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We study the impact of investors’ benchmarking concerns on market efficiency and asset

pricing. Both separative and integrative learning technologies are examined as investors allo-

cate limited attention across assets. We show that benchmarking can increase the price infor-

mativeness of benchmarked asset as investors optimally adopt integrative learning to observe

a combined signal about asset payoffs. This is contrary to the result from the existing literature

that assumes separative learning. Benchmarking can also increase the overall market efficiency

with either type of learning. Yet, the implications for asset prices and comovements can be

qualitatively different under different learning technology.
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1 Introduction

With the dramatic growth of asset management industry, asset managers become dominant

market players (Appel, Gormley, and Keim (2016), Gerakos, Linnainmaa, and Morse (2021)).

They receive implicit and explicit incentives (e.g., bonus) based on their performance relative

to prespecified benchmark portfolios (Chevalier and Ellison (1997, 1999), Ma, Tang, and Gómez

(2019)). As institutional investors, they can gather information in various ways and speculate

on private signals to beat their performance benchmarks which motivate their hedging needs

(Cremers and Petajisto (2009), Jiang, Verbeek, and Wang (2014)). Thus, an important question

is how investors’ benchmarking concerns affect their attention allocation, information acquisi-

tion, and portfolio choice across multiple assets. This is crucial for understanding how bench-

marking affects market efficiency and asset pricing. In this paper, we show that answers to those

questions strongly depend on the type of learning technology adopted by investors.

Breugem and Buss (2018) show that benchmarking harms price informativeness by reduc-

ing the information-sensitive asset supply and discouraging investors’ information acquisition.

In a multi-asset market, this argument relies on a restrictive learning technology implicitly as-

sumed for all investors. With an unrestrictive learning technology, we find that benchmark-

ing can improve both firm-specific price informativeness and market-wide informational effi-

ciency when investors optimally allocate limited attention across risky assets. Also, the impacts

of benchmarking on asset prices can be qualitatively different under different type of learning.

The two types of learning technologies arise in the economic theory of rational inattention.

The first one imposes a structural restriction on the signal form so that investors can collect

information only about an individual asset or asset class at a time; see Peng (2005), Peng and

Xiong (2006), and Van Nieuwerburgh and Veldkamp (2010). We call it the separative learning

technology to distinguish it from the other which we call the integrative learning technology.

The latter removes the restriction on signal form and allows investors to observe a combined

signal about multiple assets; see Mondria (2010) and Miao, Wu, and Young (2022). Both learn-

ing technologies seem theoretically legitimate and empirically relevant. For example, Hameed,

Morck, Shen, and Yeung (2015) find that analysts tend to follow assets that contain more valu-

able market- and industry-wide information (integrative signals). To the best of our knowledge,

the critical role of learning technology in our question has not been studied in the literature.

We study the competitive rational expectations equilibrium under either type of learning

technology for a continuum of benchmarked investors. This allows us to conduct a detailed

comparative analysis that help explain different equilibrium implications of separative versus

integrative learning. We consider two risky assets with independent payoffs and noisy supplies.

Each investor’s performance is evaluated relative to a preassigned benchmark which may in-
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clude a single asset or both assets. The weight of an asset in an investor’s benchmark reflects

how strongly he is concerned about his performance relative to that asset. The sum of such

weights across all investors defines the aggregate benchmarking level of that asset. Each in-

vestor first makes his optimal information choice by determining the structure and precision

of his private signal, subject to a capacity constraint on his information processing as in Sims

(2003, 2006). Since asset prices are publicly observable, each investor can infer others’ private

information from prices before choosing his optimal portfolio.

With the separative learning technology, investors can only observe signals about individ-

ual asset payoffs separately. In equilibrium, investors choose to allocate all of their learning

capacity to the asset that has the highest marginal value of private information; investors are

indifferent about two assets that have equal marginal values of information. We show that the

endogenous fraction of investors who specialize in learning one asset decreases in the aggre-

gate benchmarking level of this asset and increases in the benchmarking level of the other asset.

Consequently, the price informativeness of an asset always decreases in the benchmarking level

of this asset and increases in that of the other asset. The mechanism is that investors’ bench-

marking concerns directly drive up their hedging demand and reduce the information-sensitive

(effective) supply of the benchmarked asset. As a result, the marginal value of information de-

creases for that asset and investors acquire less information about it. Thus, benchmarking re-

duces the price informativeness of the benchmarked asset, similar to Breugem and Buss (2018)

who consider investors’ costly information acquisition about individual assets. In contrast, we

study investors’ attention allocation across two assets under alternative learning technology.

Both firm-specific price informativeness and market-wide informational efficiency can be

quantified by the mutual information of asset price(s) and payoff(s). In statistics and informa-

tion theory (Cover (1999)), mutual information is a standard measure of reduced uncertainty

about one random variable or vector given the knowledge of another random variable or vec-

tor. Market efficiency measured in this way reflects the overall quality of information processing

in terms of how much information about all asset payoffs can be extracted from all asset prices.

In a single-asset economy, the mutual information measure of market efficiency is the same as

that of price informativeness. In a two-asset economy with separative learning, this measure of

market efficiency is equal to the sum of price informativeness of individual assets. This is be-

cause each investor gathers a separative private signal about one asset and thus the equilibrium

prices are independent across assets. Benchmarking reduces the price informativeness of the

benchmarked asset but increases that of the other asset. Consequently, the measure of market

efficiency is a non-monotonic function of the benchmarking level of each asset.

With the integrative learning technology, investors are not restricted to collect information

about each asset separately. Each investor’s best response is not to specialize in learning about
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one asset but to observe a private signal about a linear combination of asset payoffs (Mon-

dria (2010)). We provide new analytical results about the linear symmetric equilibrium where

benchmarked investors make the same optimal information choice. We show that the impact

of benchmarking on price informativeness can be quite different from the result in the sep-

arative learning case: if one asset is much more uncertain than the other in terms of payoff

or supply, an increase in the benchmarking level of the more uncertain asset may improve its

price informativeness. This is because the marginal value of private information now contains

two terms, representing two channels through which the aggregate benchmarking concerns af-

fect investors’ attention choice. One is due to the reduction in the effective asset supply, as in

the separative learning case. The other reflects the cross-learning effect since each asset price

contains information about the other asset. When the supply effect dominates, benchmarking

harms price informativeness, as in the separative learning case. When the cross-learning effect

dominates, investors optimally put more attention to the riskier asset when its benchmarking

level increases. This makes the price more informative about the payoff of the riskier asset.

With integrative learning, the overall market efficiency, as measured by the mutual infor-

mation of prices and payoffs, is greater than the sum of price informativeness of individual as-

sets. This measure of market efficiency also reflects the amount of information one can extract

from prices about a hypothetical portfolio in which the weight of each asset exactly matches

the weight of investors’ attention allocated to that asset. In general, the attention-implied hy-

pothetical portfolio differs from an average investor’s speculative portfolio which is determined

by the effective supplies of assets. The two portfolios coincide only when the two assets are

equally uncertain like perfect substitutes. In this case, variations in benchmarking levels still

affect investors’ attention allocation through affecting the ratio of effective supplies. While this

attention shift can affect the price informativeness of individual assets, it has no impact on the

overall market informational efficiency. Investors’ attention allocation in this special case can

be treated as a nominal baseline, relative to which we can define a measure of investors’ real

attention. We find that investors’ real attention always leans toward the more uncertain asset

when the benchmarking level of either asset increases. This shift of real attention can explain

the improvement of market informational efficiency. However, as the benchmarking level of the

riskier asset increases further, the attention-implied portfolio can deviate far away from the av-

erage speculative portfolio. In other words, investors’ attention is disproportionately allocated

to the riskier asset even though its effective supply diminishes to zero. In this regime, market

informational efficiency declines and will hit its lower bound when the much riskier asset oc-

cupies all investors’ attention.

We also show that the impacts of benchmarking on expected asset prices, return volatility,

and dispersion of portfolio returns can reverse directions under different learning technology.
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As an interesting implication, the two assets in the original model can be interpreted as a com-

mon risk factor and an idiosyncratic risk factor. By the separative learning technology, investors

can only observe signals about each factor separately. We find that a higher benchmarking level

on the common risk factor always makes investors put less attention on this factor, leading to

a higher volatility of the common risk factor and hence a stronger asset return comovement.

In contrast, by integrative learning each investor optimally chooses to observe a signal about

a linear combination of both risk factors. We find that when the common risk factor becomes

much more volatile than the idiosyncratic one, a higher benchmarking level of the common

risk factor can make investors allocate more attention to it and reduce its posterior variance.

As a result, the asset return comovement can decrease in the benchmarking level of the com-

mon risk factor. In other words, a higher benchmarking level of the common risk factor may

help dampen asset comovement, contrary to the implication of separative learning. This may

happen, for example, during recessions as the common risk factor becomes highly volatile.

Our results highlight the critical role of learning technology in a multi-asset economy. These

can enrich the ongoing debate on how benchmarking or passive investing affects the informa-

tional efficiency of financial markets. As a key takeaway, though benchmarking reduces price

informativeness under separative learning, it may improve price informativeness under inte-

grative learning, especially when assets have significantly different uncertainty levels. More-

over, benchmarking can improve the overall market efficiency under either type of learning.

There are a set of empirical implications. Take integrative learning for example, our model

predicts: (1) An increase in the benchmarking level of an asset with high (resp. low) uncertain-

ties can make investors put more (resp. less) attention to learn about this asset and increase

(resp. decrease) its price informativeness. (2) An increase in the benchmarking level of the less

uncertain asset may increase the dispersion of portfolio excess returns defined by Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2016). (3) A higher benchmarking level of the common risk

factor may dampen asset comovements in recessions when this factor has heightened volatility.

Our results shed light on how to measure price efficiency. There are various measures of

firm-specific price informativeness.1 However, there is a caveat if one directly extends such

firm-specific measures to proxy market-wide informational efficiency because the aggregate

of firm-specific price informativeness may not adequately reflect the information content re-

vealed by all asset prices, unless most investors are separative learners (a strong assumption).

1These include price non-synchronicity (Roll (1988); Morck, Yeung, and Yu (2000); Durnev, Morck, and Yeung
(2004); Chen, Goldstein, and Jiang (2007)), forecasting or revelatory price efficiency (Bond, Edmans, and Goldstein
(2012)), and welfare-based price informativeness (Bai, Philippon, and Savov (2016)). Also, Gârleanu and Pedersen
(2018) define a measure of price inefficiency based on a ratio of conditional variances. Dávila and Parlatore (2018,
2021) use the precision of the signal about asset payoffs revealed by asset prices. Farboodi, Matray, Veldkamp, and
Venkateswaran (2022) propose a measure from a structural model that links price informativeness to firms’ data.
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Any measures that treat assets separately may miss valuable information from learning across

assets if integrative learning is dominantly adopted by investors. The mutual information mea-

sure used in this paper does not make implicit assumptions about investors’ learning technol-

ogy. In principle, this can be a general measure of market-wide informational efficiency. It

could be an interesting research agenda to study how to implement this measure empirically.

This paper adds to the theoretical literature on the implications of benchmarked investors.

Brennan (1993) develops a two-factor asset pricing model with a benchmarked fund manager.

Cuoco and Kaniel (2011) show that managers’ relative performance concerns increase the prices

of the benchmarked assets. Basak and Pavlova (2013) show that as the institutional investor op-

timally holds more of assets included in his benchmark, these assets become more expensive,

volatile, and correlated. Buffa, Vayanos, and Woolley (2022) show that benchmarking is part of

an optimal contract in the presence of agency frictions. Buffa and Hodor (2022) show that het-

erogeneous benchmarking can result in negative spillovers across asset returns. Kacperczyk,

Nosal, and Sundaresan (2022) study the impact of asset ownership on price informativeness

when investors have market power. Different from the above papers, we focus on how bench-

marking affects investors’ attention allocation under two alternative learning technologies. Our

work is most closely related to Breugem and Buss (2018). Different from their paper, we find that

the price informativeness of an asset may increase in the benchmarking level of this asset.

There is a burgeoning empirical literature on benchmarks in asset management; see Ma

et al. (2019), Gerakos et al. (2021), and Evans, Gómez, Ma, and Tang (2022) for example. Pavlova

and Sikorskaya (2022) empirically measure the benchmarking intensity to capture investors’

inelastic demand for a stock. They find that both active and passive funds buy additions to

their benchmarks and sell deletions. Their novel measure of benchmarking intensity may help

test various implications from our model.

The implications of investors’ benchmarks are also relevant to passive investing and index-

ing. Among others, Bond and Garcia (2022) and Baruch and Zhang (2022) show that an increase

in index investors reduces the price informativeness of the index. Liu and Wang (2019) show

that the effect critically depends on the causes of the rise of indexing and an increase in in-

dexing may increase the price informativeness of the index. Lee (2020) extends the model of

Gârleanu and Pedersen (2018) by considering asset managers’ strategic trading. Coles, Heath,

and Ringgenberg (2022) report evidence that indexing does not change price informativeness.

The rest of this paper is structured as follows. Section 2 presents the model. Section 3 con-

siders the separative learning case that investors can only learn about each asset separately.

Section 4 studies the integrative learning case that each investor optimally chooses to observe a

combined signal about both assets. Section 5 concludes. Proofs are presented in the Appendix.
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2 Model

Consider a three-period economy with dates t = 1, 2, and 3. At t = 1, investors choose the preci-

sions of signals about asset payoffs, subject to an information processing capacity. They decide

how to allocate their limited learning capacity across assets. At t = 2, investors observe the pri-

vate signals about asset payoffs and then choose their optimal stock holdings. At t = 3, investors

receive compensations based on their performances relative to preassigned benchmarks.

Asset Market. There are two independent risky assets and one risk-free asset which has zero

net supply and exogenous gross return R f = 1. The risky asset j ∈ {1,2} has a final payoff of Ṽ j

at t = 3 and a random supply Z̃ j , where Ṽ1, Ṽ2, Z̃1, and Z̃2 are independent normal random

variables with distributions denoted Ṽ j ∼ N (v j ,τ−1
v, j ) and Z̃ j ∼ N (z j ,τ−1

z, j ). We can write them

as vectors, Ṽ := (Ṽ1,Ṽ2)′ and Z̃ := (Z̃1, Z̃2)′ with Ṽ ∼N (v ,Σv ) and Z̃ ∼N (z,Σz), where

v :=
(

v1

v2

)
, Σv :=

(
τ−1

v,1 0

0 τ−1
v,2

)
, z :=

(
z1

z2

)
, Σz :=

(
τ−1

z,1 0

0 τ−1
z,2

)
.

Benchmarked Investors. The economy is populated with one unit mass of investors (i.e., as-

set managers) whose individual performance is evaluated against an individually designated

benchmark. It is a salient feature of the asset management industry that asset managers care

about their performance relative to certain preassigned benchmarks (e.g., index portfolios).

Their different investment styles can be reflected by the composition of their designated bench-

marks which are exogenously given in this paper.

For each i ∈ [0,1], we define a vector γi := (γi
1,γi

2)′ to represent investor-i ’s benchmarking

level with respect to the two assets, where γi
j ≥ 0 captures the strength of investor i ’s bench-

marking concerns regarding asset j . In other words, the benchmark portfolio for investor i

consists of γi
1 shares of asset 1 and γi

2 shares of asset 2. γi
j > 0 means that investor i is con-

cerned about his performance relative to a benchmark portfolio involving asset j . For example,

if γi
1 > 0 and γi

2 = 0, then investor-i only has asset 1 in his benchmark; if γi
2 > 0 and γi

1 > 0, then

he has both assets in his benchmark; and if γi
1 = γi

2 = 0, then investor-i is not benchmarked.

Portfolio Choice. Each investor is endowed with the same initial wealth (W i
0 =W0) and has the

same risk-aversion coefficient λ > 0. Let Ei [·] and Vari (·) denote investor i ’s posterior expec-

tations and variances conditional on his information set at t = 2, which includes public prices

P̃ := (P̃1, P̃2)′ and private signals Ỹ i (to be defined shortly).

Following Van Nieuwerburgh and Veldkamp (2009, 2010), Mondria (2010), and Breugem and

Buss (2018), we assume that investors have a preference for early resolution of uncertainty.2

2See footnote 10 of Van Nieuwerburgh and Veldkamp (2010) for more details. The utility function in equation

6



Specifically, their expected utility at t = 1 is E
[− lnEi

[
exp(−λC̃ i )

]]
. Therefore, at t = 2, each

investor i chooses the optimal asset holdings, θi := (θi
1,θi

2)′ to maximize an objective function

equivalent to the expected mean-variance utility:

U i
2(γi , P̃ , Ỹ i ) := max

θi
λEi [C̃ i ]− 1

2λ
2Vari (C̃ i ), (1)

where investor i ’s compensation C̃ i depends on the terminal value W̃ i of his managed portfo-

lio relative to his benchmark portfolio,3 C̃ i = W̃ i − (γi )′(Ṽ − P̃ ). Since the terminal value of his

portfolio is W̃ i =W0 +∑
j θ

i
j (Ṽ j − P̃ j ) =W0 + (θi )′(Ṽ − P̃ ), we can write his compensation as

C̃ i =W0 +
∑

j=1,2
(θi

j −γi
j )(Ṽ j − P̃ j ) =W0 + (θi −γi )′(Ṽ − P̃ ). (2)

The equilibrium prices P̃1 and P̃2 are determined by the market-clearing conditions,∫
θi

j (γi
j , Ỹ i , P̃ j )di = Z̃ j , for j = 1,2. (3)

Information Choice. Suppose investors are able to observe private information in the form:

Ỹ i =Λi Ṽ + ε̃i , with ε̃i ∼N (0,Σi ) and Σi :=
(

(τi
1)−1 0

0 (τi
2)−1

)
. (4)

Here, Λi is a 2×2 matrix that reflects how investor i chooses to learn about the two risky assets.

The private information contains the noise ε̃i := (ε̃i
1, ε̃i

2)′ which is orthogonal to Ṽ and inde-

pendent across different investors. A signal is more precise when more attention is paid to it.

Without loss of generality, we assume that the matrix Σi is diagonal and investor i can choose

the entries ofΣi at no cost but subject to some constraint on his learning capacity. Thus,Λi and

Σi represent an investor’s information choice made at t = 1 to maximize his expected utility:

U i
1 = max

Λi ,Σi
E[U i

2(γi , P̃ , Ỹ i )]. (5)

Information Constraint. Following Sims (2003, 2006), we use a measure from information the-

ory to quantify the amount of information that a signal contains about the asset payoffs. The

entropy H(X̃ ) of a random variable X̃ is a measure of its uncertainty. With a continuous prob-

(5) is equivalent to U1 = E1[u1(E2[u2(.)])] where u1(x) = −ln(−x) and u2(x) = −exp(−λx). The inner utility u1 is
convex, corresponding to a preference for early resolution of uncertainty. This specification is equivalent to that
investors maximize a mean-variance objective function.

3This benchmark concerns capture a performance-based fee that adjusts up or down based on outperforming
or underperforming a benchmark, as in Breugem and Buss (2018).
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ability density p(x), the entropy is defined as H(X̃ ) = −∫
p(x) ln p(x)d x. We can also define

the conditional entropy H(X̃ |Ỹ ) =−Î
p(x, y) ln p(x|y)d xd y , where p(x, y) and p(x|y) are joint

and conditional density functions, respectively. The standard information-theoretic measure

for uncertainty reduction is the mutual information defined as

I(X̃ ; Ỹ ) = H(X̃ )−H(X̃ |Ỹ ) =
Ï

p(x, y) ln
p(x, y)

p(x)p(y)
d xd y. (6)

This measure is nonnegative I(X̃ ; Ỹ ) ≥ 0, symmetric I(X̃ ; Ỹ ) = I(Ỹ ; X̃ ), and invariant under any

linear transformations of random variables, i.e., I(X̃ ; Ỹ ) = I(aX̃ +b;cỸ +d) with ac ̸= 0.

By acquiring private information, investors can reduce their uncertainty about asset payoffs.

We assume investors face the following information processing constraint

I(Ṽ ; Ỹ i ) = H(Ṽ )−H(Ṽ |Ỹ i ) ≤ 1
2 ln(K ). (7)

where the parameter K > 1 sets the upper limit on how much information each trader can learn.

Given the normal distributions of Ṽ and Ỹ i , the above constraint is equivalent to

∣∣Var(Ṽ | Ỹ i )
∣∣≥ K −1

∣∣Var(Ṽ )
∣∣. (8)

Without loss of generality, we will take K as given and focus on how each investor chooses to

allocate his learning capacity between asset 1 and asset 2.4

Learning Technology. Given the general form of the private signal Ỹ i := (Ỹ i
1 , Ỹ i

2 )′ in equa-

tion (4), there are different equilibrium implications, depending on whether Λi can be non-

diagonal. If Λi is restricted to be a diagonal matrix, investor i will collect information about

each asset separately because Ỹ i
1 is orthogonal to Ỹ i

2 . This implies that investor i ’s belief about

asset 1 will be independent of his belief about asset 2. When every trader has this constrained

learning technology, the prices of the two assets (with independent fundamentals) are inde-

pendent. In contrast, if the matrix Λi is non-diagonal, then Ỹ i
1 can be correlated with Ỹ i

2 . In

this case, each investor i will find it optimal to observe a signal on a linear combination of the

two assets. The prices of the two assets are correlated. This induces a cross-learning effect.

Hereafter, we distinguish the following two learning technologies:

(1) separative 1earning, whereΛi is constrained to be diagonal for all i .

(2) integrative learning, whereΛi is unconstrained as it can be non-diagonal.

4For a choice problem with an information cost function c(·) such that U = U1 − c(K ), there is an equivalent
endowment of capacity Kc that delivers the same portfolio predictions. We can assume that c(·) is increasing and
sufficiently convex to deliver an interior optimal level of Kc . We can then take Kc as given for the rest of our analysis.
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For either learning technology, the equilibrium is defined as follows:

Definition of Equilibrium. A rational-expectations equilibrium is defined by investors’ portfo-

lio choices {θi } and information choices {Λi ,Σi } as well as market-clearing prices P̃ such that

1. taking Λi , Σi , and P̃ as given, θi solves investor i ’s optimal portfolio choice problem (1);

2. given {θi }, the prices P̃ satisfy the market-clearing condition (3);

3. taking the aggregate benchmarking level γ j := ∫ 1
0 γ

i
j di for j = {1,2} as given, Λi and Σi

solve investor i ’s optimal information choice problem (5) subject to the constraint (8).

3 Separative Learning Equilibrium

We first study the equilibrium under separative learning, where Λi is restricted to be diag-

onal and traders can only observe signals about individual assets. As Σi is a diagonal matrix

chosen by trader i , the information choice problem is equivalent to the one with Λi = I2, a 2×2

identity matrix. Therefore, each trader’s private information takes the simple form below:

Ỹ i := (Ỹ i
1 , Ỹ i

2 )′ where Ỹ i
j = Ṽ j + ε̃i

j , ε̃i
j ∼N

(
0,(τi

j )−1) (9)

Proposition 1. Given traders’ information choices {τi
1,τi

2}, the market-clearing price for asset j is

P̃ j =
(
τv, j +τp, j +τ j

)−1
[
τv, j v j + (τp, j +τ j )s̃p, j −λ(z j −γ j )

]
, (10)

where τ j := ∫ 1
0 τ

i
j di measures the total signal precision about asset j and γ j := ∫ 1

0 γ
i
j di measures

the aggregate benchmarking level of asset j . This price reveals a signal s̃p, j about the payoff Ṽ j :

s̃p, j := Ṽ j −λ(Z̃ j − z j )/τ j , (11)

and the precision of this signal is given by

τp, j := (
Var(s̃p, j − Ṽ j )

)−1 = τ2
jτz, j /λ2. (12)

Given his private information and benchmarking needs, trader i ’s optimal holding on asset j is

θi
j = γi

j +
Ei [Ṽ j ]− P̃ j

λVari (Ṽ j )
, (13)

which is based on his posterior belief about asset j :

Ei [Ṽ j ] =
(
τv, j +τi

j +τp, j

)−1 (
τv, j v j +τi

j Ỹ i
j +τp, j s̃p, j

)
, Vari (Ṽ j ) =

(
τv, j +τi

j +τp, j

)−1
. (14)
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Proof. See Appendix A.1.

Equation (10) shows that the price P̃ j increases in the composite signal s̃p, j and decreases

in the effective supply (z j −γ j ) that remains available for information-sensitive speculation.

The equilibrium prices only depend on these aggregate variables because the economy has a

continuum of traders whose individual signals or benchmarking concerns have negligible price

impacts. Equation (10) also shows the separation of asset prices: P̃ j only depends on variables

related to asset j . This is also true for traders’ optimal holdings θi
j in equation (13) which only

depends on variables related to asset j . In other words, the two risky assets are fully separated in

terms of their pricing and informational content. With the results in Proposition 1, each trader

i chooses the optimal precision levels of his signals, τi
1 and τi

2, to maximize his expected utility

at t = 1. The information choice problem (5) can be simplified as

max
τi

1,τi
2

[ ∑
j=1,2

(
Ei [Ṽ j ]− P̃ j

)2

Vari (Ṽ j )

]
s.t.

∏
j=1,2

(τv, j +τi
j ) ≤ K

∏
j=1,2

τv, j and τi
j ≥ 0.

For each asset, we define the following quantity as its Adjusted Squared Sharpe Ratio (ASSR):

ASSR j := E[(Ṽ j − P̃ j )2]

Var(Ṽ j )
= (E[Ṽ j − P̃ j ])2

Var(Ṽ j )
+ Var(Ṽ j − P̃ j )

Var(Ṽ j )
, (15)

which is a type of reward-to-risk ratio.

Proposition 2. With separative learning, each investor optimally allocates all of his learning

capacity to the asset that has a higher ASSR. The optimal precision of his signal on asset j is

τi
j =

{
(K −1)τv, j if ASSR j = max{ASSR1,ASSR2},

0 if ASSR j ̸= max{ASSR1,ASSR2}.
(16)

Proof. See Appendix A.2.

When ASSR1 = ASSR2, each investor is indifferent to the learning choice between asset 1

and asset 2. ASSR j depends on the total precision of signals about asset j and this precision

depends on the fraction of traders who choose to learn about asset j . Let Γ1 ∈ [0,1] denote the

fraction of investors who learn about asset 1 only. Then Γ2 = 1−Γ1 is the fraction of investors

who learn about asset 2. Thus, investors’ optimal choice of signal precision can be written as

τi
1 = (K −1)τv,1, τi

2 = 0, for i ∈ [0,Γ1],

τi
1 = 0, τi

2 = (K −1)τv,2, for i ∈ (Γ1,1]. (17)
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Theorem 1. With separative learning, there exists a unique linear equilibrium. It has three pos-

sible cases for investors’ overall attention allocation, denoted by (Γ1,Γ2):

(1) If ASSR1 > ASSR2 holds for any Γ1 ∈ [0,1], then Γ1 = 1 and Γ2 = 0;

(2) If ASSR1 = ASSR2 holds at some Γ∗
1 ∈ (0,1), then Γ1 =Γ∗

1 and Γ2 = 1−Γ∗
1 ;

(3) If ASSR1 < ASSR2 holds for any Γ1 ∈ [0,1], then Γ1 = 0 and Γ2 = 1.

The equilibrium prices are governed by (10). Each investor’s optimal portfolio follows (13).

The optimal information choice is given by equation (16) for either case (1) or case (3), and by

equation (17) for case (2). The total precision of investors’ signals on asset j is τ j =Γ j (K −1)τv, j .

In this equilibrium, each investor’s attention is allocated exclusively to one asset. Depend-

ing on their aggregate benchmarking concerns about either asset, a fraction of them focus on

learning about asset 1 while the rest focus on learning about asset 2. In Theorem 1, Case (1) is

a corner equilibrium which occurs if the inequality, ASSR1 > ASSR2, holds no matter how many

traders choose to learn about asset 1. In this case, all traders choose to learn about asset 1 and

ignore asset 2. Case (2) is an interior equilibrium where a fraction (Γ1) of investors learn about

asset 1 only, and the rest mass of investors learn about asset 2 only. This equilibrium features

ASSR1 = ASSR2 so that a marginal investor is indifferent to the learning choice between asset 1

and asset 2. Case (3) is another corner equilibrium, similar to Case (1) but the other way around.

There are different ways to measure price informativeness. We propose to use the measure

of mutual information whose general definition is given by equation (6). Specifically, we will use

the measure I(Ṽ j ; P̃ j ) since it quantifies the amount of information about the payoff Ṽ j revealed

by the asset price P̃ j . In a linear Gaussian model, this measure is informationally equivalent to

the correlation measure, Corr(Ṽ j , P̃ j ) or the R-squared measure, R2 = 1− Var(Ṽ j |P̃ j )

Var(Ṽ j )
. In general,

mutual information takes into account all linear and nonlinear dependence between two ran-

dom variables (or vectors of random variables). This is different from the correlation measure

which only captures linear dependence and the R-squared measure which requires a specific

regression model. As a standard information-theoretic measure, mutual information is model-

free and thus can quantify the efficiency of information transmission in arbitrary models.

In this separative learning equilibrium, the price informativeness for asset j can be quanti-

fied by the mutual information of asset j ’s payoff and price:

I(Ṽ j ; P̃ j )sep = 1

2
ln

(
Var(Ṽ j )

Var(Ṽ j | P̃ j )

)
= 1

2
ln

(
τv, j +τp, j

τv, j

)
= 1

2
ln

(
1+Γ2

j

(
K −1

λ

)2

τv, jτz, j

)
, (18)

where τp, j =
(
Γ jτv, j

K−1
λ

)2
τz, j . We have the following proposition.

11



Proposition 3. Suppose the effective asset supply is positive (z −γ> 0). Then

dΓ j

dγ j
≤ 0,

dΓ j

dγ− j
≥ 0,

dI(Ṽ j ; P̃ j )sep

dγ j
≤ 0,

dI(Ṽ j ; P̃ j )sep

dγ− j
≥ 0. (19)

Proof. See Appendix A.3. The subscript “− j ” denotes the other asset. For example, if j = 1, then

“− j ” refers to 2.

An increase in the benchmarking level of asset 1 can reduce investors’ attention to asset 1

and increase their attention to asset 2, resulting in lower price informativeness of asset 1 and

higher price informativeness of asset 2.

By Proposition 2, each investor optimally allocates all his attention to the asset with the

highest ASSR. Given Proposition 1 and that τ j =Γ j (K −1)τv, j , it is straightforward to calculate

ASSR j (Γ j ,γ j ) := E[(Ṽ j − P̃ j )2]

Var(Ṽ j )
=
τv, j +

(
τ j +λ2/τz, j

)2
τz, j /λ2 +λ2(z j −γ j )2

(τ j +τv, j +τ2
jτz, j /λ2)2

τv, j , (20)

which can be interpreted as the marginal value of private information about asset j . It can be

shown that ASSR j decreases in Γ j (the fraction of investors who learn about asset j only) and

τ j (the total precision of investors’ signals on asset j ):

∂ ASSR j

∂ Γ j
< 0,

∂ ASSR j

∂ Γ− j
> 0,

∂ ASSR j

∂ τ j
< 0,

∂ ASSR j

∂ τ− j
> 0. (21)

This is due to the strategic substitutability effect as noted in Grossman and Stiglitz (1980). More

and more information acquisition makes the asset price more and more informative such that

it is less valuable for a marginal investor to acquire new information. Consider the interior so-

lution in Theorem 1 where the marginal value of private information is equalized across assets:

ASSR1(Γ1,γ1) = ASSR2(Γ1,γ2). (22)

We can take the total derivative with respect to γ1 on both sides and obtain

dΓ1

dγ1
=−

( ∂ASSR1

∂Γ1︸ ︷︷ ︸
−

− ∂ASSR2

∂Γ1︸ ︷︷ ︸
+

)−1 ∂ASSR1

∂γ1︸ ︷︷ ︸
−

< 0. (23)

Here, ∂ ASSR1
∂Γ1

< 0 and ∂ ASSR2
∂Γ1

> 0 are from the strategic substitutability effect in equation (21).

The partial derivative ∂ ASSR1/∂γ̄1 < 0 can be seen from equation (20). This is because a higher

benchmarking level γ̄1 reduces the effective supply z̄1 − γ̄1 of asset 1 and thus reduces its ex-
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pected squared return, E[(V1−P1)2]. Therefore, as γ̄1 increases, the marginal benefit of learning

about asset 1 becomes smaller than that of asset 2. As a result, some investors switch from

learning about asset 1 to learning about asset 2, which makes asset 2’s aggregate signal preci-

sion higher and thus reduces its marginal benefit of learning. This continues until the marginal

benefits of private information about two assets become equal again and investors are in a new

equilibrium, which occurs at a lower value of endogenous parameter Γ1.

Since the fraction of investors who choose to learn about asset j always (weakly) decreases

in the benchmarking level of asset j , the price informativeness of asset j also decreases in γ j .

Given investors’ limited attention, an increase in the other asset − j ’s benchmarking level can

drive more investors to learn about asset j and hence improve its price informativeness.

Corollary 1. Suppose the effective supply is positive for each asset (z −γ > 0). The more volatile

an asset is (in terms of its payoff or noisy supply), the more investors choose to learn about it:

dΓ j

dτv, j
≤ 0,

dΓ j

dτz, j
≤ 0,

dΓ j

dτv,− j
≥ 0,

dΓ j

dτz,− j
≥ 0. (24)

Proof. See Appendix A.4.

The above results are intuitive because the private information about more uncertain out-

comes should be more valuable and attractive, consistent with Kacperczyk et al. (2016).

Based on the price informativeness measure (18) for individual assets, we can extend the

Shannon entropy measure to evaluate the overall informational efficiency in this market.

Corollary 2. With separative learning, the overall market efficiency can be measured by the mu-

tual information of asset prices and payoffs, which is also equal to the sum of price informative-

ness of individual assets:

I(Ṽ ; P̃ )sep = I(Ṽ1; P̃1)sep + I(Ṽ2; P̃2)sep

= 1

2
ln

(
1+Γ2

1

(
K −1

λ

)2

τv,1τz,1

)
+ 1

2
ln

(
1+ (1−Γ1)2

(
K −1

λ

)2

τv,2τz,2

)
, (25)

Proof. This follows from Proposition 1, Theorem 1, and Proposition 3. Equation (25) holds be-

cause the two assets have independent payoffs and their prices are also independent.

The measure I(Ṽ ; P̃ )sep is a simple but non-monotonic function of the endogenous vari-

able Γ1, which decreases in γ1 and increases in γ2 (Proposition 3). In Section 4.2, we will dis-

cuss more about how benchmarking affects the market informational efficiency under different

learning technology.
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We can compute the impacts of benchmarking on the (unconditional) expected asset prices:

dE[P̃ j ]

dγ j
= λ

τv, j +τp, j +τ j

(
1+

(1+2τ jτz, j /λ2)(z j −γ j )(K −1)τv, j

τv, j +τp, j +τ j

dΓ j

dγ j

)
, (26)

dE[P̃ j ]

dγ− j
=

λ
(
1+2τ jτz, j /λ2

)
(z j −γ j )(K −1)τv, j(

τv, j +τp, j +τ j
)2

dΓ j

dγ− j
> 0. (27)

On average, benchmarking can affect asset prices both directly (through the increased de-

mand) and indirectly (through decreased price informativeness). While higher demands drive

prices higher, lower price informativeness can cause higher risk premium and lower prices. Nu-

merically, we find that the direct demand effect typically dominates in equation (26) and thus

the expected price of an asset tends to increase with its own benchmarking level.

Only the indirect information effect matters in equation (27) . An increase of benchmarking

on asset “− j ” increases the fraction of traders who choose to learn about the other asset j . As

the total precision of signals about asset j increases, the risk premium of asset j decreases and

thus the expected price of asset j increases. Therefore, an increase in the benchmarking level

of an asset tends to increase the expected prices of the other asset.

We conclude this section by presenting the following observation:

Corollary 3. An increase in the benchmarking level of an asset always increases the return volatil-

ity of this asset and decreases the return volatility of the other asset:

dVar(Ṽ j − P̃ j )

dγ j
≥ 0,

dVar(Ṽ j − P̃ j )

dγ− j
≤ 0. (28)

Regardless of how these assets are benchmarked, their prices or returns are always uncorrelated:

Cov(P̃1, P̃2) = 0, Cov(Ṽ1 − P̃1,Ṽ2 − P̃2) = 0. (29)

Proof. See Appendix A.5.

Corollary 3 states that, in the separative learning equilibrium, an increase in the benchmark-

ing level of asset j increases asset j ’s return volatility and decreases asset − j ’s return volatility.

This is consistent with the impact of benchmarking on investors’ attention or the price infor-

mativeness of an asset (Proposition 3). In addition, the asset prices are uncorrelated because

investors collect information about each asset separately. Independent sources of ex-ante un-

certainty remain independent ex-post.
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4 Integrative Learning Equilibrium

Now we turn to the case that investors are not restricted to observe two separate signals. In

other words, we consider a general specification that the matrix Λi in equation (4) is allowed to

be non-diagonal and also possibly degenerate (with rank one) for all investors i ∈ [0,1].

IfΛi is non-diagonal and full rank, we can use eigen-decomposition to diagonalize this ma-

trix and transform the two correlated signals into two independent ones. This transformation

reduces the problem to a separative learning equilibrium which has been solved in Section 2.

If Λi is non-diagonal but degenerate, it means that investor i chooses to observe a signal

which is a linear combination of the two payoffs plus a noise term. In this case, it is equivalent

to set Λi = (1,ωi ) such that the private information can be expressed as a scalar:

Ỹ i = Ṽ1 +ωi Ṽ2 + ε̃i , ε̃i ∼N (0,1/τi ), (30)

where bothωi and τi are chosen by investor i . As shown by Mondria (2010), it is indeed optimal

for each agent to choose a degenerateΛi and thus observe a combined signal in the form of (30).

We refer it as integrative learning, in contrast to the separative learning discussed before.

Following Admati (1985) and Mondria (2010), we can solve for the equilibrium in three steps.

First, conjecture the existence of a linear equilibrium where each investor i optimally chooses

the learning technology with a degenerate Λi = (1,ωi ) and thus observes a combined signal as

in (30). Second, given investors’ information choices, derive their optimal asset holdings and

the market-clearing prices. Third, given these results, find the optimal information choice for

each investor, including the optimal attention weight ωi and the optimal signal precision τi .

Proposition 4. Given traders’ information choices {ωi ,τi }, the market-clearing price (vector) is

P̃ =C +B
(
ΩṼ −λ(

Z̃ − z
))

, Ω :=
∫
τi

(
1 w i

w i (w i )2

)
di , (31)

where C is a constant vector given by equation (A-27) and B is a full-rank matrix given by:

B := (
Σ−1

v +λ−2ΩΣ−1
z Ω+Ω)−1 (

I2 +λ−2ΩΣ−1
z

)
. (32)

Given his private information and benchmarking needs, trader i ’s optimal portfolio choice is

θi = γi + (λΣ̂i
v )−1(V̂ i − P̃ ). (33)

The expressions of Σ̂i
v and V̂ i are given by (A-30) and (A-31). See Appendix A.6 for the proof.
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Similar to the case of separative learning, the equilibrium prices under integrative learning

do not depend on individual investors’ information precision or benchmarking concerns. In-

stead, they depend on the total signal precision and the aggregate benchmarking levels. There-

fore, each individual investor solves the same information allocation problem.

Using the above results, we can evaluate the matrix E[(Ṽ − P̃ )2]. Define A j j := E[(Ṽ j − P̃ j )2]

and A12 := E[(Ṽ1− P̃1)(Ṽ2− P̃2)]. This allows us to simplify each investor’s information problem:

Proposition 5. The information choice problem for each investor is equivalent to

max
ωi ,τi

(ωi )2 A22 +2ωi A12 + A11

τ−1
v,1 + (ωi )2τ−1

v,2

s.t. 0 ≤ τi ≤ K −1

τ−1
v,1 + (ωi )2τ−1

v,2

. (34)

The first order condition for the choice variable ωi is

A12(ωi )2 + (
A11 − A22τ

−1
v,1τv,2

)
ωi − A12τ

−1
v,1τv,2 = 0. (35)

As long as A12 ̸= 0, the best response of investor i is to choose the attention weight

ωi = ASSR2 −ASSR1

2A12τv,1
+

√(
ASSR2 −ASSR1

2A12τv,1

)2

+ τv,2

τv,1
, (36)

where ASSR j = A j jτv, j is the adjusted squared Sharpe ratio for asset j as defined in equation (15).

Proof. See Appendix A.7.

Equation (36) shows that investors’ attention allocation depends on the difference of ASSR

values between these two assets as well as the expected product of their returns A12. In fact,

when investors have access to the integrative learning technology, there does not exist an equi-

librium where a fraction of traders choose to specialize in learning only about one asset.

Corollary 4. If Λi is not restricted to be diagonal, then there does not exist an equilibrium where

a finite fraction of investors specialize in learning only about one asset. Instead, the best response

for each investor is to choose integrative learning by observing a signal about the linear combi-

nation of asset payoffs in the form of equation (30).

Proof. See Appendix A.8.

Corollary 4 implies that the restriction on Λi to be a diagonal matrix is critical for the sep-

arative learning equilibrium. Without this restriction on Λi , we always obtain an integrative

learning equilibrium where investors optimally learn about a linear combination of assets.
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Theorem 2. IfΛi is not restricted to be diagonal, then there exists a linear symmetric equilibrium

where each investor optimally chooses the integrative learning technology to observe a combined

private signal, Ỹ i = Ṽ1 +ωṼ2 + ε̃i , where ε̃i ∼N (0,1/τ) is independent noise across investors. In

this equilibrium, investors choose the same attention weight and thus the same signal precision:

ωi =ω=α+
√
α2 + τv,2

τv,1
, τi = τ= K −1

τ−1
v,1 +ω2τ−1

v,2

. (37)

The optimal attention weight ω increases in the parameter α which is given by

α := ASSR2 −ASSR1

2A12τv,1
=
τ−1

v,2τ
−1
z,2 +τ−1

v,2(z2 −γ2)2 −τ−1
v,1τ

−1
z,1 −τ−1

v,1(z1 −γ1)2

2(z1 −γ1)(z2 −γ2)τ−1
v,2

. (38)

Given this optimal information choice (ω,τ), the equilibrium prices are determined by equation

(31) and the optimal portfolio choice for each investor is given by equation (33). This equilibrium

exists if and only if the expected value of the product of two asset returns is positive: A12(ω) > 0.

Proof. See Appendix A.9.

The above symmetric equilibrium exists as long as A12(ω) := E[(Ṽ1 − P̃1)(Ṽ2 − P̃2)] > 0. This

condition can be verified by first computing the valueωby equation (37). We show that this con-

dition is satisfied as long as investors’ risk aversion λ is not too small or too large; see Appendix

A.9 for proofs.5 In this paper, we focus on analyzing the symmetric equilibrium in Theorem 2,

considering its uniqueness and tractability.

The aggregate benchmarking level of each asset affects both the numerator and denomina-

tor of α in equation (38). Note that τ−1
v, jτ

−1
z, j +τ−1

v, j (z j −γ j )2 = Var
(
(Ṽ j − v j ) · (Z̃ j −γ j )

)
is the total

payoff uncertainty of asset j ’s supply effectively available for investors’ speculation. Thus, the

parameter α captures the relative attractiveness of asset 2 against asset 1. When α→+∞, we

have ω→ ∞ such that all investors only learn about asset 2. When α→ −∞, we have ω→ 0

such that all investors only learn about asset 1. As before, we consider positive effective sup-

plies for both assets, z j −γ j > 0. Equation (38) suggests that α→ ±∞ whenever γ j → z j for

each asset j , and the sign of α is determined by the sign of ASSR2 −ASSR1 in such limits. For

example, as the average effective supply of asset 1 vanishes (i.e., γ1 → z1), all investors will

choose to learn about asset 1 (i.e., α → −∞ and ω → 0) if its noisy supply is so volatile that

τ−1
v,1τ

−1
z,1 > τ−1

v,2τ
−1
z,2 +τ−1

v,2(z2 −γ2)2 holds; otherwise, all investors choose to learn about asset 2.

5When the result ofω in (37) cannot support the condition A12(ω) > 0, we may have an equilibrium asymmetric
across investors in terms of their choices of ωi . The equilibrium solution is less tractable and not unique.
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4.1 Asset-specific Price Informativeness

We still use the mutual information, denoted I(Ṽ j ; P̃ j )int, to measure price informativeness.

Given the equilibrium attention weight ω, we can directly calculate I(Ṽ j ; P̃ j )int for asset j = 1,2.

Their expressions are given by (A-72) and (A-73) in Appendix A.13. When ω goes to either 0 or

∞, the price informativeness in the integrative learning equilibrium converges to the separative

learning case presented in equation (18) with either Γ1 = 1 or Γ1 = 0. It is easy to verify that

lim
ω→0

I(Ṽ1; P̃1)int = 1

2
ln

(
1+

(
K −1

λ

)2

τv,1τz,1

)
, lim

ω→∞ I(Ṽ2; P̃2)int = 1

2
ln

(
1+

(
K −1

λ

)2

τv,2τz,2

)
.

(39)

The impact of benchmarking on price informativeness mostly depends on how investors’

aggregate benchmarking concerns affect their attention allocation ω. To understand the direct

effect on ω, it is convenient to define

∆ := Var(Ṽ2)Var(Z̃2)−Var(Ṽ1)Var(Z̃1) = τ−1
v,2τ

−1
z,2 −τ−1

v,1τ
−1
z,1, (40)

which measures the difference of uncertainty between asset 2 and asset 1. We also define

ξ := Var
(
Ṽ1E[Z̃1 −γ1]

)+Var
(
Ṽ2E[Z̃2 −γ2]

)= τ−1
v,1(z1 −γ1)2 +τ−1

v,2(z2 −γ2)2, (41)

which measures the total payoff uncertainty of the average speculative portfolio with (z1 −γ1)

shares of asset 1 and (z2 −γ2) shares of asset 2. We have the following results.

Proposition 6. Depending on the sign of ∆, investors’ optimal attention allocation satisfies

ω
∣∣
∆=0 = z2 −γ2

z1 −γ1
, ω

∣∣
∆>0 > z2 −γ2

z1 −γ1
, ω

∣∣
∆<0 < z2 −γ2

z1 −γ1
. (42)

The impact of aggregate benchmarking on investors’ attention is characterized by

dω

dγ1
= (∆+ξ)ω

2(ω−α)(z1 −γ1)2(z2 −γ2)τ−1
v,2

,
dω

dγ2
= (∆−ξ)ω

2(ω−α)(z1 −γ1)(z2 −γ2)2τ−1
v,2

. (43)

Depending on the magnitude of ∆, there are three possible cases for the impact of γ j on ω:

Case (1): If ∆ ≥ ξ, then dω
dγ1

> 0, dω
dγ2

≥ 0;

Case (2): If ∆≤−ξ, then dω
dγ1

≤ 0, dω
dγ2

< 0;

Case (3): If |∆| < ξ, then dω
dγ1

> 0, dω
dγ2

< 0.

Proof. See Appendix A.10.
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Equation (42) shows that if two assets are equal in their total prior uncertainty (∆= 0), then

investors’ optimal attention weight is exactly equal to the ratio of effective supplies,ω= z2−γ2
z1−γ1

. If

asset 2 becomes more uncertain than asset 1 (i.e., ∆> 0), then more attention will be allocated

to asset 2 such thatω> z2−γ2
z1−γ1

. Similarly, asset 1 can attract more attention if it is more uncertain.

By Proposition 6, when the magnitude of ∆ is larger than ξ, the impact of benchmarking

on investors’ attention is different from the result in the separative learning case. Take Case

(1) for example, if asset 2 is significantly more uncertain than asset 1, investors will allocate

more attention to learn about asset 2 even when its benchmarking level increases. This cannot

happen in the separative learning equilibrium according to (19).

Why is the impact of benchmarking different here? Proposition 5 shows that the marginal

value of information has a cross-learning term and the optimal attention allocation is obtained

when the marginal value of information is equalized across assets,

ASSR1 + A12τv,1ω= ASSR2 + A12τv,2/ω, (44)

where ASSR j = E[(Ṽ j −P̃ j )2]τv, j and A12 = E
[
(Ṽ1 − P̃1)(Ṽ2 − P̃2)

]
. Equation (44) can be written as

τv,1ω− τv,2

ω
= ASSR2 −ASSR1

A12
. (45)

Benchmarking can affect the two assets’ ASSRs and the expected product of their returns (A12).

We examine the first derivative of equation (45) with respect to γ2 and obtain

(
τv,1 +

τv,2

ω2

) dω

dγ2
= 1

A12

( d(ASSR2 −ASSR1)

dγ2︸ ︷︷ ︸
effect of reduced supply

+ ASSR1 −ASSR2

A12

dA12

dγ2︸ ︷︷ ︸
effect of cross learning

)
. (46)

Similar to the result for separative learning, an asset’s ASSR tends to decrease in its bench-

marking level and increase in the other asset’s benchmarking level: dASSR2
dγ2

< 0 and dASSR1
dγ2

> 0.

This implies the negative sign of the first term in (46), given the equilibrium condition A12 > 0.

Benchmarking reduces the effective supply of the benchmarked asset, decreases the marginal

value of information about this asset, and thus shifts investors’ attention to the other asset. The

second term relates to the cross-learning effect and its sign is set by the sign of (ASSR2−ASSR1).

We can prove dA12
dγ j

< 0 in multiple special cases; see Appendix A.11. This is further verified by

extensive numerical tests. Thus, if ASSR2 < ASSR1, the second term in (46) is negative and thus

reduces investors’ attention to asset 2. If ASSR2 > ASSR1, we have the opposite effect.

When ASSR2 ≫ ASSR1 (i.e., asset 2 is much more uncertain than asset 1), the cross-learning

effect dominates the negative impact of reduced supply. In this case, a higher benchmarking
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level of asset 2 can make investors shift more attention to asset 2, because it is more valuable

for investors to learn about asset 2 than asset 1. As investors increase their attention to asset 2,

the marginal value of private information decreases due to the strategic substitutability effect.

Meanwhile, the marginal value of information about asset 1 increases. This process contin-

ues until the marginal benefits of private information become equalized across assets again.

Investors are then in a new equilibrium with a higher value ofω (i.e., more attention to asset 2).

Corollary 5. When ASSR2−ASSR1
2A12τv,1

> z2−γ2
z1−γ1

, the cross-learning effect dominates such that investors

allocate more attention to asset 2 while its benchmarking level increases, dω
dγ2

> 0.

Similarly, when ASSR1−ASSR2
2A12τv,2

> z1−γ1
z2−γ2

, the cross-learning effect dominates such that investors

allocate more attention to asset 1 while its benchmarking level increases, dω
dγ1

< 0.

Proof. See Appendix A.12.

When the cross-learning effect dominates, investors increase their attention to the asset

with the higher ASSR if the benchmarking level of this asset increases. In contrast, benchmark-

ing always reduces investors’ attention to the asset in the separative learning equilibrium.

The exact dependence of I(Ṽ j ; P̃ j ) on ω involves tedious algebra. Numerically, we find that

when ω increases, I(Ṽ1; P̃1) decreases and I(Ṽ2; P̃2) increases. This monotonic dependence is

intuitive. Since each investor i chooses to observe a signal Ỹ i = Ṽ1+ωṼ2+ ε̃i , we can derive that

Var(Ṽ1 | Ỹ i ) = τ−1
v,1 −

K −1

K

(
τ−1

v,1 +ω2τ−1
v,2

)−1
, Var(Ṽ2 | Ỹ i ) = τ−1

v,2 −
K −1

K

(
ω−2τ−1

v,1 +τ−1
v,2

)−1
.

When more attention is allocated to asset j , the signal Ỹ i is more precise about Ṽ j and investors

can learn more about Ṽ j from the equilibrium price P̃ j that aggregates all private information.

Proposition 6 then predicts that I(Ṽ j ; P̃ j )int can increase with the same asset’s benchmark-

ing level γ j , either when ∆ > ξ if j = 2 or when ∆ < −ξ if j = 1. An example is shown in Figure

1 (left) where the solid line represents I(Ṽ1; P̃1)int which increases in γ1. As asset 1 has a much

higher ASSR than asset 2 (Corollary 5), investors keep putting more attention to asset 1 even

when its benchmarking level increases. While the impact is positive on I(Ṽ1; P̃1), it is negative

on the other asset’s price informativeness. Figure 1 (right) shows that I(Ṽ2; P̃2)int decreases in

γ1. Obviously, the results are opposite to those under separative learning (dotted lines). Thus,

the conjecture in Breugem and Buss (2018) that benchmarking would still harm price informa-

tiveness in a multi-asset market crucially depends on their implicit assumption of separative

learning. We provide clear economic conditions under which this conjecture holds or fails.6

6Price informativeness in Breugem and Buss (2018) is measured by the variance reduction or R-squared, R2
j :=

Var[Ṽ j ]−Var[Ṽ j |P̃ j ]

Var[Ṽ j ]
. This is just a monotonic function of our mutual information measure: R2

j = 1−exp(−2I(Ṽ j ; P̃ j )).
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Figure 1. Price Informativeness I(Ṽ1; P̃1) and I(Ṽ2; P̃2) versus asset 1’s benchmarking level, γ1.
Parameters: λ= 1, K = 1.5, τv,1 = τv,2 = τz,2 = 1, τz,1 = 0.1, z1 = z2 = 2, γ2 = 0.

4.2 Market Informational Efficiency

The measure I(Ṽ j ; P̃ j )int excludes the other asset price which contains private information

about asset j . We can use a more inclusive measure, I(Ṽ j ; P̃ )int, where P̃ = (P̃1, P̃2)′ is the price

vector. The formula of I(Ṽ j ; P̃ )int is given by (A-77) in Appendix A.13. In general, both I(Ṽ j ; P̃ j )int

and I(Ṽ j ; P̃ )int are non-monotonic functions of γ j . There is an obvious information inequality,

I(Ṽ j ; P̃ )int ≥ I(Ṽ j ; P̃ j )int. This can be seen from Figure 2 where the gap, I(Ṽ j ; P̃ )int − I(Ṽ j ; P̃ j )int,

reflects the information gain by including the other asset price.
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Figure 2. Price informativeness I(Ṽ j ; P̃ j )int and I(Ṽ j ; P̃ )int versus asset 1’s benchmarking level
γ1. Parameters: λ= 1, K = 1.5, τv,1 = τv,2 = τz,2 = 1, τz,1 = 0.1, z1 = z2 = 5, and γ2 = 3.
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While both I(Ṽ j ; P̃ j )int and I(Ṽ j ; P̃ )int can measure the asset-specific price efficiency, they

may not reflect the overall information quality in multi-asset economy. The informational mea-

sure of market efficiency should reflect how much uncertainty one can reduce about the ran-

dom payoffs of all assets after observing the market prices of all assets. The dependence be-

tween two random vectors can be evaluated by their mutual information. We define the market

informational efficiency by the mutual information of the payoff vector and the price vector:

I(Ṽ ; P̃ ) := H(Ṽ )−H(Ṽ |P̃ ) = 1

2
ln

( |Var(Ṽ )|
|Var(Ṽ |P̃ )|

)
= 1

2
ln

( |Σv |
|Σv −Θ|

)
, (47)

where Θ := Var(Ṽ )−Var(Ṽ |P̃ ) is the reduction in variance of Ṽ conditional on P̃ . This can be

computed using the standard Kalman filtering result; see equation (A-75). The determinant of

the (conditional) covariance matrix is often called the generalized variance of multivariate ran-

dom variables. Regardless of the learning technology, the value of I(Ṽ ; P̃ ) measures the amount

of information that we can obtain about one random vector by observing the other random vec-

tor. Recall that the information processing constraint (8) for each investor is I(Ṽ ; Ỹ i ) ≤ 1
2 lnK .

Theorem 3. In the integrative learning equilibrium of Theorem 2, the informational efficiency is

I(Ṽ ; P̃ )int = 1

2
ln

(
1+

(
K −1

λ

)2 τz,1 +ω2τz,2

τ−1
v,1 +ω2τ−1

v,2

)
= I(Ṽ1 +ωṼ2; P̃ )int. (48)

This is strictly greater than the sum of price informativeness of individual assets:

I(Ṽ ; P̃ )int > I(Ṽ1; P̃ )int + I(Ṽ2; P̃ )int > I(Ṽ1; P̃1)int + I(Ṽ2; P̃2)int. (49)

In the separative learning equilibrium of Theorem 1, the market informational efficiency is

I(Ṽ ; P̃ )sep = 1

2
ln

(
1+Γ2

1

(
K −1

λ

)2

τv,1τz,1

)
+ 1

2
ln

(
1+Γ2

2

(
K −1

λ

)2

τv,2τz,2

)
. (50)

This is exactly equal to the sum of price informativeness of individual assets:

I(Ṽ ; P̃ )sep = I(Ṽ1; P̃ )sep + I(Ṽ2; P̃ )sep = I(Ṽ1; P̃1)sep + I(Ṽ2; P̃2)sep. (51)

Proof. See Appendix A.14.

Investors’ choice of integrative learning is aligned with their objectives of portfolio manage-

ment. Their primary concern is about the performance of their managed portfolios rather than

a specific asset. Equation (48) shows that the market informational efficiency takes a simple
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form under integrative learning. If we define τ−1
v,ω := τ−1

v,1 +ω2τ−1
v,2 and τz,ω := τz,1 +ω2τz,2, then

(48) can be rewritten as I(Ṽ ; P̃ )int = 1
2 ln

(
1+ (K−1

λ

)2
τv,ωτz,ω

)
. In a market with only one risky as-

set, the price efficiency is I(Ṽ0; P̃0) = 1
2 ln

(
1+ (K−1

λ

)2
τvτz

)
. Thus, for any value ofω, the two-asset

economy looks similar to a one-asset economy with the payoff and supply uncertainties charac-

terized by τ−1
v,ω and τ−1

z,ω, respectively. The key difference is that the market efficiency, I(Ṽ ; P̃ )int,

in a two-asset economy depends on investors’ attention allocation,ω, which is affected by their

aggregate benchmarking concerns. This is not the case in the one-asset economy where there

is no attention allocation and price efficiency is unaffected by the asset’s benchmarking level.

The second equality in (48), I(Ṽ ; P̃ )int = I(Ṽ1 +ωṼ2; P̃ )int, shows that the vector of asset pay-

offs is informationally equivalent to a hypothetical portfolio that pays Ṽ1+ωṼ2. The weight (1,ω)

exactly matches investors’ equilibrium attention allocation. Our measure of market efficiency

thus reflects the overall quality of information processing in this economy, from the informa-

tion choice by individual investors to the price formation of all assets. Though the hypothetical

portfolio is consistent with investors’ attention allocationω, it may not match the average spec-

ulative portfolio which holds (z j −γ j ) shares of each asset j = 1,2. These two portfolios coincide

only when∆= 0 withω= z2−γ2
z1−γ1

. In this special case, the two assets are equally uncertain and the

market efficiency becomes invariant with investors’ benchmarking concerns. Only in this case

the two-asset economy (under integrative learning) is informationally equivalent to the one-

asset economy and investors’ benchmarking concerns have no impact on market efficiency.

With integrative learning, the whole is greater than the sum of the parts, according to (49).

The first inequality, I(Ṽ ; P̃ )int > I(Ṽ1; P̃ )int + I(Ṽ2; P̃ )int, is due to the fact that the sum has missed

the information in off-diagonal terms of the variance-reduction matrix,Θ := Var(Ṽ )−Var(Ṽ |P̃ ).

The aggregate of price informativeness of two assets is insufficient to reflect the market infor-

mational efficiency. The magnitude of this information loss scales with the effective asset sup-

plies and hence declines in the benchmarking level of each asset.

With separative learning, the whole is equal to the sum of the parts. The equality (51) holds

because prices and payoffs are independent across assets and there is no information loss when

one aggregates the price informativeness across assets to measure the market informational

efficiency. Unless it is in a corner equilibrium, the two-asset economy under separative learning

is not informationally equivalent to the one-asset economy even when ∆= 0.

As separative learning is not investors’ best response, one may believe that integrative learn-

ing would dominate separative learning in terms of improving market informational efficiency.

This thinking of totality and optimality seems plausible but remains unverified. Based on the

two equilibrium solutions, we are able to compare their overall informational efficiency for a

full range of benchmarking levels and economic regimes. Our analysis in Appendix A.15 shows

that integrative learning does not always dominate separative learning, as we explain below.
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Corollary 6. Under integrative learning, the market information efficiency is bounded as follows

1

2
ln

(
1+

(
K −1

λ

)2

min
{
τv,1τz,1,τv,2τz,2

})≤ I(Ṽ ; P̃ )int ≤ 1

2
ln

(
1+

(
K −1

λ

)2

max
{
τv,1τz,1,τv,2τz,2

})
,

(52)

where the equality holds only when γ j = z j so that ω→∞ or ω→ 0. In such limits, the two-asset

economy becomes informationally equivalent to the one-asset economy. The lower (resp. upper)

bound in (52) is determined by the riskiness of the more (resp. less) uncertain asset.

Proof. This follows from (38) in Theorem 2 and (48) in Theorem 3.

Under separative learning, I(Ṽ ; P̃ )sep does not obey the inequality (52) since the lower limit

of I(Ṽ ; P̃ )sep can be lower than that in (52). I(Ṽ ; P̃ )sep = 1
2 ln

(
1+ (K−1

λ

)2
max

{
τv,1τz,1,τv,2τz,2

})
when the effective supply (z j −γ j ) of the more uncertain asset j is small enough to support

the corner solution (Proposition 2). Thus, the separative learning equilibrium may produce a

higher level of market informational efficiency than the integrative learning equilibrium.

Next, we discuss the impact of benchmarking on market efficiency:

Proposition 7. Under integrative learning, I(Ṽ ; P̃ )int is an increasing function of ω when ∆ < 0,

and a decreasing function of ω when ∆> 0. Moreover, I(Ṽ ; P̃ )int is invariant with ω when ∆= 0.

The impact of benchmarking on market informational efficiency is characterized by

dI(Ṽ ; P̃ )int

dγ j
= dI(Ṽ ; P̃ )int

dω

dω

dγ j
= −ωτz,1τz,2∆(

τ−1
v,1 +ω2τ−1

v,2

)(
τz,1 +ω2τz,2

)+ (
λ

K−1

)2 (
τ−1

v,1 +ω2τ−1
v,2

)2 · dω

dγ j
, (53)

where the analytical expression of dω
dγ j

is given by equation (43) in Proposition 6.

Depending on the sign and magnitude of ∆ := τ−1
v,2τ

−1
z,2 −τ−1

v,1τ
−1
z,1, there are three scenarios:

(1) If asset 1 is moderately more volatile such that −ξ≤∆< 0, then dI(Ṽ ;P̃ )int
dγ1

≥ 0, dI(Ṽ ;P̃ )int
dγ2

< 0;

(2) If asset 2 is moderately more volatile such that 0 <∆≤ ξ, then dI(Ṽ ;P̃ )int
dγ1

< 0, dI(Ṽ ;P̃ )int
dγ2

≥ 0;

(3) If one asset is significantly more volatile such that |∆| > ξ, then dI(Ṽ ;P̃ )int
dγ1

< 0, dI(Ṽ ;P̃ )int
dγ2

< 0.

Proof. It follows directly from equation (48) and Proposition 6.

By (43) and (53), the sign of dI(Ṽ ;P̃ )int
dγ1

is the same as that of −∆(∆+ξ) and the sign of dI(Ṽ ;P̃ )int
dγ2

is the same as that of −∆(∆− ξ). Thus, dI(Ṽ ;P̃ )int
dγ j

> 0 holds for asset 1 when −ξ ≤ ∆ < 0 and for

asset 2 when 0 < ∆ ≤ ξ. This sign pattern means that market efficiency can be improved over

the range |∆| ≤ ξ when the more uncertain asset has an increase in its benchmarking level.
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Figure 3. Market informational efficiency I(Ṽ ; P̃ )int and I(Ṽ ; P̃ )sep versus the benchmarking lev-
els of two assets. Parameters: λ= 1, K = 1.5, τv,1 = τv,2 = τz,2 = 1, τz,1 = 0.5, z1 = z2 = 5.

Figure 3 gives a numerical example when asset 1 is more uncertain than asset 2 (∆< 0). The

left panel shows that the market informational efficiency under integrative learning, I(Ṽ ; P̃ )int,

increases in γ1 and decreases in γ2. The impact of benchmarking on market efficiency is differ-

ent under separative learning, as shown in the right panel of Figure 3. There are two plateaus

with a large sink in the graph of I(Ṽ ; P̃ )sep. For a wide range of benchmarking levels, integrative

learning outperforms separative learning in terms of market efficiency, I(Ṽ ; P̃ )int > I(Ṽ ; P̃ )sep.

This relationship is yet reversed near the corner when γ1 is sufficiently close to z1.

It is generally true that the more attention investors put to an asset, the more informative the

asset price is. The implication is more involved for market efficiency in a multi-asset economy.

For example, in the separative learning equilibrium, more attention to asset 1 implies higher

price efficiency for asset 1, less attention to asset 2, and lower price efficiency of asset 2 (see

Proposition 3). As a result, the net effect of investors’ attention allocation on market efficiency

is ambiguous. This explains the nonmonotonic pattern of I(Ṽ ; P̃ )sep in Figure 3 (right).

When two assets are equally uncertain (∆= 0), investors’ optimal attention allocation under

integrative learning is exactly the ratio of effective supplies, ω(∆ = 0) = z2−γ2
z1−γ1

. The overall mar-

ket efficiency becomes invariant with investors’ benchmarking concerns or attention allocation

since I(Ṽ ; P̃ )int,∆=0 = 1
2 ln

(
1+ (K−1

λ

)2
τv, jτz, j

)
for j = 1 or 2. Aggregate benchmarking levels still

affect investors’ attention through changing the effective supplies of assets. This affects the

price informativeness of each asset but does not change the overall market efficiency. For this

reason, we may take the ratio
z2−γ2
z1−γ1

as a nominal baseline for investors’ attention allocation.

Figure 4 (left) confirms the non-monotonic dependence of I(Ṽ ; P̃ )int on asset benchmarking

levels (Proposition 7). The economy moves from Case (1) to Case (3) when γ1 crosses a critical

point γ∗1 . The market informational efficiency is maximized at this critical point which is deter-
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Figure 4. Market informational efficiency I(Ṽ ; P̃ )int and the logarithm of the optimal attention
ln(ω) versus γ1. Parameters: λ= 1, K = 1.5, τv,1 = τv,2 = τz,2 = 1, τz,1 = 0.1, z1 = z2 = 5, γ2 = 3.

mined by the first order condition∆+ξ= 0 and labeled by the “∗” symbol. Figure 4 (right) plots

the logarithm of investors’ attention to asset 2. In Case (1) with ∆+ξ > 0, investors shift mod-

erately more attention to asset 2 (solid line) when the benchmarking level of asset 1 increases.

Their attention weight on asset 2 moves in the same direction as the baseline ratio
z2−γ2
z1−γ1

(dotted

line) but to a lesser extent. In Case (3) with∆+ξ< 0, investors shift dramatically more attention

to asset 1. This movement is in the opposite direction to that of the baseline ratio
z2−γ2
z1−γ1

.

We can think of ω in (37) as the nominal attention and define the real attention as

ω∗ := ω(∆)

ω(∆= 0)
=ω(∆) · z1 −γ1

z2 −γ2
. (54)

This reflects the part of investors’ attention change that has a real impact on market efficiency.

The baseline case is that the two assets are equally uncertain (τv,1τz,1 = τv,2τv,2) such that in-

vestors’ optimal attention choice is ω(∆= 0) = z1−γ1
z2−γ2

. When the benchmarking level of an asset

changes, this baseline attention ratio can shift in either direction without changing market effi-

ciency because I(Ṽ ; P̃ )int is invariant with ω when ∆= 0. Now if asset 1 becomes more volatile,

the symmetry is broken with ∆< 0. Relative to the baseline ratio ω(∆= 0), asset 1 attracts more

attention than asset 2, as reflected by the real attention ω∗ which is smaller than one for ∆< 0.

When the benchmarking level of an asset changes, investors’ real attention also changes, with

a real impact on the market informational efficiency. We have discussed before that the impact

of benchmarking on asset-specific price informativeness is determined by investors’ (nominal)

attention choice ω. However, to study the implications for the market informational efficiency,

it is helpful to examine how benchmarking affects investors’ real attention ω∗.
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Proposition 8. Suppose the effective supply is positive for each asset. The real attentionω∗ always

shifts to the asset that has the higher uncertainty. Given the sign of∆ := τ−1
v,2τ

−1
z,2−τ−1

v,1τ
−1
z,1, we have

ω∗ = 1 if ∆= 0, ω∗ > 1 if ∆> 0, ω∗ < 1 if ∆< 0. (55)

The impact of benchmarking on investors’ real attention always takes the same sign of ∆:

dω∗

dγ j
= 0 if ∆= 0,

dω∗

dγ j
> 0 if ∆> 0,

dω∗

dγ j
< 0 if ∆< 0. (56)

Proof. See Appendix A.16.

While ω can increase or decrease in γ j on either side of ∆ (Proposition 6), the dependence

of real attention ω∗ on the benchmarking level is always monotonic (Proposition 8). Investors’

real attention always leans toward the more uncertain asset. This simple tendency can be seen,

for example, from the widening gap between the two curves in Figure 4 (right).

Investors’ optimal attention choice (1,ω)′ targets a hypothetical portfolio that pays Ṽ1+ωṼ2.

In general, this attention-implied portfolio (1,ω)′ differs from the average speculative portfolio(
1,

z2−γ2
z1−γ1

)′
implied by the effective asset supplies. When |∆| < ξ, these two portfolios move in

the same direction in response to benchmarking variations; see Figure 4 (right) for example. As

γ1 increases, investors’ nominal attention ω moderately leans toward asset 2, while their real

attention ω∗ actually leans toward the more uncertain asset 1 (∆ < 0). This real attention shift

can effectively reduce the posterior uncertainty about the attention-implied portfolio (1,ω)′.
Thus, I(Ṽ ; P̃ )int = I(Ṽ1 +ωṼ2; P̃ )int increases in the benchmarking level of the riskier asset.

The positive effect of real attention shift to the more uncertain asset holds for a finite range.

When |∆| > ξ, the attention-implied portfolio (1,ω)′ can deviate far from the supply-implied

portfolio
(
1,

z2−γ2
z1−γ1

)′
. As illustrated in Figure 4, when γ1 exceeds γ∗1 , the economy is in the regime

−∆ > ξ where investors start shifting their attention disproportionately to asset 1 despite its

shrinking supply available for speculation. In this regime, the nominal attention ω and the real

attention ω∗ move in the same direction until asset 1 exhausts all investors’ attention. In that

limit (ω→ 0), the market efficiency I(Ṽ ; P̃ )int = I(Ṽ1+ωṼ2; P̃ )int hits its lower bound (Corollary 6).

This negative boundary effect extends to dominate the positive real-attention effect if |∆| > ξ.

In those regimes, market efficiency declines in the benchmarking level of either asset.

In summary, the conjecture that benchmarking always reduces market efficiency can fail in

a multi-asset economy. This failure can occur under either separative or integrative learning.
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4.3 Asset Returns and Comovements

Based on our equilibrium solutions, we now discuss various implication of benchmarking

for asset prices and asset comovements under different learning technology.

Expected Prices and Risk Premium. The expected price of an asset tends to increase with the

benchmarking level of the asset. A higher benchmarking level of an asset drives more hedging

demand and less effective supply, resulting in a lower risk premium of the asset.

Corollary 7. In the separative learning equilibrium, the expected price of each asset j is

E
[
P̃ j

]
sep = v j −

λτ−1
v, j (z j −γ j )

1+Γ j (K −1)+ (K−1
λ Γ j

)2
τv, jτz, j

. (57)

In the integrative learning equilibrium, when two assets are equally uncertain (∆ = 0), the ex-

pected price of each asset j is independent of the other asset’s characteristics:

E
[
P̃ j

]
int,∆=0 = v j −

λτ−1
v, j (z j −γ j )

K + (K−1
λ

)2
τv, jτz, j

. (58)

Proof. Equation (57) is from equation (10), with τ j =Γ j (K −1)τv, j and τp, j =
(
Γ jτv, j

K−1
λ

)2
τz, j .

Equation (58) follows from the price equation (31) and the result ω(∆= 0) = z2−γ2
z1−γ1

.

For integrative learning with∆= 0, the risk premium of an asset depends on its own charac-

teristics and is independent of the other asset’s characteristics. Their prices are still correlated

because the noise terms are subject to the shocks Ṽ j − v j and Z̃ j − z j of both assets. In general

(∆ ̸= 0), an increase in the benchmarking level of an asset tends to increase the expected asset

price. The reduction of an asset’s effective supply has a dominating effect that lowers the risk

premium of the asset, consistent with the empirical finding of Pavlova and Sikorskaya (2022).

When ∆< 0, the equilibrium price of asset 1 is higher than its baseline price given by equa-

tion (58) for j = 1, whereas the equilibrium price of asset 2 is lower than its baseline price:

E
[
P̃1

]
int,∆<0 ≥ v1 −

λτ−1
v,1(z1 −γ1)

K + (K−1
λ

)2
τv,1τz,1

, E
[
P̃2

]
int,∆<0 ≤ v2 −

λτ−1
v,2(z2 −γ2)

K + (K−1
λ

)2
τv,2τz,2

. (59)

When ∆> 0, the above inequalities are reversed in direction. For any configuration of parame-

ters {τv,1,τz,1,τv,2,τz,2}, we can find a baseline {τv,1,τz,1,τv,2,τ′z,2} that satisfies τv,1τz,1 = τv,2τ
′
z,2.

Asset 1 is relatively more (resp. less) uncertain than asset 2 if τz,2 > τ′z,2 (resp. τz,2 < τ′z,2). The

more (resp. less) uncertain asset is traded at a higher (resp. lower) price than the baseline price

(58). Starting from the baseline with∆= 0, if the supply variance of asset 2 drops from (τ′z,2)−1 to
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τ−1
z,2, investors will increase their attention to the more uncertain asset 1, making its price more

informative and its risk premium lower. The price gap relative to the baseline (58) vanishes

when asset 1’s effective supply shrinks to zero. This is due to the boundary effect in Corollary 6:

when z j → γ j , the average prices must converge to the average payoffs, E[P̃ j ] → v j .
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Figure 5. Expected price of asset 2 and return volatility of asset 1 versus asset 1’s benchmarking
level γ1. Parameters: λ= 1, K = 1.5, τz,1 = 0.1, τv,1 = τv,2 = τz,2 = 1, z1 = z2 = 2, and γ2 = 0.

The benchmarking level of an asset has a mild impact on the other asset price. If asset j

is significantly more uncertain than the other asset such that |∆| > ξ, an increase in asset j ’s

benchmarking level can decrease the average price of the other asset, that is,
dE[P̃− j ]

dγ j
< 0. In this

case, a higher benchmarking level of asset j draw more attention to asset j and less to the other

asset, leading to higher risk premium and lower price of the other asset. This pattern is opposite

to the result in the separative learning equilibrium; see Figure 5 (left).

Asset Return Volatility and Portfolio Return Dispersion. In the separative learning case, an

increase in the benchmarking level of an asset unambiguously increases the return volatility of

this asset and decreases that of the other asset (Corollary 3). In the integrative learning case, if

two assets have similar prior uncertainties, then increasing the benchmarking level of asset j

will reduce investors’ attention to asset j . This will increase the return volatility of asset j and

decrease the volatility of the other asset, similar to the result under separative learning. How-

ever, if one asset is much more uncertain than the other (|∆| > ξ), then increasing the bench-

marking level of the more uncertain asset can direct relatively more attention to this asset, and

thus reduce the return volatility of this asset; see Figure 5 (right).

Following Kacperczyk et al. (2016), we can define the dispersion of portfolio excess returns

as D := ∫ 1
0 E

[(
(θi − Z̃ )′(Ṽ − P̃ )

)2 ]
di . Conventional wisdom suggests that if institutional investors
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have more similar benchmarks, the dispersion of their portfolio returns would become smaller.

It is unclear how benchmarking affects this measure under different learning technology.

Corollary 8. Investors’ portfolio return dispersion in the separative learning equilibrium is

Dsep =
∫ 1

0

∑
j=1,2

A j j (γi
j −γ j )2di + K −1

λ2 (Γ1ASSR1 + (1−Γ1)ASSR2) (60)

The dispersion of their portfolio excess returns in the integrative learning equilibrium is

Dint =
∫ 1

0
(γi −γ)′A(γi −γ)di + K −1

λ2
·
τ−1

v,1

(
ASSR1 + A12τv,1ω

)+ω2τ−1
v,2

(
ASSR2 + A12τv,2ω

−1
)

τ−1
v,1 +ω2τ−1

v,2

.

(61)

Proof. See Appendix A.17.
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Figure 6. The dispersion of portfolio excess returns under different learning technology (Dsep

and Dint) versus the benchmarking level of the less uncertain asset (γ1). Parameters: λ = 1,
K = 1.5, τv,1 = τz,1 = 3, τv,2 = τz,2 = 1, z1 = z2 = 2, γ2 = 0.

In either type of equilibrium, the portfolio return dispersion contains two components: the

first term is due to heterogeneous benchmarking compositions across investors, while the sec-

ond term is affected by changes in the aggregate benchmarking levels since it is the weighted

average of the marginal benefits of information about both assets. To focus on the second term,

we consider the case that investors have identical benchmarks, that is, γi
j = γ j for all i and j .

In the separative learning equilibrium, benchmarking always reduces the marginal value of

information (measured by the ASSR) and thus reduces the dispersion of portfolio returns Dsep.
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In the integrative learning equilibrium, we find that Dint can increase in the benchmarking level

of the relatively less uncertain asset. For example, if asset 1 is less risky than asset 2, investors

will significantly increase their attention (ω) to asset 2 when the benchmarking level of asset

1 increases. The process continues until the marginal benefits of private information become

equalized across assets. Thus, in the new equilibrium the marginal benefit of information can

be at a higher value than before. It then follows from (61) that the portfolio return dispersion

Dint can increase in the benchmarking level of the relatively less uncertain asset (Figure 6).

Common Risk Factor and Asset Comovements. Prices are independent across assets in the

separative learning equilibrium, while they are endogenously correlated in the integrative learn-

ing equilibrium. To better compare the impacts of benchmarking on asset comovements under

different learning technologies, we take one asset in the original model as an aggregate com-

mon risk factor and treat the other asset as an idiosyncratic risk factor. These two factors are

assumed to have independent payoffs, denoted ṼC and ṼI . Now consider two risky assets, la-

beled by the subscripts “a” and “b”. We assume their payoffs are given by

Ṽa = ṼC + ṼI , Ṽb = ṼC . (62)

With separative learning, investors only observe private signals about each risk factor sepa-

rately. The correlation between asset returns is

Corr(Ṽa − P̃a ,Ṽb − P̃b)sep = (
1+Var(ṼI − P̃I )/Var(ṼC − P̃C )

)−1/2
. (63)

We find that a higher benchmarking level of the common risk factor (ṼC ) always leads to a lower

attention allocated to this factor. This increases the return volatility of the common risk factor

Var(ṼC − P̃C ) which further increases the correlation of asset returns, Corr(Ṽa − P̃a ,Ṽb − P̃b)sep.

In this case, benchmarking on the common risk factor always promotes asset comovements.

With integrative learning, each investor chooses to observe a scalar-valued signal about a

linear combination of ṼC and ṼI . The correlation between asset returns is found to be

Corr(Ṽa − P̃a ,Ṽb − P̃b)int =
(√

Var(ṼC − P̃C )/Var(ṼI − P̃I )+Corr(ṼI − P̃I ,ṼC − P̃C )

)
×((√

Var(ṼC − P̃C )/Var(ṼI − P̃I )+2Corr(ṼI − P̃I ,ṼC − P̃C )

)√
Var(ṼC − P̃C )/Var(ṼI − P̃I )+1

)−1/2

.

If the common risk factor become much more volatile than the idiosyncratic risk factor,

then a higher benchmarking level of the common risk factor makes investors allocate more

attention to this factor. This reduces the unconditional variance of the return from investing

in the common risk factor, Var(ṼC − P̃C ). So the variance ratio Var(ṼC − P̃C )/Var(ṼI − P̃I ) tends
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Figure 7. The asset return correlation versus the benchmarking level of the common risk factor
γC . Parameters: λ= 1, K = 1.5, τv,C = 0.5 τv,I = τz,C = τz,I = 5, zC = z I = 5, and γI = 3.

to decrease in the benchmarking level of the common risk factor γC . For a reasonable range of

parameter values, we find that the Corr(Ṽa−P̃a ,Ṽb−P̃b)int tends to increase in the variance ratio

Var(ṼC − P̃C )/Var(ṼI − P̃I ). A numerical example is shown in Figure 7. When the common risk

factor becomes much more uncertain than the idiosyncratic risk factor, asset comovement can

decrease in the benchmarking level of the common risk factor. This observation suggests that

more benchmarking on the common risk factor may help dampen asset comovement when this

factor becomes highly volatile, for example, during recessions.

5 Conclusion

This paper studies how asset managers’ benchmarking concerns affect market efficiency

and asset prices in a two-asset economy. We analyze both separative and integrative learning

technologies when benchmarked asset managers have limited attention to learn about assets.

We find that in the separative learning case the price informativeness of an asset always

decreases in the benchmarking level of this asset, whereas in the integrative learning case the

price informativeness may increase in the benchmarking level of the more uncertain asset. Un-

der either learning technology, the overall market informational efficiency can increase in the

benchmarking level of an asset. This paper also shows that benchmarking can affect expected

asset prices, return volatility, dispersion of portfolio returns, and asset comovements in oppo-

site directions under different learning technology. Thus, we highlight the critical role of learn-

ing technology in studying the impact of benchmarking on market efficiency and asset pricing.
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Appendix

A.1 Proof of Proposition 1

Plugging the wealth W i into investor i ’s compensation C i , and substituting into the time-2

objective function λEi [C i ]− λ2

2 Vari (C i ) yields:

λ[W0 + (θi −γi )′(V̂ i − P̃ )]− λ2

2 (θi −γi )′Σ̂i (θi −γi ). (A-1)

Thus, trader i ’s optimal stock holding is

θi = γi + 1

λ

(
Σ̂i

v

)−1 (
V̂ i − P̃

)
. (A-2)

Substituting (A-2) into the market clearing condition,
∫ 1

0 θ
i = Z̃ , we get

P̃ =
[∫ 1

0
(Σ̂i

v )−1di

]−1 [∫ 1

0
(Σ̂i

v )−1V̂ i di −λ(Z̃ −γ)

]
, (A-3)

where γ := (γ1,γ2)′ and γ j := ∫ 1
0 γ

i
j di is the aggregate benchmarking level of asset j . Observing

prices is equal to observing s̃p = Ṽ +ε̃p , where ε̃p ∼N (0,Σp ), andΣp =
(
τ−1

p,1 0

0 τ−1
p,2

)
is a diagonal

variance matrix. Then, investor i ’s posterior mean and variance about Ṽ j are

V̂ i
j = E[Ṽ j | Ỹ i , s̃p ] =

τv, j v j +τi
j Ỹ i

j +τp, j s̃p, j

τv, j +τi
j +τp, j

, Vari (Ṽ j ) = (τv, j +τi
j +τp, j )−1, Covi (Ṽ1,Ṽ2) = 0.

(A-4)

The two assets’ payoffs remain uncorrelated ex-post, and we have diagonal matrix

(
Σ̂i

V

)−1
V̂ i =

(
τv,1v1 +τi

1Ỹ i
1 +τp,1 s̃p,1 0

0 τv,2v2 +τi
2Ỹ i

2 +τp,2 s̃p,2

)
. (A-5)

We can integrate over all investors (
∫ 1

0 ε̃
i di = 0) and use the notation τ j =

∫ 1
0 τ

i
j di to obtain

∫ 1

0

(
Σ̂i

V

)−1
di =

τv,1 +τ1 +τp,1 0

0 τv,2 +τ2 +τp,2

 , (A-6)

∫ 1

0

(
Σ̂i

V

)−1
V̂ i di =

(
τv,1v1 +τ1Ṽ1 +τp,1 s̃p,1 0

0 τv,2v2 +τ2Ṽ2 +τp,2 s̃p,2

)
. (A-7)
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The market clearing condition determines the equilibrium price as stated in Proposition 1,

P̃ j =
(
τv, j +τp, j +τ j

)−1
[
τv, j v j + (τp, j +τ j )s̃p, j −λ(z j −γ j )

]
, (A-8)

Note that P̃ j is informationally equivalent to the signal s̃p, j = Ṽ j + ε̃p, j where

ε̃p, j =− λ
τ j

(Z̃ j − z j ) ∼N (0,τ−1
p, j ). (A-9)

Thus, the precision of s̃p, j is τp, j = 1/Var(ε̃p, j ) = τ2
jτz, j /λ2.

A.2 Proof of Proposition 2

By standard results in statistics, if x̃ ∼ N (µ,σ) is normal random vector, then q̃ = x̃ ′M x̃

follows the non-central χ2-distribution and its expected value is E(q̃) = Tr[Mσ]+µ′Mµ. Taking

the expectation of U i
2 yields trader i ’s utility at t = 1 as follows:

U i
1 := E[U i

2] =λW0 + 1

2
Tr

[
(Σ̂i

V )−1Var
(
V̂ i − P̃

)]
+ 1

2
E

(
V̂ i − P̃

)′
(Σ̂i

V )−1E
(
V̂ i − P̃

)
. (A-10)

It is straightforward to compute the mean and the variance of V̂ i
j − P̃ j as follows

E[V̂ i
j − P̃ j ] = (τv, j +τp, j +τ j )−1λ(z j −γ j ), Cov[V̂ i

1 − P̃1,V̂ i
2 − P̃2] = 0,

Var[V̂ i
j − P̃ j ] =−

(
τv, j +τp, j +τi

j

)−1 + (
τv, j +τp, j +τ j

)−2
(
τv, j + (τp, j +τ j )2τ−1

p, j

)
.

Substituting the above results into equation (A-10) yields

U i
1 =λW0 − 1

2
+ 1

2

∑
j=1,2

β j

(
τv, j +τp, j +τi

j

)
, where

β j =
(
E

(
V̂ i

j − P̃ j

))2 +Var
(
V̂ i

j − P̃ j

)
+Vari (Ṽ j ) = E

[
(Ṽ j − P̃ j )2] ,

= (
τv, j +τp, j +τ j

)−2
[
λ2(z j −γ j )2 +λ2τ−1

z, j +τ j

]
+ (
τv, j +τp, j +τ j

)−1 .

Therefore, investor i ’s information choice problem (15) is equivalent to solving

max
τi

1,τi
2

∑
j=1,2

β jτ
i
j , s.t.

∏
j=1,2

(τv, j +τi
j ) ≤ K

∏
j=1,2

τv, j and τi
j ≥ 0. (A-11)

For a continuum of investors, each of them takes β j as given. The information choice problem

(A-11) is not a concave objective function. Note that β jτv, j = E
[
(Ṽ j − P̃ j )2

]
/Var(Ṽ j ). We thus

have a corner solution, i.e., the best response of investor-i is given as Proposition 2.
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A.3 Proof of Proposition 3

Equation (18) follows from the linear-Gaussian relationship of Ṽ j and P̃ j . The key calcula-

tion is, τp, j =
(
Γ jτv, j

K−1
λ

)2
τz, j , which follows from (A-8) and (A-9).

From the proof of Proposition 2 and with the notation that τ j =Γ j (K −1)τv, j , we have

ASSR j = τv, j

(
τv, j +τ2

jτz, j /λ2 +τ j

)−1
[
λ2(z j −γ j )2 +λ2τ−1

z, j +τ j

τv, j +τ2
jτz, j /λ2 +τ j

+1

]
. (A-12)

Clearly, ASSR j depends on the fraction of investors who choose to learn about asset 1 and on

the benchmarking level of asset j , i.e., ASSR j = ASSR j (Γ1,γ j ). Suppose z j −γ j > 0. We have

∂ASSR j

∂γ j
< 0,

∂ASSR1

∂Γ1
< 0,

∂ASSR2

∂Γ1
> 0. (A-13)

Equation (A-13) shows that the value of information about asset 1 decreases with the popula-

tion of investors learning about asset 1. Since Γ j is a function of γ1 and γ2, we examine how

aggregate benchmarking levels affect Γ j . In the interior equilibrium with 0 <Γ j < 1, we have

ASSR1(Γ1,γ1) = ASSR2(Γ2,γ2). (A-14)

Take the total derivative of both sides with respect to γ1,

dASSR1

dγ1
= dASSR1

dΓ1

dΓ1

dγ1
+ dASSR1

dγ1
= dASSR2

dΓ2

dΓ2

dγ1
. (A-15)

Rearrange the equation,

dΓ1

dγ1
=−

( ∂ASSR1

∂Γ1︸ ︷︷ ︸
−

− ∂ASSR2

∂Γ1︸ ︷︷ ︸
+

)−1 ∂ASSR1

∂γ1︸ ︷︷ ︸
−

< 0. (A-16)

Similarly, we can show that

dΓ1

dγ2
=

( ∂ASSR1

∂Γ1︸ ︷︷ ︸
−

− ∂ASSR2

∂Γ1︸ ︷︷ ︸
+

)−1 ∂ASSR2

∂γ2︸ ︷︷ ︸
−

> 0. (A-17)

Combined with results in the corner equilibrium where Γ1 = 0 or Γ1 = 1, we can write dΓ1
dγ1

≤ 0

and dΓ1
dγ2

≥ 0. Since τp,1 is an increasing function of Γ1, it follows that
dτp,1

dγ1
≤ 0 and

dτp,1

dγ2
≥ 0.

Similar results hold for the derivative of Γ2 and τp,2.
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A.4 Proof of Corollary 1

The adjusted squared Sharpe ratio can be expressed as ASSR j = ASSR j (τv, j ,τz, j ,Γ j ), where

Γi is endogenously determined by τv, j and τz, j . By equation (A-12),

ASSR j = 1

1+Γ2
j (K −1)2τv, jτz, j /λ2 +Γ j (K −1)

(
1+

λ2(z j −γ j )2/τv, j +λ2/(τv, jτz, j )+Γ j (K −1)

1+Γ2
j (K −1)2τv, jτz, j /λ2 +Γ j (K −1)

)
.

(A-18)

One can see that ∂ASSR j /∂τv, j < 0 and ∂ASSR j /∂τz, j < 0. In the interior equilibrium, we have

ASSR1(τv,1,τz,1,Γ1) = ASSR2(τv,2,τz,2,Γ2). (A-19)

Taking derivative of both sides with respect to τv,1 and τz,1 yields

dΓ1

dτv,1
=−

(
∂ASSR1

∂Γ1
− ∂ASSR1

∂Γ1

)−1 ∂ASSR1

∂τv,1
< 0, (A-20)

dΓ1

dτz,1
=−

(
∂ASSR1

∂Γ1
− ∂ASSR1

∂Γ1

)−1 ∂ASSR1

∂τz,1
< 0. (A-21)

Since the “equality” holding in the corner solution, we have dΓ1/dτv,1 ≤ 0 and dΓ1/dτz,1 ≤ 0.

A.5 Proof of Corollary 3

The variance of asset price and the covariance between asset price and payoff are

Var(P̃ j ) =
(
1− τv, j

τv, j +τ j +τp, j

)2 (
τ−1

v, j +τ−1
p, j

)
, (A-22)

Cov(Ṽ j , P̃ j ) =
(
1− τv, j

τv, j +τ j +τp, j

)
τ−1

v, j > 0. (A-23)

Thus, the correlation between price and payoff of each asset is strictly positive,

Corr(Ṽ j , P̃ j ) =
√
τ−1

v, j

/√
τ−1

v, j +τ−1
p, j > 0. (A-24)

As γ j increases, τp, j and τ j decrease, and τp,− j and τ− j increase, according to Proposition 3.

Thus, the correlation between P̃ j and Ṽ j decreases as γ j increases. The variance of return is

Var(Ṽ j − P̃ j ) = 1

τv, j +τ j +τp, j
+

τ j +λ2τ−1
z, j

(τv, j +τ j +τp, j )2
, (A-25)

which increases in γ j and decreases in γ− j .
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A.6 Proof of Proposition 4

Following Admati (1985), we can derive the market-clearing asset prices, conditional on in-

vestors’ information choices denoted by {ωi ,τi } for all i ∈ [0,1]. Each asset price is linear func-

tion of the asset payoff and the noisy supply. The price vector can be expressed as

P̃ =C +B(ΩṼ −λ(Z̃ − z)), Ω :=
∫
τi

(
1 w i

w i (w i )2

)
di (A-26)

where the constant vector C and the non-diagonal matrix B are given as

C :=
(
Σ−1

v + 1

λ2
ΩΣ−1

z Ω+Ω
)−1 (

Σ−1
v v −λ(z −γ)

)
, (A-27)

B :=
(
Σ−1

v + 1

λ2
ΩΣ−1

z Ω+Ω
)−1 (

I2 + 1
λ2ΩΣ

−1
z

)
. (A-28)

Following the same steps in A.1, we obtain investor i ’s optimal asset holdings

θi = γi + 1

λ
(Σ̂i

v )−1(V̂ i − P̃ ). (A-29)

It is based on his posterior belief about the variance-covariance matrix and the mean of Ṽ :

Σ̂i
v =

(
Σ−1

v + 1

λ2
ΩΣ−1

z Ω+ (Λi )′(Σi )−1Λi
)−1

, where Λi = (1,ωi ) (A-30)

V̂ i = Σ̂i
v

((
I2 − 1

λ2ΩΣ
−1
z

(
I2 + 1

λ2ΩΣ
−1
z

)−1 )(
Σ−1

v v + 1
λΩΣ

−1
z z

)
+ (Λi )′(Σi )−1Ỹ i + 1

λ2ΩΣ
−1
z B−1P̃

)
.

(A-31)

A.7 Proof of Proposition 5

We compute the unconditional mean and variance of V̂ i − P̃ as follows

E
(
V̂ i − P̃

)
:= R = (R1,R2)′ = (

Σ−1
v +λ−2ΩΣ−1

z Ω+Ω)−1
λ(z −γ),

Var
(
V̂ i − P̃

)
= Var

(
Ṽ − P̃

)−E
(
Vari (Ṽ − P̃ )

)
= Var

(
Ṽ − P̃

)− Σ̂i
v ,

Var
(
Ṽ − P̃

)
:=Q =

(
Q11 Q12

Q12 Q22

)
= (I2 −B1Ω)Σv (I2 −B1Ω)′+λ2B1ΣzB ′

1.

(A-32)

For notation simplicity, we further define

A12 := R1R2 +Q12 = E[(Ṽ1 − P̃1)(Ṽ2 − P̃2)], A11 := R2
1 +Q11 = E[(Ṽ1 − P̃1)2],

A22 := R2
2 +Q22 = E[(Ṽ2 − P̃2)2].

(A-33)
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Thus, the squared Sharpe ratio of the two assets are ASSR1 = A11τv,1 and ASSR2 = A22τv,2. The

investor i ’s utility at time-1 can be written as

U i
1 =λW0 + 1

2
Tr

[
(Σ̂i

V )−1Q − I2

]
+ 1

2
R ′(Σ̂i

V )−1R =λW0 −1+ 1

2
Tr

[
(Σ̂i

V )−1Q
]
+ 1

2
R ′(Σ̂i

V )−1R.

Obviously, for optimality, the information capacity constraint is always binding, i.e.,

τi = K −1

τ−1
v,1 + (ωi )2τ−1

v,2

. (A-34)

Therefore, we can rewrite the investor i ’s information choice problem as

max
ωi

1

2

(
τ−1

v,1 + (ωi )2τ−1
v,2

)−1 [
A22(ωi )2 +2A12ω

i + A11

]
(K −1)+ A0,

where A0 =λW0 −1+ 1

2
Tr

(
(Σ−1

v +λ−2ΩΣ−1
z Ω)Q

)+ 1

2
R ′(Σ−1

v +λ−2ΩΣ−1
z Ω)R.

(A-35)

The first order condition of the above problem is given by[
−A12(ωi )2 − (

A11 − A22τ
−1
v,1τv,2

)
ωi + A12τ

−1
v,1τv,2

](
τ−1

v,1 +τ−1
v,2(ωi )2

)−2
τ−1

v,2 = 0. (A-36)

One can easily solve this equation and verify the second-order condition. If A12 = R1R2+Q12 ̸= 0,

i.e., E[(Ṽ1−P̃1)(Ṽ2−P̃2)] ̸= 0, then there are two solutions to (A-36). By checking the second order

condition (SOC) at the optimal ωi ,

SOC (ωi ) =
(
− (R1R2 +Q12)ωi −

(
(R2

1 +Q11)− (R2
2 +Q22)τ−1

v,1τv,2

))
τ−1

v,2(
τ−1

v,1+τ−1
v,2(ωi )2

)2 , (A-37)

we can determine the optimal ωi as

ωi =
(R2

2+Q22)τ−1
v,1τv,2−(R2

1+Q11)+
√(

(R2
1+Q11)−(R2

2+Q22)τ−1
v,1τv,2

)2+4(R1R2+Q12)2τ−1
v,1τv,2

2(R1R2+Q12) , (A-38)

which is exactly equation (36) in Proposition 5. The SOC at this solution is indeed negative,

SOC (ωi ) =−
√(

(R2
1 +Q11)− (R2

2 +Q22)τ−1
v,1τv,2

)2 +4(R1R2 +Q12)2τ−1
v,1τv,2

τ−1
v,2(

τ−1
v,1+τ−1

v,2(ωi )2

)2 < 0.

Therefore, when A12 := E[(Ṽ1 − P̃1)(Ṽ2 − P̃2)] ̸= 0, the best response for investor i is to observe a

signal about the linear combination of both assets, with attention weight ωi given by (36).
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A.8 Proof of Corollary 4

If investors specialized in learning either asset 1 or asset 2, then the two assets’ prices would

be uncorrelated. Therefore, the two assets’ returns would be uncorrelated, ex-ante and ex-post,

so A12 = E[(Ṽ1−P̃1)(Ṽ2−P̃2)] = E[Ṽ1−P̃1]E[Ṽ2−P̃2]. Suppose that the effective supply is positive

for each asset, z j −γ j > 0, then E[Ṽ j −P̃ j ] > 0 and A12 > 0. By Proposition 5, the best response of

each investor i is to directly learn about a linear combination of the two assets, with ωi ∈ (0,∞)

given by equation (36), rather than to learn about one asset at a time. Thus, each investor would

have an incentive to deviate from the conjectured case where they specialized in learning about

only one asset. In the general specification whereΛi is not restricted to be diagonal, a separative

learning equilibrium where investors specialize in learning about one asset does not exist.

A.9 Proof of Theorem 2

Conjecture a symmetric equilibrium where all investors choose the same attention weight

in the private signal, ωi =ω. Then they must choose the same signal precision,

τi = τ= K −1

τ−1
v,1 +ω2τ−1

v,2

(A-39)

If such an ω exists, thenΩ is a singular matrix and we need to rewrite equation (A-32). One can

substitute the symmetric ω into R and Q in the first order condition (A-36), and obtain

λ4(τ−1
v,1 +ω2τ−1

v,2)
[
ω(τ−1

v,1τ
−1
z,1 −τ−1

v,2τ
−1
z,2)+ (

ω(z1 −γ1)− (z2 −γ2)
)(
ω(z2 −γ2)τ−1

v,2 + (z1 −γ1)τ−1
v,1

)]
τv,1

(
λ2K

(
τ−1

v,1 +ω2τ−1
v,2

)
+ (K −1)2(τz,1 +ω2τz,2)

) = 0.

(A-40)

There is only one real solution that satisfies the second order condition (A-37):

ω = α+
√
α2 + τv,2

τv,1
, where (A-41)

α =
τ−1

v,2τ
−1
z,2 +τ−1

v,2(z2 −γ2)2 −τ−1
v,1τ

−1
z,1 −τ−1

v,1(z1 −γ1)2

2(z1 −γ1)(z2 −γ2)τ−1
v,2

. (A-42)

Sinceω has to be positive by equation (A-41), it implies that E[(Ṽ1−P̃1)(Ṽ2−P̃2)] ̸= 0 is necessary

but not sufficient for the existence of the conjectured symmetric equilibrium. We also need

A12(ω) := R1(ω)R2(ω)+Q12(ω) = E[(Ṽ1 − P̃1)(Ṽ2 − P̃2)] > 0, (A-43)
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to ensure that the solution (A-38) is positive. Therefore, the sufficient and necessary condition

for the existence and uniqueness ofω is that A12 = R1(ω)R2(ω)+Q12(ω) > 0. Note that both R(ω)

and Q(ω) depend on the optimal ω throughΩ,

Ω(ω) =
(
Ω11 Ω12

Ω21 Ω22

)
=

∫
τ

(
1 ω

ω ω2

)
di = K −1

τ−1
v,1 +ω2τ−1

v,2

(
1 ω

ω ω2

)
. (A-44)

Let’s define the following variables,

b1 := τ+τv,1 + τ2

λ2 (τz,1 +ω2τz,2),

b2 :=ωτ+ω τ2

λ2 (τz,1 +ω2τz,2),

b3 := τv,2 +ω2τ+ω2 τ2

λ2 (τz,1 +ω2τz,2),

Det := (τ+τv,1)τv,2 + τ2

λ2

(
τv,2τz,1 +ω4τv,1τz,2

)
+ω2τ

(
τv,1 + τ

λ2

(
τv,1τz,1 +τv,2τz,2

))
,

(A-45)

where τ is given by equation (A-39). Let β= τ(τz,1 +ω2τz,2), we have

R1R2 = λ2

Det
(z1 −γ1)(z2 −γ2)− λ2Ω12

Det2

(
1+ β

λ2

)[
τv,2(z1 −γ1)2 +τv,1(z2 −γ2)2]

− λ2Ω12

Det2

(
1+ β

λ2

)2 [√
Ω22(z1 −γ1)−

√
Ω11(z2 −γ2)

]2
,

whereΩ11,Ω12, andΩ22 are defined in equation (A-44). Since Q12 = Cov(P̃1, P̃2)−Cov(Ṽ1, P̃2)−
Cov(Ṽ2, P̃1), a sufficient condition for A12 = R1R2 +Q12 > 0 is that

Cov(P̃1, P̃2) > 0, and R1R2 > Cov(Ṽ1, P̃2)+Cov(Ṽ2, P̃1). (A-46)

First, a sufficient condition for R1R2 > Cov(Ṽ1, P̃2)+Cov(Ṽ2, P̃1) is that

1

λ2
< (z1 −γ1)(z2 −γ2)p

τv,1τv,2

√
2

(1+β/λ2)
(
1+ (K −1)(1+β/λ2)

) − 1

2

[
(z1 −γ1)2

τv,1
+ (z2 −γ2)2

τv,2

]
,

Second, a sufficient condition for positive price covariance is given by λ−2 > τ−1
v,1τ

−1
z,1 +τ−1

v,2τ
−1
z,2.

In sum, a sufficient condition for A12(ω) > 0 or the existence of a symmetric equilibrium is

λl <λ<λh , where

λh :=
(

1

τv,1τz,1
+ 1

τv,2τz,2

)1/2

, (A-47)

λl := 1p
2β

(
−1− β

2

(
(z1−γ1)2

τv,1
+ (z2−γ2)2

τv,2

)
+

√(
1− β

2

(
(z1−γ1)2

τv,1
+ (z2−γ2)2

τv,2

))2
+4β

√
2
K

(z1−γ1)(z2−γ2)p
τv,1τv,2

)1/2

.
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A.10 Proof of Proposition 6

When ∆ = 0, it is straightforward to calculate that ω = z2−γ2
z1−γ1

based on equations (37) and

(38). Moreover, from equation (38), one can see that α is an increasing function of τz,1 and a

decreasing function of τz,2. By equation (37), ω is an increasing function of α and depends on

τz, j only through α. It follows that dω
dτz,1

> 0 and dω
dτz,2

< 0. Given an arbitrary set of parame-

ters {τv,1,τv,2,τz,1,τz,2}, we can always define a “break-even” τ∗z,1 := τv,2τz,2/τz,1 and compare

it with the actual τz,1. When ∆ > 0, we have τ−1
v,2τ

−1
z,2 > τ−1

v,1τ
−1
z,1 which implies τz,1 > τ∗z,1. Since

ω increases in τz,1, we must have ω(τv,1,τv,2,τz,1,τz,2) >ω(τv,1,τv,2,τ∗z,1,τz,2), that is, ω> z2−γ2
z1−γ1

.

When ∆< 0, we must have τz,1 < τ∗z,1 and ω< z2−γ2
z1−γ1

. The above results are summarized by (42).

Taking derivative of equation (37) with respect to γ j yields

dω

dγ j
=

[
1+α

(
α2 + τv,2

τv,1

)− 1
2

]
dα

dγ j
= ω

ω−α
dα

dγ j
. (A-48)

Sinceω≥α andω> 0, the sign of dω
dγ j

should be the same as that of dα
dγ j

. Direct calculations yield

dα

dγ1
= τv,1τz,1

(
1+ (z2 −γ2)2τz,2

)−τv,2τz,2
(
1− (z1 −γ1)2τz,1

)
2(z1 −γ1)2(z2 −γ2)τv,1τz,1τz,2

= ∆+ξ
2(z1 −γ1)2(z2 −γ2)τ−1

v,2

,

dα

dγ2
= τv,1τz,1

(
1− (z2 −γ2)2τz,2

)−τv,2τz,2
(
1+ (z1 −γ1)2τz,1

)
2(z1 −γ1)(z2 −γ2)2τv,1τz,1τz,2

= ∆−ξ
2(z1 −γ1)(z2 −γ2)2τ−1

v,2

.

(A-49)

Thus, the sign pattern of dω
dγ j

in Proposition 6 follows from equations (A-48) and (A-49).

Case (1): If ∆ ≥ ξ, then dω
dγ1

> 0, dω
dγ2

≥ 0;

Case (2): If ∆≤−ξ, then dω
dγ1

≤ 0, dω
dγ2

< 0;

Case (3): If |∆| < ξ, then dω
dγ1

> 0, dω
dγ2

< 0.

A.11 The Impact of Benchmarking on the Marginal Value of Information

Since each individual investor is atomic, ∂Ω
∂ωi = 0, even though γ j affects the symmetric

equilibrium ω, it does not affect Ω through individual trader’s ωi . Hence, by equation (A-32),
∂Q(Ω)
∂γ j

=Q ′(Ω) ∂Ω
∂γ j

= 0. It can be shown that

(
Σ−1

v + 1

λ2
ΩΣ−1

z Ω+Ω
)−1

= 1

Det

(
b3 −b2

−b2 b1

)
,
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where b1, b2, b3, and Det are defined in equation (A-45). Then, we can derive that

R =
(
Σ−1

v + 1

λ2
ΩΣ−1

z Ω+Ω
)−1

λ(z −γ) = λ

Det

(
b3(z1 −γ1)−b2(z2 −γ2)

−b2(z1 −γ1)+b1(z2 −γ2)

)
, (A-50)

∂R1

∂γ1
=−λb3

Det
< 0,

∂R1

∂γ2
= λb2

Det
> 0,

∂R2

∂γ1
= λb2

Det
> 0,

∂R2

∂γ2
=−λb1

Det
< 0. (A-51)

From equation (A-33), ASSR j =
(
Var

(
Ṽ j − P̃ j

)+R2
j

)
τv, j , which implies

∂ASSR j

∂γ j
= 2τv, j R j

∂R j

∂γ j
< 0,

∂ASSR j

∂γ− j
= 2τv, j R j

∂R j

∂γ− j
> 0, (A-52)

∂(ASSR1 −ASSR2)

∂γ1
< 0,

∂(ASSR1 −ASSR2)

∂γ2
> 0. (A-53)

By equation (A-33), we have

dA12

dγ1
= R1

∂R2

∂γ1
+ ∂R1

∂γ1
R2 = λ2

Det2

[
2b2b3(z1 −γ1)− (b1b3 +b2

2)(z2 −γ2)
]

, (A-54)

dA12

dγ2
= R1

∂R2

∂γ2
+ ∂R1

∂γ2
R2 = λ2

Det2

[−(b1b3 +b2
2)(z1 −γ1)+2b1b2(z2 −γ2)

]
. (A-55)

Unlike the separative learning case, the benchmarking of one asset has not only a negative im-

pact on its own expected return but also a positive impact on the other asset’s expected return.

Thus, the net effect of benchmarking on A12 depends on which effect dominates. For the ex-

treme cases where ω→ 0 or ω→+∞, we can show that b2 → 0, b1 > 0 and b3 > 0 and thus

lim
ω→0 or ω→+∞

dA12

dγ1
=−λ

2b1b3

Det2 (z2 −γ2) < 0, lim
ω→0 or ω→+∞

dA12

dγ2
=−λ

2b1b3

Det2 (z1 −γ1) < 0.

Consider another special case where the two assets have equal characteristics: τv,1 = τv,2, τz,1 =
τz,2, and z1 −γ1 = z2 −γ2. In this case, we have ω= 1, b1 = b3, and then

dA12

dγ1
= dA12

dγ2
=−λ

2(z1 −γ1)

Det2 (b1 −b2)2 < 0.

In several special cases, we can prove that the negative effect of benchmarking on its own

expected return dominates the positive effect of benchmarking on the other asset’s expected

return. In general, the endogenous parameters b1, b2, and b3 depend on γ1, γ2, z1, and z2.

We have run extensive numerical experiments. The results suggest that the negative effect of

benchmarking on its own expected return dominates, and dA12
dγ j

< 0 holds in general.
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A.12 Proof of Corollary 5

When ASSR2 > ASSR1, the cross-learning effect (the second term) dominates in (46) if

− ASSR2 −ASSR1

A2
12

dA12

dγ2
>− 1

A12

d(ASSR2 −ASSR1)

dγ2
, (A-56)

which is equivalent to
dln(ASSR2 −ASSR1)

dγ2
− dln(A12)

dγ2
> 0. (A-57)

By equation (38), the above inequality is equivalent to

dln(α)

dγ2
= 1

α

dα

dγ2
> 0 (A-58)

By equation (A-49), this occurs when ∆> ξ. From equations (38), (40), and (41), we can write

α= ∆−ξ
2
(
z1 −γ1

)(
z2 −γ2

)
τ−1

v,2

+ z2 −γ2

z1 −γ1
. (A-59)

Thus, the cross-learning effect dominates when

α := ASSR2 −ASSR1

2A12τv,1
>α(∆= ξ) = z2 −γ2

z1 −γ1
. (A-60)

The left-hand side reflects the strength of cross-learning effect, while the right-hand side re-

flects the impact of benchmarking on the effective supplies. Since ω=α+√
α2 +τv,2/τv,1 is an

increasing function of α. The above condition (A-60) is equivalent to

ω>ω(∆= ξ) = z2 −γ2

z1 −γ1

1+
√√√√1+

τ−1
v,1(z1 −γ1)2

τ−1
v,2(z2 −γ2)2

= z2 −γ2 +
√
τv,2ξ

z1 −γ1
. (A-61)

When ASSR1 > ASSR2, the cross-learning effect dominates in dω
dγ1

if

ASSR1 −ASSR2

A2
12

dA12

dγ1
< 1

A12

d(ASSR1 −ASSR2)

dγ1
, (A-62)

which is equivalent to

dln(ASSR1 −ASSR2)

dγ1
− dln(A12)

dγ1
< 0. (A-63)
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By equation (38), the above inequality is equivalent to

dln(−α)

dγ1
= 1

α

dα

dγ1
< 0 (A-64)

By equation (A-49), this occurs when ∆<−ξ. From equations (38), (40), and (41), we can write

α= ∆+ξ
2
(
z1 −γ1

)(
z2 −γ2

)
τ−1

v,2

− τv,2

τv,1

(
z1 −γ1

z2 −γ2

)
. (A-65)

Thus, in this case, the cross-learning effect dominates when the following holds

|α| = ASSR1 −ASSR2

2A12τv,1
> |α(∆=−ξ)| = τv,2

τv,1

(
z1 −γ1

z2 −γ2

)
, (A-66)

which is equivalent to
ASSR1 −ASSR2

2A12τv,2
> z1 −γ1

z2 −γ2
. (A-67)

Again, the left-hand side reflects the strength of cross-learning effect, while the right-hand side

reflects the impact of benchmarking on the effective supplies. An equivalent condition is

1

ω
> 1

ω(∆=−ξ)
= z1 −γ1

z2 −γ2

1+
√√√√1+

τ−1
v,2(z2 −γ2)2

τ−1
v,1(z1 −γ1)2

= z1 −γ1 +
√
τv,1ξ

z2 −γ2
. (A-68)

It is easy to verify the following limits:

lim
γ2→z2

ω(∆=+ξ) = lim
γ1→z1

ω(∆=−ξ) =
√
τv,2

τv,1
. (A-69)

A.13 More on Price Informativeness

We discuss two measures for the price informativeness of individual assets. Due to investors’

integrative learning, each asset price incorporates private information about both Ṽ1 and Ṽ2.

The noise terms are also correlated. This follows from (31) which can be explicitly written as

P̃1 = C1 +τ(B11 +B12ω)(Ṽ1 +ωṼ2)−λ(
B11(Z̃1 − z1)+B12(Z̃2 − z2)

)
, (A-70)

P̃2 = C2 +τ(B21 +B22ω)(Ṽ1 +ωṼ2)−λ(
B21(Z̃1 − z1)+B22(Z̃2 − z2)

)
. (A-71)
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The four elements of the matrix B have full expressions below:

B11 = ω2

τv,2 +ω2τv,1
+ τv,2(λ2 + (K −1)τv,1τz,1)

τv,1(Kλ2(τv,2 +ω2τv,1)+ (K −1)2τv,1τv,2(τz,1 +ω2τz,2)
,

B12 = − (K −1)ω((λ2 −τv,2τz,2)(τv,2 +ω2τv,1)+ (K −1)τv,1τv,2(τz,1 +ω2τz,2))

(τv,2 +ω2τv,1)(Kλ2(τv,2 +ω2τv,1)+ (K −1)2τv,1τv,2(τz,1 +ω2τz,2))
,

B21 = − ω

τv,2 +ω2τv,1
+ ω(λ2 + (K −1)τv,1τz,1)

Kλ2(τv,2 +ω2τv,1)+ (K −1)2τv,1τv,2(τz,1 +ω2τz,2)
,

B22 = λ2(τv,2 +ω2τv,1)(ω2τv,1 +Kτv,2)+ (K −1)τv,1τv,2((K −1)τz,1τv,2 +ω2τz,2(ω2τv,1 +Kτv,2))

τv,2(τv,2 +ω2τv,1)(Kλ2(τv,2 +ω2τv,1)+ (K −1)2τv,1τv,2(τz,1 +ω2τz,2)
.

One can see from (A-70) and (A-71) that both asset prices contain information about the lin-

ear combination of asset payoffs, Ṽ1 +ωṼ2. In the integrative learning equilibrium of Theorem

2, the price informativeness for asset j can be derived from equations (A-70) and (A-71):

I(Ṽ1; P̃1) = 1

2
ln

1+
τ2τ−1

v,1(B11 +ωB12)2

ω2τ2(B11 +ωB12)2τ−1
v,2 +λ2

(
B 2

11τ
−1
z,1 +B 2

12τ
−1
z,2

)
 , (A-72)

I(Ṽ2; P̃2) = 1

2
ln

1+
ω2τ2τ−1

v,2(B21 +ωB22)2

τ2(B21 +ωB22)2τ−1
v,1 +λ2

(
B 2

21τ
−1
z,1 +B 2

22τ
−1
z,2

)
 , (A-73)

where ω and τ are given by (37). This measure I(Ṽ j ; P̃ j ) misses the information about Ṽ j from

the other asset price. In the integrative learning caes, we may refer to I(Ṽ j ; P̃ j ) as the partial

price informativeness and define the total price informativeness by the more inclusive measure

I(Ṽ j ; P̃ ) = I(Ṽ j ; P̃1, P̃2) = H(Ṽ j )−H(Ṽ j |P̃1, P̃2). (A-74)

To calculate I(Ṽ j ; P̃ ), we need the result of variance reduction by standard Kalman filtering:

Θ := Var(Ṽ )−Var(Ṽ |P̃ ) = BΩΣv (BΩΣvΩB ′+λ2BΣzB ′)−1ΣvΩB ′. (A-75)

This matrixΘ is symmetric and full-rank. So the condintional variance for asset j = {1,2} is

Var(Ṽ1 | P̃1, P̃2) = τ−1
v,1 −Θ11, Var(Ṽ1 | P̃1, P̃2) = τ−1

v,2 −Θ22. (A-76)

After some algebra, we find a concise expression of the total price informativeness:

I(Ṽ j ; P̃ ) =−1

2
ln

1−
ω2( j−1)τ−1

v, j (τz,1 +ω2τz,2)

λ2

(K−1)2

(
τ−1

v,1 +ω2τ−1
v,2

)2 + (τz,1 +ω2τz,2)
(
τ−1

v,1 +ω2τ−1
v,2

)
 . (A-77)
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We find that both I(Ṽ j ; P̃ j ) and I(Ṽ j ; P̃ ) are generally non-monotonic functions of the bench-

marking levels (Figure 2).

Information theory provides a general relationship: I(Ṽ j ; P̃ ) ≥ I(Ṽ j ; P̃ j ). The equality holds

in the separative learning equilibrium where only asset j ’s price is informative about its own

payoff Ṽ j . The inequality holds in the integrative learning equilibrium, because the price vec-

tor P̃ contains more information than its element P̃ j . The gap between these two measures,

I(Ṽ j ; P̃ )− I(Ṽ j ; P̃ j ) ≥ 0, reflects the information loss if one only considers asset j ’s price or the

information gain if one considers the other asset price. The significant gap in Figure 2 indicates

that measuring price informativeness solely based on a specific stock price can miss valuable in-

formation embedded in the price of some seemingly unrelated stock.

Thus, in the integrative learning equilibrium, it is most reasonable to use the inclusive mea-

sure I(Ṽ j ; P̃ ) to quantify the overall price informativeness for an asset. The empirical implication

is to use multiple stocks to predict the payoff of a single stock. Without knowing investors’ learn-

ing technology, an econometrician in this economy may view price correlations as spurious and

exclude the seemingly unrelated asset from his analysis. In the separative learning equilibrium,

the implication is trivial because the two measures become identical, I(Ṽ j ; P̃ ) = I(Ṽ j ; P̃ j ), and

they always (weakly) decrease in the benchmarking level of the same asset (Proposition 3).

A.14 Proof of Theorem 3

Since both Ṽ and P̃ are vectors of Gaussian random variables, the entropy measure of infor-

mational efficiency in the integrative learning case is given by

I(Ṽ ; P̃ )int = 1

2
ln

( |Var(Ṽ )|
|Var(Ṽ |P̃ )|

)
= 1

2
ln

( |Σv |
|Σv −Θ|

)
(A-78)

where Θ := Var(Ṽ )−Var(Ṽ |P̃ ) is the variance reduction for the payoff vector Ṽ conditional on

the price vector P̃ , as given in equation (A-75). We derive and find a simple expression for the

determinant of variance-covariance matrix Var(Ṽ |P̃ ), i.e.,

|Σv −Θ| =
(
τ−1

v,1 −Θ11
)(
τ−1

v,2 −Θ22
)−Θ12Θ21 = 1

τv,1τv,2

(
1+

(
K −1

λ

)2 τz,1 +ω2τz,2

τ−1
v,1 +ω2τ−1

v,2

)−1

. (A-79)
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This leads to equation (48). Using equations (A-76) and (A-79), we can prove the inequality

I(Ṽ ; P̃ )int − I(Ṽ1; P̃ )int − I(Ṽ2; P̃ )int

= H(Ṽ1|P̃1, P̃2)int +H(Ṽ2|P̃1, P̃2)int −H(Ṽ |P̃ )int

= 1

2
ln

(
Var(Ṽ1|P̃1, P̃2)Var(Ṽ2|P̃1, P̃2)

)− 1

2
ln

(|Var(Ṽ |P̃ )|)
= 1

2
ln

(
(τ−1

v,1 −Θ11)(τ−1
v,2 −Θ22)

)− 1

2
ln

(
(τ−1

v,1 −Θ11)(τ−1
v,2 −Θ22)−Θ12Θ21

)
= −1

2
ln

(
1− Θ2

12

(τ−1
v,1 −Θ11)(τ−1

v,2 −Θ22)

)
> 0, (A-80)

where the last step follows from the fact that Θ is a symmetric non-diagonal matrix such that

Θ12Θ21 =Θ2
12 > 0. We give the explicit expression below which is bounded between 0 and 1:

Θ12Θ21

(τ−1
v,1 −Θ11)(τ−1

v,2 −Θ22)
=

(
1+

λ4(τ−1
v,1 +ω2τ−1

v,2)4 + (K −1)2λ2(τ−1
v,1 +ω2τ−1

v,2)3(τz,1 +ω2τz,2)

(K −1)4ω2τ−1
v,1τ

−1
v,2(τz,1 +ω2τz,2)2

)−1

Since Var(Ṽ j |P̃1, P̃2) < Var(Ṽ j |P̃ j ) for each asset j , it follows that I(Ṽ j ; P̃ )int > I(Ṽ j ; P̃ j )int and thus

I(Ṽ ; P̃ )int > I(Ṽ1; P̃ )int + I(Ṽ2; P̃ )int > I(Ṽ1; P̃1)int + I(Ṽ2; P̃2)int (A-81)

Next, we prove the following mutual-information identity: I(Ṽ ; P̃ )int = I(Ṽ1 +ωṼ2; P̃ )int. In

the integrative learning equilibrium, equation (31) can be written as

P̃ =C +B
(
ΩṼ −λ(Z̃ − z)

)=C +B
(
τΛ(Ṽ1 +ωṼ2)−λ(Z̃ − z)

)
, Λ= (1,ω)′. (A-82)

Thus, the price P̃ = (P̃1, P̃2)′ is informational equivalent to a signal vector s̃p = (s̃p,1, s̃p,2)′ where

s̃p,1 = Ṽ1 +ωṼ2 − λ

τ
(Z̃1 − z1) = Ṽω− λ

τ
(Z̃1 − z1), (A-83)

s̃p,2 = Ṽ1 +ωṼ2 − λ

ωτ
(Z̃2 − z2) = Ṽω− λ

ωτ
(Z̃2 − z2). (A-84)

Using the notation Ṽω := Ṽ1 +ωṼ2 ∼N
(
v1 +ωv2,τ−1

v,ω

)
and τ−1

v,ω := τ−1
v,1 +ω2τ−1

v,2, we can derive

I(Ṽ1 +ωṼ2; P̃ )int = I(Ṽω; s̃p )int = 1

2
ln

(
Var(Ṽω)

Var(Ṽω|s̃p,1, s̃p,2)

)
= 1

2
ln

(
τ−1

v,ω(τv,ω+τ2τz,1/λ2 +ω2τ2τz,2/λ2)
)

= 1

2
ln

(
1+

(
K −1

λ

)2 τz,1 +ω2τz,2

τ−1
v,1 +ω2τ−1

v,2

)
= I(Ṽ ; P̃ )int (A-85)

50



It is straightforward to derive equation (50), the entropy measure of informational efficiency

in the separative learning case. This follows from the independence of two assets and equation

(18) in Proposition 3. The identity below follows from the fact that Var(Ṽ |P̃ ) is a diagonal matrix:

I(Ṽ ; P̃ )sep = I(Ṽ1; P̃ )sep + I(Ṽ2; P̃ )sep = I(Ṽ1; P̃1)sep + I(Ṽ2; P̃2)sep (A-86)

A.15 Informational Efficiency Under Different Learning Technology

We have the following two observations:

(1) When ∆= 0 and if the condition τ−1
v, jτ

−1
z, j ≤ 1

8

(K−1
λ

)2
holds, there will be a space of bench-

marking levels, γ = (γ1,γ2)′ ∈ R2, within which the informational efficiency under separative

learning is higher than that under integrative learning: I(Ṽ ; P̃ )sep,∆=0 > I(Ṽ ; P̃ )int,∆=0.

(2) When ∆ ̸= 0 and suppose asset j is the more volatile asset, separative learning with the

corner solution (Γ j = 1) can generate higher informational efficiency than integrative learning,

that is, I(Ṽ ; P̃ )sep,Γ j=1 ≥ I(Ṽ ; P̃ )int, where the equality holds whenω→ 0 if j = 1 orω→∞ if j = 2.

When ∆= 0, the informational efficiency under integrative learning is

I(Ṽ ; P̃ )int,∆=0 = 1
2 ln

(
1+ (K−1

λ

)2
τv,1τz,1

)
= 1

2 ln
(
1+ (Γ1 +Γ2)2 (K−1

λ

)2
τv,1τz,1

)
= 1

2 ln
(
1+ (Γ2

1 +Γ2
2)

(K−1
λ

)2
τv,1τz,1 +2Γ1Γ2

(K−1
λ

)2
τv,1τz,1

)
. (A-87)

In contrast, the informational efficiency under separative learning is given by

I(Ṽ ; P̃ )sep,∆=0 = 1
2 ln

(
1+Γ2

1

(K−1
λ

)2
τv,1τz,1

)
+ 1

2 ln
(
1+Γ2

2

(K−1
λ

)2
τv,2τz,2

)
= 1

2 ln
(
1+ (Γ2

1 +Γ2
2)

(K−1
λ

)2
τv,1τz,1 +Γ2

1Γ
2
2

(K−1
λ

)4
τ2

v,1τ
2
z,1

)
. (A-88)

Comparing the last expressions of (A-87) and (A-88), we find that for any benchmarking levels,

I(Ṽ ; P̃ )int,∆=0 ≥ I(Ṽ ; P̃ )sep,∆=0 if τ−1
v,1τ

−1
z,1 ≥

1

8

(
K −1

λ

)2

≥ Γ1(1−Γ1)

2

(
K −1

λ

)2

. (A-89)

When the opposite condition τ−1
v,1τ

−1
z,1 < 1

8

(K−1
λ

)2
holds, there are four solutions to the equation,

I(Ṽ ; P̃ )int,∆=0 = I(Ṽ ; P̃ )sep,∆=0, which can be reduced to

Γ2
1 + (1−Γ1)2 +Γ2

1(1−Γ1)2
(

K −1

λ

)2

τv,1τz,1 = 1. (A-90)
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These four solutions are

Γ1 = 0, Γ1 = 1,

Γ1 = 1

2
+ 1

2

√
1−

(
λ

K −1

)2 8

τv,1τz,1
, Γ1 = 1

2
− 1

2

√
1−

(
λ

K −1

)2 8

τv,1τz,1
.

The two corner solutions, Γ1 = 0 and Γ1 = 1, are obvious cases where the equality holds. The

other two solutions indicate a positive-measure space of benchmarking levels (γ1,γ2) ∈Φ⊂R2,

within which the inequality I(Ṽ ; P̃ )sep,∆=0 > I(Ṽ ; P̃ )int,∆=0 holds (Figure xxx). When z1 and z2 are

sufficiently large, the boundary of this spaceΦ can be determined by

Γ1(γ1,γ2) = 1

2
± 1

2

√
1−

(
λ

K −1

)2 8

τv,1τz,1
. (A-91)

When asset j is more volatile than the other (∆ ̸= 0), the informational efficiency in a corner

equilibrium (Γ j = 1) under separative learning is no less than that under integrative learning:

I(Ṽ ; P̃ )sep,Γ j=1 = 1
2 ln

(
1+

(
K −1

λ

)2

τv, jτz, j

)
≥ I(Ṽ ; P̃ )int. (A-92)

where the equality holds only when ω→ 0 if j = 1 or when ω→∞ if j = 2.

A.16 Proof of Proposition 8

In general, when ∆ ̸= 0, the marginal benefit of private information is different between the

two assets, and investors will tilt their attention weight toward the asset with higher total payoff

uncertainty. This attention shift is captured by the real attention measure. This makes investors’

optimal attention weight mismatch with the aggregate speculative portfolio weight
z2−γ2
z1−γ1

.

From equation (37) and the definition of real attention weight (54), we can derive

dω∗

dγ1
=

∆−ξ++
√

4τ−1
v,1τ

−1
v,2(z1 −γ1)2(z2 −γ2)2 + (∆+ξ−)2√

4τ−1
v,1τ

−1
v,2(z1 −γ1)2(z2 −γ2)2 + (∆+ξ−)2

τ−1
v,1(z1 −γ1)

τ−1
v,2(z2 −γ2)2

=

1+ ∆−ξ+√
ξ2++2∆ξ−+∆2

 τ−1
v,1(z1 −γ1)

τ−1
v,2(z2 −γ2)2

, (A-93)

where ξ± := τ−1
v,1(z1 −γ1)2 ±τ−1

v,2(z2 −γ2)2. From equation (A-93), it is easy to see that dω∗
dγ1

= 0

52



when ∆= 0 (and ω∗ = 1 in this case). The following result is useful

(∆−ξ+)2 − (ξ2
++2∆ξ−+∆2) =−2∆(ξ++ξ−) =−4∆τ−1

v,1(z1 −γ1)2, (A-94)

Therefore, we have |∆−ξ+| <
√
ξ2++2∆ξ−+∆2 if ∆> 0 and |∆−ξ+| >

√
ξ2++2∆ξ−+∆2 if ∆< 0.

Since ξ+ > 0, one can see that

−1 < ∆−ξ+√
ξ2++2∆ξ−+∆2

< 1 if ∆> 0,
∆−ξ+√

ξ2++2∆ξ−+∆2
<−1 if ∆< 0. (A-95)

With positive effective supplies, we thus obtain the monotonic dependence of ω∗ on γ1,

dω∗

dγ1
> 0 if ∆> 0,

dω∗

dγ1
< 0 if ∆< 0. (A-96)

Similar arguments can be applied to asset 2 and lead to the following result

dω∗

dγ2
> 0 if ∆> 0,

dω∗

dγ2
< 0 if ∆< 0. (A-97)

I(Ṽ ; P̃ )int increases in the benchmarking level γ j if ω and ω∗ move to opposite directions.

I(Ṽ ; P̃ )int decreases in γ j if ω and ω∗ move in the same direction. This is implied by Proposition

6, Theorem 3, and Proposition 8.

A.17 Proof of Corollary 8

We first study the integrative learning case. Investor i ’s demand is

θi = γi + 1

λ
(Σ̂i

v )−1(V̂ i − P̃ ), (A-98)

where, in the symmetric equilibrium, Λi = (1,ω), τi = τ, and Σ̂i
v = Σ̂V , so that

P̃ =
∫ 1

0
V̂ i di −λΣ̂V (Z̃ −γ). (A-99)

From Proposition 4, we obtain that the equilibrium demand is

θi = γi + 1

λ
(Λ)′τε̃i + Z̃ −γ. (A-100)
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More explicitly, we can write

θi
1 = Z̃1 +γi

1 −γ1 +
ε̃i

λ

K −1

τ−1
v,1 +ω2τ−1

v,2

, θi
2 = Z̃2 +γi

2 −γ2 +
ε̃i

λ

(K −1)ω

τ−1
v,1 +ω2τ−1

v,2

. (A-101)

By definitions the dispersion of portfolio holdings and the dispersion of the portfolio ex-

cess return, it is straightforward to show that that the dispersions of portfolio holdings and the

dispersion of the portfolio excess return are given in Corollary 8 in both learning models.

Dr =
∫ 1

0
(γi −γ)′

(
A11 A12

A12 A22

)
(γi −γ)di + K −1

λ2

A11 +2ωA12 +ω2 A22

τ−1
v,1 +ω2τ−1

v,2

, (A-102)

this can be rewritten as equation (61) in Corollary 8.
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