both regression trees share the two main hyperparameters: the number of trees in the forest T ,

T ∈ Z+ and the maximum depth D, D ∈ Z+. While the random forest additionally requires the

share of the bootstrapped samples B, 0 > B ≤ 1, the gradient boosted regression tree requires a

certain learning rate LR, 0 > B ≤ 1. These hyperparameters are optimized through the validation

step. Additionally, we can provide the share R, 0 > R ≤ 1, of randomly selected characteristics

that are used in each tree of the random forest.

C.4 Neural networks

Neural networks are another highly flexible but opposed to the regression trees, a parametric model.

While these models can have various forms, we focus on the standard structure of a feed-forward

neural network. A feed-forward neural network consists of an ”input” layer of input characteristics

and the intercept, at least one ”hidden” layer compromising activation functions, and an ”output”

layer that aggregates the outcome of the last hidden layer into a return prediction.

A feedforward neural network consists of several subsequent layers l, l = 0, 1, ..., L, one input

layer (l = 0), L − 1 hidden layers (l = 1, 2, ..., L − 1) and one output layer l = L. Each layer l

contains nl nodes. In the case of the input layer, the number of nodes is equal to the number of

characteristics, including an intercept, while the output layer contains due to the regression setting

one node. In the case of the hidden layer, we consider an architecture of up to five hidden layers
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while the first hidden layer contains 32 nodes and each additional hidden layer divides the number

of nodes by two compared to the previous layer following the geometric pyramid rule according to

Masters (1993). This results in the following number of nodes per layer:

n0 = p+ 1,

n1 = 32,

nl =
nl−1

2
∀l ∈ {2, ..., L− 1},

nL = 1.

(22)

Each of the nodes in the hidden layer contains an activation function. In our case we follow Gu

et al. (2020) and Leippold et al. (2022) and choose the rectified linear unit defined as:

ReLU(x) = max(0, x), (23)

As in De Nard et al. (2022), we adopt the Adam optimization algorithm (Kingma and Ba, 2014),

early stopping, batch normalization (Ioffe and Szegedy, 2015), ten ensembles with individual seeds

(Hansen and Salamon, 1990; Dietterich, 2000) and dropout (Srivastava et al., 2014) when training

our models.

C.5 Hyperparameters

We will use the following hyperparameters based on the hyperparameter range in Gu et al. (2020),

Tobek and Hronec (2020), Drobetz and Otto (2021), and Leippold et al. (2022):

• Elastic net

– λ: [1x10−5, 2x10−5, ..., 1x10−2]

– α: [0, 0.01, ..., 1]

• Random forest

– R: [0.01, 0.02, ..., 1]

– B: 1
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– T : [100, 102, ..., 600]

– D: [1, 2, ..., 8]

• Gradient boosted regression tree

– LR: [0.01, 0.02, ..., 0.1]

– T : [50, 52, ..., 500]

– D: [1, 2, ..., 8]

• Neural networks

– l1: [0.00001, ..., 0.001]

– LR: [0.001, 0.1]

– Batch Size: 10000

– Epochs: 100

67



Appendix D - Factor construction

We calculate the market factor as the value-weighted returns of all available stocks in excess of

the risk-free rate. For the factors value, profitability, investment, and momentum, we estimate

the portfolio breakpoints using the country-specific 30% and 70% percentile of the underlying

characteristic using only the big-stock sample. In the case of the value stocks, we use the book-to-

market ratio to categorize the stocks as Growth (G), Neutral (N), and Value (V ). For profitability,

we use the cash-based profitability as an underlying characteristic which enables us to sort the

stocks into the extreme portfolios Weak (W ) and Robust (R). In the case of the investment factor,

we base the sorting on the stock’s asset growth, which yields a Conservative (C) and Aggressive (A)

portfolio. The last factor is based on the stock’s momentum and sorts the stocks into the Winner

(W ) and Loser (L) portfolios. Finally, in the case of the size factor, we classify stocks into big (B)

and small (S) as described in Section 2. The final factor calculation is based on the intersection of

the different portfolios while the portfolio returns are value-weighted,

SMB = (SV + SN + SG)/3− (BV +BN +BG)/3,

HML = (BV + SV )/2− (BG+ SG)/2,

RMW = (BR+ SR)/2− (BW + SW )/2,

CMA = (BC + SC)/2− (BA+ SA)/2,

MOM = (BW + SW )/2− (BL+ SL)/2.

(24)
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Appendix E - Figures

Figure E.1: Variable importance by model

Individual characteristics importance for the characteristics in each model. Characteristics importance is
an average over all training samples. Variable importance within each model is normalized to sum to one.
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Figure E.2: Cumulative return of machine learning portfolios

The figure shows the cumulative log returns in excess of the market of portfolios sorted on out-of-sample
machine learning return forecasts. The solid and dashed lines represent long (top quintile) and short (bottom
quintile) positions, respectively. In Panel A equal-weighted cumulative log returns are shown while in Panel
B the long and short positions are value-weighted. The sample period is from January 2002 to December
2021.
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Figure E.3: Estimated bid-ask spreads based on the EDGE estimator

This figure shows the cross-sectional distribution of estimated bid-ask spreads for big stocks in emerging
markets. Thereby, big stocks are defined as the biggest stocks, which together account for 90% of a country’s
aggregated market capitalization. For each stock and month, we compute the efficient discrete generalized
estimator (EDGE) of the bid-ask spread, proposed in Ardia et al. (2022). The estimators are based on
daily prices using a monthly estimation window. Following Novy-Marx and Velikov (2016), we replace zero
estimates with the non-zero estimate of the stock of the same country with the shortest Euclidean distance
in size and characteristic volatility rank space. The sample period is from January 2002 to December 2021.
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Appendix F - Table

Table F.1: Detail performance of the machine learning portfolios

This table reports the out-of-sample performance of the different machine learning quintile portfolios. Stocks
are sorted into country-neutral quintiles based on their predicted returns for the next month. The sorting
breakpoints are based on big stocks only, which are in the top 90% of a country’s aggregated market
capitalization. Each Panel provides the predicted monthly returns (Pred), the average monthly excess
returns (Avg), corresponding t-statistics (t), the Fama and French (2018) six-factor model alpha (α), and
corresponding t-statistics. All t-statistics are calculated using Newey and West (1987) adjusted standard
errors with 4 lags. The sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

Panel A: OLS

Low (L) -1.07 0.26 0.50 -0.39 -3.43 -0.99 0.43 0.83 -0.23 -3.40
2 -0.38 0.90 1.85 0.11 1.16 -0.37 0.82 1.70 -0.00 -0.05
3 0.00 1.15 2.51 0.26 3.08 0.01 0.95 2.09 0.09 2.55
4 0.36 1.34 3.03 0.41 4.91 0.37 1.13 2.55 0.17 3.45
High (H) 0.86 1.64 3.73 0.58 6.39 0.87 1.25 2.82 0.06 1.05

H-L 1.93 1.38 7.76 0.97 8.02 1.85 0.83 4.57 0.28 2.72

Panel B: ENet

Low (L) -1.07 0.34 0.65 -0.33 -3.05 -0.99 0.51 0.98 -0.18 -2.33
2 -0.37 0.92 1.86 0.12 1.32 -0.36 0.81 1.70 0.02 0.32
3 0.02 1.16 2.48 0.27 3.19 0.03 0.96 2.06 0.09 1.95
4 0.39 1.32 2.97 0.38 4.52 0.40 1.09 2.43 0.11 2.21
High (H) 0.90 1.53 3.61 0.50 4.99 0.91 1.23 2.86 0.09 1.56

H-L 1.97 1.20 6.79 0.83 6.94 1.90 0.72 3.95 0.27 2.28

Panel C: RF

Low (L) -0.79 0.18 0.35 -0.47 -4.05 -0.69 0.34 0.66 -0.30 -4.37
2 -0.21 0.82 1.74 0.07 0.81 -0.21 0.86 1.82 0.09 1.77
3 0.09 1.12 2.41 0.23 2.62 0.09 0.94 2.06 0.03 0.61
4 0.37 1.35 2.92 0.40 5.16 0.37 1.15 2.51 0.09 1.45
High (H) 0.71 1.78 3.96 0.72 8.34 0.70 1.32 2.99 0.17 3.38

H-L 1.50 1.60 9.29 1.19 14.10 1.39 0.99 5.24 0.47 5.24

Panel D: GBRT

Low (L) -0.87 0.04 0.08 -0.59 -5.24 -0.74 0.30 0.58 -0.38 -5.57
2 -0.18 0.87 1.82 0.11 1.21 -0.17 0.81 1.71 0.09 1.68
3 0.13 1.13 2.42 0.25 3.25 0.13 0.94 2.04 0.03 0.73
4 0.43 1.36 2.98 0.39 4.76 0.42 1.12 2.47 0.11 1.62
High (H) 0.93 1.86 4.12 0.81 8.77 0.86 1.35 3.09 0.19 4.06

H-L 1.80 1.82 11.49 1.40 15.65 1.61 1.05 6.06 0.57 6.73
Continued on next page
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Table F.1 continued

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

Panel E: NN1

Low (L) -1.27 0.03 0.06 -0.62 -5.23 -1.05 0.41 0.81 -0.26 -2.74
2 -0.28 0.80 1.71 0.04 0.54 -0.26 0.76 1.68 -0.01 -0.28
3 0.16 1.07 2.31 0.21 2.60 0.16 0.94 2.08 0.05 1.15
4 0.58 1.34 2.93 0.40 4.92 0.57 1.07 2.35 0.05 0.78
High (H) 1.34 1.91 4.09 0.86 8.93 1.25 1.45 3.09 0.30 5.86

H-L 2.61 1.88 13.92 1.47 15.67 2.30 1.04 6.94 0.57 4.83

Panel F: NN2

Low (L) -1.27 -0.01 -0.03 -0.68 -6.33 -1.01 0.37 0.74 -0.35 -5.42
2 -0.23 0.82 1.74 0.06 0.70 -0.21 0.80 1.72 0.03 0.52
3 0.17 1.01 2.18 0.16 2.10 0.18 0.93 2.08 0.03 0.65
4 0.56 1.35 3.06 0.42 4.76 0.55 1.08 2.42 0.06 0.87
High (H) 1.32 1.90 3.99 0.86 8.87 1.21 1.49 3.08 0.36 6.84

H-L 2.60 1.91 15.67 1.55 19.02 2.21 1.11 9.40 0.71 9.16

Panel G: NN3

Low (L) -1.20 0.02 0.05 -0.66 -5.87 -0.94 0.38 0.74 -0.35 -4.59
2 -0.18 0.82 1.75 0.06 0.74 -0.16 0.73 1.60 -0.01 -0.34
3 0.17 1.08 2.32 0.24 3.47 0.17 0.97 2.17 0.09 2.29
4 0.51 1.31 2.92 0.39 4.42 0.50 1.08 2.36 0.06 1.13
High (H) 1.22 1.86 3.99 0.83 8.34 1.11 1.49 3.17 0.32 5.34

H-L 2.41 1.84 14.72 1.49 16.93 2.04 1.12 7.85 0.66 6.55

Panel H: NN4

Low (L) -1.14 0.04 0.07 -0.63 -5.57 -0.90 0.32 0.62 -0.38 -5.18
2 -0.17 0.79 1.67 0.03 0.34 -0.14 0.73 1.59 -0.02 -0.50
3 0.16 1.09 2.37 0.26 3.34 0.17 0.95 2.14 0.08 1.87
4 0.48 1.31 2.91 0.35 4.39 0.47 1.11 2.43 0.05 0.81
High (H) 1.15 1.89 4.07 0.86 8.26 1.04 1.52 3.25 0.35 6.35

H-L 2.29 1.86 13.75 1.48 16.72 1.94 1.20 8.30 0.73 7.76

Panel I: NN5

Low (L) -1.12 0.04 0.08 -0.62 -5.43 -0.90 0.36 0.68 -0.37 -4.83
2 -0.17 0.82 1.74 0.04 0.46 -0.15 0.71 1.56 0.01 0.29
3 0.18 1.10 2.37 0.27 3.68 0.18 0.91 1.97 0.02 0.50
4 0.50 1.32 2.96 0.38 4.59 0.49 1.13 2.54 0.08 1.47
High (H) 1.14 1.88 4.04 0.82 8.38 1.04 1.52 3.26 0.34 7.61

H-L 2.26 1.84 13.42 1.44 15.79 1.93 1.17 8.11 0.71 8.21
Continued on next page
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Table F.1 continued

Equal-weighted Value-weighted

Pred Avg t α tα Pred Avg t α tα

Panel J: NN1−5

Low (L) -1.13 0.03 0.06 -0.62 -5.41 -0.91 0.34 0.65 -0.36 -4.82
2 -0.19 0.77 1.65 -0.00 -0.00 -0.16 0.73 1.62 0.02 0.42
3 0.17 1.10 2.38 0.27 3.57 0.17 0.95 2.10 0.06 1.35
4 0.51 1.31 2.92 0.39 4.50 0.50 1.07 2.39 0.03 0.54
High (H) 1.17 1.90 4.05 0.84 8.70 1.07 1.54 3.22 0.36 7.02

H-L 2.30 1.87 13.42 1.46 15.81 1.97 1.21 8.48 0.72 8.26

Panel K: ENSµ

Low (L) -0.85 0.02 0.04 -0.61 -5.32 -0.71 0.24 0.47 -0.42 -5.89
2 -0.17 0.85 1.78 0.09 0.99 -0.16 0.80 1.71 0.09 1.85
3 0.13 1.13 2.46 0.29 3.44 0.13 0.90 1.98 0.01 0.29
4 0.41 1.38 3.02 0.40 5.17 0.41 1.15 2.59 0.12 1.95
High (H) 0.87 1.88 4.12 0.82 9.02 0.81 1.45 3.17 0.25 5.82

H-L 1.71 1.86 11.73 1.43 15.66 1.52 1.20 6.97 0.67 8.29

Panel L: µsign(c)

Low (L) -0.20 0.22 0.42 -0.41 -3.16 -0.19 0.48 0.93 -0.22 -3.42
2 -0.08 0.79 1.57 0.00 0.02 -0.08 0.90 1.84 0.10 2.10
3 -0.01 1.05 2.20 0.18 2.19 -0.01 0.96 2.10 0.08 1.75
4 0.06 1.25 2.77 0.32 3.72 0.06 1.08 2.45 0.05 1.06
High (H) 0.15 1.56 3.67 0.57 7.27 0.15 1.24 2.91 0.11 2.18

H-L 0.35 1.34 6.48 0.98 7.26 0.34 0.77 4.16 0.32 3.32
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Table F.2: Regional performance - Subregion

This table reports the individual regional equal-weighted and value-weighted performance of the long-short
prediction-sorted portfolios over the 20-year out-of-sample testing period. All stocks are sorted into country-
neutral portfolios based on their predicted returns for the next month. The sorting breakpoints are based
on big stocks only, which are in the top 90% of the country’s aggregated market capitalization. Panel
A summarizes the baseline results, and Panel B shows the result for all countries being part of emerging
Americas, Panel C combines all emerging Asian countries, and Panel D reports results for emerging countries
from Europe, the Middle East, and Africa. The first two rows of each panel provide the average monthly
return of the long-short quintile (Avg), corresponding t-statistics (t), the average Fama and French (2018)
six-factor alpha (α), corresponding t-statistics (tα), and R2. The next two rows show spanning alpha (α),
corresponding t-statistic (tα), and R2 when regressing the long-short ENS returns on OLS returns and vice
versa. All t-statistics are calculated using Newey and West (1987) adjusted standard errors with 4 lags. The
sample period is from January 2002 to December 2021.

Equal-weighted Value-weighted

Avg t α tα R2 Avg t α tα R2

Panel A: Emerging Markets

OLS 1.09 6.29 0.77 6.23 53.92 0.78 4.42 0.29 2.57 56.92
ENSµ 1.35 8.88 0.97 9.75 57.22 0.97 5.95 0.44 4.59 58.10
ENSµ ∼ OLS 0.49 7.78 77.56 0.28 4.46 75.77
OLS ∼ ENSµ -0.23 -1.76 77.56 -0.06 -0.51 75.77

Panel B: Americas

OLS 0.76 3.23 0.36 1.82 46.02 0.60 2.67 0.04 0.22 49.64
ENSµ 0.70 3.37 0.41 2.52 36.93 0.64 3.12 0.20 1.14 35.55
ENSµ ∼ OLS 0.19 1.56 56.53 0.22 1.66 49.56
OLS ∼ ENSµ 0.17 1.02 56.53 0.14 0.83 49.56

Panel C: Asia

OLS 1.43 7.73 1.12 9.62 60.08 0.81 4.03 0.41 3.22 63.14
ENSµ 1.95 11.16 1.61 17.97 60.73 1.27 6.62 0.83 8.24 67.10
ENSµ ∼ OLS 0.65 8.64 83.54 0.52 5.07 71.55
OLS ∼ ENSµ -0.36 -2.10 83.54 -0.17 -1.11 71.55

Panel D: Europe, the Middle East and Africa

OLS 1.06 5.97 0.91 5.67 19.35 0.92 4.43 0.47 2.39 26.25
ENSµ 1.39 8.11 1.06 6.59 20.58 0.99 4.75 0.34 1.97 37.32
ENSµ ∼ OLS 0.61 5.47 56.62 0.25 2.01 59.45
OLS ∼ ENSµ -0.01 -0.06 56.62 0.19 1.45 59.45
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Table F.3: Further investment frictions

This table reports the out-of-sample performance for returns on different buy/hold long-only strategies before
when accounting for transaction costs and limiting our investment universe to big stocks only. We investigate
predictions from a linear OLS model and an ensemble (ENS) of non-linear machine learning models (RF ,
GBRT , and NN1−5). Every month the portfolio consists of the stocks that currently belong to the top
X% plus the stocks selected in previous months that have not deteriorated beyond the top (bottom) Y%.
We report the strategies’ gross returns in excess of the market, average two-way turnover, transaction costs,
net returns in excess of the market, and net Fama and French (2018) six-factor models alphas. We assume
one-way transaction costs of 100 basis points. All t-statistics are Newey and West (1987) adjusted with 4
lags. Panel A summarizes results from equal-weighting while Panel B shows results from value-weighting.
The sample period is from January 2002 to December 2021.

OLS ENSµ

20%/20% 10%/30% 20%/20% 10%/30%

Panel A: Equal-weighted

regross −Mkt 0.47 0.44 0.78 0.78
(5.31) (5.07) (7.88) (7.37)

TO (in %) 44.14 24.68 45.13 27.38
T-cost (in %) 0.44 0.25 0.45 0.27
renet −Mkt 0.03 0.19 0.33 0.51

(0.37) (2.26) (3.35) (4.82)
αFF6
net 0.17 0.33 0.43 0.62

(2.77) (5.17) (5.84) (7.35)

Panel B: Value-weighted

regross −Mkt 0.27 0.29 0.45 0.46
(2.99) (3.13) (4.67) (4.53)

TO (in %) 44.09 21.86 45.46 23.28
T-cost (in %) 0.44 0.22 0.45 0.23
renet −Mkt -0.17 0.07 -0.01 0.23

(-1.88) (0.74) (-0.08) (2.26)
αFF6
net -0.16 0.06 0.02 0.25

(-3.27) (1.14) (0.36) (3.72)
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