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Abstract

This paper models strategic voting on ESG proposals by blockholders with heterogeneous reputational con-
cerns and varying levels of commitment to ESG values. ESG activists, whose public-good gains from interven-
tion are not attenuated by selling shareholders’ free-riding, rationally sponsor even long-shot proposals. Propos-
als that lower firm value but produce environmental benefits pass with positive, but perhaps small, probability.
Our analysis leads to some non-obvious insights: neither increases in blockholders’ personal commitments to
ESG values nor increases in blockholder dispersion reliably increase the probability of proposal success. How-
ever, the probability of success is uniformly increased both by increasing overall reputational pressure on block-
holders and by increasing the gap between the pressure faced by the most and least pressured blockholders.

1 Introduction

One of the fundamental normative questions in financial economics is whether firms’ objectives should be limited

to market value maximization or also encompass the social and environmental preferences of shareholders (Hart

and Zingales, 2017). This question has no practical relevance if shareholders have no effective means for influ-

encing firms’ objectives. The most transparent means of compelling firms to prioritize social and environmental

concerns is environmental, social, and governance (ESG)proxy activism. This paper examines the effectiveness

of ESG proxy activism when large institutional investors’ votes are decisive.

Although shareholder proposals related to social and environmental issues predate the turn of the century,

ESG activism is largely a twenty-first century phenomenon. Since 2000, The number of ESG-related shareholder

proposals has steadily increased. The 2022 U.S. proxy season yielded another record increase in ESG proposals,

a 22% increase over 2021.1

These proposals attempted, sometimes successfully, to force significant changes in firms’ operating policies

and the environmental commitments of firms’ boards. For example, in May 2021, an ESG activist fund, Engine

No.1, successfully secured three “green” board seats at ExxonMobil despite owning just 0.02% of ExxonMobil’s
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shares.2 On the heels of Engine No.1’s success, Third Point, another activist fund, submitted a proposal calling

for Royal Dutch Shell to separate its oil and gas business from initiatives in renewable energy.3 A May 2022 vote

on a greenhouse gas reduction proposal, submitted by investor activist As You Sow, was supported by 72.18%

of Chubb Limited’s shareholders despite Chubb board’s opposition.4 Nonetheless, shareholder support for ESG

proposals is volatile. Average support almost doubled over 2015 to 2020, yet suffered a substantial decline over

the last two years.

Who decides whether ESG proposals pass? The largest share blocks in many public companies in the U.S.

are held by universal owners, i.e., large, diversified, institutional investors (Amel-Zadeh et al., 2022).5 In fact,

the three largest institutional investors, BlackRock, Vanguard, and State Street, vote 25% of S&P 500 shares

(Coffee Jr, 2021). Because these universal owners frequently hold the largest share blocks, in many cases, they

can determine the outcome of shareholder votes on proxy proposals. The proxy votes of institutions are publicly

observable.6 When proxy votes are related to controversial ESG issues, votes can trigger adverse reactions to the

institution’s vote based on social and environmental values. Because universal owners are diversified, the effects of

these reactions to a universal owner’s vote, e.g., withdrawal of funds from the universal owner, sanctions imposed

on the universal owner by state governments, can be larger than the effects on corporate value engendered by

the success or failure of the proposal.7 Moreover, institutional investors may themselves value the ESG goals of

shareholder proposals and be willing to accept some firm value reductions to further these goals.8

ESG proposals require a proposer. This role is frequently assumed by an ESG activist fund. These funds aim

to buy shares and make proposals that further environmental and social objectives. In many ways, the problems

faced by ESG activists are similar to the problems faced by non-ESG activists. They need to formulate a viable

proposal, acquire shares, and launch a campaign to ensure adoption of their proposal.9 In our analysis, ESG

activists have green preferences, i.e., their utility depends both on wealth and environmental outcomes. Activists

buy floating shares from atomistic shareholders and make proposals at shareholder meetings. On first inspection,

2See The New York Times (2021a).
3See The New York Times (2021b).
4See Orrick (2022).
5Many researchers term such owners “common owners.” We prefer using the term “universal owners” to avoid the miss-impression that this

paper relates to the effects of institutional joint ownership on intra-industry competition. The Society of Actuaries defines “universal owners”
as “institutional asset owners (pension funds, mutual funds, insurance companies, sovereign wealth funds) that own such a representative slice
of the economy as to find it impossible to diversify away from large system-wide risks.” See Institute and Faculty of Actuaries (2011).

6Our description of institutional owners applies to U.S. institutions regulated by the SEC, e.g., mutual funds. Collective Investment Funds
(CIFs) are not subject SEC oversight and do not have to disclose their votes. Currently the AUM of CIFs (approx. $800 Billion) is tiny relative
to AUM of mutual funds (approx. $45 Trillion). We are not aware of any research related to the voting behavior of CIFs.

7For an example of state government sanction threats triggered by institutional shareholder proxy votes, see Reuters (2022). For further
discussion about the investor catering rationale for pro-ESG voting by institutions, see Wang (2021); Ramelli et al. (2021).

8Evidence suggests that, for shareholder proposals motivated by ideological beliefs such as many ESG proposals, institutional investors’
votes frequently diverge significantly from the recommendations of proxy advisers, e.g., Institutional Shareholder Services (ISS) (Bolton et
al., 2020). This suggests that institutions factor into their voting decisions their value system and/or the effect of votes on reputation.

9Many ESG proposals lie outside the scope of our model. Governance proposals typically do not attempt to alter firms’ objective function.
Rather, they aim to force firms to adopt value maximizing plans in the face of management opposition. Many non-management initiated
climate and social proposals also do not represent “activism” under our definition. Almost half of shareholder proposals are made by religious
groups or “micro-shareholders” with negligible share holdings. These proposals frequently relate to affirming generalized commitments to
social causes, e.g., abortion rights, climate change, diversity, or handgun regulation. The sort of proposals we aim to model are very different:
concrete, detailed plans for changing firm’s operating policies or slates of alternative directors motivated by a desire to prioritize social and
environmental concerns. In practice, such proposals are almost always motivated by environmental concerns.
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it might appear that green activism, i.e., buying shares from “free-riding” shareholders and launching long-shot

proposals that promise environmental benefits at the expense of reduced firm value, is not viable when activists

are unwilling to incur huge monetary losses to effect environmental improvement.

However, the public-good nature of green benefits ensures that activism can be viable even when activism

entails deadweight costs and is unlikely to succeed. The benefit from the proposal’s success captured by green

activists, the environmental improvement effected by the adoption of the proposal, is a public good, not contingent

on the size of activists’ shareholding or the price of share acquisition. In contrast to the standard Grossman and

Hart (1980) setting, atomistic target firm shareholders cannot capture the activist gains by holding out for the post-

activism share value. At the ask price of atomistic shareholders, ESG activists break even. The only cost borne

by the ESG activist is the expenditure required to fund the campaign and develop proposals.10 If the ESG activist

targets a large firm in a carbon-intensive industry, passage of a proposal that significantly reduces the firm’s carbon

footprint can conceivably generate green benefits orders of magnitude greater than the activist’s campaign costs.

Thus, even a small probability of success can incentivize activist ESG investing.

In our model, share blocks voted by universal owners determine whether proposals pass. Residual non-

institutional share holdings are held by atomistic owners. Some universal owners, green owners, share the en-

vironmental values of the ESG activist; other universal owners, brown owners, do not. Universal owners face

reputation costs, i.e., costs engendered by voting against ESG proposals. Owners vote strategically. We consider

the case where, even accounting for reputation costs, it is in the collective interest of brown owners for the green

proposal to fail and in the collective interest of green owners for the proposal to pass. There is a positive, perhaps

small, probability that any given universal owner is green and thus there is always a positive probability that the

proposal will pass. We term the probability that a given universal owner is green the level of green sentiment.

If the firm has only one universal owner, the proposal fails if and only if the single owner votes against the

proposal. The proposal will be supported by the universal owner if and only if the owner is green. When there

are multiple universal owners, owners’ voting decisions are more complex. The tension is that each brown owner

would like to see the proposal fail but, because of reputation costs, would prefer not to vote against the proposal.

A brown owner’s vote only affects her welfare when her vote is marginal. So, each brown owner will trade off the

benefit of voting yes, avoiding reputation costs, against the cost of voting yes, the value reduction produced by a

yes vote when that vote is marginal.

This tension results in a voting game which has many Nash equilibria. We refine the set of Nash equilibria

using a refinement approach frequently employed in economics, network analysis, and operations research, the

potential game approach.11 We show that for generic model parameters, the game has a unique potential max-

10Interestingly, if activists had toehold stakes, they would incur an additional cost: the reduction in the monetary value of their pre-existing
shareholdings. Thus, toehold stakes, rather than being necessary for successful activism as in Grossman and Hart (1980) style models, are, in
fact, impediments to ESG activism.

11We discuss potential games and the implications of potential maximization extensively in section 5.1.
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imizing equilibrium. Consistent with the empirical evidence (Michaely et al., 2021), in the equilibrium, brown

universal owners vote strategically by insincerely supporting green proposals when it is unlikely that their votes

are marginal.

The properties of potential-maximizing Nash equilibria depend to a large extent on the level of green sentiment.

When green sentiment is high, it is likely that many universal owners are green and thus will support the proposal.

Hence the vote of any individual brown owner is unlikely to be marginal. For this reason, brown owners capitulate

and insincerely support the green proposal. When green sentiment is moderate, the proposal can only be defeated

if “all hands are on deck,” so brown owners opt for extreme voting strategies, i.e., they either all vote no or all

capitulate. In both of these cases, increasing green sentiment does not reduce the probability that the proposal will

pass.

However, when green sentiment is low, the situation is more complex. If all brown owners resist, it is likely that

the proposal will fail by a wide margin, in which case, no brown owner is likely to be marginal. Thus, the complete

resistance strategy is not optimal. Instead, brown owners adopt partial resistance strategies: some brown owners,

those facing the largest reputation costs, insincerely vote for the proposal while others resist. In this case, because

an increase in green sentiment can increase the equilibrium level of brown resistance, increasing green sentiment

can reduce the probability that green proposals succeed. This strategic effect of increased sentiment can dominate

the positive mechanical effect of increased green sentiment on the probability of proposal success. Because

increasing green sentiment does not reliably increase the pass probability for ESG proposals, this result suggests,

consistent with the stylized facts, that activists concentrate their efforts on increasing reputational pressure rather

than changing the environmental ethos of institutional owners.

In contrast to green sentiment, the effect of increasing the level of reputation costs on brown resistance is quite

transparent: increasing reputation costs decreases brown resistance and thus increases the probability of proposal

success. In general, the effect of increasing the dispersion of reputation costs on the probability of proposal

success is indeterminate.12 However, increasing the dispersion of reputation costs through a high-low reputation

cost spread, which roughly speaking involves transferring reputation costs from universal owners with lower-

than-median reputation costs to owners with higher-than-median reputation costs, increases the pass probability

whenever, before the transfer, brown owners resisted the proposal.

This result identifies a novel channel, independent of well-analyzed cost-of-capital channel (e.g., Heinkel et

al., 2001), through which passive retail investors affect real environmental outcomes—if green retail investors buy

into only a small subset of mutual funds, the high-low reputation cost spread between institutional reputation costs

increases. Thus, by channeling their investments into a few funds, green retail investors increase the reputation

costs of marginal brown votes, thereby ensuring that some universal owners will vote green even if they have

12In more precise terms, inequality reducing “Dalton transformations” (Marshall et al., 2011) of the reputation cost vector can either increase
or decrease the probability of proposal success.
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brown preferences. “Flipping” a few high-reputation cost owners, makes the resistance of the other brown owners

less effective.

The effects of ownership dispersion on the prospects of ESG proposals and the welfare of brown owners

are somewhat subtle. The benefit a brown owner captures by insincerely supporting the proposal, avoidance of

reputation costs, is private. The cost of insincere voting, an increased probability that the proposal passes, is spread

across all brown owners. This free-rider effect of ownership dispersion increases the probability that proposals

pass and reduces brown owner welfare.

However, there are two countervailing effects. First, dispersion can reduce the reputation costs associated with

brown resistance. Each universal owner casts all of her proxy votes either in favor of or against a green proposal.

If there is only one universal owner, when the proposal is defeated, all universal owner votes are cast against the

proposal, far more votes than required to defeat the proposal.13 No votes generate reputation costs. When green

sentiment is low, a thin majority of brown owners’ votes opposing the proposal is very likely to ensure failure.

In this case, somewhat dispersed ownership supports equilibria in which some brown owners vote insincerely in

favor of the proposal. Such outcomes feature significantly lower total reputation costs and entail only a negligible

probability of proposal success. Hence, dispersed ownership increases the welfare of brown owners.

Second, because brown owners do not know which other owners are brown, the effect of a given brown owner’s

vote on the success of the proposal is uncertain. Increasing the dispersion of share ownership, through a law of

large numbers effect, reduces the variance of the proportion of votes cast in favor of the proposal. When green

sentiment is low, this effect reduces the pass probability associated with a fixed level of brown resistance. This

effect can increase the probability that proposals fail and increase the welfare of brown owners.

Related literature

Our paper is closely related to the emergent literature on the effects of corporations’ environmental and social

policies on shareholder and social welfare. Like many papers in this literature, our green agents have what Gupta

et al. (2022a) term “broad green preferences,” i.e., part of the utility green investors derive from investing is based

on the effect of their investment on environmental outcomes. Thus, in broad green preferences models like ours,

green investors, per se, do not increase their utility by divesting from brown assets and green utility is not tied to the

number of shares owned by the investor but rather the size of the change in the greenness of output that an investor

can affect. In contrast, Goldstein et al. (2022) consider equilibrium security prices when investors have “narrow

green preferences,” a preference for holding shares of firms producing green output. Most of the broad green

13Because voting for the proposal is a weakly dominant strategy if and only if the owner is green, it seems reasonable to assume that any
proxy votes opposing proposal engender reputation costs. Vote splitting, i.e., a single fund voting some proxies for and some against a proposal
has, to our knowledge, never occurred. In fact, this possibility, to our knowledge, has not even been considered in the legal literature. Fund
families can recommend a yes vote to some family members and a no vote to others. However, non-uniform recommendations are purportedly
based on the differences between the preferences of the fund’s beneficial owners. The typical pattern is for one recommendation to be offered
to traditional funds and another to “green” funds.
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preferences literature (e.g., Jagannathan et al., 2022; Gupta et al., 2022a; Broccardo et al., 2022; Albuquerque et

al., 2019) models worlds where firms are either green or brown. Green agents affect changes in policy by buying

up brown firms. In contrast, we focus on the struggle for control between green and brown shareholders of a given

firm. These investors fight for control through proxy voting rather than through acquisition offers.

In this respect our paper is related to Hart and Zingales (2017) who also study corporate policy when firm

actions affect owners’ utility through channels other than firm value. However, in Hart and Zingales (2017),

individual shareholders’ green preferences directly affect corporate policies through their voting behavior. In

our analysis, decisive votes are cast by universal owners.14 The green preferences of these institutional investors

only indirectly affect the strategic voting of universal owners through the reputational penalties associated with

opposing green proposals. Also, unlike Hart and Zingales (2017), which focuses on how firm policy should be

determined when shareholders have conflicting objectives, we focus instead on how policy is actually determined

when controlling agents are large and strategic.

Our model of ownership structure is to a large extent inspired by the empirical literature documenting the

rise of common ownership (Amel-Zadeh et al., 2022) and the legal literature considering the implications of

universal/common ownership for securities’ regulation (Coffee Jr, 2021). The effect of social pressure on investor,

fund, and firm behavior incorporated in our model is motivated by a large empirical literature (e.g., Wang, 2021;

Ramelli et al., 2021; Dimson et al., 2015).

Our model of activist share acquisition is quite simple and structurally quite similar to the atomistic shareholder

model in Grossman and Hart (1980). However, we reach very different conclusions about the ability of share

acquirers, corporate raiders in their model, activist investors in our model, to gain from share acquisitions. In

Grossman and Hart (1980), acquisitions are motivated by pecuniary gain and current shareholders capture the

pecuniary gain generated by acquirers’ value-add plans. Thus, when acquirers lack a toe-hold stake, they cannot

profit from adding value. In our setting, the small atomistic shareholders who sell to activists also sell their

shares at prices that reflect the expected market value effects of activists’ interventions. However activists can still

gain from intervention because of the non-pecuniary utility they derive from inducing target firms to adopt green

policies.

14Empirical research (Brav et al., 2022) suggests that our framework matches current institutional practice better than the framework de-
veloped by Hart and Zingales (2017). However, institutional practice can change. Devolving index fund proxy voting to the retail investors
who own fund shares has been advocated by many legal scholars (e.g., Griffin, 2019). In the US, there are legal barriers to retail shareholder
devolution. However, BlackRock UK plans to permit some retail shareholder devolved voting in 2023 (Financial Times, 2022).
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2 Structure of the model

2.1 Precı́s

We develop a model of activism and shareholder voting for firms controlled by universal owners. Some agents’

preferences over actions are completely determined by their monetary payoffs; other agents’ preferences also

depend on the environmental effects of their actions. An activist fund, henceforth called the activist, initiates ESG

activism and acquires shares. We focus on activism equilibria, equilibria in which activists acquire shares, attempt

to identify proposals that, if adopted, will make the firms output greener, and, when such proposals are identified,

submit their proposals to shareholders. Shareholders then vote on the proposal. The proxy votes of the universal

owners determine whether the proposal succeeds or fails to pass.

2.2 Preferences, agents, and timings

2.2.1 Preferences

All agents are risk neutral and patient. there are two kinds of agent preferences: green and brown. Agents with

brown preferences simply maximize their expected wealth. Agents with green preferences, using the terminology

in Gupta et al. (2022b), have “wide-green preferences,” i.e., they care about the greenness of the world not the

greenness of their portfolios. More specifically, let a represent an action that might affect an agent’s terminal

wealth and the environment; let Ṽ (a) represent the agent’s random future (date 1) terminal wealth conditioned

on a; let G̃(a) represent the random future greenness of the environment (e.g., some decreasing function of CO2

ppm) conditioned on a. If the agent has green preferences, the agent’s utility is given by

E
[
Ṽ (a)

]
+β E

[
G̃(a)

]
, β > 0. (1)

The parameter β measures the extent to which the agent is willing to sacrifice monetary payoffs to increase green-

ness. We call E[G̃(a)] the green payoff from action a. Equation (1) implies that an agent with green preferences

weakly prefers action a′′ to action a′ if and only if

E
[
Ṽ (a′′)−Ṽ (a′)

]
≥ β E

[
G̃(a′′)− G̃(a′)

]
. (2)

Green agents tradeoff the effects of their actions on their expected terminal wealth, E[Ṽ (a)], against their expected

effects on the environment, E[G̃(a)]. So, for example, a green agent who owns a firm that has an inherently

large carbon footprint (e.g., a coal-fired electricity generator) cannot increase her utility by divesting from the firm

through selling out to a brown competitor. If she sold out, her portfolio would be greener but the world would not.
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In fact, if the brown competitor planned to make the firm’s carbon footprint even larger, the green owner would

only divest if the brown competitor offered sufficient monetary compensation to offset the environmental effects

of the control transfer.15

Another obvious implication of equation (2) is that, when two actions, say a′ and a′′, have the same environ-

mental effects, i.e., E[G̃(a′′)− G̃(a′)] = 0, green agents’ and brown agents’ preferences coincide; both will choose

an action that maximizes their expected terminal wealth, E[Ṽ (a)]. For example, suppose an agent is consider-

ing whether to buy one share of an oil company’s stock. The oil company is controlled by blockholder, whose

operating decisions cannot be swayed by small shareholders. Because purchasing the share has no effect on the

environment, whether the agent’s preferences are brown or green will have no effect on an agent’s reservation bid

price.

2.2.2 Types of agents and their share endowments

There are three kinds of agents: universal owners, an activist, and a mass of atomistic small shareholders. The

firm has one share outstanding. Thus, the value of the firm equals the value of the share. We refer to the number

of shares held by a shareholder before trade as the shareholder’s endowment.

Universal owners. There are K universal owners. Each universal owners holds an appreciable endowment of

firm shares. Universal owners do not alter their endowment through buying or selling shares.16 Universal owners

can have either brown or green preference. We refer to universal owners with brown preferences as brown owners

and refer to universal owners with green preferences as green owners. The preferences of universal owners are

determined by independent draws from a Bernoulli distribution. With probability γ , the draw results in assigning

green preferences to the universal owner; with probability 1−γ , the universal owner is assigned brown preferences.

The assignment is private information of the universal owner receiving the assignment. We refer to γ as green

sentiment because it measures the extent to which universal owners have an inherent preference for increased

greenness.

Our assumption that universal owners may have green preferences has some empirical support. Amel-Zadeh

and Serafeim (2018) report that 25% of large non-ESG institutional investors responding to their survey indicated

that they factor in the ESG effects of corporate policies because considering ESG effects is an ethical responsib-

ility. Of course, more institutional investors referred to purely financial motivations for considering ESG effect.

Moreover, survey evidence raises considerable selection bias concerns. However, as we will show, even levels

15The green benefit, G̃(a′′)− G̃(a′), is a public good whose value depends on the overall environmental impact of the proposal. Thus,
regardless of whether an agent’s portfolio is diversified or concentrated in a single firm, the green benefit represents all effects of the proposal
on the environment, including the effects engendered by other firms modifying their policies in response to the targeted firm’s adoption of the
proposal.

16Thus, we assume that the size of institutional share blocks is exogenous. This assumption is a reasonable at least as an approximation. It
is doubtful that institutions optimize their holdings simply to defeat ESG proposals. Most institutional shareholdings results from indexing.
Even if an institutional investor is not an indexer, fighting ESG is probably a very minor concern relative to the other considerations, e.g.,
mandates, rank in league tables, etc.
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of green sentiment an order of magnitude less than reported in Amel-Zadeh and Serafeim (2018) can generate

interesting results in our setting.

The monetary payoffs to universal owners depend both on the effect that the proposal has on the value of their

share endowment and on reputation costs associated with voting in a fashion that indicates that they have brown

preferences. Universal owners are decisive in the sense that a proposal succeeds if and only if it is supported by

the majority of universal owners.17

Activists. The activist (he) has green preferences and the activist’s preferences are common knowledge. The

activist has no endowment of firm shares and acquires shares by trading with the atomistic shareholders. In order

to make a proposal at the shareholder meeting, the proposing shareholder must have a sufficient stake in the firm.

We capture this restriction by requiring the activist to acquire at least n shares.18

Atomistic shareholders. Each individual atomistic shareholder is endowed with infinitesimal shareholding. Col-

lectively atomistic shareholders are endowed with nAt. shares. Atomistic shareholders can trade their endowments.

For reasons discussed later when we examine the activist’s problem, the greenness of atomistic shareholders will

have no effect on their behavior. Thus, we impose no restrictions on the portion of activists who have green

preferences.

2.2.3 Timing

The sequencing of event in the model is provided below.

Activism phase:

Initiation phase: At date 0, the activist decides whether to initiate activism. If the activist initiates, the activist

attempts to acquire shares of the firm and pays an investigation cost, c.

Launch phase: At date 1, if the investigation yields a proposal, the activist decides whether to launch a campaign

by submitting a proposal to shareholders; if investigation does not yield a proposal, the activist does not submit

a proposal.

Voting phase:

At date 2, if the campaign is launched, shareholders vote on the proposal. If passed, the proposal is implemented.

17Our analysis presumes that green owners can make voting decisions that reflect their environmental preferences. We are not aware of any
jurisdiction that forbids owners from voting on proposals based on their environmental and social (ES) preferences. However, there are legal
questions related to whether funds pursuing ES goals can be included as investment options in ERISA-qualified pension plans. Managers of
ERISA-qualified pension plans must ensure that all of the funds available for employee selection make investment/voting decisions based on
the objective of maximizing returns and minimizing risk. In 2020, the Trump administration’s Department of Labor, through the “Prudence and
Loyalty in Selecting Plan Investments and Exercising Shareholder Rights” rule, defined the scope fund ES investing and activism consistent
with this objective. In 2021, the Biden administration’s Department of Labor amended the rule in ways that some argue expanded the scope
for ES-based activism and portfolio choice. In 2023, Congress passed a bill that reversed the Biden administration’s revisions. However, the
bill was vetoed by President Biden and thus did not become law (Reuters, 2023).

18In the US, the ownership threshold is quite modest: owning between $2,000 and $25,000 worth of firm shares depending on the length of
time the shares have been held. In the UK, the threshold is much higher: a 5% ownership stake is required to compel inclusion of a proposal
on the agenda of the annual general meeting.
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At date 3, environmental and monetary outcomes are realized.

3 Activism phase

We initiate our analysis by considering the activism phase, the problem of an activist deciding whether to initiate

and launch an activist campaign. Initiation of the campaign involves buying a stake in the firm and then investig-

ating, i.e., attempting to come up with a concrete proposal that, if adopted, will change the firm’s carbon footprint

and will be acceptable to universal owners with green preferences. If the activist comes up with a proposal, the

activist then decides whether to launch a campaign, i.e., submit the proposal at the shareholder meeting.

Shareholder voting only affects the activist in so far as it determines the probability that the activist’s proposal

succeeds, i.e., is approved by shareholders. Therefore, in this section, we assume an exogenous probability that

the proposal will succeed, denoted by ρ . ρ will be endogenized in Sections 4 and 5.

The activist has wealth b+c and is liquidity constrained. If he initiates activism and attempts to acquire shares,

he pays an investigation cost c and invests all of his remaining wealth, b, in the firm. Thus, the activist purchases

b/p0 shares from the atomistic shareholders, where p0 is the trading price, determined in the equilibrium.

With probability π , investigation yields a proposal. With probability 1− π , investigation fails to yield a

proposal. If investigation yields a proposal, the value of the firm, if the proposal is submitted and succeeds,

is V (S), and the green payoff is G(S). If the proposal fails, i.e., no proposal is produced by investigation, or

a proposal is produced but not submitted, the value of the firm and the green payoff will be V (F) and G(F),

respectively. Thus, we can think of (V (F),G(F)) as representing the value of the firm and green payoff under the

firm’s status quo policies. In order to avoid considering trivial cases, we assume that (a) there is tradeoff between

value maximization and maximizing green payoffs, and (b) despite the value reduction produced by adopting the

proposal, its adoption is preferred by green owners, i.e., we assume that

(a): G(S)> G(F) and V(F)>V (S), (3)

(b): V (S)+β G(S)>V (F)+β G(F). (4)

Equation (3) implies that, absent the reputation costs produced by opposing the proposal, brown owners prefer

rejection of the proposal. Equation (4) ensures that, if the firm is owned entirely by one green owner, even absent

reputational considerations, the owner prefers acceptance of the proposal. Because the green payoff does not vary

with the fraction of the firm owned by a green agent, but the value of a green owner’s claim on the firm is less than

the value of the whole firm, equation (4) ensures that green owners will always support the proposal regardless of

the degree to which universal owners’ shareholdings are dispersed.

We aim to determine the conditions for the existence of an activism equilibrium. In an activism equilibrium,
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the activist plays the activism strategy: the activist initiates activism and, when investigation yields a proposal,

launches a campaign. In an activism equilibrium, other agents’ beliefs are consistent with the activist following

the activism strategy. When other agents conjecture that the activist plays the activism strategy, they estimate that

the proposal will be implemented with probability π ρ and, with probability 1− π ρ , will not be implemented.

When the activist attempts to purchase shares from the atomistic shareholders, these shareholders will post ask

prices for their shares. Like the atomistic shareholders in Grossman and Hart (1980), atomistic shareholders do

not believe that the ask prices they post will have any effect on whether the activist succeeds in purchasing a

stake and launching the campaign. Thus, they conjecture that green payoffs will not vary with the ask price they

set. This implies, as shown by equation (2), that the ask price set by the atomistic shareholders does not depend

on whether their preferences are brown or green. If an atomistic shareholder sells to the activist at ask price pa,

the monetary payoff to the shareholder equals pa dn, where dn ' 0 represents the infinitesimal share endowment

of an atomistic shareholder. If an atomistic shareholder does not sell, her payoff equals the conjectured value

of her share endowment,
(
π ρ V (S) + (1− π ρ)V (F)

)
dn. Bertrand competition among atomistic shareholders

implies that the activist can purchase shares at the lowest price consistent with selling being a best response for

the atomistic shareholders, i.e., the equilibrium ask price p0, is given by

p0 = π ρ V (S)+(1−π ρ)V (F). (5)

Thus, in an activism equilibrium, the activist acquires b/p0 shares. The activist’s valuation of the firm is the same

as the atomistic shareholder’s valuation, namely π ρ V (S)+ (1−π ρ)V (F). Thus, equation (5) shows that, if the

activist initiates, the expected wealth of the activist equals b. The activist’s green payoff equals π ρ G(S)+ (1−

π ρ)G(F). If the activist does not initiate, his monetary payoff equals b+ c and his green payoff equals G(F).

Thus, initiation is a best reply for the activist if and only if

π ρ β
(
G(S)−G(F)

)
≥ c. (6)

We term this condition the initiation condition. Equation (6) reveals that initiation depends only on the act-

ivist’s valuation of the expected green benefit, π ρ β
(
G(S)−G(F)

)
, and the cost of initiation, c. Even though

the activist’s utility depends on wealth, campaign initiation does not depend on the effect of the proposal on firm

value. The monetary gain from activism is proportional to the difference between the activist’s share valuation and

the share price. The share price equals the share value assigned by atomistic shareholders, which is the same as

the activist’s valuation. So the monetary effect of share acquisition is zero. Of course, the monetary effects of the

proposal on firm value determine atomistic shareholders’ ask price and thus affect the fraction of the firm acquired

by the (liquidity constrained) activist. However, the green benefit is a public good, so the activist’s fractional
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share ownership has no effect on the size of the activist’s expected green benefit. Consequently, in contrast to

activism’s benefit in traditional models—capital gains from increasing share value—the benefit of ESG motivated

share acquisition—a greener environment—cannot be appropriated by target shareholders through the ask prices

they set for their shares.19

If we modeled an activist with a pre-activism, “toehold” ownership stake, say no, the activist would factor in

the effect of activism on toehold value, the difference between the value of the toehold after and before campaign

initiation (assuming no anticipation), −no π ρ (V (F)−V (S)). By assumption, V (F)−V (S) > 0. Thus, toehold

stakes would make the initiation condition harder to satisfy. Hence, for ESG activists, toeholds are impediments

to activism. In contrast, in traditional models of activism, toeholds are typically facilitators of activism and

sometimes necessary for activism (Eckbo, 2009).20

Another necessary condition is that the share acquisition by the activists is feasible, i.e., activist’s demand is

less than the potential supply of shares provided by the atomistic shareholders, nAt., and the activist can acquire

sufficient shares to qualify for submitting a proposal, n. These constraints impose another necessary condition for

an activism equilibrium which we term the ownership condition:

n≤ b
p0
≤ nAt., where p0 = π ρ V (S)+(1−π ρ)V (F). (7)

The final condition for an activism equilibrium that it is incentive compatible for the activist, after acquiring shares

and learning that a proposal has been developed, to launch the activism campaign by submitting a proposal. The

incentive compatibility of launching is not entirely obvious because, at the time the launch decision is made, the

activist, who factors monetary payoffs into his utility function, has an ownership stake. Launching the campaign

will reduce the monetary value of the activist’s holding. However, as we show the proof of Lemma 1, the sat-

isfaction of the initiation and ownership conditions implies the satisfaction of the launch condition. In fact, as

following lemma asserts, the ownership and initiation conditions are necessary and sufficient for the submission

of a proposal that has a positive probability of passing.

Lemma 1. An equilibrium exists in which the green proposal is adopted with positive probability if and only if

the initiation condition, equation (6), and the ownership condition, equation (7), are satisfied.

19See Eckbo (2009) for a survey of the literature on non-ESG control-motivated share acquisitions.
20Also, if we extended the model by dropping the assumption that the greenness of the activist is common knowledge and posited instead

that some fraction of activists are fake/pseudo greens, these pseudo greens would have an incentive to initiate campaigns, drive down the stock
price, but not follow up by launching, and thereby profit from the increased value of their shareholding. Rational atomistic investors would
anticipate this behavior in equilibrium. This would lead to ask prices exceeding the monetary value of shares held by truly green activists. We
will discuss this scenario more in subsequent drafts of this paper.
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4 Voting phase: Single universal owner

In this section, we consider the case where there is a single universal owner, i.e., K = 1, and a proposal has been

submitted. Because only the atomistic shareholders trade with the activist, the combined holdings of the activist

and the atomistic shareholders will equal the holdings of the atomistic shareholders before trade, nAt.. Because

one share is outstanding, the universal owner’s shareholding, which we represent with NU , equals 1−nAt.. Thus,

to ensure the universal owner is decisive, we assume in this section that nAt. < 1/2. As we discuss in detail in

the following section on voting by multiple universal owners, this assumption is much stronger than required to

ensure universal owner control in real-world proxy contests.

The universal owner decides between voting yes, v = 1, or no, v = 0 on the proposal. The monetary payoff

to the universal owner has two components, the value of the universal owner’s stake in the firm, NU V , which

depends on whether the proposal succeeds, S, or fails, F , and a reputation cost, denoted by R > 0. This cost is

incurred whenever the owner votes no on the proposal. If the owner is green, the owner’s utility also contains a

green payoff component, G, which also depends on the success or failure of the proposal. Thus the utilities of a

green, UG, and brown, UB, single universal owner are given by

UG(v,x) = NU V (x)+βG(x)−R1{v=0}, UB(v,x) = NU V (x)−R1{v=0}, v ∈ {1,0}, x ∈ {S,F}.

Because there is only one universal owner, the universal owner decides the outcome of the vote, i.e., x = S if and

only if v = 1. Again, to avoid consideration of the trivial case where the proposal is always accepted, we assume

that, even factoring in the reputation penalty, a brown owner prefers proposal failure, i.e., UB(0,F) > UB(0,S),

i.e.,

NU V (F)−R > NU V (S).

Condition (4) ensures that the green owner prefers proposal success. The probability that the universal owner is

green is given by γ ∈ (0,1). Thus, when there is a single universal owner, the voting phase is trivial: the proposal

succeeds with probability ρ = γ . These results are obvious but, for the sake of comparison with the multiple

universal owner case, we record them below.

Result 1. When there is a single universal owner, the proposal passes if and only if the universal owner is green,

which occurs with probability γ . Thus, the probability that a green proposal is adopted equals π γ , and the adoption

probability is strictly increasing in green sentiment, γ .
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5 Voting phase: Multiple universal owners

5.1 Assumptions: Ownership structure

Assume that there are K universal owners and let K := {0,1,2, . . . ,K}. Let nU
i represent the shareholdings of

universal owner i ∈ K. Assume that the universal owner share blocks are equal sized, i.e., nU
i = NU/K, i ∈ K,

where, as in the previous section, NU represents the total shareholdings of the universal owners. The notation

nU
i is thus simplified to nU henceforth. The assumption that block sizes are exactly equal is not essential for the

analysis. However, it does yield a simple necessary and sufficient condition for the number of universal owners

voting yes alone determining the effect of universal owner votes on the outcome. Weaker, but more complicated,

conditions on block sizes could also ensure the number of yes votes determines the voting outcome. If block sizes

varied greatly, then universal owners’ effect on the voting outcome would be a function of the subsets of universal

owners who vote yes. This would greatly complicate the analysis.

We assume, consistent with actual practice, the universal owners always vote their shares (Brav et al., 2022).

We also assume that universal owners are decisive, i.e., whether a proxy proposal passes depends only on the votes

of universal owners. Under plurality voting, the standard voting rule in corporate voting, universal owners will

be decisive if and only if the number of universal owner yes votes at least equals m, where m = bK/2c+1. This

condition ensures that the proposal will pass when supported by the majority of universal owners, and nAt./nU <

K−2bK/2c. This condition ensures that, regardless of the votes of other shareholders, the proposal will not pass

whenever less than m universal owners support the proposal.

Remark 1 (Decisiveness). These conditions will be satisfied if nAt. < nU and K is odd. We assume that these

conditions are satisfied in the subsequent analysis. We also restrict attention to cases where no single universal

owner is decisive, i.e., m > 1. Collectively these restrictions imply that K is odd, m ≥ 2, and K ≥ 3. Next, note

that the fact that, K is odd implies that K−1 is even, hence the threshold for success, m, equals (K−1)/2+1.

Our conditions for decisiveness are probably much stronger than required in real-world corporate voting. They

ensure that even if other shareholders block vote against the majority of universal owners, they cannot affect the

outcome of corporate votes. In fact, non-institutional investors do not block vote. Moreover, on average, only

30% of non-institutional shares are voted while virtually 100% of institutional shares are voted (Brav et al., 2022).

Hence, because non-institutional investors hold approximately 30% of the shares of large U.S. firms, they rep-

resent about 9% of the shares voted in corporate proxy contests. Thus, although our implementation of universal

owner decisiveness is quite stylized, universal owner decisiveness in proxy contests plausibly approximates many

corporate votes. Because the ESG activist is one of the other shareholders, our analysis implicitly assumes that the

ESG activist’s stake is small and thus the ESG activist cannot affect the outcome of the proxy contest through his

proxy votes. In fact, the shareholdings of ESG activist making proxy proposals are frequently quite small (Dimson
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et al., 2015; Barko et al., 2021; Lopez de Silanes et al., 2022).

To simplify notation, let w(x), x = S,F , represent the value of an individual universal owner’s stake in the firm

conditioned on the success, S, or failure, F , of the proposal, i.e., w(x) := nU V (x), x = S,F . Also let ∆w := w(F)−

w(S) represent increase in the value of owner i’s shareholdings if the proposal fails and let ∆G = G(S)−G(F) be

increase in the green payoff if the proposal passes. Let ri be the reputation cost incurred by the universal owner i

if i votes no. Let vi represent the vote of universal owner i ∈K, where vi = 1 if the vote is yes, and vi = 0 if the

vote is no. Let vvv := (v1,v2, . . .vK) represent the vector of universal owner votes.

Using these definitions and the decisiveness condition (see Remark 1), we can express the utility of green and

brown owners, uG
i and uB

i , as follows:

uG
i (vvv) :=w(F)+β G(F)+(β ∆G−∆w)1∑ j∈K v j≥m− ri1vi=0, (8)

uB
i (vvv) :=w(F)−∆w1∑ j∈K v j≥m− ri1vi=0. (9)

Remark 2. Condition (2) ensures that β ∆G−∆w > 0. Voting for the proposal weakly increases the probability

that the proposal passes and avoids the reputation cost triggered by a no vote (vi = 0). Thus, equation (8) shows

that voting for the proposal is a strictly dominant strategy when the universal owner is green. For this reason,

the voting game is equivalent to a game where all universal owners are brown. For each universal owner, nature

makes an independent draw from a Bernoulli distribution, based on this draw, with probability γ ∈ (0,1), nature

privately informs the universal owner that nature will vote her shares in favor of the proposal, and with probability

1− γ , privately informs the universal owner that she can decide how to vote her proxies. Thus, we can focus all of

our analysis on the voting strategies of brown universal owners.

As in the single universal owner case, we assume that, even net of the reputation penalty incurred by the

universal owner, each brown universal owner, if she alone decided the outcome of the vote, would oppose the

proposal, i.e., we assume that ri < ∆w. Because, ri < ∆w, if brown owners voted “as if pivotal,” i.e., each voted

as if her vote determined whether the proposal passes, all brown owners would vote no. When brown owners vote

yes, they hope that the proposal will fail. Thus, brown votes in favor of the proposal will be termed “insincere”

votes. Also, to further simplify notation, let yi := ri/∆w; yi represents normalized reputation cost of voting no on

the proposal incurred by universal owner i. Our assumptions imply that yi ∈ (0,1) for all i ∈K.

Each universal owner casts a vote, either yes or no on the proposal. Voting yes produces 1 yes vote and

voting no produces 0 yes votes. Let σi represent the probability that a universal owner, when brown, votes yes.

The probability that universal owner i casts a yes vote, which we represent with ti, is given by ti = t(σi), where

t : [0,1]→ [0,1] is the function t(σ) = γ + (1− γ)σ , σ ∈ [0,1]. Thus, the vote of each universal owner i is

a Bernoulli distributed random variable, B̃i, equal to 1 with probability t(σi) and equal to 0 with probability

1− t(σi).
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Let ttt := (t1, t2, . . . tK) represent the vector of yes-vote probabilities. Since the mixed strategies of the universal

owners are jointly independent and independent of nature’s brown/green type assignment, the sum of the votes,

S̃(t), is a Poisson-Binomial (PB) random variable, i.e.,

S̃(ttt) := ∑
k∈K

B̃(tk). (10)

We will denote the sum of yes votes, S̃(ttt), the sum excluding universal owner i with S̃−i(ttt), and the sum excluding

universal owners i and j, j 6= i, by S̃−i j(ttt), i.e.,

S̃−i(ttt) := ∑
k∈K\{i}

B̃(tk), (11)

S̃−i j(ttt) := ∑
k∈K\{i, j}

B̃(tk). (12)

Note that S̃(ttt)≥m if and only if universal owner i votes yes and at least m−1 other universal owners vote yes

or universal owner i votes no, and at least m other universal owners vote yes. Hence,

P[S̃(ttt)≥ m] = tiP[S̃−i(ttt)≥ m−1]+ (1− ti)P[S̃−i(ttt)≥ m] = P[S̃−i(ttt)≥ m]+ tiP[S̃−i(ttt) = m−1]. (13)

Using equation (13), it is apparent that

Lemma 2. If S̃(ttt) is PB(t1, t2, . . . , tK) distributed, then

∂

∂ ti
P[S̃(ttt)≥ m] = P[S̃−i(ttt) = m−1],

∂ 2

∂ ti∂ t j
P[S̃(ttt)≥ m] = P[S̃−i j(ttt) = m−2]−P[S̃−i j(ttt) = m−1], if i 6= j,

∂ 2

∂ t2
i
P[S̃(ttt)≥ m] = 0.

5.2 Nash equilibria

The “greenness” of other universal owners is private information. Thus, a brown universal owner does not know

which other universal owners are green. Having rational expectations, she conjectures each of the other universal

owners is green with probability γ . Suppose that the candidate equilibrium strategy is σσσ . Let τ : [0,1]K → [0,1]K

be the map defined by

τ(σσσ) :=
(
t(σ1), t(σ2), . . . , t(σK)

)
.
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The distribution of yes votes under strategy vector σσσ is Poisson-Binomial (PB) where the yes vote probability for

each Bernoulli random variable is given by ti = t(σi). Hence the distribution of yes votes is PB
(
t(σ1), t(σ2), . . . , t(σK)

)
=

PB(τ(σσσ)). Let ui represent the payoff to universal owner i when i is brown in the mixed strategy extension of a

brown owner’s payoff function defined by equation (9).21

The linearity of payoffs in mixed strategies implies that the payoff to a brown universal owner who plays σi,

given that other universal owners play σσσ , is given by

ui(σi|σσσ−i) = ui(0|σσσ−i)+σi

(
ui(1|σσσ−i)−ui(0|σσσ−i)

)
.

The first term in this expression represents a brown owner’s payoff from voting no. The second term represents

the difference between a brown owner’s payoff when she votes yes and votes no. The difference between the yes

and no payoffs results from two effects: (a) voting yes avoids the reputation cost but (b) increases the probability

that the proposal will pass, which reduces a brown owner’s payoff by ∆w. The proposal will pass with i’s support

but not without i’s support if and only if m− 1 other universal owners vote for the proposal. Thus observations

verify that

ui(0|σσσ−i) = wF −∆wP[S̃−i(τ(σσσ))≥ m]− ri,

ui(1|σσσ−i)−ui(0|σσσ−i) = ri−∆wP[S̃−i(τ(σσσ)) = m].

Thus, expressed in terms of normalized reputation costs, yi, the payoff to i from strategy σi given that the other

brown owners play σσσ is given by

ui(σi|σσσ−i) = ui(0|σσσ−i)+σi
(
ui(1|σσσ−i)−ui(0|σσσ−i)

)
=

ui(0|σσσ−i)+σi ∆w
(
yi−P[S̃−i(τ(σσσ)) = m−1]

)
.

(14)

Next note that u(0|σσσ−i) is constant in σi as is the term in parenthesis on the right-hand-side of the last line of

equation (14). Thus, the set of best responses of i to σσσ , which we represent by BRi is given by

BRi(σσσ) =


{1} yi−P[S−i(τ(σσσ)) = m−1]> 0,

[0,1] yi−P[S−i(τ(σσσ)) = m−1] = 0,

{0} yi−P[S−i(τ(σσσ)) = m−1]< 0.

(15)

21Because, as explained in Remark 2, the game is effectively played by the universal owner only when the owner is brown, we do not
subscript or superscript the utility function with B, thereby reducing the notational burden.
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The best response correspondence, BR, for the game is given by

BR(σσσ) :=
(
BR1(σσσ),BR2(σσσ), . . . ,BRK(σσσ)

)
. (16)

A Nash equilibrium of the voting game, is a strategy vector, σσσ∗, satisfying σσσ∗ ∈ BR(σσσ∗).

5.3 The potential for the game and its properties

There are many Nash equilibria of the voting game, For reasons discussed below, we focus our attention on

strategy vectors that maximize a potential function. The potential function we employ, Π : [0,1]K → R, is defined

below.

Π(σσσ) = ∆w

(
∑

k∈K
σk yk−

P[S(τ(σσσ))≥ m]

1− γ

)
. (17)

Noting that ∂

∂σi
t(σi) = 1− γ and ∂

∂σi
t(σ j) = 0, j 6= i, we see the composition rule for differentiation and

Lemma 2 imply that
∂

∂σi
P[S−i(τ(σσσ))≥ m] = (1− γ)P[S−i(τ(σσσ)) = m−1].

Thus, using the definition of Π (equation (17)) we see that

∂

∂σi
Π(σσσ) = ∆w(yi−P[S−i(τ(σσσ)) = m−1]). (18)

Differentiation of equation (14) and inspection of (18) imply that

∂

∂σi
ui(σi|σσσ−i) =

∂

∂σi
Π(σσσ). (19)

Thus, Π is an exact potential for the voting game which implies that voting game is an exact potential game

(Monderer and Shapley, 1996). The potential is not unique. Adding any function that is independent of the

strategic decisions of the players to a potential function yields another potential function. Potential games are

games in which all agents’ gain from changing strategies, in our case, from voting no to voting yes is determined

by a single function, the potential of the game, in our case Π. Brown universal owners act as if they control one

component of a single function, Π, and use their control to select strategies that maximize Π. Potential maximizers

are always Nash equilibria. To see this, note that first-order necessary conditions for σσσ∗ being a local maximizer
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of Π, i.e.,

∂

∂σi
Π(σσσ∗)> 0 =⇒ σi = 1,

∂

∂σi
Π(σσσ∗)< 0 =⇒ σi = 0,

∂

∂σi
Π(σσσ∗) = 0 =⇒ σi ∈ [0,1],

are identical to the best response conditions for a Nash equilibrium (see equation (15)). Thus, any strategy vector,

σσσ , that is a local maximizer of the potential function is a Nash equilibrium strategy vector. However, because the

first-order conditions are not sufficient to ensure that a strategy vector is a local maximizer of the potential, Nash

equilibria need not be potential local maximizers, and a fortiori, Nash equilibria need not be potential maximizers.

So the set of potential maximizers is subset of the set of Nash equilibria, and thus potential maximization can be

viewed as a Nash equilibrium refinement (Monderer and Shapley, 1996).

In potential games, such as coordination games (Chen and Chen, 2011), congestion games (Sandholm, 2002),

voting games (Bouton et al., 2021), potential maximization is commonly used to refine the set of Nash equilibria.

In potential games, potential maximizers have many “nice properties” with respect to learning dynamics, stability,

and robustness to perturbations of the information environment. Young (1993, 2020) shows in a noisy learning

setting where agents have a vanishingly small probability of making errors, agents’ strategy vectors converge to

potential maximizing strategies. Carbonell-Nicolau and McLean (2014) show that the set of potential maximizers

contains a strategically stable set of pure strategy equilibria and that, in generic potential games, potential max-

imizers are perfect and essential Nash equilibria. Ui (2001) shows that potential maximizers are robust to the

introduction of incomplete information. Alós-Ferrer and Netzer (2010) show that, when agents’ probabilities of

choosing strategies are determined by the quantile (i.e., logit) best response function, which is frequently used to

model the behavior of subjects in economic experiments (McKelvey and Palfrey, 1995), the limiting distribution

of agent strategies, as the error probability converges to zero, is a potential maximizing solution.

An alternative approach to modeling voting is to model collusive solutions. However, in the context of our

framework, collusive solutions seem quite hard to implement and produce predictions that are inconsistent with

observed voting behavior. By definition, collusive mechanisms are not Nash and thus not self enforcing. The

objective of collusion is the maximization of joint owner welfare conditioned on the actual distribution of green

and brown preferences across owners. Preferences are private information. So any collusive mechanism would

involve some sort of side payments between owners to ensure that type (brown or green) revelation is incentive

compatible. We see little or no evidence for such side-payment mechanisms. Moreover, the efficient collusion

would result in voting outcomes where either (a) exactly m− 1 owners vote in favor of the proposal or (b) all

owners vote for the proposal. Actual shareholder vote distributions do not appear to be consistent with the voting
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patterns implied by collusion.

In contrast, our solution concept, potential maximization, implements self-enforcing Nash equilibria. No

side-payments are required for implementation. In contrast to many other Nash equilibria of the voting game,

there exist long-run stochastic learning dynamics which lead to potential maximizing solutions (Alós-Ferrer and

Netzer, 2010). Young (2020) asserts that Nash equilibria resulting from learning dynamics can be viewed as

evolved “social conventions.” In fact, as we will show in the subsequent analysis, the social convention that is

potential maximizing is extremely simple and intuitive. Moreover, the shareholder vote distributions resulting

from our analysis are not obviously inconsistent with observed voting patterns in proxy contests.

5.4 Potential maximization

It is well known that, in potential games, pure strategy potential maximizers always exist. In Appendix Section B

we show that, for almost all parameterizations of our voting game, no mixed strategy equilibrium maximizes the

potential function. Because a pure strategy potential maximizer always exists and, generically, mixed strategy

maximizers do not, in the subsequent analysis, we consider only pure strategy vectors.

5.4.1 o-strategies and Πo functions

Focusing on pure strategies considerably simplifies the analysis. Because universal owners have only two pure

strategies: vote yes, σ = 1, or vote no, σ = 0, determining the set of universal owners who vote yes determines the

effect of brown owners on the probability that the proposal passes. The effect of each universal owner vote is the

same. However, ri, the reputation cost saving resulting from a yes vote, varies across universal owners. Inspection

of the potential function shows that its maximization requires that the set of universal owners who vote yes when

brown contains the universal owners with the largest reputation costs. Thus, without loss of generality, and with a

great deal of notational simplification, assume henceforth that reputation costs are weakly decreasing in the index

of the universal owner, i.e.,

∆w > r1 ≥ r2 ≥ r3 . . .rK−1 ≥ rK > 0.

Thus assumption implies that normalized reputation costs are also weakly decreasing in the index of the universal

owner.

For each o ∈K, define an o-strategy as follows:

o-strategy :


if i ∈ {1,2, . . . ,o} universal owner i votes yes, i.e., σi = 1, when i is brown,

if i ∈ {o+1,o+2, . . . ,K} universal owner i votes no, i.e., σi = 0, when i is brown.
(20)

These arguments show that one of these o-strategies is a potential maximizer. Next note when o is greater than
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m−1 but less than K, then an o-strategy is not a potential maximizer. Under such strategies, the probability that the

proposal passes equals 1 yet some brown owners vote no, and thus incur a reputation penalty without affecting the

outcome. Thus, when identifying the o-strategies that maximize the potential, we need not consider o-strategies

where o ∈ {m+1,m+2, . . . ,K−1}. Hence, the set of candidate pure strategy potential maximizers is given by o

strategies where o ∈ O := {0,1,2, . . .m−1,K}.

Henceforth, an o-strategy refers to o-strategy in which o ∈O. We will term the o = K-strategy the capitulation

strategy, where brown owners vote for the proposal even though each brown owner is better off if the proposal

fails. We call all o-strategies such that o 6= K, non-capitulation strategies. We term a non-capitulation strategy

where o 6= 0 a partial resistance strategy, and term the o = 0 strategy the complete resistance strategy and the

o = m−1 the minimal resistance strategy.

Under an o-strategy, the distribution of votes has the following properties, for i ∈ O, universal owner i votes

yes when brown. Because green universal owners always vote yes, the universal owners in {1,2, . . .o} will always

cast o yes votes. The K−o universal owners in {o+1,o+2, . . . ,K} will vote no (σi = 0) if they are brown and

vote yes (σi = 1) if they are green. Thus, the sum of the universal owners’ yes votes from universal owners in

K\O is a Binomially distributed random variable with N = K−o and success probability t = γ . Let Zo represent

this random variable. Hence, the proposal will pass if and only if o+Zo ≥m, or equivalently, Zo ≥m−o. Hence,

probability that the proposal will pass, ρ , given that the o-strategy is played, is thus given by

ρ(o) := P[Zo ≥ m−o] = B̂(m−o;K−o,γ).

Consequently, the value of the potential if brown universal owners play strategy o ∈ O, which we represent by

Πo, is given by

Πo = ∆w
(

Σ
o
1−

B̂(m−o,K−o,γ)
1− γ

)
, where Σ

o
1 :=

o

∑
i=1

yi. (21)

The arguments developed thus far establish our first basic characterization of potential maximizers.

Proposition 1. There exists an o-strategy, o ∈ O, such that o maximizes the potential, Π, i.e.,

max
σ∈[0,1]K

Π(σσσ) = Πo.

Let Π∗ represent the maximum value of the potential under the o-strategies, i.e.,

Π
∗ := max

o∈O
Πo, (22)
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and let o∗ be the argmax of Π∗, i.e., the set of o-strategies that attain the maximum payoff,

o∗ := {o ∈ O : Πo = Π
∗}.22 (23)

Proposition 1 shows that Π∗ is the maximum value for the potential and that any strategy o ∈ o∗ is a maximizer

for the potential. Generically, there is a unique potential maximizing strategy, o∗. Thus, the probability that the

proposal will pass under the potential maximizing strategy, ρ∗, is

ρ
∗ = B̂(m−o∗;K−o∗,γ).

5.4.2 Characterization of o strategies

In this section, we characterize how changes in o, the number of owners who vote yes if brown, affect the value

of the potential. The first differences between the potential’s value at adjacent non-capitulation o-strategies do not

have the single-crossing property with respect to green sentiment, γ . In other words, the set of γ ∈ (0,1) such

that Πo+1−Πo > 0 is generally not an interval. The intuition for the failure of single crossing, which is formally

established in the appendix (Lemma A.1), is fairly straightforward: incrementing o to o+1 has two effects on the

potential. First, incrementing ensures that i+1th owner will not incur reputation cost ro+1. This effect increases

the potential and is independent of the level of green sentiment. Second, incrementing increases the marginal pass

probability, the difference between the pass probability under the o+ 1 and o strategies. This effect decreases

the potential. The increase in the marginal pass probability will be small both when γ is very small, because the

proposal is quite likely to fail even if i+ 1th owner votes yes, and when γ is very large, because the proposal is

quite likely to pass even if i+1th owner votes no. Thus, the effect of incrementing on the potential can be positive

for extreme values of γ and negative for intermediate values.

Because first differences do not have the single-crossing property, it is difficult to directly characterize the

monotonicity properties of the potential evaluated at different o-strategies. However, as shown in the appendix

(Lemma A.1), second differences do have the single-crossing property. For this reason, it is possible to characterize

the convexity/concavity of the relationship between the non-capitulation o-strategies and the value of the potential.

Convexity and concavity place some restrictions on which o-strategies can maximize the potential.

Remark 3 (Sequential convexity/concavity). Convexity and concavity are defined for the sequence of o-strategies,

o = 0,1,2, . . .m− 1 using the standard definitions of sequential convexity/concavity which are analogous to the

definitions of convexity/concavity for functions defined on the real line. Thus, convexity/concavity are defined

as follows: Πo, is concave (convex) at o′, if (Πo′+1 +Πo′−1)/2 ≤ (≥) Πo′ . Πo is concave (convex) if for all

22When the set o∗ is singleton, by a slight and very common abuse of notation, we represent o∗ with the unique element in the set and call
this element o∗.
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o ∈ {1,2, . . . ,m−2}, Πo is concave (convex) at o.

Exploiting the single-crossing property of the second differences, we are able to provide, in Proposition 2

below, fairly sharp characterizations of convexity/concavity of the map o → Πo that defines the value of the

potential at different o-strategies.

Proposition 2. For o ∈ {1,2, . . . ,m−2} and m≥ 3,23

(a) Low green sentiment: γ < 4/(K+3) is a sufficient condition for the map o→Πo being concave. If all universal

owners m,m+1, . . . ,K have the same reputation costs, i.e., ∆yi := yi+1−yi = 0, for all i ∈ {m,m+1, . . . ,K−

1}, this condition is also a necessary.

(b) Intermediate green sentiment: If γ ∈ [4/K+3,1/2] and the differences between the reputation costs of the brown

owners are constant, i.e., for some constant c ≤ 0, ∆yi = yi+1− yi = c, for all i ∈ {m,m+ 1, . . . ,K− 1}, the

map o→Πo is initially concave and ultimately convex, i.e., there exists no o1,o2 ∈ O\{K} such that o1 < o2

and Π is strictly convex at o1 and strictly concave at o2.

(c) High green sentiment: γ > 1/2 is a necessary condition for the map o→ Πo being convex. If all universal

owners have the same reputation cost, this condition is also sufficient.

Roughly speaking, the intuition for Proposition 2 is as follows: the marginal effect of decreasing resistance,

i.e., incrementing o to o + 1, is the difference between the marginal reputation cost savings benefit, i.e., the

reputation costs of the i+ 1th brown owner, ri+1, and the marginal pass probability cost, i.e., the increase in the

pass probability caused by one more brown owner voting yes.

When green sentiment, γ , is low, the proposal is likely to fail even when a few brown owners vote yes. So,

when the number of brown owners voting yes, o, is small, the increase in the pass probability caused by one

more brown owner voting yes is small. When o is large, a brown owner yes vote is likely to be marginal; so an

increase in o triggers a large increase in the pass probability. Thus, the marginal pass probability is increasing in o.

Because the map o→ ro is decreasing, the marginal reputation cost saving benefit of incrementing o is decreasing

in o. Thus, the marginal effect of incrementing o, the difference between the marginal reputation cost savings

benefit and the marginal pass probability cost, is weakly decreasing, i.e., the map o→ Πo is concave. This case

is characterized in part (a) of the proposition. Consequently, when green sentiment is low, potential maximization

involves “fine-tuning” the marginal tradeoff between the benefits and costs of resistance. The optimal o-strategy

incrementally adjusts in response to changes in the distribution of reputation costs and the level of green sentiment.

This case is illustrated in Panel A of Figure 1.24

In contrast, when green sentiment is fairly high, the proposal is likely to fail only when very few brown

owners support the proposal, i.e., o is small. In which case, incrementing o can engender a significant increase
23The excluded case, K = 3 and m = 2, is excluded simply because, in this case, there are only two non-capitulation strategies, o = 0 and

o = 1, so convexity/concavity of the sequence of o-strategies cannot be meaningfully defined.
24In order to make convexity/concavity easier to visually detect, the figures illustrate a case where the number of universal owners, 51, is

unrealistically large.
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in the pass probability. In contrast, if many brown owners are voting yes, i.e., o is large, the proposal is likely to

pass regardless of whether one more brown owner votes yes, i.e., o is incremented to o+ 1. Thus, the marginal

pass probability is decreasing in o. Because marginal reputation cost savings are independent of green sentiment,

the argument provided in discussion of the low green sentiment case shows that, in this case as well, marginal

reputation costs savings are weakly decreasing in o. However, marginal reputation cost savings vary only when

the reputation costs of universal owners vary. When all universal owners have the same reputation costs, marginal

reputation cost savings are constant in o. Thus, the marginal effect of incrementing o, the difference between

the marginal reputation cost savings benefit and the increased pass probability cost, is increasing, i.e., the map

o→ Πo is convex. This case is characterized in part (c) of the proposition. Consequently, when green sentiment

is fairly high, potential maximization involves optimizing over the two extreme resistance strategies, complete

resistance, o = 0, and capitulation, o = K. This case is illustrated in Figure 1. A case where capitulation is optimal

is illustrated in Panel C and a case where complete resistance is optimal is illustrated in Panel D.

At intermediate levels of green sentiment, the map o→ Πo is concave when o is small and convex when o is

large. In this case, the potential can either be optimized at intermediate levels of resistance, extreme resistance,

or capitulation. The only definite characterization of the optimal o-strategy in this case is that it cannot lie in the

interior of the region where o→Πo is convex. Since this region contains the large o strategies, brown resistance,

if it occurs, is fairly strong. This case is characterized in part (c) of the proposition and illustrated in Panel B of

Figure 1.

6 Comparative statics

In this section, we consider the effects of normalized reputation costs, green sentiment, and ownership dispersion,

on the likelihood that green proposals pass and the welfare of brown owners.

6.1 Reputation costs

Level Normalized reputation costs of a given owner, say i, increase when (a) the reputation cost of voting yes, ri,

increases or (b) the value difference between the green proposal and the brown status quo, ∆w, decreases. Increas-

ing normalized reputation costs, increases the gain to brown owners, per unit of value difference, from avoiding

the reputation costs that result from opposing green proposals. Thus, not surprisingly, increasing normalized repu-

tation costs reduces brown resistance, and thereby increases the potential maximizing number of brown owners

who vote yes, o∗. Because the distribution of yes-votes under strategy o′′ strictly first-order stochastically domin-

ates the distribution of yes votes under strategy o′ if and only if o′′ > o′, increasing o is equivalent to increasing

the pass probability.
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A. Low green sentiment (γ = 0.03) B. Intermediate green sentiment (γ = 0.27)

C. High green sentiment (γ = 0.48), capitulation D. High green sentiment (γ = 0.52), complete resistance

Figure 1: o-strategies and green sentiment. In the figure, the number of universal universal owners supporting the
proposal when brown, o, for different non-capitulation o-strategies is plotted on the horizontal axis. The value of
the potential under these strategies is plotted on the vertical axis, and represented by a blue dot. The value of the
potential under of the capitulation strategy, o = K, is represented by the red horizontal line. In all panels, K = 51,
m = 26. In panels A, B, and C, yyy = (0.02,0.02, . . . ,0.02). In Panel D, yyy = (0.01,0.01, . . . ,0.01). The optimal
o-strategy, o∗ is the o-strategy corresponding to the highest blue dot, unless this dot lies below the red line, in
which case o∗ = K.

Lemma 3. Suppose that yyy1 and yyy2 are two vectors representing normalized reputation costs. Then for any fixed

γ ∈ (0,1), if yyy2 ≥ yyy1, then o∗(yyy2) ≥ o∗(yyy1).25 Hence, increasing reputation costs increases the probability that

green proposals pass.

Dispersion Because we allow reputation costs to differ across universal owners, we can also examine the effect of

the dispersion of normalized reputation costs on the passing probability. If dispersion is defined using the standard

dispersion ordering, majorization (Marshall et al., 2011), increasing the dispersion of normalized reputation costs

can either increase or decrease o∗.26 Examples of cases where more dispersed vector of reputation costs leads to

higher values of o∗ and lower values of o∗ are provided in Appendix Section C.

Although no general relationship holds between majorization and the proposal pass probability, intuitively it

is fairly easy to see that, unless brown owners capitulate, it must be the case that the m universal owners with

the lowest normalized reputation costs vote against the proposal when they are brown. Reducing the normalized

25The ordering over normalized reputation costs vectors, yyy, is the standard component wise ordering. So, yyy2 ≥ yyy1 means that each component
of yyy2 is no less than the corresponding component of yyy1. In non-generic cases where either o∗(yyy1) or o∗(yyy2) is not singleton set, “o∗(yyy2) ≥
o∗(yyy1)” should be interpreted as maxo∗(yyy2)≥maxo∗(yyy1) and mino∗(yyy2)≥mino∗(yyy1).

26One vector, xxx′, is majorized by another vector, xxx′′, if xxx′ results from a series of Dalton inequality reducing transformations of xxx′′. See
Marshall et al. (2011) for a very detailed analysis of majorization.
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reputation costs borne by these low normalized reputation cost owners and transferring those costs to the m− 1

brown owners with the highest normalized reputation costs, who sometimes vote insincerely for the proposal,

increases the gain, saved reputation costs, from insincere voting. Thus, such transfers seem to favor more insincere

voting. Because such transfers increase the normalized reputation costs of the owners who already have the highest

reputation costs and reduce the normalized reputation costs of the owners with the lowest normalized reputation

costs, intuitively, such transfers can be viewed as increasing the dispersion of normalized reputation costs. To

convert this intuition into a formal result, we first define the notion of a high-low reputation cost spread.

Definition 1. Given two normalized reputation cost vectors, yyy′ and yyy′′, yyy′′ is high-low reputation cost spread of yyy′

if (a) yyy′′ 6= yyy′, (b) ΣK
1 (yyy
′′) = ΣK

1 (yyy
′), (c) y′′k ≥ y′k, for all k ∈ {1,2, . . . ,m−1}.

The next lemma confirms our intuition that high-low reputation cost spreads reduce brown resistance and thus

increase the probability that green proposals pass.

Lemma 4. Let yyy1 and yyy2 be two normalized reputation cost vectors. Suppose that yyy2 is high-low reputation

cost spread of yyy1 and that capitulation is not a potential maximizer when yyy = yyy1, i.e., K /∈ o∗(yyy1), then, for any

fixed γ ∈ (0,1), o∗(yyy2) ≥ o∗(yyy1). Hence, a high-low reputation cost spread increases the probability that green

proposals pass.27

Lemma 4 shows that concentrating reputation costs on a few universal owners weakens resistance to green

proposal. In practice, how might such concentration be accomplished? An obvious reputation cost of voting

against green proposals is withdrawal of funds by green retail investors. Thus, reputation costs should depend on

the greeness of the investors in a universal owner’s fund. Hence, Lemma 4 suggests that simply by coordinating

to investing in a few mutual funds, passive green retail investors can increase the likelihood that ESG activist

campaigns shift environmental outcomes in the direction they prefer.

6.2 Green sentiment

In contrast to the effect of increasing normalized reputation costs, increasing green sentiment can actually reduce

the probability that green proposals pass. This observation is formalized by the following lemma.

Lemma 5. Holding normalized reputation costs fixed, if (a) ΣK
m < 1 and (b) there exists γ̃ ∈ (0,1), such that (i)

for all γ ∈ (0, γ̃), K /∈ o∗(γ), and (ii) o∗(γ̃) 6= m− 1, then the probability of success is not monotonic in γ , i.e.,

increased green sentiment can reduce the probability that green proposals pass.

The intuition for this result is fairly simple: Inspecting equation (21) shows that the potential’s value under a

given o strategy has two components: (a) a reputation cost saved component representing the reduction in reputa-

tion costs associated with o universal owners voting yes even when brown, and (b) the vote outcome component
27Again, in the non-generic cases where either o∗(yyy1) or o∗(yyy2) is not singleton set, “o∗(yyy2)≥ o∗(yyy1)” should be interpreted as maxo∗(yyy2)≥

maxo∗(yyy1) and mino∗(yyy2)≥mino∗(yyy1).
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representing the effect of o universal owners voting yes on the outcome.

Πo = ∆w


Rep. Cost Saved︷︸︸︷

Σ
o
1 −

Vote Outcome︷ ︸︸ ︷
B̂(m−o,K−o,γ)

1− γ

 .

When a change in γ induces a change in the o-strategy that maximizes the potential, the change in the strategy

causes the reputation cost saved component to make a discrete jump. Because the function mapping γ into the max-

imized potential function, γ→Π∗(γ), is the maximum of a finite number of continuous functions of γ , namely the

Πo functions, the potential’s value under the optimal strategy is continuous function of γ . Hence, when a change

in γ induces a change in the optimal o-strategy, to maintain the continuity of Π∗, the jump in the reputation cost

saved component must be compensated by an equal jump in the same direction in the vote outcome component.

The vote outcome component is proportional to the probability that the proposal passes at γ , B̂(m− o,k− o,γ).

Thus, whenever an increase in green sentiment causes the optimal o-strategy to shift from o′′ to o′, o′ < o′′, the

probability of proposal success jumps down. Because, for any fixed o-strategy, increasing green sentiment in-

creases the probability of proposal success, in between the jump points, increased green sentiment increases the

probability that the proposal passes.

The non-monotone relation between green sentiment, γ , and the probability that proposal passes is illustrated

in Figure 2. In the figure, when green sentiment is very low, the potential is maximized by the minimal resistance

strategy, o = 2; as green sentiment increases, resistance stiffens and the optimal resistance strategy shifts from

o = 2 to o = 1 and then to complete resistance, o = 0. Finally, green sentiment becomes so large that the proposal

will pass regardless of brown opposition, at which point, the optimal strategy shifts to capitulation, o = 5.

Figure 2: In the figure, yk = 0.10 for all k ∈K, K = 5, and m = 3.

Lemma 5 shows that increasing green sentiment amongst universal owners does not have a reliably positive ef-

fect on the probability that green proposals pass. Efforts by activists to convince institutional investors to embrace
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green values might backfire, especially if these efforts are only marginally successful. Unconvinced institutional

investors, upon observing these efforts, might worry that other institutional investors have been convinced and

thus that, in order to block the proposal, they must eschew insincere voting and vote no. This “brown backlash”

lowers the probability of proposal success. In contrast, influencing the level and distribution of reputation costs

does have reliable effects on the probability of proposal success. For this reason, activists, when attempting to

increase the probability of proposal success, might prefer to devote their efforts to increasing the public’s (and the

institutions’ beneficial owners) commitment to ESG goals rather than trying to convince institutional investors to

adopt green values.

6.3 Universal ownership dispersion

As shown in Section 4, if the firm is controlled by a single universal owner, that owner’s preferences determine

whether green proposals succeed. Thus, the probability of proposal success simply equals the level of green

sentiment. As shown in Section 5, analyzing the far more realistic case of many strategic owners non-trivially

complicates the analysis. This naturally raises the question of whether the strategic complications entailed by

dispersed universal ownership increase or decrease the ability of brown owners to determine the voting outcome.

In this section, we answer this question. We fix total firm value effects of proposals and the total reputation cost

of resistance. Ownership dispersion is increased by increasing the number of universal owners. It is obvious that,

if the division of ownership is accompanied by an extremely asymmetric division of reputation costs, increasing

the number of owners can significantly reduce the probability of green proposals passing. For example, if the

ownership stake of a single universal owner is divided and assigned to a large number of universal owners, and

all reputation costs are assigned to one of these owners, then, for all o-strategies except o = 0, resistance to green

proposals will be costless. In the limit, as the number of universal owners increases without bound, brown owners

will block all green proposals without incurring any reputation costs.

To avoid considering trivial cases like this, we assume that total reputation costs, like total universal owner

shareholdings, are divided symmetrically. Thus, we consider parameterizations of the model where

∀i ∈K, ri = r :=
R
K
, ∆w =

∆W
K

, ∀i ∈K, yi = y :=
r

∆w
=

R
∆W

. (24)

When considering shifts in the number of owners, it is convenient to parametrize the model using the threshold

required for passage, m, rather than the total number of universal owners, K. Recalling that m and K are related

by K = 2m−1 (see Remark 1), we see that we can express the potential function as follows:

Π
m
o =

(
∆W

2m−1

) (
oy− B̂(m−o,2m−1−o,γ)

1− γ

)
. (25)
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The superscript m explicitly represents the dependence of the potential on m. Note that the case of m = 1 and thus

K = 1 represents the single universal owner case.

We consider two measures of the relationship between ownership dispersion and the effectiveness of brown

opposition to green proposals: the pass probability, i.e., the probability that proposals pass, and the monetary

payoff, i.e., total expected monetary payoff received by brown universal owners. We show that, despite the rather

obvious free-rider problem produced by ownership dispersion, for some configurations of the model parameters,

ownership dispersion reduces the pass probability and increases the monetary payoffs, and thus the welfare of

brown owners.

6.3.1 The pass probability

The effect of increasing the dispersion, i.e., increasing m, on the pass probability depends on both (a) the effect

of dispersion on the willingness of brown owners to resist green proposals and (b) the impact of dispersion on

the effectiveness of resistance. Because, potential maximizing strategies are Nash equilibrium strategies, the

increase in other brown owners’ welfare engendered by a given brown owner’s opposition to a green proposal

does not affect the potential solution. This “free-rider problem” militates in favor of dispersion increasing the pass

probability.

However, dispersion also impacts the effectiveness and efficiency of resistance. Under the complete resistance

strategy, o = 0, it is very easy to characterize this effect: suppose we increase dispersion by increasing the passing

threshold, m, by one unit and thus increase the number of owners by two. If the two new universal owners turn

out to be green, the pass probability increases, if both turn out to be brown, the pass probability decreases, and if

one is brown and one is green, the pass probability is not changed. Thus, the effect of increased dispersion on the

pass probability will be positive (negative) if universal owners are more (less) likely to be green than brown. We

record this simple result below.

Result 2. Under the complete resistance strategy o = 0, reducing concentration by incrementing m to m+ 1 (or

equivalently K to K +2) strictly increases (reduces) the pass probability if γ > 1
2 (γ < 1

2 ).

High green sentiment, γ > 1
2 Result 2 has important consequences when γ > 1

2 . As shown in Proposition 2.c,

when γ > 1
2 , the potential is a convex function of o for o < K. Thus, the potential maximizing resistance o-

strategy is extreme, either maximal resistance, o = 0, or minimal resistance, o = m− 1. When, as we assume in

this section, normalized reputation costs are the same for all universal owners, this implies that, when γ > 1
2 , the

optimal resistance strategy is maximum resistance, o = 0, and this strategy is optimal if its payoff is no less than

the payoff of the capitulation strategy, o = K = 2m−1. This result is recorded below.

Result 3. If γ > 1
2 , the potential maximizing o-strategy is either complete resistance, o = 0, or capitulation,
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o = 2m−1.

When γ > 1
2 , Result 3 shows that brown universal owners will either completely resist or capitulate. Result 2

shows the effectiveness of complete resistance is reduced by increased ownership dispersion. Thus, increased

dispersion decreases the attractiveness of complete resistance relative to capitulation and also increases the pass

probability even when brown owners adopt the complete resistance strategy. Thus, when γ > 1
2 , increased disper-

sion increases the pass probability.

Result 4. If γ > 1
2 , increasing the number of universal owners weakly increases the pass probability.

Low to moderate green sentiment, γ < 1
2 When γ < 1

2 , the relationship between dispersion and the pass prob-

ability is much more subtle. Result 2 shows that, in this case, the effectiveness of complete resistance strategies

is increased by dispersion. This effect favors increased dispersion reducing the pass probability. However, when

γ < 1
2 , the relationship between the resistance o-strategies and the value of the potential is generally not convex

(See Proposition 2). Thus intermediate partial resistance o-strategies with 0 < o < m−1 can maximize the poten-

tial. Dispersion increases the attractiveness of partial resistance and capitulation relative to complete resistance.

Thus, developing a simple general comparative static in this case is not possible. However, as illustrated in the

following figures, it is easy to provide examples with plausible numbers of universal owners under which multiple

universal owners more effectively block proposal passage than a single universal owner. Such cases are illustrated

in Figure 3.

A. K = 3 B. K = 9

Figure 3: Ownership concentration and the pass probability. In both panels, the horizontal axis represents the level
of green sentiment amongst universal owners, γ , and the vertical axis represents the pass probability, Pr[Pass]. The
reduction in the value of the universal owners’ shares produced by the proposal passing is ∆W = 1. The reputation
costs incurred by the universal owners if they all oppose the proposal is ∆R = 0.15. For the sake of comparison,
the relationship between the pass probability and green sentiment when there is a single universal owner, K = 1,
is represented by the orange line. The blue line represents the relationship between green sentiment and the pass
probability when there are K universal owners. In Panel A, K = 3 and in Panel B, K = 9.
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6.3.2 Monetary payoffs

We now consider the effect of universal ownership dispersion on universal owners’ monetary payoff. The monetary

payoff has two components: one that captures the effect of proposal passage on the expected value of the universal

owners’ stake and one that captures the expected reputation costs imposed by opposing the proposal:

Exp. Univ. Owner Value: W (F)−∆W

Pr[Pass]︷ ︸︸ ︷
B̂(m−o,2m−1−o,γ) (26)

Exp. Reputation Costs: (1− γ)(2m−1−o)︸ ︷︷ ︸
exp. # resisting owners

(
R

2m−1

)
︸ ︷︷ ︸

Rep. cost per owner

(27)

Subtracting reputation (equation (27)) from value effects (equation (26)) and simplifying yields the following

expression for the monetary payoff, M-payoff:

M-Payoffm
o :=W (F)− (1− γ)R+

(
(1− γ)

R
2m−1

o−∆W B̂(m−o,2m−1−o,γ)
)
. (28)

In order to facilitate comparison with the potential function, Πm
o , we can rewrite the expression for M-payoff

as follows:

M-Payoffm
o :=W (F)− (1− γ)R+(1− γ)

∆W
2m−1

(
yo− (2m−1)

B̂(m−o,2m−1−o,γ)
1− γ

)
. (29)

This formulation highlights the difference between the potential function, Πm
o , defined by equation (25), and

the monetary payoff function, M-Payoffm
o , defined by equation (29). First, note that, for a fixed number of universal

owners, the o-strategy maximizing Πm
o and the o-strategy maximizing M-Payoffm

o depend only on the parts of

these expression enclosed in the large parenthesis on the right hand side of their defining equations. The only

difference between the expressions for Πm
o and M-Payoffm

o within these parentheses is that M-Payoffm
o multiplies

the probability of passage by K = 2m−1. Thus, when m > 1 and thus K > 1, the monetary payoff factors in the

effect of proposal passage on all universal owners while the potential only factors in the effect on an individual

universal owner. The gap between the monetary payoff and the potential (the function which determines the actual

strategy played by brown owners) increases with the number of universal owners. This gap militates in favor of

dispersion reducing the monetary payoff. However, there are two countervailing forces: the increased efficiency

of resistance engendered by ownership dispersion when γ < 1
2 (see Result 2) and a new force: the reputation cost

savings from strategic voting. When green sentiment is sufficiently low, even if some brown owners insincerely

vote in favor of the green proposal (and thus avoid incurring reputation costs), the proposal is still very likely to fail.

Thus, when green sentiment is sufficiently low, strategic insincere voting can appreciably reduce total expected

reputation costs while only negligibly increasing the pass probability. In this case, dispersion also increases the
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monetary payoff. These observations are recorded in the following result.

Result 5. (i) If γ > 1
2 , the monetary payoff is lower if ownership is divided amongst multiple owners rather than

concentrated in the hands of a single universal owner, (ii) When γ < 1
2 then, whenever (a) green sentiment γ > 0 is

sufficiently small or (b) under divided ownership, the potential maximizing o-strategy is complete resistance, the

monetary payoff is higher under divided ownership.

We illustrate these results in Figure 4. Note that when the number of universal owners is greater than 1

but small, K = 3 in Panel A, the increased resistance efficiency and reputation cost minimization effects ensure

that, despite the free-riding incentives engendered by divided ownership, as long as γ < 1
2 and reputation costs

are small relative to value effects, divided universal ownership generally produces higher monetary payoffs than

unified ownership. In contrast, when the number of universal owners is large, K = 9 in Panel B, divided ownership

only produces higher monetary payoffs when green sentiment is very low.

A. K = 3 B. K = 9

Figure 4: Ownership concentration and the monetary payoff. In both panels, the horizontal axis represents the level
of green sentiment amongst universal owners, γ , and the vertical axis represents the monetary payoff, M-Payoff.
The reduction in the value of the universal owners’ shares produced by the proposal passing is ∆W = 1. The
reputational cost incurred by the universal owners if they all oppose the proposal is ∆R = 0.15. For the sake of
comparison, the relationship between the monetary payoff and green sentiment when there is a single universal
owner, K = 1, is represented by the orange line. The blue line represents the relationship when there are K
universal owners. In Panel A, K = 3 and in Panel B, K = 9.

As we have seen, the effects of dispersed ownership depend primarily on two parameters, (a) the level of green

sentiment, and (b) the degree to which ownership is dispersed. So, the implications of our analysis for actual

corporate proxy votes depend on the typical values of these parameters in actual proxy voting contests. Empirical

research does provide some guidance for assessing these parameters. Based on the survey evidence provided by

Amel-Zadeh and Serafeim (2018), as discussed in Section 2.2.2, most universal owners probably do not have an

inherent, non-instrumental preference for green outcomes. So, green sentiment in real-world proxy contests is

almost surely less than 1/2, and is likely to be considerably less than 1/2. As documented by Amel-Zadeh et al.

(2022), the number of universal owners, and thus the degree of universal ownership dispersion, is limited. In these

typical cases, the strategic effects introduced by ownership dispersion frequently increase the influence of brown

owners on the voting outcome, i.e., reduce the pass probability, and also increase the welfare of brown owners.
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7 Conclusion

In this paper, we modeled the ESG activists’ green campaigns and universal owners’ voting in proxy contests.

First we showed that, in contrast to the case of activist aiming to increase firm value, green activism is not con-

strained by the hold-up problem first modeled in Grossman and Hart (1980). As in Grossman and Hart (1980),

the price at which the activist purchases shares fully impounds the effects of intervention on firm value. However,

the ESG activist has another source of gains from share acquisition that is not appropriable by selling sharehold-

ings, the change in the environment produced by adoption of the activist’s proposal. In equilibrium, the ESG

activist’s payoff captures the entire “environmental return” from activism. As long as this return exceeds the cost

of activism, launching a campaign is a viable strategy for the ESG activist. Thus, in a world where a subset of

investors have strong pro-environment preferences, activism campaigns are not very costly relative to the potential

environmental benefits of changing corporate policies, and ESG proposals have some chance of being adopted,

many activist campaigns will be launched.

When voting on proposals by ESG activists, universal owners face the trade-off between reputation costs

and financial value reduction. This leads to strategic voting. Brown owners tend to vote insincerely in favor

of a proposal when their no votes are not likely to be required to defeat the proposal or when the proposal is

likely to pass by a wide margin regardless of their vote. We find that increasing the reputation cost of no votes

on green proposals and concentrating reputation costs on the universal owners most exposed to public pressure

always increases the probability that green proposals will pass. However, a higher likelihood that universal owners

have pro-environment, “green,” preference, does not always increase the probability that green proposals pass.

More green sentiment can trigger a brown backlash, i.e., more resistance from the remaining brown shareholders,

making a proposal less likely to pass.

When there are multiple universal owners, the presence of reputation costs ensures that, even when green

sentiment and public pressure are low, and, net of reputation costs, brown universal owners are better off when

green proposals fail, there is always some, albeit small, probability that green proposals pass. Thus, if the cost of

activism are small, many green proposals will be advanced and few will pass. In this case, the passing probability

of green proposals is very sensitive to the firm value reduction required to affect the environmental improvement.

In periods of public “moral panic” about the environment, even if green sentiment of brown owners remains quite

low and reputation penalties are less than the value loss from adopting green proposals, brown universal owners

capitulate. As a consequence, aggressive proposals that require considerable sacrifices of firm value to achieve

environmental objectives have a significant probability of passing.
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A Appendix:Proofs and additional results

A.1 Proofs for Section 1

No proofs or derivations are in this section.

A.2 Proofs for Section 2

All derivations of result in this section are presented in the main body of the manuscript.

A.3 Proofs for Section 3

Proof for Lemma 1. First, that, as asserted in the discussion before Lemma 1, the initiation condition, equa-

tion (6), and the ownership condition, equation (7), imply that the launch condition is satisfied. To see this,

note that conditional on initiation, the payoff to the activist from launching when a proposal has been developed

is b
p0

(
ρ V (S)+ (1−ρ)V (F)

)
+β

(
ρ G(S)+ (1−ρ)G(F)

)
, the payoff from not launching is b

p0
V (F)+β G(F).

Hence, using equation (5), we see that the condition for launching the campaign assuming a proposal has been

developed is

β
(
G(S)−G(F)

)
−
(
V (F)−V (S)

) b
p0
≥ 0, where p0 = π ρ V (S)+(1−π ρ)V (F). (A-1)

Note that b/p0 equals the number of shares acquired by the activist. The firm has one share outstanding, so

the number of shares acquired by the activist, b/p0, must be less than one to satisfy the ownership condition,

equation (7). Equation (4) implies that β
(
G(S)−G(F)

)
>
(
V (F)−V (S)

)
. Therefore,

β
(
G(S)−G(F)

)
−
(
V (F)−V (S)

) b
p0

>
(
V (F)−V (S)

)(
1− b

p0

)
> 0.

Next note that the initiation condition, equation (6), can never be satisfied if the probability of success, ρ = 0.

Thus, if the initiation condition is satisfied, ρ > 0. Finally, note that the activism strategy is the only activist

strategy that results in a positive probability of a proposal being adopted. Thus, as well as being sufficient, the

initiation and ownership conditions are also necessary for activism equilibrium.

A.4 Proofs for Section 4

All derivations of result in this section are presented in the main body of the manuscript.
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A.5 Proofs for Section 5

Proof of Lemma 2. To prove (a), first note that

P[S(t)≥ m] = tiP[S−i(t)≥ m−1]+ (1− ti)P[S−i(t)≥ m].

Thus,
∂

∂ ti
P[S(t)≥ m] = P[S−i(t)≥ m−1]−P[S−i(t)≥ m] = P[S−i(t) = m−1].

To prove (b), note that (a) implies that

∂

∂ t j

(
∂

∂ ti
P[S(t)≥ m]

)
=

∂

∂ t j
P[S−i(t) = m−1], (A-2)

and that

P[S−i(t) = m−1] = t j P[S−i j(t) = m−2]+ (1− t j)P[S−i j(t) = m−1].

Thus,
∂

∂ t j
P[S−i(t) = m−1] = P[S−i j(t) = m−2]−P[S−i j(t) = m−1], (A-3)

and (b) follows from (A-2) and (A-3).

A.5.1 Results for Section 5.4

Let b(n;N, t) represent the probability of exactly n success realizations of a Binomial distribution with N trials

and success probability t:

b(n;N, t) = P[X = n] =


0 n > N

tn(1− t)N−n
(N

n

)
0≤ n≤ N

1 n < 0.

(A-4)

Let B̂ represent the probability that a binomially distributed random variable X is greater than or equal to n,
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n = 0,1, . . .N.28 That is, define B̂ as follows: For an integer n, N ∈ {0,1,2,3, . . .}, and t ∈ [0,1],

B̂(n;N, t) = P[X ≥ n] :=


0 n > N

∑
N
k=n b(k;N, t) 0≤ n≤ N

1 n < 0,

(A-5)

The key result about the Binomial distribution that we will use in the sequel is presented below.

Fact A.1. For integers, K, n such that K ≥ n≥ 1 and t ∈ (0,1),

d
dt

B̂(n;N, t) = N b(n−1;N−1, t).

A few general properties of o-strategies are presented in the following lemmas. We first consider non-

capitulation strategies.

Lemma A.1. The Πo functions of non-capitulation strategies, o ∈ O\{K}, have the following properties:

(a) Πo, o ∈ O\{K}, is strictly decreasing in γ .

(b) If γ = 0 or 1, then Πm−1 > Πm−2 > .. . > Π1 > Π0.

(c) For o≤ m−2,

∆Πo := Πo+1−Πo = ∆w(yo+1−b(m−o−1;K−o−1,γ)).

(d) For o≤ m−3,

∆
2
Πo := ∆Πo+1−∆Πo =

∆w
(
yo+2− yo+1

)
+∆w

(
(1− γ)K−m

γ
m−o−2

(
K−o−1
m−o−1

) (
γ− m−o−1

K−o−1

))
.

Proof. (a) Differentiation shows that

d
dγ

Πo =−∆w((1− γ)−2)
(
(K−o)(1− γ)b(m−o−1;K−o−1,γ)+ B̂(m−o−1;K−o−1,γ)

)
.

The terms in the parentheses are all positive for all γ ∈ (0,1), so the right-hand side of the equation is negative.

28B̂ is not equal to the survival function (i.e., complementary distribution function) of a Binomially distributed random variable. The survival
function of an (N, p) binomial distribution represents P[X > n] = P[X ≥ n−1]. So if we used the survival function, the threshold for success
would be m−1, which might be confusing.
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(b) When γ = 0, the green proposal will pass if and only if it is supported by at least m brown universal owners.

Under all the o ∈ O\{K} strategies, less than m owners vote yes. Hence, the proposal fails, i.e., B̂ = 0.

Because, yyy > 0, the result is apparent. When γ = 1, the proposal will pass regardless of the votes of the brown

universal owners, so B̂ = 1, and the result is then apparent from inspecting the definitions.

(c) First note that the definition of the Πo functions implies that

Πo+1(γ,y)−Πo(γ,y) = ∆w
(

yo+1−
(

B̂(m−o−1;K−o−1,γ)− B̂(m−o;K−o,γ)
1− γ

))
.

Noting that

B̂(m−o,K−o,γ) = B̂(m−o−1,K−o−1,γ)γ + B̂(m−o,K−o−1,γ)(1− γ).

we see that

B̂(m−o−1;K−o−1,γ)− B̂(m−o;K−o,γ)
1− γ

=

B̂(m−o−1;K−o−1,γ)− B̂(m−o;K−o−1,γ) = b(m−o−1;K−o−1,γ),

and the result follows.

(d) Using part (c) we see that

∆
2
Πo :=∆Πo+1−∆Πo =

(
yo+2−yo+1

)
+
(

b(m−(o+1)−1;K−(o+1)−1,γ)−b(m−o−1;K−o−1,γ)
)
.

Part (d) then follows by algebraic simplification and rearrangement of the second term in parentheses on the

right hand side of the equation above.

Part (a) of Lemma A.1 simply shows that the potential is decreasing in green sentiment γ . This result is

expected. The potential measures the effect of other brown owners’ actions on each others’ payoffs. As γ increases,

this effect diminishes. Part (b) is more interesting. It shows that, relative to other non-capitulation strategies, the

minimal resistance strategy, o = m− 1, is attractive both when green sentiment, γ , is very high and very low.

However, in these two cases, minimal resistance is attractive for different reasons. When γ = 0, brown owners are

sure that the proposal will succeed only when at least m brown universal owners vote yes. Because of reputation

costs, the potential is maximized over non-capitulation strategies by minimizing the number of brown owners

who vote no subject to the constraint that the proposal fails. Thus, having the m− 1 brown owners with the

largest reputation costs vote yes and the remaining K−m brown owners vote no, ensures the proposal will fail
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at minimum reputation cost. When γ = 1, the proposal will pass with certainty and so potential is only affected

by reputation costs, because m− 1-strategy features the most yes votes of any non-capitulation strategy, it is the

optimal non-capitulation strategy. This result suggests that payoffs under the o-strategies will not satisfy single-

crossing property with respect to green sentiment, γ .

This suggestion is confirmed by part (c). Because, o ≤ m− 1, m− o− 1 ≥ 1, thus, the map γ → b(m− o−

1;K−o−1,γ) is inverse-U shaped (↗↘). Part (c) of the lemma shows that the crossings of the potential under

two adjacent o-strategies, o and o+1 as γ varies is determined by b(m−o−1;K−o−1,γ). Hence, it implies that

the potentials under the two strategies will either cross (i.e., transversally intersect) twice or not at all.

In contrast, as shown by part (d), second differences between adjacent o-strategies do have the single-crossing

property with respect to γ . As we will show later, this single-crossing property permits determinant characteriza-

tions of effect of γ on the optimality of non-capitulation strategies.

For a non-capitulation o-strategy to be optimal, the value of the potential under o must at least equal the value

of potential under the capitulation, ΠK . Thus, a non-capitulation strategy can only maximize the potential when

Πo−ΠK ≥ 0. Some of the properties of the difference, Πo−ΠK , are provided by the following Lemma.

Lemma A.2. The differences between the non-capitulation strategies, o ∈ O\{K}, and the capitulation strategy,

K, Πo−ΠK , have the following properties:

(a) When γ = 0, sgn[Πo−ΠK ] = sgn[1−ΣK
o+1]. When γ is sufficiently close to 1, ΠK > Πo.

(b) If o = m−1, then Πo−ΠK is decreasing (↘) in γ .

(c) If o < m−1, then Πo−ΠK is inverse U-shaped (↗↘) in γ .

Proof. Part (a). First note that the definition of the Πo functions (Equation (21)) shows that

Πo−ΠK =
1− B̂(m−o;K−o,γ)

1− γ
−Σ

K
o+1. (A-6)

When γ = 0, 1− B̂(m−o;K−o,γ)/(1− γ) = 1 and application of L’Hôpital’s rule shows that limγ→1 1− B̂(m−

o;K − o,γ)/(1− γ) = 0. Thus, the assertions in this part follow from inspection of equation (A-6) and the

continuity of the Πo functions.

Part (b). When o = m−1, m−o = 1. This observation and equation (A-6) show that

Πm−1−ΠK = (1− γ)K−m−Σ
K
m,

which is evidently strictly decreasing in γ .

Part (c). This is the only part of the lemma that is somewhat difficult to establish. We will use the general form

of what is frequently termed the monotone L’Hôpital’s rule.
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Using equation (A-6) we can express Πo−ΠK for o > m−1 as follows:

Πo−ΠK =
1− B̂(m−o;K−o,γ)− (1− γ)ΣK

o+1

1− γ
:=

N(γ)

D(γ)
. (A-7)

Let ρ = N′/D′ and let ρ̃ = (Dρ−N) sgn[D′]. Inspection shows that

lim
γ→1

N(γ) = 0 and lim
γ→1

D(γ) = 0. (A-8)

Equation (A-7) and Fact A.1 show that

ρ(γ) = (K−o)b(m−o−1;K−o−1,γ)−Σ
K
o+1, (A-9)

ρ̃(γ) =

−

((
1− γ

)(
(K−o)b(m−o−1;K−o−1,γ)−Σ

K
o+1
)
−

(
1− B̂(m−o;K−o,γ)− (1− γ)Σ

K
o+1
))

.

(A-10)

Because 0 ≤ o < m− 1, 0 < m− o− 1 < K− o. Because m− o− 1 lies between 0 and K− o, the two extreme

realizations of the Binomial(·;K−o,γ) distribution, the probability of m−o−1 first increases and then decreases

in γ , i.e, γ → b(m−o−1;K−o−1,γ) is↗↘ in γ; thus, inspecting equation (A-9) shows that

ρ is ↗↘ . (A-11)

Because o<m−1, b(m−o−1;K−o−1,γ)→ 0 and (the probability the proposal fails) 1− B̂(m−o;K−o,γ)→

1 as γ → 0, these observations applied to equation (A-10) show that

lim
γ→0

ρ̃(γ) = 1 > 0. (A-12)

Proposition 4.4 in Pinelis (2002) shows that equations (A-8), (A-11), and (A-12) are sufficient for N/D to be

↗↘. Because N/D = Πo−ΠK (see equation (A-7)), part (c) is established.

Part (a) of Lemma c establishes the fairly obvious result that, when green pressure is sufficiently severe, the

potential is maximized by brown capitulation and that, even in the absence of green sentiment, non-capitulation is

only optimal when the normalized reputation cost faced by the no-voting brown owners under the non-capitulation

strategy, ΣK
o+1, is less than 1, the normalized effect of the proposal passing on each brown owner’s wealth.

Parts (b) and (c) show that with the exception of the m− 1 strategy of minimal resistance, the advantage of

each non-capitulation strategy over capitulation is not monotonically decreasing in green sentiment, γ . However,

Activism 1st August, 2023 A-6



if ΣK
o+1 < 1, part (a) and the (↗↘) relationship between the advantage of non capitulation over capitulation,

Πo −ΠK , reported in part (c) show that Πo −ΠK crosses 0 from above as γ increases. So the region where

non-capitulation is optimal is an interval with lower end point 0.

The next result uses Lemmas A.1 and Lemma A.2 to identify a simple necessary and sufficient condition for

brown resistance to be a viable strategy at some level of green sentiment, γ . The proposition shows that if the sum

of normalized resistance costs entailed by the minimum resistance strategy, ΣK
m, at least equals 1, brown owners

will always capitulate, if ΣK
m < 1, brown owners will sometimes resist.

Lemma A.3. Tom

(a) If ΣK
m≥ 1, then Πo−ΠK < 0, for all γ ∈ (0,1). Hence, the unique potential maximizing strategy is capitulation,

o∗ = K.

(b) If ΣK
m < 1, then for γ > 0 but sufficiently small, the unique potential maximizing strategy is the minimum

resistance strategy, i.e., o∗ = m−1.

Proof of Lemma A.3 Tom

Proof of part (a). First consider the case where o = m− 1. When γ = 0, Πm−1−ΠK = 1−ΣK
m. Because the

normalized reputation costs are decreasing in the index, if ΣK
m > 1, then at γ = 0, Πm−1−ΠK ≤ 0. Lemma A.2.(b)

shows that, when o = m−1, Πo−ΠK is strictly decreasing in γ . So, for all γ ∈ (0,1), Πm−1−ΠK < 0.

Now consider the more challenging case, o < m− 1. In this case, Πo−ΠK is ↗↘ in γ; so the fact that, at

γ = 0, Πo−ΠK < 0 does not imply that, for all γ ∈ [0,1], Πo−ΠK < 0.

We start by defining

ȳ :=
1

K−m+1
. (A-13)

Because the normalized reputation costs are decreasing in the index, if ΣK
m ≥ 1, then ΣK

o+1 ≥ (K− o) ȳ. Hence

Πo−ΠK ≤ go(γ)/(1− γ), where

go(γ) := (1− B̂(m−o;K−o,γ))− (1− γ) ȳ(K−o). (A-14)

Thus, to establish the proposition for o < m−1 we need only show that

γ ∈ (0,1) and o ∈ O\{K,m−1}=⇒ go(γ)< 0.
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Using equation (A-14) we compute

g′o(γ) = ȳ− (K−o)(1− γ)K−m
γ

m−o−1
(

K−o−1
m−o−1

)
, (A-15)

g′′o(γ) = (K−o−1)(K−o)(1− γ)K−m−1
γ

m−o−2
(

K−o−1
m−o−1

)
(γ− γo), where (A-16)

γo :=
m−o−1
K−o−1

. (A-17)

Equations (A-14), (A-15), and (A-16) imply that

go(0) = 1− (K−o)ȳ < 0, (A-18)

g′o(0) = ȳ, (A-19)

sgn[g′′o(γ)] = sgn [γ− γo] . (A-20)

Equation (A-20) shows that go is concave on the interval [0,γo] and is convex on the interval [γo,1].

First, we show that max{go(γ) : γ ∈ [0,γo]} < 0. To show this, note that when γ ∈ [0,γo], go is concave

(equation A-20) and thus bounded from above by its support lines and, in particular, by its support line at 0, i.e.,

go(γ)≤ go(0)+ γ g′o(0), γ ∈ [0,γo].

Equation (A-19) shows that g′o(0) = ȳ > 0. Hence,

go(γ)≤ go(0)+ γo g′o(0).

Substituting in the values of ȳ, γo, go(0), and g′o(0), provided by equations (A-13), (A-17), (A-18), and (A-19),

we see that

go(0)+ γo g′o(0) =−
2K− (m+o+1)

(K−m−1)(K−o−1)
< 0.

Thus, over the interval [0,γo], go < 0.

Because go is strictly convex over [γo,1], it attains its maximum over this interval only at the extreme points

of this interval, 1 and γo. The definition of go (equation (A-14)) shows that go(1) = 0 and we have just shown that

go(γo) < 0. Hence, go(γ) < 0 on (γo,1). Combining the concave and convex cases shows that go ≤ 0 over [0,1]

and the result is established.

Proof of part (b). This result follows directly from Lemma A.1.(b), Lemma A.2.(a), and the continuity of the

Πo, o ∈ O, functions.
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A.5.2 Proof of Proposition 2

Proof. We consider parts (a) and (c) as the arguments supporting these parts of the lemma are interconnected.

Proof of parts (a) and (c). By definition o→ Πo is concave (convex) at o if ∆2Πo−1 ≤ (≥)0 (see Remark 3).

Lemma A.1.(d) shows that

yo+1− yo = 0 =⇒ sgn[∆2
Πo−1] = sgn

[
γ− m−o

K−o

]
. (A-21)

This establishes necessity condition in part (a) and the sufficiency condition in part (c).

Because of the decreasing arrangement of owners by reputation costs, it is always the case that yo+1−yo≤ 0.

Thus, we now need only consider the yo+1− yo < 0 case. Lemma A.1.(d) shows

γ− m−o
K−o

< 0 =⇒ ∆
2
Πo−1 < 0, (A-22)

i.e., o→Πo is strictly concave at o.

Again, because yo+1− yo ≤ 0, Lemma A.1.(d) shows that, if o→Πo is strictly convex at o, i.e.,

∆
2
Πo−1 > 0 =⇒ γ− m−o

K−o
> 0. (A-23)

Thus, equation (A-22) implies that if

γ < min
{

m−o
K−o

: o ∈ {1,2, . . . ,m−2}
}
=

2
K−m+2

,

then o→Πo is strictly concave. Part (a) follows by noting (Remark 1) that m = 1+(K−1)/2.

Equation (A-23) implies that if the map o→Πo is strictly convex, it must be the case that

γ > max
{

m−o
K−o

: o ∈ {1,2, . . . ,m−2}
}
=

m−1
K−1

.

Part (c) follows by noting (Remark 1) that m = 1+(K−1)/2.

Proof of part (b). This part follows directly from noting that the hypotheses of this part of the lemma, and the fact

that o→ (m−o)/(K−o) is decreasing; these facts imply that the map o→ sgn[∆2Πo−1], o ∈ {1,2, . . . ,m−

2} is (weakly) increasing.
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A.6 Proofs for Section 6

Proof of Lemma 3. Lemma A.1.(c) shows that yyy2 ≥ yyy1 implies ∆Πo(yyy2)≥ ∆Πo(yyy1), for all o ∈ {0,1, . . . ,m−2}.

If we compare any two non-capitulation strategies, o′ and o′′ such that o′ < o′′, we see that for any yyy ∈ [0,1]K ,

Πo′′(yyy) = Πo′(yyy)+
o′′−1

∑
o=o′

∆Πo(yyy).

So, for any non-capitulation strategy,

o′′ > o′ =⇒Πo′′(yyy
2)−Πo′(yyy

2)≥Πo′′(yyy
1)−Πo′(yyy

1).

Similarly, if o ∈ O\{K},

ΠK(yyy2)−Πo(yyy2)≥ΠK(yyy1)−Πo(yyy1).

So for all o ∈ O, if o′′ > o′,

Πo′′(yyy
1)−Πo′(yyy

1)≥ 0 =⇒Πo′′(yyy
2)≥Πo′(yyy

2).

Proof of Lemma 4. By hypothesis, K /∈ o∗(yyy1). Hence there exists some k such that k∈O\{K} such that Πk(yyy1)>

ΠK(yyy1). The definition of the potential and condition (b) of Definition 1 imply that ΠK(yyy1) = ΠK(yyy2). Thus,

Πk(yyy1) > ΠK(yyy2). Condition (c) of Definition 1 implies that Πk(yyy2) ≥ Πk(yyy1). Hence, Πk(yyy2) > ΠK(yyy2). Thus

Π∗(yyy2) > ΠK(yyy2) and, hence, K /∈ o∗(yyy2). Using condition (c) and same argument as developed in the proof of

Lemma 3 establishes the result.

Proof of Lemma 5. Part (a) of the hypothesis, Lemma A.1.(b) and the fact that the functions Πo, are continuous

in γ ∈ (0,1) imply that for all γ in some neighborhood of 0, o∗(γ) = m− 1. Now let γ̄ := sup{γ ′ ∈ (0, γ̃) : ∀γ ∈

(0,γ ′),o∗(γ) = m−1.

Hypothesis (b.i) implies that γ̄ < γ̃ and (b.ii) implies that o∗(γ) 6= m−1. Because γ →Πo(γ) is a polynomial

(and thus continuous) in γ and no two Πo functions are identical, the set of γ values at which any two of the

γ →Πo(γ) functions have the same values is discrete. Thus, there exists some interval (γ̄, γ̄ + ε), ε > 0, such that

for all γ in this interval, Π∗(γ) = Πō(γ), where ō 6= m−1 or K, i.e.,

for all γ ∈ (γ̄, γ̄ + ε),

Π
∗(γ) = ∆w

(
Σ

o∗(γ)
1 − B̂(m−o∗(γ);K−o∗(γ),γ)

1− γ

)
= ∆w

(
Σ

ō
1−

B̂(m− ō;K− ō,γ)
1− γ

)
= Πō(γ).

(A-24)
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Similarly, the definition of γ̄ implies that there exists an interval (γ̄− ε, γ̄), such that Π∗(γ) = Πm−1(γ̄), i.e.,

for all γ ∈ (γ̄− ε, γ̄),

Π
∗(γ) = ∆w

(
Σ

o∗(γ)
1 − B̂(m−o∗(γ);K−o∗(γ),γ)

1− γ

)
,

= ∆w
(

Σ
m−1
1 − B̂(1;K− (m−1),γ)

1− γ

)
= Πm−1(γ).

(A-25)

lim
γ↑γ̄

Π
∗(γ) = Πm−1(γ̄) = ∆w

(
Σ

m−1
1 − lim

γ↑γ̄

B̂(1;K− (m−1),γ)
1− γ

)
,

lim
γ↓γ̄

Π
∗(γ) = Πō(γ̄) = ∆w

(
Σ

ō
1− lim

γ↓γ̄

B̂(m− ō;K− ō,γ)
1− γ

)
.

(A-26)

The continuity of Π∗, Πm−1 and Πō, in γ , and equation (A-26) imply that

lim
γ↑γ̄

Π
∗(γ) = lim

γ↑γ̄
Πm−1(γ) = Πm−1(γ̄) = Πō(γ̄) = lim

γ↓γ̄
Πō(γ) = lim

γ↓γ̄
Π
∗(γ). (A-27)

Equations (A-26) and (A-27) imply that

Σ
m−1
1 − lim

γ↑γ̄

B̂(1;K− (m−1),γ)
1− γ

= Σ
ō
1− lim

γ↓γ̄

B̂(m− ō;K− ō,γ)
1− γ

. (A-28)

Because, ō < m−1, Σ
m−1
1 > Σō

1, equation (A-28) implies that

lim
γ↓γ̄

B̂(m− ō;K− ō,γ)< lim
γ↑γ̄

B̂(1;K− (m−1),γ). (A-29)

Equations (A-24), (A-25), (A-27), and (A-29) imply that, at γ̄ , the probability that the green proposal passes,

B̂(m−o∗(γ);K−o∗(γ),γ) jumps down. Hence the probability that the green proposal passes is not monotonic is

green sentiment, γ .

Proof of Result 2. Given that the complete resistance strategy, o = 0, is adopted at both m and m+ 1, the prob-

ability that the proposal passes at m is B̂(m,2m− 1,γ); the probability that the proposal passes at m + 1 is

B̂(m+1,2m+1,γ). Simple algebra shows that

B̂(m+1,2m+1,γ)− B̂(m,2m−1,γ) = (2γ−1)
(

2m−1
m

)
γ

m (1− γ)m.

Proof of Result 3. As shown in Proposition 2.c, when m > 2, the map o→ Πo is convex for o < K. So the only

candidate optimal resistance strategies are the two extreme strategies, o = 0 or o = m−1. When m = 2, there are

only two resistance strategies, o = m−1 = 1 and o = 0. So to show that the optimal resistance strategy is o = 0

we need only show that o = m−1 is not optimal. To show this, note that if o = m−1 is optimal, then this strategy

Activism 1st August, 2023 A-11



must produce a value for the potential function at least as high as the value produced by o = 0 and o = m− 2.

Thus it must be the case that

Π
m
m−1 ≥Π

m
K , (A-30)

Πm−1−Πm−2 = ∆Πm−2 > 0. (A-31)

The definition of the potential function and Lemma A.1.(c) show that these two conditions will only be satisfied

when

my− (1− γ)m−1 ≤ 0, (A-32)

y−b(1;m,γ)≥ 0. (A-33)

Noting that b(1;m,γ) = mγ (1− γ)m−1, we see that, because m ≥ 2, there exists no γ > 1
2 that can satisfy both

equation (A-32) and (A-33). Thus if resistance is optimal, the complete resistance strategy, o = 0, is the optimal

resistance strategy.

Proof of Lemma 4. This result is a direct consequence of Result 2 and Result 3 and the following result.

Result 6. If γ > 1
2 , and capitulation (o = 2m−1) is optimal at m, then capitulation is strictly optimal at m+1.

Proof of Result 6. For the sake of readability, define, for this proof only, the probabilities of the proposal passing

when o = 0, given passing threshold m and thus 2m−1 universal owners,

pm := B̂(m,2m−1,γ).

By hypothesis, Πm
K ≥Πm

0 . We need to show that this hypothesis implies that Π
m+1
K ≥Π

m+1
0 . To see this note that

Π
m
K ≥Π

m
0 ⇐⇒

(
(2m−1)y− 1

1− γ

)
−
(

0y− pm

1− γ

)
≥ 0, (A-34)

Π
m+1
K ≥Π

m+1
0 ⇐⇒

(
(2m+1)y− 1

1− γ

)
−
(

0y− pm+1

1− γ

)
≥ 0, (A-35)

Result 2 shows that, when γ > 1
2 , pm+1 > pm and 2m+ 1 > 2m− 1. Hence, we see that satisfaction of (A-34)

implies the satisfaction of (A-35).

Result 3 shows that, at m, the potential maximizing o-strategy is either complete resistance, o = 0, or capitu-

lation, o = K. If capitulation is optimal, then Result 6 shows that the potential maximizing strategy at o = m+1

is also capitulation. So, at both m and m+1, the probability the proposal passes equals one.
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If complete resistance maximizes the potential at m, then, Result 3 shows that, at m+ 1, the potential max-

imizing strategy is either capitulation or complete resistance. Clearly if the potential maximizing strategy is

capitulation, the probability of proposal success is higher at m+1. If at m+1 the potential maximizing strategy

is also complete resistance, o = 0, then Result 2 shows that the probability of success is higher at m+1.

Proof of Result 5. Most of this proof is supplied by earlier results. To prove (i) note that Result 2 shows that,

when γ > 1
2 , increasing ownership dispersion increases the probability of passage under the complete resistance,

o = 0 strategy. when there is one universal owner, capitulation is never optimal (by our assumption that R <

∆W ) and resistance is always complete resistance. Thus, if the potential maximizing strategy under dispersed

ownership is complete resistance, the monetary payoff of the universal owners is higher under unified ownership.

If, under dispersed ownership, the potential maximizing o-strategy is capitulation, the monetary payoff equals

W (F)−∆W . Under unified ownership, the single owner resists and thus the monetary payoffs equals W (F)−

∆W +(1− γ)(∆W −R). Hence, the monetary payoff is larger under unified ownership. Result 3 shows that, when

γ > 1
2 , the only candidate optimal o-strategies are complete resistance or capitulation.

To prove (ii.a) note that, as shown by Lemma A.1, for γ sufficiently small, o∗ = m−1 and the probability of

the proposal passing is thus, 1− (1− γ)m. Thus, under dispersed ownership the monetary payoff equals

W (F)− (1− γ)R+

(
(1− γ)

(
m−1

2m−1

)
R−∆W (1− (1− γ)m)

)
.

Under unified ownership, the monetary payoff equals

W (F)− (1− γ)R−∆W γ.

So, we see that, for γ sufficiently small, the monetary payoff is larger under dispersed ownership.

To prove (ii.b), Note that because under unified ownership complete resistance is the optimal strategy, if

complete resistance is also the potential maximizing strategy under dispersed ownership, expected reputation

costs are identical under unified and dispersed ownership. Because, by assumption, γ < 1
2 , Result 2 shows that

the probability of success is less under dispersed ownership. Thus, the monetary payoff is larger under dispersed

ownership.
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B Mixed strategies

Mixed strategy vectors that maximize the potential rarely exist and strategy vectors where two or more brown

owners randomize are extremely rare and are only possible when the exogenous “greenness” parameter, γ , takes

one of its m− 1 possible values on the unit interval continuum. The intuition for the non-existence of mixed-

strategy equilibria is illustrated by Figure B-1. The example is symmetric strategy vector, σσσ∗, in a symmetric

parametrization of the game, i.e., yi = y for all i∈K. In this equilibrium, all brown universal owners vote yes with

probability σ∗i = σ∗ = 3/25. The graph plots the value of the potential function (on the z-axis) when σ1 and σ2

are allowed to vary (on the x and y-axes), holding the other brown universal owners’ strategies at their equilibrium

values. The fact that σ∗ is a best response for brown universal owners 1 and 2 is verified by the fact that moving

along the red (blue) line, which leaves the strategy of the other brown owner fixed, does not increase the potential

function. By definition, the derivative of the potential function with respect to σi equals the derivative of a brown

owner’s payoff with respect to σi. So, neither i nor j can gain by unilaterally deviating from σσσ∗. Because the

game is symmetric, unilateral deviations will also not increase the other brown owners’ payoffs. Hence, σσσ∗ is a

Nash equilibrium. However, moving along the black line, i.e., in the a direction that increases (reduces) σ1 and, at

the same time reduces (increases) σ2 by an equal amount, increases the potential function. This symmetric Nash

equilibrium is thus a saddle point of the potential function.

Figure B-1: Mixed strategy Nash equilibria are not potential maximizing. The figure presents the value of the
potential function when brown universal owners 3, 4, . . . K’s strategies are fixed at σi = 3/25 and brown universal
owners 1 and 2’s strategies, σ1 and σ2, are allowed to vary around 3/25. The parameters of game are γ = 1/11,
K = 5, m = 3, and yi = 96/625 for all i ∈K.

What is the intuition behind the example? First note that the probability of any given universal owner voting

yes equals t(σ∗) = γ +(1−γ)σ∗ = 1/11+(10/11)× (3/25) = 1/5. So, the expected number of yes votes equals

K t(σ∗) = 1. Despite the expected number of yes votes being small relative to the passing threshold, m = 3,
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because of brown owner randomization, there is an appreciable probability the proposal will pass. The probability

that the proposal passes can be reduced by reducing the dispersion of the yes-vote distribution, by increasing one

brown universal owner’s probability of voting yes and reducing another brown universal owner’s probability of

voting yes by an equal amount. Thus shift does not affect, y ∑k σk, and thus will increase the potential, Π.

Lemma B.1. A pure strategy vector (i.e. σi ∈ {0,1}) that maximizes the potential function, Π, always exists. Let

σ̄σσ be a strategy vector that maximizes the potential, Π. Let R be the set of brown universal owners who randomize,

i.e., R := {i ∈K : σ̄i 6= 0 or 1}. Then, for all i, j ∈ R, i 6= j, yi = y j and, if the number of randomizing universal

owners, #R, is greater than one, then

γ ∈
{

m−1− j
K−1− j

: j = 0,1 . . .m−2
}
.

The set of γ ∈ [0,1] and yyy ∈ [0,1]K such that σσσ is a potential maximizer and any universal owner plays a mixed

strategy has measure 0.

Proof of Lemma B.1 This proof is established through the following Lemmas.

Lemma B.2. The exists a pure strategy (i. e., for all i ∈K, σi ∈ {0,1}) maximizer of the potential.

Proof. First note that the domain of Π is the compact set [0,1]K and Π is continuous, so a maximizer, perhaps

mixed, exists. Next note that Π is multilinear so suppose that σ̄σσ maximizes Π and σ̄i ∈ (0,1). Define the function

ν : [0,1]→ R by ν(σi) = Π(σi|σ̄σσ−i). Since σ̄σσ maximizes Π, σ̄i maximizes ν . Because, Π is affine, this implies

that σi = 0 and σi = 1 also maximize ν . Hence, (0|σ̄σσ−i) and (1|σ̄σσ−i) also maximize Π. If, in fact σ̄σσ maximizes

Π, we can continue in like fashion, replace all mixed components in σ̄σσ with 0 and 1 without affecting the value of

Π.

Lemma B.3. If strategy vector σσσ in which at least two brown universal owners randomize, is a potential maxim-

izer, then yi = y j for all i, j such that i, j /∈ {0,1}.

Proof. Consider a vector σ̄σσ in which at least two brown universal owners, say i and j randomize, i.e., σi ∈ (0,1)

and σ j ∈ (0,1). If, in fact σ̄σσ maximizes the potential function, then

Max{Π(σi,σ j|σ̄σσ−i j) : (σi,σ j) ∈ [0,1]2}= Π(σ̄σσ).

First note that

P[S(τ(σσσ))≥ m] = P[S−i j(τ(σσσ))≥ m]+(
t(σi)+ t(σ j)− t(σi) t(σ j)

)
P[S−i j(τ(σσσ)) = m−1]+ t(σi) t(σ j)P[S−i j(τ(σσσ)) = m−2], (B-1)
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and that the distribution of S−i j is not affected by σi or σ j. So, to reduce our notational burden somewhat define

s̄0 = P[S−i j(τ(σ̄σσ))≥ m], ē1 = P[S−i j(τ(σ̄σσ)) = m−1], ē2 = P[S−i j(τ(σ̄σσ)) = m−2], (B-2)

and define the function, ψ : [0,1]2→ R by

ψ(σσσ i j) := Π(σi,σ j|σ̄σσ−i j), where σσσ i j := (σi,σ j).

Note that equation (B-1) and the definition of the potential function show that ψ can be expressed as follows:

ψ(σσσ i j) = ∑
K\{i, j}

σ̄k yk +σi yi +σ j y j−
s̄0 +

(
t(σi)+ t(σ j)− t(σi) t(σ j)

)
ē1 + t(σi) t(σ j) ē2

1− γ
(B-3)

Straightforward computation shows that the second derivative (i.e., the Hessian of ψ), D2ψ , is given by

D2
ψ(σσσ i j) =−(1− γ)∆wH, where H =

 0 ē2− ē1

ē2− ē1 0

 . (B-4)

Because the first derivative of ψ (i.e., the gradient) must vanish by the first-order condition and all derivative forms

higher than two vanish because D2 is constant, the multivariate version of Taylor’s Theorem shows that

ψ(σσσ i j) = ψ(σ̄σσ i j)−
1
2
(1− γ)∆w

(
σσσ i j− σ̄σσ i j)

T H (σσσ i j− σ̄σσ i j)
)
.

First, consider the case where ē2− ē1 6= 0. In this case, we see that H has two non-zero eigenvalues with opposite

signs, ē2− ē1 and −(ē2− ē1). Thus, inspecting equation (B-4) shows that H is not positive semi-definite and

(σ̄i, σ̄ j) cannot maximize ψ and hence σ̄σσ cannot maximize the potential, Π. In fact, the eigenvectors of H are

(1,1) and (1,−1) and thus in this case, σ̄σσ is a saddle point, and not a local maximizer of ψ .

Now suppose that ē2− ē1 = 0. If ē2− ē1 = 0, then equation (B-3) reduces to a linear function of σσσ i j, i.e.,

ψ(σσσ i j) = σi yi +σ j y j + ∑
K\{i, j}

σ̄k yk−
s̄0 +

(
t(σi)+ t(σ j)

)
ē1

1− γ

So, σ̄σσ i j maximizes ψ if and only if (yi − ē1,y j − ē1) = (0,0). In which case all σσσ i j ∈ [0,1]2 also maximize

ψ . Thus if σ̄σσ maximizes Π, then all vectors of the form(σσσ i j|σ̄σσ−i j) also maximize the potential. Moreover,

yi = y j = P[S−i j(τ(σ̄σσ)) = m−1] = P[S−i j(τ(σ̄σσ)) = m−2].

Lemma B.4. If the strategy vector, σ̄σσ , contains two or more mixed components, say σ̄i ∈ (0,1) and σ̄ j ∈ (0,1),

then σ̄σσ can only be a potential maximizer when γ = (m−1− j)/(K−1− j), where j ∈ {0,1,2, . . . ,m−2}.
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Proof. Let

O(σσσ) := {i ∈K : σi = 1}, R(σσσ) := {i ∈K : σi ∈ (0,1)}, and Z(σσσ) := {i ∈K : σi = 0}.

By assumption, #R≥ 2; so select two members of this set, which, without loss of generality, we assume includes

i = 1,2. Define three new strategy vectors, σσσ `, `= 0,1,2 as follows:

σ
0
i =


0 i ∈ Z(σ̄σσ)∪R(σ̄σσ)

1 i ∈ O(σ̄σσ)

,σ1
i =


0 i ∈ Z(σ̄σσ)∪ (R(σ̄σσ)\{1})

1 i ∈ O(σ̄σσ)∪{1}
,σ2

i =


0 i ∈ Z(σ̄σσ)∪ (R(σ̄σσ)\{1,2})

1 i ∈ O(σ̄σσ)∪{1,2}

Next note that, by hypothesis, σ̄σσ maximizes the potential and is not a pure strategy vector, which imply that

#O(σ̄σσ) ≤ m− 1. Otherwise the proposal would pass with certainty and, in this case, the unique optimal strategy

is for all brown owners to vote yes, σi = 1 for all i ∈K, and this strategy vector is pure. Next note that Π being

multilinear and the hypotheses that σ̄σσ is a potential maximizer implies that

Π(σ̄σσ) = max
σσσ∈[0,1]K

Π(σσσ), and Π(σ̄σσ) = Π(σσσ0) = Π(σσσ1) = Π(σσσ2). (B-5)

Note that #O(σσσ `) < K, for ` = 0,1,2. This follows because, as argued above, #O(σ̄σσ) ≤ m− 1, and the

cardinality of O(σσσ `) exceeds the cardinality of O(σ̄σσ) by at most two. Thus, #O(σσσ `) ≤ m− 1+ 2 = m+ 1. By

model assumptions, m+1 is less than K. Thus, if it were the case that #O(σσσ `) > m−1, then #O(σσσ `) ∈ {m,m+

1, . . . ,K− 1}. In which case σσσ ` would not maximize the potential because the proposal would be passing with

certainty and, for some i, σi 6= 1. But this contradicts equation (B-5).

Note that the σσσ1 and σσσ0 differ only in their strategy assignment to brown owner 1: under σσσ0, brown owner 1

votes against the proposal, σ0
1 = 0 and, under σσσ1, brown owner 1 votes for the proposal, σ1

1 = 1. Note also that

because both 1 and 2 randomize under σ̄σσ , Lemma B.3 implies that y1 = y2. Let yo represent their common value,

and let ō = #O(σσσ0). Inspection of the definition of the potential function shows that

Π(σσσ1)−Π(σσσ0) = 0⇐⇒ yo−
(

B̂(m− (ō+1);K− (ō+1),γ)
1− γ

− B̂(m− ō;K− ō,γ)
1− γ

)
= 0. (B-6)

The argument used in the proof of Lemma A.1.(c) shows that

B̂(m− ō;K− (ō+1),γ)
1− γ

− B̂(m− ō;K− ō,γ)
1− γ

= b(m− (ō+1);K− (ō+1),γ). (B-7)
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From equations (B-6) and (B-7) we see that

Π(σσσ1)−Π(σσσ0) = 0⇐⇒ yo = b(m− (ō+1);K− (ō+1),γ). (B-8)

An identical argument shows that

Π(σσσ2)−Π(σσσ1) = 0⇐⇒ yo = b(m− (ō+2);K− (ō+2),γ). (B-9)

Hence,

b(m− (ō+1);K− (ō+1),γ) = b(m− (ō+2);K− (ō+2),γ).

Algebraic simplification shows that

b(m− (ō+1);K− (ō+1),γ) = b(m− (ō+2);K− (ō+2),γ)⇐⇒ γ =
m−1− ō
K−1− ō

.

Thus, if at least two shareholders play mixed strategies, it must be the case that γ satisfies

γ =
m−1− ō
K−1− ō

, where ō ∈ {0,1, . . . ,m−2}.

Lemma B.5. The set of γ ∈ [0,1] and yyy ∈ [0,1]K such that σσσ is a potential maximizer and any universal owner

plays a mixed strategy has measure 0.

Proof. We have seen (Lemma B.4) that the set of γ that supports an equilibrium in which two brown owners

randomize is finite and thus clearly has measure 0 in [0,1]. Now consider the set of (γ,yyy) ∈ [0,1]× [0,1]K such

that one universal owner randomizes. For a strategy vector featuring randomization by one owner, say owner j, to

maximize the potential when other owners play pure strategies, it must be the case that at least two pure strategies

for the other owners, say σσσ
− j
1 and σσσ

− j
2 produce the same payoff for all σ j ∈ [0,1]. For any fixed yyy, these pure

strategies (i.e., σi ∈ {0,1}) are polynomials in γ . Because they are polynomials, the polynomial that represents

their difference has only a finite number of zeros, and thus, for any fixed yyy, the measure of γ ∈ [0,1] such that the

two strategies have the same payoff equals 0. Using Fubini’s Theorem to integrate these zero measure sets over

[0,1]K , shows that the measure of the set (γ,yyy)∈ [0,1]× [0,1]K such that a potential maximizer features one owner

randomizing has measure 0.

Lemmas B.2, B.3, B.4, and B.5 establish Lemma B.1.
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C Majorization and optimal resistance strategies

In this section, we provide numerical counterexamples of majorization and optimal voting strategies. These ex-

amples are able to show that more dispersed vector of reputation costs can either lead to higher values of o∗

or lower values of o∗. Correspondingly, the level of dispersion of reputation costs can be either positively or

negatively correlated with the success probability of the proposal.

As a benchmark, assume the total number of universal owners K = 7. In this case, the threshold is m = 4.

When normalized reputation costs are symmetric and denoted by ȳyy = (0.1,0.1,0.1,0.1,0.1,0.1,0.1), we can find

a feasible level of γ (relatively small, e.g., can be γ = 0.1), at which the potential maximizing strategy is ō∗ = 2.

In this benchmark case, the pass probability is ρ̄ = 8.15%.

Example 1. Consider the more dispersed normalized reputation vector produced by transferring all reputation

costs to owner one, i.e., yyy1 = (0.7,0,0,0,0,0,0). Then

(i) yyy1 majorizes ȳyy,

(ii) the potential maximizing solution features 1 = o∗1 < ō∗, and

(iii) the pass probability features 1.59% = ρ1 < ρ̄ .

Example 2. Consider the more dispersed normalized reputation vector produced by transferring all reputation

costs more or less uniformly to owners one, two, and three, i.e., yyy2 = (0.3,0.2,0.2,0,0,0,0). Then

(i) yyy2 majorizes ȳyy,

(ii) the potential maximizing solution features 3 = o∗2 > ō∗, and

(iii) the pass probability features 34.39% = ρ2 > ρ̄ .
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