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Abstract

We show that the trading-fee breakdown (fee pricing) depends on the distribution of investor gains-

from-trade relative to the tick size. Absent price discreteness, an increase in investor gains-from-trade

increases the total fee proportionally, but the fee breakdown has no effect. With price discreteness, the fee

breakdown can mitigate the loss of welfare due to difficulty in trading when gains-from-trade are small

relative to the tick size. However, when gains-from-trade are large, the exchange fee breakdown plays

only a small role and exchanges extract rents from investors gains-from-trade by increasing total fee.

The resulting gap between welfare relative to fees set by a Social Planner can be large. Consequently, a

regulator can improve welfare substantially by imposing a cap on exchange fees.
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Optimal trading fees for limit orders (make fee) and market orders (take fee) is at the top of the agenda of

financial regulators around the world. This is generally called fee pricing. Regulators are vigilant about fee

pricing for several reasons: First, following the introduction of Regulation National Market System (Reg

NMS, 2007) in the US (and related regulation in Europe), fee pricing has become a strategic tool for trading

platforms and exchanges to attract trading volume especially for liquid stocks (Cardella, Hao and Kalcheva,

2015 and O’Hara, 2015). In particular, negative fees, called rebates, incentivize investors to submit certain

types of orders, while investors using other order types are charged positive fees. For example, Maker-Taker

pricing pays investors rebates when their limit orders (making liquidity) are executed and charges fees on

market orders (taking liquidity), while under Taker-Maker (also called inverted) pricing the fees and rebates

are reversed. Second, even though competition among exchanges is gradually reducing the total fees charged

by exchanges, the economic magnitude of fee pricing revenue for exchanges is material. For example, for

the London Stock Exchange group, it totals £407m, which represents 19 percent of the Total Group income

in 2019. Third, rebate-based pricing has been criticized by some practitioners as well as by Angel, Harris,

and Spatt (2013), Harris (2015), and Spatt (2019) on agency, price transparency and regulatory grounds.

There are a number of question about fee pricing. What is the optimal way to set trading fees? What

is the optimal breakdown between make fee and take fee? What are the determinants of the fee breakdown

and of the resulting total fee? Does the fee breakdown depend on the investors’ gains-from-trade and on the

tick size, or, does the optimal fee pricing depend on the relative tick size (tick-to-gains-from-trade ratio)? In

real market the owners of trading platforms set trading fees, whereas regulators generally set the tick size

and can only impose a cap on fees.1 How does this regulatory environment affect the optimal fee pricing?

The existing literature (Colliard and Foucault (2012)) shows that, absent a discrete tick size, there is no

role for the fee breakdown as investors can neutralize any trading fees by choosing a different limit price.
1See Section 1 for institutional details on trading fees.
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Only the total net fee matters. In contrast, when prices are instead discrete, Foucault, Kadan, and Kandel

(2013), and Chao, Yao, and Ye (2018) show that the fee breakdown can mitigate the loss of welfare due to

price discreteness. In particular, if investors’ private valuations — which proxy for gains-from-trade — are

in between prices on a discrete price grid, transactions cannot take place and hence there is a loss of welfare

without rebates. However, if fee pricing has a positive role on social welfare, why do regulators generally

impose a cap on fees? Is the fee breakdown set by owners of trading platforms optimal in terms of social

welfare? Is the fee breakdown relevant for any stock/market characterized by different gains-from-trade?

We obtain three sets of new results compared to the existing literature. One set of results is on the

optimal fee pricing in relation to the gains-from-trade that characterize the market. Another set of results

motivates why regulators impose fee pricing restrictions on exchanges that are tied to the tick size. A third

set of results is on the importance of the endogenous choice between different possible limit orders and

between limit and market orders when setting the optimal fee breakdown.

Our paper extends the existing literature (Foucault et al. (2013) and Chao et al. (2018)) by introducing

a new important feature that needs to be considered when setting the optimal fee pricing, which is the

heterogeneity of ex ante gains-from-trade across markets and across stocks. As is standard in the literature

(Chao et al. (2018)) we proxy the ex ante heterogeneity of gains-from-trade among market participants with

the support of the distribution of the investors’ private values and show that the optimal fee pricing depends

on the tick size relative to the gains from trading. We therefore derive new policy implications on how to

manage the heterogeneity of gains-from-trade across markets and across securities.

We show that when the gains-from-trade are small, not only fee pricing with a rebate set by an exchange

is important as it resolves the loss of welfare due to the existence of frictions determined by price discrete-

ness, but a social planner can Pareto improve on the exchange fee pricing by setting a fee breakdown that

minimizes the total fees. When instead the gains-from-trade increase relative to the tick size, the fee break-
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down plays no longer an important role in alleviating the frictions from price discreteness (as the relative

tick size becomes irrelevant), whereas the exchange has an incentive to increase total fee and set positive

fees to extract a rent from the investors’ increasing gains-from-trade. Hence, the regulatory action that a

social planner can take is to set a cap on fees that minimizes the exchange rent extraction and at the same

time maximizes both investors’ welfare and total welfare.

By considering different valuation supports (investor populations with different gains-from-trade) we

show that it is the tick size relative to the valuation support (as opposed to the absolute value of the tick

size) that matters for fee pricing. When the relative tick size is large (as the support of the investors’

personal evaluation is small), the fee breakdown matters, whereas when the relative tick size is small, the

fee breakdown plays a shrinking role as the discrete-price friction becomes less material. We show that the

absolute value of the tick size is only a normalization: All else equal a small tick market is isomorphic to a

corresponding larger tick market with the same relative valuation support and price grid.

An increase in investor gains-from-trade has two effects on exchange fee pricing: it tends to increase

total fee as the exchange increases its rent extraction, and it changes the fee breakdown. To isolate the two

effects in Section 2 we start from a continuous price model where there is no tick size and therefore there

is no role for fee pricing to alleviate the welfare loss induced by the discreteness of the price grid. This

model shows that total fee increases as a constant proportion of the gains-from-trade due to the exchange

rent extraction. We then introduce a two-period discrete price model and show the effects of an increase

in investor gains-from-trade both on total fee and on fee breakdown. With discrete prices, we show the fee

breakdown matters for large relative tick sizes but as investor gains-from-trade increase and the relative tick

size decreases, the owner of the trading platform has only an incentive to increase the total fee. Therefore,

fee breakdown becomes irrelevant and regulators have to step in with a cap on fees to prevent exchanges to

extract excessive rents from the investor gains-from-trade to the detriment of social welfare.
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The two-period model raises the issue of having a monopolistic liquidity provider at the first period of

the trading game which affects trading volume and therefore the exchange’s objective function. In particular,

with a book that opens empty, the first trader is necessarily a liquidity supplier while the second trader is

necessarily a liquidity taker at the price posted by the first trader. In Section 3, we extend the existing

literature by showing how the addition of a third round of trading affects fee pricing and its relation to the

valuation support.2 With a three-period model we introduce endogenous choice between limit and market

orders which affects the liquidity provision of the first trader who anticipates that the second trader can

eventually undercut his order instead of taking the liquidity he offers at his chosen price. We show that

with endogenous choice between limit and market orders the breakdown offered by the owner of the trading

platform is no longer symmetric as the exchange tries to maximize trading volume by inducing the second

trader to either take the order posted by the first trader or post liquidity on the other side of the market in

order to maximise the chances the third traders hits an existing limit order. We also find that the exchange

exploits increased investor arrival by increasing its fees. Our results have welfare and policy implications

that we discuss in the conclusions (Section 5).

1 Background information and prior research

Reg NMS established the regulatory foundation for the current architecture of US equity markets. This

regulation includes an explicit limit on the cost of accessing (i.e., posting and trading on) quotes displayed

by U.S. equity trading platforms. Rule 610 caps trading fees to no more than $0.003 per share for stocks

priced over $1, and to no more that 0.3% of the quoted price for stocks priced below $1. In addition,

the Sub-Penny Rule 612 of Reg NMS prohibits exchanges, market makers, and electronic platforms from
2In order to illustrate the essential economics we use a model with a small number of trading period. The model could, of

course, be extended to allow for additional trading periods but with additional mathematical complexity.
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displaying, ranking or accepting quotes on NMS securities in sub-penny increments unless a stock is priced

less than $1 per share. Thus, under Reg NMS, trading fees cannot exceed one third of the tick size.3 The

recent SEC (2022) proposal aims to significantly reduce the trading fee cap for U.S. stocks.

In Europe, MiFID II (Directive 2014/65/EU) and MiFIR (Regulation 600/2014/EU) mandates a reduc-

tion in the tick size for European stocks and thereby implicitly reduces the maximum trading fees given

that the standard practice on European exchanges is to cap fees relative to the tick size.4 MiFID II also

sharpened the regulation of trading fees by requiring new incentives on market making agreements under

Stress Market Conditions (RTS 8), a maximum Order-To-Trade ratio for each instrument (RTS 9), and a

periodic disclosure by exchanges of the percentage of fees and rebates on total turnover (RTS 27). It also

bans “cliff-edge“ pricing structures in which customer-specific fees are reduced retroactively for market

participants who reach a trading volume threshold (RTS 10).

Fee pricing is investigated in several theoretical papers. The starting point for work on price discreteness

frictions is Colliard and Foucault (2012), which shows the breakdown between make and take fees has no

effects on the cum-fee-spread (net of fees spread) in a competitive market with continuous prices. The reason

is that traders can neutralize changes in fees by making offsetting changes in the pricing aggressiveness of

limit orders. Subsequent research has identified two channels through which a price-discreteness friction

affects fee pricing and trading: Market monitoring and limit order price choice. Foucault et al. (2013) show

how price discreteness and fee pricing affect investor monitoring incentives and the order-arrival process in

a coordination game matching buyers and sellers. However, investor gains-from trade are non-random and
3According to the S.E.C. (2018) Release No.34-82873 on Transaction Fee Pilot for NMS Stocks “For maker-taker exchanges,

the amount of the taker fee is bounded by the cap imposed by Rule 610(c) on the fees the exchange can charge to access its best
bid/offer for NMS stocks. This cap applies to the fees assessed on an incoming order that executes against a resting order or quote,
but does not directly limit rebates paid. The Rule 610(c) cap on fees also typically indirectly limits the amount of the rebates that
an exchange offers to less than $0.003 per share in order to maintain net positive transaction revenues. For taker-maker exchanges,
the amount of the maker fee charged to the provider of liquidity is not bounded by the Rule 610(c) cap, but such fees typically are
no more than $0.003, and the taker of liquidity earns a rebate." If the price of a protected quotation is less than $1.00, the trading
fee is no more than 0.3% of the quotation price per share SEC (2009).

4See Article 49 of MiFID II and the following Regulatory Technical Standard 11 (RTS 11, ESMA 2017). ESMA (2015)
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known, and there is no decision about posted limit prices (which are exogenously fixed in their analysis) or

choice between limit and market orders. Foucault et al. (2013) show that, in single market with a discrete

tick size, the make-take breakdown affects market quality. In contrast, we study a trading game in which

potential buyers and sellers and an exchange decide how to split random investor gains-from-trade. In

particular, investors endogenously choose the limit prices at which limit orders are posted so as to maximize

their expected share of the gains-from-trade, and the exchange’s fee pricing affects both the probability of

transactions and the exchange’s profit per trade. Panayides, Rindi, and Werner (2017) show how a change

in trading fees affects market quality when two trading platforms compete for the provision of liquidity.

Our analysis is closely related to Chao et al. (2018), which models optimal fee pricing both in a single

monopolistic market and also with competition between multiple markets. In terms of modeling structure,

we extend their model by expanding the scope of endogenous order choice (i.e., limit price choice and

choice of market or limit orders) and allowing for multiple rounds of trading. These changes lead to two

sets of new insights: First, optimal fee pricing is strictly rebate-based in Chao et al. (2018), but we show

that optimal fee pricing depends on the investor population in the market. As a result, optimal fee pricing is

rebate-based only when investor gains-from-trade are small relative to the price tick size. When instead the

ex ante gains-from-trade are large, strictly positive fee pricing by exchanges is possible. Second, we show

how a regulator optimally interact with the exchange to optimize social welfare.

Angel et al. (2013) and Spatt (2019) take a different approach from the price-friction literature. They

emphasize that trading fees and rebates have potential effects via the transparency of economic prices (price

+ fee pricing) vs quoted prices, the efficacy of regulatory protections based on quoted prices, agency issues

when brokers do not pass through fees and rebates to their clients, and impeding intermarket competition.

Harris (2015) points out further that negative fees allow for intra-tick trading, thus by-passing the Reg NMS

trade-through rule. Li, Ye, and Zheng (2020) show how fees affect order routing decision in fragmented
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markets and create demand for complex order types. The different theoretical considerations are not mutu-

ally exclusive. Moreover, a complete understanding of fee pricing is likely to involve interactions between

these various effects and price frictions.

A sizable empirical literature investigates different aspects of fee pricing.5 Malinova and Park (2015)

find evidence following changes in fee and rebates on the Toronto Stock Exchange (TSX) that appears to

support the Colliard and Foucault (2012) irrelevance prediction provided that the TSX price tick-size is

interpreted as being economically small. However, using Rule 605 data, O’Donoghue (2015) finds that

changes in the split of trading fees between liquidity suppliers and demanders affect order choice and exe-

cution quality as predicted by Foucault et al. (2013). Battalio, Corwin, Jennings (2016) find that fees and

rebates appear to affect broker order-routing decisions. Panayides et al. (2020) find that quoted and cum-fee

spreads are affected by change in total fees on the BATS European platforms, CXE and BXE. Menkveld

(2013) shows that rebate-based pricing is related to HFTs. Cardella, Hao, and Kalcheva (2015) document

that Reg NMS was followed by the adoption of rebate–based fee pricing by most trading platforms in U.S.

markets and by a sharp increase in HFT firm trading. O’Hara (2015) also links HFT trading activity and the

increased use of rebate–based fee pricing around the world.

2 Two-Period Model

We begin our analysis with a parsimonious model with two dates, t1 and t2, on which investors arrive sequen-

tially and potentially submit orders. With only two periods, the model dynamics can be solved analytically

in closed-form. We use this model to develop basic insights about fee pricing and different price grids (con-

tinuous and discrete), different amounts of ex ante trading demand (ranging from low to high), and different
5 In addition to the research discussed here, see also Bourke, DeSantis, and Porter (2019), Baldacci, Possamaï, and Rosenbaum

(2019), Brauneis, Mestel, Riordan, and Theissen (2019), Skjeltorp, Sojli, and Tham (2012), He, Jarnecic, and Liu (2015), Clapham,
Gomber, Lausen, and Panz (2017), Anand, Hua, and McCormick (2016), Comerton-Forde, Grégoire, and Zhong (2019), Lin, Swan,
and Harris (2019) and Brolley and Malinova (2013).
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fee decision-making (profit-maximizing exchange, Social Planner, and regulatory-constrained exchange).

These models all include endogenous limit order choice in terms of the posted limit price. Section 3 extends

this basic model to more than two periods to describe fee pricing where investors endogenously choose

between limit and market orders in addition to their choice of the limit price.

At each period tz 2 {t1, t2} a risk-neutral trader arrives characterized by a private valuation equal to btz

which is an i.i.d drawn from a uniform distribution, U [b ,b ], where b and b are the limits of the trader

valuation supports. The mean of the valuation support v is constant over time and denotes the ex ante asset

value. Traders with more extreme btz realizations have stronger demands to trade, whereas traders with

btz realizations close to v are more willing to supply liquidity. Therefore, the support width D = b � b

measures the ex ante gains-from-trade and, thus, the associated ex ante demand for trade. The wider the

support, [b ,b ], the higher is the probability that arriving traders will have strong heterogeneous directional

demands to trade, such as, e.g., long–term asset managers. The smaller the support [b ,b ], the higher is the

probability that arriving traders will prefer to profit as passive liquidity providers.

Investors trade using limit orders (which supply depth to the book) and market orders (which take depth

from the book by hitting standing limit orders). The state of the limit order book at time tz is a vector

Ltz = [DP
tz ], where DP

tz indicates the total limit order depth at price P at time tz. The initial limit order book Lt0

is assumed to be empty, and then we model how the book evolves over time. Let xtz denote a generic action

(i.e, order submission) taken by an investor at a date tz. Let XL denote the set of possible limit buy and sell

orders at all available limit prices, and let Xtz denote the set of all available limit orders and possible market

orders given the standing book Ltz�1 .

Trading and limit order book dynamics take a simple form in a two-period market: An investor arriving

at time t1 chooses between submitting a limit buy order LBP or limit sell order LSP at one of the available

price levels P on a (discrete or continuous) price grid or a no trade NT . Market orders are not possible at t1

8



given the empty initial book. Next, given the standing book Lt1 , the investor arriving at t2 chooses between

submitting a market buy order MBPk that is immediately executed at the best offer (if there is a limit sell in

the book Lt1 ) or a market sell order MSPk that is immediately executed at the best bid (if there is a limit buy

in the book) or, instead, does not trade NT .6 In the two-period model, limit orders are not used at t2 since,

after the final round of investor arrival, a limit orders posted at t2 would not be executed.

The trading platform may set different trading fees x (x) for different order types x. (We also consider

fees set by a Social Planner.) An investor offering liquidity via a limit order pays a make fee MF . An

investor taking liquidity via a market order (or via a marketable limit order) pays a take fee T F . Fee pricing

is denoted as the set X = {x (x)}8x = {MF,T F}. Rebates are negative fees, which are a cost for the trading

platform and a reward for the investor receiving them. Under a Maker-Taker structure, investors submitting

market orders pay a take fee (T F > 0) to the trading platform, and investors posting limit orders receive a

make rebate (MF < 0) whenever their limit order executes. In a Taker-Maker structure, the fees and rebates

are reversed so that limit-order submitters pay make fees (MF > 0), and market-order submitters receive

take rebates (T F < 0).

Quoted prices and the trading fees and rebates determine the net prices paid and received by investors

when trading, which we call cum-fee prices. Let Pcum,MS = P�T F denote the cum-fee price received from

a market order to sell at the quoted price P (net of take fees paid to the exchange) , and let Pcum,MB = P+T F

be the cum-fee price paid on a market order to buy at P (net of take fees paid to the exchange). Similarly,

Pcum,LS = P�MF is the cum-fee price for a limit order to sell and Pcum,LB = P+MF is the cum-fee price

for a limit order to buy.

Our model determines optimal fees for an exchange or, alternatively, for a Social Planner in a Stackelberg

game. The exchange/Social Planner is a Stackelberg leader and investors are Stackelberg followers. We
6 Marketable limit orders that cross with the best available bid/ask on the opposite side of the standing book Ltz�1 are treated as

market orders in terms of both order execution and exchange fee pricing.
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solve the model in two steps: Taking market fee pricing X as given, we first solve for optimal investor trading

strategies — i.e., the optimal responses of the Stackelberg followers — in the trading subgame by backward

induction. Given this characterization of optimal investor trading, we then solve for the optimal fee pricing X

given an exchange’s profit-maximization problem or a Social Planner’s total welfare-maximization problem.

Given a standing book Ltz�1 and fee pricing X, the expected payoff on an order xtz for an investors arriving

at time tzwith a private valuation btz is:

ptz(xtz |btz ,X,Ltz�1) =

8
>>>>>><

>>>>>>:

[btz �P(xtz)�x (xtz)]Pr(q xtz
tz |X,Ltz�1) if xtz is a buy order

[P(xtz)�btz �x (xtz)]Pr(q xtz
tz |X,Ltz�1) if xtz is a sell order

0 if xtz is NT

(1)

where P(xtz) is the posted price at which order xtz trades if it is executed and x (xtz) = T F for market or-

ders and MF for limit orders. q xtz
tz denotes the (endogenous) set of future trading states in which an order

xtz submitted at time tz is executed, and Pr(q xtz
tz |X,Ltz�1) is the associated probability of execution. If xtz

is a market order, then P(xtz) is the best standing quote on the other side of the market at time tz, and

Pr(q xtz
tz |X,Ltz�1) = 1, since market orders are executed immediately at the standing bid or ask (if that side

of the book is non-empty). If xtz is a non-marketable limit order, then the execution price P(xtz) is its limit

price, and the execution probability Pr(q xtz
tz |X,Ltz�1) is the probability (between 0 and 1) of later investors

choosing to hit standing limit orders via market orders. Limit order execution probabilities depend para-

metrically on the valuation support S. Liquidity supply decisions at tz and the order-execution probabilities

Pr(q xtz
tz |X,Ltz�1) in (1) are both endogenous.

A novel feature of our analysis, relative to other fee pricing models, is the endogenous choice of posted

limit prices. An investor arriving at time tz chooses his order xtz — and, in particular, limit prices — to
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maximize his expected payoff from (1):

max
xtz2Xtz

ptz(xtz |btz ,X,Ltz�1) (2)

given his private value realization btz . A key intuition is that the investor’s optimal order choice depends on a

trade-off between order-execution probabilities and price improvement: More aggressive limit order prices

reduce the payoff conditional on execution, but can increase the probability of execution. This means we

need to consider the market order submission decision given different hypothetical limit orders at multiple

hypothetical possible posted limit prices. The optimization problem in (2) is tractable because the investor

expected payoff from (1) for different orders xtz are linear in the realized investor valuation btz . We can also

identify the set of a priori prices at which investors might potentially post limit orders. From Lemma 3 in

Appendix A, a necessary condition for a limit order at a posted price P to be used by investors is that it has a

positive execution probability in that the corresponding market-order cum-fee price is Pcum,MS  b for limit

buys and, by symmetry, Pcum,MB � b for limit sells.

Order submissions in the last round of trading (at t2 in the two-period market) take a simple form: An

investor submits a market sell MSP at t2 to hit a limit buy at a posted price P if his payoff given the cum-fee

price is positive, i.e., Pcum,MS �bt2 > 0 and symmetrically for limit sells and otherwise does not trade:7

xt2 =

8
>>>>>><

>>>>>>:

MSP if there is a limit buy at P and bt1 < Pcum,MS

MBP if there is a limit sell at P and bt1 > Pcum,MB

NT otherwise

(3)

It follows then that the execution probability Pr(q xLBP

t1 |X,Lt0) of a limit buy LBP posted at P at t1 is the

7We extended our previous notation so that, for example, xMSP
t2 and MSPt2 are used interchangeably for a market sell order at P

at t2. When possible, we simplify the notation to make it consistent with the notation used in the figures.
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order-submission probability of a market sell, MSP, at t2 given the cum-fee price Pcum,MS = P�T F :8

Pr(q xLBP

t1 |X,Lt0) = Pr(xMSP
t2 |X,Lt1) = Pr(bt2 |bt2 < P�T F) (4)

= max
⇢

0,min
⇢P�T F �b

D
,1
��

= max
⇢

0,min
⇢
(P� v)+0.5D�T F

D
,1
��

where the last equality is because the investor valuation bt2 is drawn from U [b , b̄ ] with support width D.9 In

particular, this probability is well-defined (i.e.,  1) for all priori possible limit prices from Lemma 3. By

symmetry, the execution probability Pr(q xLSP

t1 |X,Lt0) of a limit sell, LSP posted at t1 is the order-submission

probability of a market buy MBP at t2 given the cum-fee market-buy price Pcum,MB = P+T F :

Pr(q xLSP

t1 |X,Lt0) = Pr(xMBP
t2 |X,Lt1) = Pr(bt2 |bt2 > P+T F) (5)

= max
⇢

0,min
⇢

b̄ �P�T F
D

,1
��

= max
⇢

0,min
⇢
(v�P)+0.5D�T F

D
,1
��

Next, consider the initial time t1 in the two-period market. The limit order book opens empty, and so the

investor arriving at t1 chooses between submitting a limit order and submitting no order (NT ). Lemma 4 in

Appendix A shows that an investor with bt1 > v is a potential buyer who only submits a limit buy or a NT.

This investor optimally posts a limit buy LBPk at a price Pk if two conditions hold: First, the expected payoff

ptz(x
LBPk
t1 |btz ,X,Lt0) from an order LBP given a private valuation bt1 is positive so that it dominates NT :

(bt1 �Pcum.LB)⇥Pr(q xLBP

t1 |X,Lt0)> 0 (6)

8 The “max” and “min” ensure the probability is between 0 and 1.
9 The book opens empty at t1 and therefore the only possible limit buy a seller at t2 can hit is a limit buy posted at t1
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and, second, it is greater than the expected payoff from all other alternative limit buys LBPalt :

(bt1 �Pcum,LB)⇥Pr(q xLBP

t1 |X,Lt0)> (bt1 �Pcum,LB
alt )⇥Pr(q xLBPalt

t1 |X,Lt0) (7)

at an alternative price Palt where where Pcum,LB = P+MF and Pcum,LB
alt = Palt +MF are the associated cum-

fee limit-buy prices. Hence, the order-submission probability of LBP at t1 is the probability that conditions

(6) and (7) are both satisfied:

Pr(xLBP
t1 |X,Lt0) = Pr(bt1 s.t. both (6) and (7) hold) (8)

A potential seller at t1 with bt1 < v submits a limit sell LSP at time t1 if symmetric conditions hold:

(Pcum,LS �bt1)⇥Pr(q xLSP

t1 |X,Lt0) > 0 (9)

(Pcum,LS �bt1)⇥Pr(q xLSP

t1 |X,Lt0) > (Pcum,LS
alt �bt1)⇥Pr(q xLSPalt

t1 |X,Lt0) (10)

where Pcum,LS = P+MF and Pcum,LS
alt = Palt +MF are the cum-fee limit-sell prices. The associated sell

limit-order submission probabilities are analogous to (8) using (9) and (10)

Fees X in our model are set either by an exchange or, alternatively, by a Social Planner. In doing so,

both take into account optimal investor trading behavior given the fee pricing X. In other words, fee pricing

by the exchange or Social Planner is subject to an incentive compatibility constraint on the orders investors

choose to submit given the fees that are set.
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An exchange chooses its fees X to maximize its expected payoff from completed transactions:10

max
MF,T F

{MF,T F}2R

W Ex(MF,T F ) =

2

4 Â
xt12XL

Pr(xtz |X,Ltz�1)Pr(q xtz
tz |X,Ltz�1)

3

5 (MF +T F) (11)

where the product of the order-submission probabilities Pr(xtz |X,Ltz�1) and the order-execution probabilities

Pr(q xtz
tz |X,Ltz�1) gives the transaction probabilities induced by the exchange fees X and the optimal investor

order–submission strategies from (2) for different limit orders xtz 2 XL at time t1. In other words, the formula

in (11) reflects the fact that limit orders are submitted first and then executed later. The exchange has non-

negative profits since T F = MF = 0 is feasible and gives zero profits. A profit-maximizing exchange faces a

trade-off. Trading fees and rebates affect both the probability Pr(xtz |X,Ltz�1)Pr(q xtz
tz |X,Ltz�1) of transactions

— which reflects the net impact of access pricing on both order-submission probabilities Pr(xtz |X,Ltz�1) and

order-execution probabilities Pr(q xtz
tz |X,Ltz�1) for different orders xt1 — the net fee MF +T F the exchange

receives per transaction.

The expression {MF,T F} 2 R in (11) allows for possible regulatory restriction on fee pricing. One

possibility is that fee pricing by the exchange is unrestricted. However, another possibility is that, consistent

with current practice and with Foucault et al. (2013), a regulator may impose restrictions on fee pricing by

the exchange. For notational simplicity, we assume the maximum allowable fee (whether take or make) is

one tick (i.e., rather than a fraction of a tick as in, e.g., Reg NMS). Thus, the regulatory constraint on fees is

more binding for smaller tick sizes. There are no direct regulatory constraints on rebates in our model, but

Lemma 5 in Appendix A shows that if fees are capped at one tick, then in equilibrium exchange rebates are

never larger than one tick. The welfare impact of a regulatory cap on fees is considered in Section 4.

A Social Planner chooses fees to maximize the total welfare of all market participants:11

10 The expression here is for a discrete price grid. A similar formulation holds with continuous prices.
11 Again, this expression is for discrete prices.
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max
MF,T F

MF+T F�0

✓
Â

tz2{t1,t2}
W INV

tz (MF,T F)

◆
+W Ex(MF,T F) (12)

= Â
xt12XL

Pr(xt1 |X,Lt0)⇥Pr(q xt1
t1 |X,Lt0)⇥ I(xt1)⇥

h
E[bt1 |xt1 ]�E[bt2 |q

xt1
t1 ]

i

where W INV
tz (MF,T F) = E[ptz(xtz |btz ,X,Ltz�1)] is the ex ante expected profit of the investor at time tz given

randomness in their private value btz and where the indicator function I(xt) = 1 for limit buy orders and

�1 for limit sells. The expression on the right in (12) is derived in Section B of the Appendix given

that the Social Planner optimally sets the exchange’s profit to zero. The intuition for (12) is that the total

welfare associated with each possible order xt1 at time t1 is the probability that order xt1 is submitted times

the probability it is executed at time t2 times the conditional expected gains-from-trade between the two

investors at times t1 and t2.

Given the optimization problems for investors and the exchange or Social Planner, an equilibrium is:

Definition. A Subgame Perfect Nash Equilibrium of the trading game is a collection {xtz(btz |X,Ltz�1), X⇤}

of order-submission strategies and trading fees such that conditions 1, 2 and 3 or conditions 1, 2 and 4 hold:

1. The equilibrium order-submission strategies xtz(btz |X,Ltz�1) solve investors’ optimization problems

(2) given the equilibrium execution probabilities Pr(q xtz
tz |X⇤,Ltz�1).

2. The order-execution probabilities Pr(q xtz
tz |X⇤,Ltz�1) for an order xtz submitted at time tz are consistent

with the subsequent equilibrium order-submission strategies xtz0 (btz0 |X,Ltz0�1
) at times tz0 > tz.

3. The trading fees X⇤ are optimal for the exchange given its optimization problem (11).

4. The trading fees X⇤ are optimal for the Social Planner given its optimization problem (12).
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As in Foucault et al. (2013), a discrete tick size guarantees traders cannot neutralize fee pricing by

adjusting posted limit prices to exactly offset the impact of trading fees and rebates on their net cum-fee

transaction prices. Our model differs from Foucault et al. (2013) in that investors in our model have random

gains-from-trade and exogenous arrival/monitoring timing, whereas in Foucault et al. (2013) buyers and

sellers arrival alternate. Our model also differs from both Foucault et al. (2013) and Chao et al. (2018) in

that the endogenous choice of limit order prices is central in our model.12

Optimal fee pricing, for the exchange or the Social Planner, may or may not be unique with discrete

prices, as shown by Chao et al. (2018) and Foucault et al. (2013). This follows because the identical cum-

fee prices P+MF (P�MF) for buy (sell) limit orders and P�T F (P+T F) for sell (buy) market orders at a

posted price P given a fee breakdown with MF and T F are also available given make and take fees MF + e

and T F � e for any positive or negative integer multiple of the tick size e via limit and market orders at

posted prices P� e (when submitting limit buys) and P+ e (when submitting limit sells). The restriction of

e to integer multiples of the tick size (i.e., equal to 1 here given our normalization) ensures that the adjusted

posted prices P� e P+ e are on the discrete price grid. For ease of future reference, we state this property

as a formal lemma.

Lemma 1. The identical trading outcomes and total fee given make and take fees MF and T F are also

achievable with adjusted make and take fees MF + e and T F � e — called equivalent fees and rebates —

for any integer e allowed by regulation.

This property has two immediate implications. One implication is that if a pair of non-positive make

and take fees MF � 0 and T F � 0 is optimal, then fee pricing with either make (or take) rebates MF � e

and T F + e (MF + e and T F � e) have the same trading outcomes for sufficiently large negative (positive)
12 Foucault et al. (2013) has an extension in which the limit price is determined by Nash Bargaining. In contrast, limit price

choice in our model is a decision of the limit order submitter. Chao et al. (2018) includes one example of endogenous limit order
choice, but otherwise their analysis is focused more on exchange competition than on investor order choice.
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integers e . However, if one fee is between in the interval (0,1) and the other is a rebate in the interval

(-1,0), then all equivalent fee pricing require rebates as well as fees. A second implication is that optimal

fee pricing is unique given a sufficiently tight regulatory restriction on fees or rebates — i.e., so that the

minimal integer adjustments e = 1 or �1 would cause the adjusted fees to violate the regulatory constraint.

2.1 Equilibrium with exchange fees and continuous prices

As a starting reference point we first present the equilibrium in a market with continuous prices. Results are

symmetric for buyers and sellers, so we consider an investor arriving at t1 with a private value bt1 > v. In

this discussion, the total fee is T = MF +T F .

For an interior execution probability from (4), the expected payoff from posting a limit buy at P at t1 is:

pt1(LBP) = (bt1 �P� (T �TF))
(P� v)+0.5D�TF

D
(13)

= �P2 +[(bt1 + v�0.5D�T +2T F ]P+[bt1 �T +TF][�v+0.5D�T F ]

The first-order condition of (13) gives the optimal limit-buy price given bt1 :

P(bt1) =
bt1 + v�0.5D�T +2TF

2
(14)

Substituting (14) into (4) gives the execution probability of a limit buy posted at price P(bt1) :

Pr(xMSP
t2 |P(b ),T,Lt1) =

✓
bt1+v�0.5D�T+2TF

2 � v
◆
+0.5D�TF

D
(15)

=
bt1 � v+0.5D�T

2D

The total probability of transactions from limit buys at t1 and market sells at t2 is
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Z (v+ 1
2 D)

v
Pr(xLBP

t1 ,q xLBP

t1 |T,Lt0)dbt1 =
Z (v+ 1

2 D)

v

bt1 � v+0.5D�T
2D

1
D

dbt1 (16)

=
hT

�
b 2 +bD�2b (T + v)

�

4D2

i(v+ 1
2 D)

v

=
3D�4T

16D

where Pr(xLBP
t1 ,q xLBP

t1 |T,Lt0) is the probability of a limit buy at P(b ) being submitted (i.e., 1/D) times the

probability it is executed (from (15)). The corresponding total probability of transactions resulting from

limit sells at t1 and market buys at t2 is symmetric. Thus, the exchange’s ex ante expected profit is:

W Ex(T ) = 2⇥
Z (v+ 1

2 D)

v

h
Pr(xLBP

t1 ,q xLBP

t1 |T,Lt0)
i
dbt1 ⇥T (17)

=
T (3D�4T )

8D

The exchange chooses T to maximize W Ex(T ). The first-order condition from (17) (from differentiating

with respect to T) gives the optimal total fee:

T ⇤ =
3
8
⇥D (18)

When the support width is equal to the tick size, D = 1, this solution coincides with the one obtained by

Chao et al. (2018). Substituting (18) into (16) and multiplying by 2 (to allow for both limit buys and sells)

gives a constant equilibrium transaction probability of 3
32 and substituting (18) into (17) gives an expected

exchange profit of 9
256 D given optimal fees. Since prices are continuous, as in Colliard and Foucault (2012),

only the total fee matters. The fee breakdown does not matter.

The solution here depends on the width of the private-value support D, which represents the ex ante

demand for trading. To develop some intuition, Figure 1 shows the exchange’s expected profit, the probab-
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ility of transactions, and the total fee as a function of the support width, D, which correspond to equations

(17), (16) (times 2 for both limit buys and sells), and (18), respectively. Both the optimal total fee and the

expected profit for the exchange are increasing in the support width (demand for trading). In particular, the

exchange increases its rent extraction by increasing its fee. In addition, the probability of transactions is

constant. However, consistent with Colliard and Foucault (2012), there is no role for the fee breakdown to

improve welfare given continuous prices.

2.2 Results with discrete prices

Once trading is restricted to a discrete price grid, then buyers and sellers may be unable to find mutually

acceptable prices at which to trade. As shown in Foucault et al. (2013) and Chao et al. (2018), fee pricing

with rebates can ameliorate this discrete-price friction. Our analysis now considers a market in which posted

limit-order prices are restricted to a discrete price grid {. . . ,P�k, . . . ,P�1, P1, . . . ,Pk, . . .} centered around the

mean private valuation v with a fixed tick size normalized to 1.13 In numerical calculations, we center prices

and valuations a v = 10 with P�2 = 8.5, P�1 = 9.5 . . . and P1 = 10.5, P2 = 11.5, . . . and then vary the support

width D.

Our analysis examines the relation between fee pricing and the investor valuation support S = [b , b̄ ] and

investor trading behavior. Given the normalized tick size, we vary the investor private-value support width

D to show the effects of changes in ex ante trading demand on both total welfare and on the breakdown

between investors welfare and exchange profit. Thus, our results can be interpreted in terms of stocks with

varying degrees of high and low ex ante trading demand.

Our analysis builds on the important paper of Chao et al. (2018), so we highlight here how our analysis

extends their results. First, we formulate our analysis to give comparative statics for the effect of varying
13 We allow, in principle, for all possible prices, but from Lemma 3 in Appendix A only a range of prices around v is feasible.
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amounts of ex ante trading demand given a normalized tick size. In particular, we show how limit-price

choice and incentive compatibility affect fee pricing. Chao et al. (2018) instead normalize the valuation

support to 1, and vary the price grid. Second, we study the effects of a regulatory cap that allows for

the possibility of strictly positive fees as well as rebate-based fee pricing. In contrast, Chao et al. (2018)

constrain the take fee to be non positive.14 Third, we derive results for a Social Planner and contrast them

with a profit-maximizing exchange with and without regulatory restrictions. Fourth, in Section 3 we extend

the analysis beyond two periods and provide analytic formulation for a model that allows market participants

to choose between market and limit orders, as well as limit order prices.

2.2.1 Equilibrium in the generic trading subgame

We start with a generic solution to the trading subgame given hypothetical fees MF and T F . Given the

subgame equilibrium, we then solve via backwards induction in Sections 2.2.2, 2.2.3, and 2.3 for optimal

fees for the exchange and for the Social Planner given the trading behavior their fees will induce.

With a discrete price grid, the investor optimization in (2) is a discrete-choice problem given a finite

set of possible orders. The optimal order-submission strategy xtz(btz |X,Ltz�1) assigns orders that maximize

(2) to each possible investor valuations btz in the support [b ,b ] at time tz conditional on the standing book

Ltz�1 at tz and the fee pricing X. Consequently, the maximized expected profit in (2) for different possible

btz valuations in the support S is the upper envelope of expected payoff functions for different orders from

(1) that are linear in the valuations btz . Each optimal order is associated with an interval of btz valuations

in between points where the optimized linear expected payoff functions intersect. The specific values that

separate intervals of private valuations for one order from intervals for other orders are called thresholds.

Definition. Suppose limit buys at prices Pj and Pk > Pk both have positive execution probabilities, then the

14See Chao et al. (2018), footnote 14 on page 1090.
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threshold b j,k
tz denotes the private value such that the expected profit is greater on a limit buy at Pk than at

Pj when btz > b LB, j,k
t1 . A symmetric definition applies to thresholds b LS, j,k

t1 for limit sells.

These thresholds are computed in closed-form in Lemma 6. Thresholds for adjacent prices Pj and Pk where

k = prior( j) or next( j) index the next price above or below Pj (i.e., where |Pk �Pj| = 1) play a key role in

the structure of equilibrium trading subgame with discrete prices.15

Lemma 2. Given hypothetical fees MF and T F, the equilibrium trading strategies in the 2-period trading

subgame are as follows: At time t2 optimal market orders are as in (3), and optimal limit order at time t1 are

xt1 =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

LSPj if bt1 2 [b LS,prior( j), j,b LS, j,next( j)] for j < j⇤

LSPj⇤ if bt1 2 [b LS,prior( j⇤), j⇤ ,min{v,Pcum
j⇤ }]

LBPj⇤⇤ if bt1 2 [max{v,Pcum
j⇤⇤ },b LS, j⇤⇤,next( j⇤⇤)]

LBPj if bt1 2 [b LB,prior( j), j,b LB, j,next( j)] for j > j⇤⇤

NT otherwise

(19)

where the index j⇤⇤ for the lowest limit buy order used in equilibrium is determined as follows: If the limit

buy with the lowest limit price Pj with a positive execution probability has a cum-fee price Pcum,LBPj > v,

then the j⇤⇤ is the index of that posted price. If instead Pcum,LBPj < v, then j⇤⇤ is the index of the posted

limit buy price with the maximum expected profit ptz(xtz |btz ,X,Ltz�1) evaluated at bt1 = v. The construction

is symmetric for j⇤ for limit sells.

Simply put, limit orders used in equilibrium are associated with successive intervals of private values

for which they are optimal. The optimal limit buys start with a lowest “used” limit price Pj⇤⇤ that is used

for bt1 realizations in the lowest interval, and then switch to successively higher “used” limit prices for bt1

15 The index of the next highest price above Pj is next( j) = j+1 if j 6=�1 and next( j) = 1 if j =�1 (since there is no price P0
below P1 on the grid). The treatment of prior prices below Pj is symmetric.
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realizations in higher intervals until a maximum possible limit price is reached. The switches happen for

private valuations at the thresholds for adjacent “used” limit orders. A symmetric structure describes optimal

limit sells. Figure 2 provides an illustration. The trading subgame equilibrium is in closed-form since the

thresholds in (19) are determined in Lemma 6.

Fee pricing by an exchange or Social Planner takes into account the trading behavior its fees induce in the

associated trading subgame. Inequalities (6) and (9) are Individual Rationality constraints that the exchange

(or Social Planner) cannot force investor to trade. Inequalities (7) and (10) are Incentive Compatibility

constraints that investors, not the exchange (or Social Planner), decide which orders to submit. Incentive

Compatibility has a significant impact on optimal fee pricing. In particular, order-submission decisions by

investors depend on a trade-off between execution probability and the impact of price improvement on the

payoff conditional on order execution. In contrast, the exchange (and Social Planner) care about execution

probabilities but not about zero-sum transfers between investors due to price improvement on one side of the

trade. Figure 2 illustrates the Incentive Compatibility problem. For private valuations bt1 between Pcum
j and

the threshold b LB,prior( j), j, a limit buy LBPj is Individually Rational for the investor at t1 and has a higher

execution-probability than LBPprior( j) but it is not incentive compatible and, thus, would not be used by the

investor at t1.

Thus, both the exchange and Social Planner prefer that investors with private valuations bt1 2 [Pcum
j ,b LB, j,next( j)]

submit limit buys with a posted price Pnext( j) given its higher execution probability. However, a limit buy

LBPnext( j) is not Inventive Compatible for the investor given the higher payoff conditional on execution of

the LBPj. As a result, we show below that both an exchange and the Social Planner use fee pricing to deter

investors from using orders with better price improvement but worse execution probabilities.
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2.2.2 Equilibrium with fees set by an unrestricted exchange

With no regulatory restrictions, the exchange is a monopolist in trading facilities. Hence, given a discrete

tick size, the fee breakdown affects order-submission and -execution probabilities both via its impact on the

discrete-price trading friction and via rent extraction from investors wanting to trade.

Figure 3 shows the profit-maximizing make and take fees MF , and T F , the total fee MF +T F received

by the exchange, the exchange’s expected profit, and the transaction probability as a function of the valuation

support width D. The various quantities are computed for unit increases in the support width (i.e., D =

1,2, . . .) on the horizontal axis holding the normalized unit tick size fixed.16 The figure shows two large-

scale patterns. Generally rising fees but with oscillations in MF and TF. When the support width D is

small (ex ante trading demand is low), rebates are necessary for trading to occur. Moreover, since the fees

and rebates are both less than one in absolute value, all equivalent fee pricings involve rebates given the

first implication of Lemma 1. As the valuation support width D increases (and ex ante trading demand

increases), the exchange increases both make and take fees and eventually rebates are no longer necessary.

In other words, the impact of the discrete-price friction on fees and rebates shrinks relative to monopolistic

rent extraction as ex ante trading demand becomes stronger. However, price-discreteness effects do not

disappear. This is clear from another feature in Figure 3.

Unlike with continuous prices, the investor decision of which discrete price to use when posting limit

orders has a discrete effect on the order-execution probability. In particular, if the change in D induces an

investor to submit a limit buy at a one-tick worse price, this leads to a discrete reduction in the set of investors

who are willing to sell to such a limit order via market orders at date t2. For example, buyers at time t1 have

the option to lower the posted limit-buy price to gain price improvement conditional on execution while

lowering the order-execution probability. This is the Incentive Compatibility effect. As a result, an exchange
16For visual presentation purposes, the unit valuations are connected with line.
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may adjust its fee pricing to deter price-improvement seeking behavior by limit-order submitters. The result

is oscillation in the make and take fees around the rising trend to growing rent extraction in Figure 3. The

resulting expected profit for the exchange is growing in the support width D with discrete prices. Moreover,

the overall expected-profit level is very similar to the market with continuous prices. Table 1 zooms in to

provide greater insight into the oscillation phenomenon. The table reports optimal fees and rebates, cum-

fee prices, and various probabilities for different support widths D. A key variable of interest is the order

threshold between a limit buy order at a particular limit price and the next best order (including possibly

NT ). Between D = 3 and just below D = 4, the exchange steadily increases its take fee so as to depress

the execution probability for LBP�1 limit buys so that investors at time t1 will not submit LBP�1 limit buys

and instead continue to submit higher execution-probability LBP1 limit buys.17 However, once D reaches

or exceeds 4, the exchange stops deterring LBP�1 — which now becomes part of the equilibrium strategy

for some bt1 realizations — and increases the make fee and reduces the take fee. As D then becomes even

larger, the exchange once again starts increasing the take fee to deter LBP�2. This continues until a value of

D between 8 and 8.8, at which point LBP�2 becomes part of the equilibrium, and there is another oscillation

in the MF and FT fees. Thus, the pattern of rising fees is due to rent extraction, and the oscillations are due

to managing the Incentive Compatibility problem in investor order choice given the exchange’s fees .

2.2.3 Equilibrium with fees set by a Social Planner

This section considers optimal fees in the two-period model set by a Social Planner rather than by a profit-

maximizing exchange. Lemma 8 in Appendix A.1 establishes that a Social Planner optimally uses fees and

rebates such that MF = �T F (i.e., the total fee for the exchange is T F +MF = 0). Thus, our analysis
17Note that the thresholds in Table 1 from D = 3 to D = 3.5 indicate that between v = 10 and 10.50 the equilibrium strategy

is NT , whereas between 10.50 and b investors use LBP1, which is the only equilibrium strategy for this support width. The next
threshold reported, 12.50, is the hypothetical threshold between LBP1 and LBP2: as it falls beyond b , it indicates that LBP2 is not
an equilibrium strategy. Within this support width investors do not use LBP�1.
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determines the equilibrium take fee T F . We first provide a characterization result for general private-value

distributions. We then illustrate that result for uniformly distributed private values.

Theorem 1. The optimal take fee T F for a Social Planner to maximize total welfare in (12) is a function

F(D) of the valuation support width D that is determined either i) as the local optimizer for a particular total

welfare objective given a set of “used” orders that are incentive-compatible for the investor at t1 to submit

or ii) as a linear function of D that keeps the threshold between the best unused order and the adjacent used

order equal to v.

The key part in the proof is the fact that the optimal fee for the Social Planner, depending on D, is

determined one of two ways: One possibility is that the optimal fee is the local maximizer of a social

value function given an associated set of used orders that are locally incentive compatible with the optimal

fee. The other possibility is that the optimal fee is the fee value that deters investor use of lower limit buy

prices (higher limit sell prices) by keeping the threshold for the lowest “used” price vs. the next lowest

“non–used" price equal to v. An important implication here is that in each of the two cases, the optimal fee

F(D) is continuous in D, but it changes differently in D depending on which of the two ways F(D) is being

determined.

This phenomenon is illustrated in Figure 4, which shows the welfare-maximizing MF and TF for dif-

ferent investor valuation support widths D (with unit increases), and Table 2, which reports additional detail

about equilibrium strategies, cum fee buy and sell prices, submission, execution and transaction probabilit-

ies, and total welfare. In the figure, there is again a clear oscillation in fees. However, here the oscillation is

around a constant rather than around a rising trend line due to increasing rent-extraction. In addition, with

uniform private values, the Social-Planner fee oscillations are actually piece-wise linear. For the segments

associated with order-deterrence, the slope is always identical since it comes from adjusting the fees to keep

the order thresholds (which are linear in D and in F) equal to v. Another important property of optimal
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Social Planner fees is that total welfare can be maximized using fees that are less than 1 tick in size. This is

in contrast to the large fees used by the unrestricted profit-maximizing exchange in Section 2.2.2.

To elaborate, the pattern in the Social Planner’s welfare-maximizing fees follows from four intuitions:

The first is that when D  2, the Social Planner uses fees and rebates to facilitate trading at a mid-quote

equal to v. The second intuition is that, as the valuation support width D widens, mid-quote trading is no

longer possible. In particular, investors at time t2 eventually become potentially willing to hit limit orders

with worse limit prices. This creates an incentive for investors at t1 with valuations bt1 close to v to submit

worse limit orders, which give them a private gain from price improvement, but which lower total welfare

due to their lower execution probability. This is the Incentive Compatibility effect again. To maximize total

welfare, the Social Planner adjusts fee pricing to prevent investors from using worse limit prices for a range

of Ds. For example, for D between 2 and 3, the Social Planner in the Maker-Taker equilibrium increases

the take fee to deter execution of limit buys at P�1 at t2 so that potential buyers at t1 will not submit them

and instead continue submitting limit buys at P1. The third intuition is that expected welfare on submitted

limit orders is maximized if the probability of limit order submission and the probability of submission of

market orders that execute standing limit orders are equal. However, deterring latent limit orders at worse

prices skews these probabilities away from equality. Thus, there is a trade-off between these two effects.

For example, Table 2 shows that once D exceeds 3, the probability distortion is so large, that the Social

Planner switches and begins to adjust fees to reduce the probability distortion. As a result, potential buyers

at t1 with valuation above but close to v start submitting limit buys at P�1 (while investors at t1 with higher

valuations bt1 continue to submit limit orders at P1 for the higher order-execution probability). The fourth

intuition is that with a wider support D there are more investors at t1 with extreme valuations who value

higher execution probability more than price improvement. The Social Planner also uses fee pricing to

increase the endogenous number of such investors. For example, that is why the Social Planner continues
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decreasing take fee below 0.5 when D is between 4 and 5. The various patterns continue to repeat for Ds that

are even larger.

2.3 Equilibrium with a regulatory cap on fees

Regulatory restrictions can have a significant impact in equilibrium on optimal fee pricing by an exchange.

The large differences between fees in Sections 2.2.2 and 2.2.3 suggest that regulators might be concerned

about unconstrained profit-maximization by a monopolistic exchange. However, while optimal welfare-

maximizing fees may be difficult for a regulator to impose, Section 2.2.3 shows that the welfare-maximizing

fees tied to the price-discreteness friction are always less than one-tick in size. Thus, this section solves for

equilibrium in a market in which a regulator imposes a one-tick cap on trading fees, and then the exchange

sets its fee pricing to maximize its expected profit given that investors choose what orders to use given

the exchange’s fees. A regulatory restriction X 2 R in (11) tied to the tick size in this way is qualitatively

similar to US regulation (and also with Foucault et al. (2013)).18 Appendix B presents the equilibrium

construction and shows that the equilibrium fees and rebates for the exchange are given by the simple close-

form expressions for support widths D in different ranges.

Our first result is an analytic solution for optimal fee pricing for a range of valuation supports that

extends beyond the unit support in Chao et al. (2018) to include supports with larger widths D > 1.

Theorem 2. When the valuation support width is D  3 (given a tick size normalized to 1), the equilibrium

fee pricing for a profit-maximizing exchange in the two-period market given the one-tick regulatory constrain

on fees can be achieved by either Taker-Maker with fees and rebates

MF⇤ =
D+3

6
T F⇤ =

D�3
6

< 0, (20)

18Using a cap of 0.3 of the tick size from Reg NMS makes our results tighter. In Europe, there is no formal regulatory cap but
informal regulatory understandings and industry norms following US markets lead exchanges usually to set fees less than one tick.
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or Maker-Taker with fees and rebates

MF⇤ =
D�3

6
< 0 T F⇤ =

D+3
6

. (21)

When the valuation support with is D 2 [3,5], the equilibrium fee pricing is achieved with strictly positive

fees (i.e., no rebates) that are unique

MF⇤&T F⇤ =

8
>>>>>>>>><

>>>>>>>>>:

1 & 1
2(D�3) if 3 < D  4

1 & 1
4(D�2)

�
D2 �5D+8

�
if 4 < D  4.7

1
2 & 1 if 4.7 < D  5

(22)

Fee pricing depends on the size of the support of traders’ valuation relative to the normalized tick size.

Rebates are necessary in two-period markets with low valuation dispersion (i.e., the support width is D 

3), and so the exchange uses equivalent Maker-Taker and Taker-Maker fee pricing (which are one-tick

perturbations of each other as per Lemma 1, but only one tick given the one-tick regulatory fee cap). This is

the same as in Chao et al. (2018). However, once valuation dispersion is higher (i.e., D 2 [3,5]), rebates are

no longer necessary. As the support of investor valuations increases, the ex ante potential gains-from-trade

increase, which increases investor trading demand. As a result, the exchange has less need to incentivize

trading. In equilibrium, the exchange exploits investors’ greater ex ante gains-from-trade by increasing

fees and reducing rebates. In addition, the potential fee multiplicity via perturbations as in Lemma 1 is

eliminated for positive fees by the one-tick regulatory cap on fees. The different fee pricing in the different

ranges of D are due to the fact that, as the valuation support widens, the set of ex ante feasible prices expands

to include more possible limit prices, and the execution probabilities of limit orders at more extreme limit

prices increases. The following proposition summarizes these results:
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Proposition 1. When an exchange optimally uses Maker-Taker or Taker-Maker fee pricing in the two-period

market, then rebates are decreasing and fees are increasing as the valuation support width D increases.

Another property of equilibrium fees follows from the fees and rebates in (20) and (21) in Theorem 2.

Proposition 2. The sum of the make and take fees is one third of the support width, MF +T F = D/3 for all

support widths D < 3 in the two-period model.

The key part of the proof is that the exchange’s expected profit in (11) can be expressed as

pEx(MF,T F) = 2 max

(
0,

b �Pcum,LB
�1
D

)
(MF +T F) max

(
0,

Pcum,MS
�1 �b

D

)
(23)

which is the product of the relevant limit-order submission probability at time t1, the net fee, and the relevant

market-order submission probability at time t2. The specific functional form of (23) follows from there just

being two periods and from the uniform valuation distribution assumption and symmetry between the buy

and sell sides of the market. The three components b �Pcum,LB
�1 , MF +T F (which equals Pcum,LB

�1 �Pcum,MS
�1 ),

and Pcum,MS
�1 �b in (23), when they are positive, sum to the valuation support width D. Proposition 2 shows

that the product in (23) is maximized by the exchange choosing MF and T F to set these three components

equal to each other, which implies that MF +T F = D/3.

Figure 5 shows equilibrium fees and rebates for different support widths (i.e., D = 1,2, . . .) — both

for the range of support widths in Theorem 2 and also for larger D widths — holding the normalized unit

tick size fixed.19 The figure shows two large-scale patterns. First, rebates are still necessary to mitigate

the price-discreteness friction when D is small (and the ex ante demand to trade is low). However, when D

grows (and ex ante trading demand become large) eventually rebates are no longer optimal for the exchange

to maximize its expected profit, and fees are both strictly positive. As a result, now the regulatory cap binds
19For visual presentation purposes, the unit valuations are again connected with line.
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eventually so that both make and take fees converge to the regulatory cap.

The fact that the tick size of 1 is a normalization means our results about how fee pricing changes when

the valuation support is varied holding the tick size constant translate immediately into corresponding results

about fee pricing when varying the tick size holding the support D fixed.

Theorem 3. The equilibrium fee pricing in a two-period market with a tick size equal to a fraction t of the

normalized unit tick size, for 0 < D  5, is given by:

{mf⇤, tf⇤}= {tMF⇤,tT F⇤} (24)

where MF⇤ and T F⇤ are the optimal fee pricing given the unit tick size in Theorem 2.

Markets with different tick sizes are isomorphic in the sense that optimal fee pricing scales linearly in the

tick size t . Intuitively, a tick of “one” can be a tick of one penny, one eighth or one dollar. This isomorphism

is illustrated both in Figure A1 and A2, in the Online Appendix for a small tick market (STM) with a tick

size set to 1
3 of the normalized unit tick size. The patterns in the STM are qualitatively identical to the unit

tick-size market for the exchange wth the unit fee cap and for the Social Planner except that the magnitudes

and the speed of the oscillations are rescaled. The associated fees and rebates are one third of those in the

market with the unit tick size, and relation to the support width is rescaled to one third of that with the unit

tick size market. In other words, the optimal fee pricing in this STM is 1
3 of the pricing in a unit-tick-size

market with the same relative valuation support ratio D/t . Given this rescaling, all the results unit tick size

market are qualitatively the same in the STM. This analysis leads to the following empirical prediction:

Empirical Prediction: When, holding the trading population constant, the tick size increases (decreases),

the exchange has an incentive to offer greater (smaller) fees and rebates.

Our empirical prediction can be tested by investigating how a change in the tick size alters the incentive
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for the exchange to offer rebates. Our model predicts that when, all else equal, the tick size increases, the ex-

change, to attract volume, should increase the rebates offered to the same population of market participants.

However, with competition, if the exchange does not adjust the rebates to the new tick size, it runs the risk

of seeing orders migrating to other more profitable venues. Comerton-Forde et al. (2019) investigate the

effects of an increase in the tick size within the U.S. tick size pilot program started in October 2016 and,

interestingly, find that following the increase in the U.S. tick size from 1 penny to 5 pennies a substantial

amount of orders migrated from the maker-taker to the taker-maker inverted fees platforms. This finding is

consistent with our model’s prediction that following an increase in the tick size the exchange should offer

greater rebates to ensure that volume is maximized within a trading platform.

3 Three-Period model

Our analysis is readily extended to a richer market environment with N investor arrivals at times tz 2

{t1, . . . , tN}. The basic economics can be illustrated with N = 3. This multiperiod extension lets us de-

scribe the effect of increased investor arrival activity on fee pricing. In particular, trading activity can refer

either to potentially longer trading horizons or to more frequent investor arrival over a fixed horizon (e.g.

over a trading day). From a modeling viewpoint, there are two new elements: First, the limit order book can

potentially accumulate depth at a given price or at different prices in the multiperiod market whereas there

is at most only one limit order in the book in the two-period model. In particular, the arrival of new limit

and market orders augments or reduces the depth of the limit order book respectively, leading to dynamics:

Ltz = Ltz�1 +Qtz z = 1, . . . ,N (25)
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where Qtz = [QPk
tz ] is a vector of changes in the limit order book due to an arriving investor’s action xtz at

tz. The change QPk
tz in depth at price Pk is “+1” when an arriving limit order adds an additional share and

“�1” when a market order executes a limit order where Pk is the best bid or offer (BBO), and otherwise is

zero (at other prices unaffected by arriving orders). The changes QPk
tz are all zero if no order is submitted.

Second, investors arriving after t1 and before tN have a non-trivial choice between market and limit orders.

Once again, an arriving investor at t1 still only chooses between different limit orders at different possible

limit prices and NT , and the investor in the final time tN still chooses between buy and sell market orders

and NT . For tractability, we assume limit orders cannot be modified or cancelled after submission and that

investors can only send one order of unitary size at a time.20

The objectives for fee pricing with N periods are analogous to those in the two-period model. An

exchange chooses its fees, X, to maximize its expected payoff from completed transactions:

max
MF,T F

{MF,T F}2R

Â
tz2{t1,...,tN}

W Ex
tz (MF,T F) =

2

4 Â
tz2{t1,...,tN}

Â
xtz2XL

Pr(xtz ,q
xtz
tz |X)

3

5 (MF +T F) (26)

given transaction probabilities

Pr(xtz ,q
xtz
tz |X) = Â

Ltz�1

Pr(Ltz�1 |X)Pr(xtz |X,Ltz�1)Pr(q xtz
tz |X,Ltz�1) (27)

where now the limit-order submissions can occur at multiple dates and the execution probabilities Pr(q xtz
tz |X,Ltz�1)

take into account the fact that a limit order submitted at time tz can potentially be executed at multiple pos-

sible dates in the future.

A Social Planner maximizes the total welfare, which generalizes to the N-period model to:
20 As noted in Parlour and Seppi (2008), such limit orders are essentially “take it or leave it” offers of liquidity.
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max
MF,T F

MF+T F�0

Â
tz2{t1,...,tN}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(28)

= Â
tz2{t1,...,tN}

Â
xtz2XL

Pr(xtz ,q
xtz
tz |X)⇥ I(xtz)⇥

h
E[btz |xtz ]�E[btz0 |q

xtz
tz ]

i

where tz0 denotes the execution time of a limit order posted at tz and where the last line follows because the

Social Planner optimally sets MF =�T F (i.e., sets the exchange’s expected profit to zero). The optimization

in (28) is subject to a non-negative net fee constraint (individual rationality) for the exchange (MF+T F � 0)

and a regulatory tick-size constraint on fees.

The existence of equilibrium for a general N-period model with fees set either by an exchange or a

Social Planner follows from first principles:

Theorem 4. The equilibrium of a trading game with N periods and a price grid with a fixed number of

prices exists and can be constructed analytically via backward induction.

Proofs for general N-period models are in Appendix A.2. The functional forms of both the exchange

profit function and the Social Planner total welfare function can be complex as the number of periods grows

and as the number of possible limit prices increases — i.e., as more limit orders become a priori feasible as

larger investor valuation supports encompass more prices. Therefore, rather than explicitly differentiating

the analytic exchange expected profit function or the analytic Social Planner total welfare, we report results

using a search algorithm to solve the first-order conditions for X⇤.21

To illustrate optimal fee pricing and trading in a multi-period market, we consider a three-period market
21 Section B in the Online Appendix describes the Simulated Annealing Algorithm (SA) and Grid Search Algorithm (GS) we use

to find numerical results. Although we obtain optimal fees of the three-period model numerically, in Online Appendices (Section
C) we show how to obtain a closed-form solution for the three-period benchmark model. As a robustness check, we confirmed that
optimal fees computed using the SA and GS algorithms in the two-period model agree with the analytic ones.
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with investor arrival dates {t1, t2, t3}. Two key intuitions drive our results: First, in the two-period model in

Section 2, investors in the first period are monopolists in supplying liquidity since there is no opportunity for

later traders to compete against the first-period trader’s limit orders. In particular, investors at t2 only accept

or decline liquidity offered by a limit order posted at time t1 since the game ends after t2. With more than

two periods, the first-period liquidity supply is no longer monopolistic, and some amount of intertemporal

competition in liquidity supply is possible. Second and relatedly, a higher level of market activity with more

rounds of investor-arrival increases the opportunities for limit order execution.

Figures 6 and 7 show equilibrium fee pricing for the three-period model for different investor valuation

supports in the restricted and unrestricted regulatory regimes respectively.22 Many of the results for the

three-period model are similar to the two-period model. There is still a region of valuation supports with

both Taker-Maker and Maker-Taker equilibria and, again, as the valuation support width D increases, the

exchange optimally increases both MF and T F (possibly subject to the regulatory cap), and eventually there

is an equilibrium with strictly positive fees (which is unique if there is a regulatory cap). However, the next

proposition highlights a difference relative to the 2-period market:

Proposition 3. The set of valuation supports associated with rebates is smaller in the three-period model,

and fees are larger, and rebates are smaller than in the two-period model.

Comparing the two-period model results with the three-period results for both the unrestricted regime

(Figures 3 with 6) and for the restricted regime (Figures 5 with 7) shows that the region with rebate-based fee

pricing (Maker-Taker or Taker-Maker) is smaller in the three-period market. The largest valuation support

width associated with rebate-based pricing is 2.31 in the three-period market vs. 3 in the two-period frame-

work. In addition, because trading volume is higher in the three-period model, exchange profits are higher.
22 Once again, the 3-period exchange profit functions look qualitatively similar to those for the two-period exchange modulo the

asymmetry discussed below.
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The levels of fees (rebates) in the three-period model are also larger (smaller). The intuition for the effect

of the number of trading periods on the use of rebates and the level of fee pricing is the following: Holding

everything fixed, the probability limit orders are executed increases because there are more opportunities for

investors with complementary reasons to trade to arrive and trade with each other. As a result, the exchange

can set larger fees and has less of an incentive to offer rebates.

Proposition 4. Maker-Taker and Taker-Maker pricing is asymmetric in the three-period model with smaller

rebates in the Maker-Taker equilibrium than in the Taker-Maker equilibrium.

This asymmetry in rebate-based fee pricing is new and is in contrast to the symmetry in our two-period

model and also in Chao et al. (2018). The equilibrium fees are asymmetric because in the three-period

model the investor at time t1 is no longer a monopolist in liquidity provision. An arriving investor at time t2

can undercut the t1 limit order (by submitting a limit order in the same direction as the t1 limit order with a

better price) or may seek price improvement (by submitting a limit order in the opposite direction of the t1

limit order rather than hitting it with a market order).

Consider, for example, the equilibrium strategies in Row 1 of Table 3 for a support width D = 0.33. In

the Taker-Maker equilibrium, when the investor in period t1 limit buys (LBP�1) at the price P�1, an incoming

seller in period t2 has the option of either market selling (MSP�1) at P�1 or limit selling (LSP1) at the higher

price P1. In contrast, in the Maker-Taker equilibrium, the investor at t1 limit buys (LBP1) at P1 (because of

the rebate MF =�0.428), which consequently means a seller at t2 has no other trading option than market

selling (MSP1) at the high price P1 — since limit selling at P�1 is not allowed given the pre-existing limit

buy at P1 in order to prevent a locked market — and therefore will be charged a positive fee T F = 0.557.23

This theoretical result about the connection between fee pricing and locked markets is new.24

23The state of the book when the seller arrives at t2 has a limit order at P1, hence the seller does not compete for the provision of
liquidity as a limit sell order at P�1 is dominated by the market sell order at P1.

24 We thank Mao Ye for insights on this point.
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The comparison between the two-period and three-period markets shows how optimal fee pricing differs

for stocks with different rates of trading activity. In particular, high investor arrival is associated with a

reduced need for rebates to encourage trading. However, in present day markets, a large portion of trading

involves HFT investors who, arguably, have small private valuation dispersion. Thus, our model suggests

that rebates can help facilitate trading intermediated by HFT investors. This observation is consistent with

the empirical connection between HFT trading and rebates (see Menkveld (2013), Cardella et al. (2015),

and O’Hara (2015)).

4 Welfare

Fee pricing that maximizes exchange profits does not necessarily improve the overall welfare of other market

participants. This section investigates how fee pricing by exchanges (under the unrestricted and restricted

regulatory regimes) affects the welfare of market participants relative to the regime in which trading fees are

set by a Social Planner, and relative to a “benchmark” regime with no fees or rebates (i.e., MF = T F = 0).

We focus on the 2-period framework but analogous results can be obtained for the 3-period model.

Figure 8 shows our welfare results for different investor valuation support widths D. Total welfare is

computed for all investors (INV ) and for the exchange (Ex) at all dates:

TW = Â
tz2{t1,...,tN}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(29)

Restric.ExchangeTW and Unrestric.ExchangeTW are total welfare for the restricted and unrestricted ex-

change regime respectively, given the optimal trading fees set by the profit-maximizing exchange. BenchmarkTW

is computed using zero fees and rebates {MF† = 0,T F† = 0}, and SocialPlannerTW (SPTV ) is total wel-

fare given optimal fees {MF⇤,T F⇤} chosen by the Social Planner. Figure 8 also shows the welfare break-

down for investors (INV ) and the exchange (EXG) for different investor valuation supports. There are three
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different regions in the figure: The PIW region in which optimal fees by the profit-maximizing exchange are

Pareto-improving with all market participants better off relative to the no-fee benchmark. The RW region

in which optimal fee pricing by an exchange increases total welfare, but reallocations (i.e., Pareto transfers)

from the exchange to investors are needed for investors to be better off. The DL region in which total welfare

is lower due to deadweight losses, but the exchange is better off. Our findings are consistent across the two

market settings of unrestricted and restricted exchange pricing.

• The PIW region happens for small valuation support widths D. This is expected, since, when the

support is small relative to the tick size, there is no-trade without a take or make rebate. In general,

the reason why rebate-based pricings Pareto improve welfare, even when there are gains-from-trade, is

the following: Individual investors care about both the probability of order execution (which increases

total welfare) and also about their execution price (which affects their personal payoff but is neutral for

total welfare). When the valuation support is small relative to the tick size, there are many investors

for whom the probability of execution of orders posted at the available prices makes them unwilling

to trade at these prices. An exchange can increase its expected profit and simultaneously improve total

welfare by setting fees and rebates to increase the order-execution probabilities.

• The RW region occurs for somewhat larger valuation supports. As the valuation support widens, a

growing share of arriving investors have sufficiently strong trading demands (extreme private valu-

ations) that rebates are not needed for trading. However, there is also an externality in exchange

behavior. Exchange expected profits and, thus, their fee pricing depend on the total fee (which re-

duces investor welfare) as well as on the order-execution probability. When valuation dispersion

becomes larger relative to the tick size, exchanges set larger net fees to increase their expected profit

although this reduces order-execution probabilities. For a range of support widths D, the net effect of

rebate-based exchange fees is to increase total welfare relative to the no-fee-and-rebate equilibrium,
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but with the exchange capturing a growing share of the gains-from-trade at the expense of investors.

• The Deadweigth Loss (DL) region happens when the investor valuation support is larger than 1.88.

Once the dispersion in investor valuations is large relative to the tick size, the exchange’s profit-

maximizing net fee becomes so large that it reduces total welfare. The shaded area reported in Figure

8 shows the DL region due to rebate-based pricing — as opposed to positive pricing — set by a

profit-maximizing exchange.

Our welfare results have policy implications. Figure 8 shows the welfare improvement by the Social

Planner. In the DL regions in which an exchange uses rebate-based pricing, a Social Planner also sets rebate-

based pricing but total welfare associated with the Social-Planner fee pricing is much higher compared to

the total welfare associated to the exchange pricing. Thus, the deadweight loss is due to the fact that the

exchange sets total fees too high in order to maximize its own profits. When setting rebates, the exchange

faces a trade-off. The smaller the investor gains-from-trade are, the more rebates are necessary to induce

them to participate and the smaller the exchange net revenue from each trade. Hence, in equilibrium to

some extent the exchange subsidizes investors who have smaller gains-from-trade. However, the Social

Planner pricing subsidizes traders with smaller gains-from-trade to a greater extent as its objective function

is to maximize investors’ welfare as opposed to the exchange profit. This is the reason why in Figure 8

SocialPlannerTW is always greater or equal than BenchmarkTW : In correspondence of all regions, the

Social Planner rebate-based pricing leads to an improvement in total welfare. Clearly, as the relative tick

size becomes smaller, the frictions due to price discreteness become less relevant and the SP pricing tends

to converge to the Benchmark pricing.

Our model shows that rebate-based pricing is not detrimental per se to investors given price frictions.

It is how exchanges set fees in combination with rebates that can generate deadweight losses. Our results,

therefore, suggest a positive role for regulators both when the relative tick size is large, and when the
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relative tick size is small due to the increase in the investors’ gains-from-trade. When the gains-from-trade

are small (the relative tick size is large) a regulatory cap that sets the fees no larger than the tick size may be

insufficient to affect welfare. For example, to Pareto improve welfare when D  2, regulators should impose

a cap on fee smaller than the tick size. In this case, capping the positive fee to 0.5 tick moves the exchange

fee pricing towards the Social-Planner fee pricing (which sets the fee to 0.5). When gains-from-trade are

instead large relative to the tick size, regulators can improve welfare by limiting the ability of exchanges

to extract rents (by setting fees that are too large) by imposing a cap on trading fees equal to the tick size

(since the Social Planner never uses fees larger than 1 tick).25 In the large gains-from-trade scenario, due

to the cap on fees, the positive change in investors welfare (D InvestorsWel f are) is proportionally greater

than the negative change in exchange profit (DExchangePro f it). When the gains-from-trade increase, the

exchange by increasing the total fees extract rent from investors with large gains-from-trade at the expense

of investors with smaller gains-from-trade

Proposition 5. Optimal fee pricing by an exchange: When D is sufficiently small such that welfare is in-

creasing in rebate-based pricing, a regulatory cap equal to half a tick size would improve total welfare.

When instead the valuation support D is sufficiently large such that the exchange optimally sets strictly

positive fees, a regulatory cap on fees equal to the tick size increases total welfare.

For optimal fee pricing by an exchange, this proposition follows immediately from the existence of

welfare-increasing and deadweight loss regions with rebate-based pricing. The intuition is that when rebates

are needed to encourage trading, a regulatory action imposing fees equal to half the tick size would increase

total welfare as it would drive the exchange fee pricing to match the SP pricing. In contrast, when the

exchange uses strictly positive fees, which increases its profits but which leads to deadweight welfare losses,

a cap on its fees equal to the tick size would alleviate this problem and increase total welfare.
25In both cases, the cap is not too small (i.e., a way that precludes sufficient rebates).
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Figure 8 finally shows that as the support increases, the zero fees regime and the SP regime tend to

coincide. Nevertheless, the fee breakdown remains key to increase total welfare as in real markets there is

a mixture of population and when there are a lot of agents with small gains-from-trade the role of the fee

breakdown is crucial to increase total welfare. This is relevant as although competition drives total fees to

zero an important role remains for fee pricing.

5 Conclusion

This paper models optimal fee pricing for an exchange or Social Planner and gives new insights about fee

pricing, its drivers, welfare effects and regulatory actions. Our analysis shows investor valuation dispersion

relative to the tick size is a key driver of optimal fee pricing. When the market is mainly populated by

investors with valuations close together so that ex ante gains-from-trade are small relative to the tick size,

the equilibrium fee pricing by a profit-maximizing exchange is rebate-based. The exchange alleviates the

trading frictions generated by price discreteness by reallocating gains-from-trade. When instead the market

is populated by long-term investors with ex ante valuations dispersion (large gains-from-trade) that is large

relative to the tick size, trading frictions become less relevant, and the exchange chooses jointly positive

make and take fees to increase its rent extraction.

Our model shows that also the welfare effects of optimal fee pricing by a profit-maximizing exchange

vary with the amount of the investor gains-from-trade. When the market is populated by investors with small

gains-from-trade, and frictions from price discreteness are severe, rebate-based pricing by the exchange

reduces pricing frictions and Pareto improves total welfare for both investors and the exchange. When

instead investor gains-from-trade are large, and the tick size friction is less severe, optimal exchange fee

pricing — without and sometimes even with rebates — can lead to total deadweight losses as increased

profits for the exchange are less than welfare losses for investors.
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From a policy perspective, regulation may crucially affects fee pricing by imposing a cap on fees that

takes into account the investor gains-from-trade. Importantly for regulators, our analysis shows that rebate-

based pricing is not welfare reducing per se, but rather that the welfare effects of rebate-based pricing depend

on the incentives of who sets trading fees and rebates and on the magnitude of trading frictions relative to

investor ex ante trading demand. In particular, we show that a Social Planner always uses rebate-based

fee pricing to increase total welfare, but differently from the profit maximizing exchange it sets the total

fees equal to zero. This explains why when the support is small, the social planner fee pricing generates

a substantially greater increase in total welfare. This also explains why a regulatory cap on fees equal to

half a tick would induce the exchange to set a rebate-based pricing similar to the welfare maximising social

planner fee pricing, thus Pareto improving total welfare. When instead the support is large and the relative

tick size is small it would be sufficient for regulators to cap trading fees to the tick size to substantially

Pareto improve total welfare. A cap on trading fees would limit the ability of the exchange to extract rents

from the investor large gains-from-trade.

Our model has a number of other “firsts” from a modeling perspective. Our model is the first to provide

a complete analysis of the effect of endogenous limit price choice and market/limit order choice on fee

pricing. Our model also is the first to consider more than two periods. This extension shows that fee pricing

changes with greater market activity. We also are the first to formally model the Social Planner’s fee pricing

and show the relevance of the fee breakdown that maximizes total welfare. Finally, our model allows us to

understand how exchanges strategically manage total fee and fee breakdown to maximize profits.
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Figure 1: Model with Continuous Prices This figure reports the Expected Exchange Profit (gray), the Equilibrium Total
Fee (green) and the Transaction Probability (orange) of the model with continuous prices as a function of the Support With (D)

5 10 15 20

2

4

6

8

Transaction Probability

Total Fee

Exchange Profits

Figure 2: 2-Period Model with Profit-Maximizing Exchange: Upper Envelope. This figure reports for
investor at time t1 with v = 10 and support width D = 5 the plot of the expected payoffs of the investor at time t1 for each order type
LSP1, LSP�1, LBP1, LBP�1, NT .
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Figure 3: 2-Period Model with Profit-Maximizing Exchange. Unrestricted fee pricing regime. This
figure reports the equilibrium make fees (MF) and take fees (TF) corresponding to different investor valuation supports with widths
ranging from 0.33 to 21 on the horizontal axes. The support is expressed in tick unit of measure (t). The figure reports in blue
(red) the equilibrium fees MF (TF). The Taker-Maker and Maker-Taker pricing structures are optimal and symmetric for a support
widths ranging from 0.33 to 3. We report the Maker-Taker pricing: for example, in correspondence of the smallest support we
consider, 0.33, the figure reports the equilibrium symmetric Maker-Taker MF and TF, �0.444 and 0.556. For supports larger than
3, fee pricing also include positive MF and TF. The figure also reports the sum of MF and TF, Total Fee (green), as well as the
Transaction Probability (orange) and the Exchange Profit (gray).
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Table 1: 2-Period Model with Profit-Maximizing Exchange: Equilibrium Fees and Trading Strategies. Unrestricted fee pricing regime.

This table reports for different investor valuation support width, D = b �b expressed in terms of the tick size, t (column 1), the extreme values of the support, b and b̄
(column 2), the equilibrium make and take fees, MF⇤ and T F⇤ (column 3 and 4), the sum of the equilibrium MF⇤ and T F⇤ (column 5), the cum-fee buy and sell prices Pcum,LB

k
and Pcum,MS

k (columns 6 and 7), the thresholds between NT and LBP�2, LBP�2 and LBP�1, LBP�1 and LBP1, LBP1 and LBP2 (column 8), the buyer’s equilibrium trading
strategies at t1, xt1 other than No Trade (column 9) and the associated probability of submission at t1, Pr(xt1 |X⇤,Lt0) (column 10). The table also shows the equilibrium
probability of execution of the buyer’s order posted at t1, Pr(q xt1

t1 |X⇤,Lt0) (column 11), the equilibrium transaction probability Pr(xtz ,q
xtz
tz |S,t,X) (column 12), and the

exchange expected profit from both buyers and sellers, pEx(MF⇤,T F⇤) (column 13). Up to a support equal to 3 the equilibrium pricing is symmetric, with both Taker-Maker
and Maker-Taker pricing, and we report only the Maker-Taker pricing. Results are rounded to the third decimal.

Support width b , b̄ MF⇤ T F⇤ MF⇤+T F⇤ Pcum,LB
k Pcum,MS

k Threshold Eq.Strategy xt1 Pr. Submission Pr. Execution Pr.Trans Exchange E[Profit]
D = b �b at t1 Pr(xt1 |X⇤,Lt0 ) Pr(q xt1

t1 |X⇤,Lt0 ) pEx(MF⇤,T F⇤)

0.33 9.833, 10.167 -0.444 0.556 0.111 10.056 9.944 n.a, n.a, 10.056,11.556 LBP1 0.333 0.333 0.222 0.025

1 9.500, 10.500 -0.333 0.667 0.333 10.167 9.833 n.a, n.a, 10.167,11.667 LBP1 0.333 0.333 0.222 0.074

2 9.000, 11.000 -0.167 0.833 0.666 10.333 9.667 n.a, n.a, 10.333,12.000 LBP1 0.333 0.333 0.222 0.148

3 8.500, 11.500 0 1 1 10.5 9.5 n.a, n.a, 10.500,12.500 LBP1 0.333 0.333 0.222 0.222

3.1 8.450, 11.550 0 1.05 1.05 10.5 9.45 n.a, n.a, 10.500,12.500 LBP1 0.339 0.323 0.219 0.229

3.5 8.250, 11.750 0 1.25 1.25 10.5 9.25 n.a, n.a, 10.500,12.500 LBP1 0.357 0.285 0.204 0.255

3.6 8.200, 11.800 0 1.30 1.30 10.5 9.20 n.a, n.a, 10.500,12.500 LBP1 0.361 0.278 0.201 0.261

3.8 8.100, 11.900 0 1.40 1.40 10.5 9.10 n.a, n.a, 10.500,12.500 LBP1 0.368 0.263 0.194 0.271

3.9 8.050, 11.950 0 1.45 1.45 10.5 9.05 n.a, n.a, 10.500,12.500 LBP1 0.372 0.256 0.191 0.276

4 8.000, 12.000 0.5 1 1.5 10.000, 11.000 8.500, 9.500 n.a, 10.000, 11.500, 13.500 LBP�1 , LBP1 0.375, 0.125 0.125, 0.375 0.188 0.281

4.1 7.950, 12.050 0.5 1.025 1.525 10.000, 11.000 8.475, 9.475 n.a, 10.000,11.525,13.525 LBP�1 , LBP1 0.372, 0.128, 0.128, 0.372 0.191 0.291

4.4 7.800, 12.200 0.5 1.1 1.6 10.000, 11.000 8.400, 9.400 n.a, 10.000,11.600,13.600 LBP�1 , LBP1 0.364, 0.136 0.136, 0.364 0.198 0.317

4.5 7.750, 12.250 0.5 1.125 1.625 10.000, 11.000 8.375, 9.375 n.a, 10.000,11.625,13.625 LBP�1 , LBP1 0.361, 0.139 0.139, 0.361 0.201 0.326

4.7 7.650, 12.350 0.5 1.175 1.675 10.000 , 11.000 8.325 , 9.325 n.a, 10.000, 11.675, 13.675 LBP�1 , LBP1 0.356, 0.144 0.144, 0.356 0.205 0.343

4.8 7.600, 12.400 0.5 1.2 1.7 10.000, 11.000 8.300, 9.300 n.a, 10.000,11.700,13.700 LBP�1 , LBP1 0.354, 0.146, 0.146,0.354 0.207 0.351

5 7.500, 12.500 0.5 1.25 1.75 10.000 , 11.000 8.250 , 9.250 n.a, 10.000,11.750,13.750 LBP�1 , LBP1 0.350, 0.150 0.150 , 0.350 0.21 0.368

6 7.000, 13.000 0.5 1.5 2 10.000 , 11.000 8.000 , 9.000 n.a, 10.000,12.000,14.000 LBP�1 , LBP1 0.333, 0.167 0.167, 0.333 0.222 0.444

7 6.500, 13.500 0.5 2 2.5 10.000 , 11.000 7.500 , 8.500 n.a, 10.000,12.000,14.000 LBP�1 , LBP1 0.286, 0.214 0.143, 0.286 0.204 0.51

8 6.000, 14.000 0.5 2.5 3 10.000 , 11.000 7.000 , 8.000 n.a, 10.000,12.000,14.000 LBP�1 , LBP1 0.250 , 0.250 0.125, 0.250 0.188 0.563

8.8 5.600, 14.400 1.468 1.868 3.336 9.968 , 10.968, 11.968 6.632 , 7.632 , 8.632 9.968,12.000,14.000,16.000 LBP�2 , LBP�1, LBP1 0.227, 0.227, 0.045 0.117 , 0.231, 0.345 0.190 0.632

9 5.500, 14.500 1.458 1.958 3.416 9.958 , 10.958, 11.958 6.542 , 7.542, 8.542 9.958,12.000,14.000,16.000 LBP�2 , LBP�1, LBP1 0.222, 0.222, 0.056 , 0.116, 0.227, 0.338 0.19 0.649

12 4.000, 16.000 2.184 2.315 4.499 9.684, 10.684 , 11.684, 12.684 5.185 , 6.185, 7.185, 8.185 10.684,13.869,15.869,17.869 LBP�3 , LBP�2, LBP�1, , LBP1 0.156, 0.167, 0.167, 0.011 0.099 , 0.182, 0.265, 0.349 0.190 0.844
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Figure 4: 2-Period Model with Social Planner: Equilibrium Fees, Exchange Profit and Transaction Probability. This figure reports the
equilibrium make fees (MF) and take fees (TF) corresponding to different investor valuation supports with widths ranging from 0.33 to 21 on the horizontal axes. The support
is expressed in tick unit of measure (t). The figure reports in blue (red) the equilibrium fees MF (TF). The Taker-Maker and Maker-Taker pricing structures are optimal and
asymmetric. The figure also report Total Welfare (green) which is the sum of investors welfare and exchange profit, and Transaction Probability (orange).
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Table 2: 2-Period Model with Social Planner: Equilibrium Fees and Trading Strategies. This table reports for different investor valuation support
width, D = b �b expressed in terms of t (column 1), the extreme values of the support, b and b̄ (column 2), the equilibrium make and take fees, MF and TF (column 3
and 4), the cum-fee buy prices Pcum,LB

k (column 5), the thresholds (column 6), the buyer’s equilibrium trading strategies at t1, xt1 other than No Trade (column 7) and the
associated probability of submission and execution (column 8 and 9). Finally the table reports in column 10 the total welfare which is the sum of investors welfare and
exchange profit. Results are rounded to the third decimal.

Support width b , b̄ MF TF Pcum,LB
k Thresholds Eq.Strategy Pr. Submission Pr. Execution Pr. Trans Total Welfare

D = b �b

0.33 9.833,10.167 -0.500 0.500 8.000, 9.000, 10.000 n.a, n.a, 10.000 LBP1 0.000, 0.000, 0.500 0.000, 0.000, 0.500 0.500 0.083

1 9.500, 10.500 -0.5 0.5 8.000, 9.000, 10.000 n.a, n.a, 10.000 LBP1 0.000, 0.000, 0.500 0.000, 0.000, 0.500 0.500 0.250

2 9.000, 11.000 -0.5 0.5 8.000, 9.000, 10.000 n.a, n.a, 10.000 LBP1 0.000, 0.000, 0.500 0.000, 0.000, 0.500 0.500 0.500

2.1 8.950, 11.050 -0.525 0.525 7.975, 8.975, 9.975 n.a., 8.975, 10.000 LBP1 0.000, 0.000, 0.500 0.000, 0.012, 0.488 0.488 0.519

3 8.500, 11.500 -0.75 0.75 7.750, 8.750, 9.750 n.a., 8.750, 10.000 LBP1 0.000, 0.000, 0.500 0.000, 0.033, 0.417 0.417 0.677

3.1 8.450, 11.550 -0.725 0.725 7.775, 8.775, 9.775 n.a., 8.775, 10.100 LBP�1, LBP1 0.000, 0.032, 0.468 0.000, 0.105, 0.427 0.407 0.694

4 8.000, 12.000 -0.5 0.5 8.000, 9.000, 10.000 n.a., 9.000, 11.000 LBP�1, LBP1 0.000, 0.250, 0.250 0.000, 0.250, 0.500 0.375 0.875

4.1 7.950, 12.050 -0.475 0.475 8.025, 9.025, 10.025 8.025, 9.100, 11.100 LBP�1, LBP1 0.000, 0.268, 0.232 0.018, 0.262, 0.506 0.375 0.885

4.5 7.750, 12.250 -0.325 0.325 8.125, 9.125, 10.125 8.175, 9.600, 11.600 LBP�1, LBP1 0.000, 0.333, 0.166 0.083, 0.306, 0.528 0.380 0.988

5 7.500, 12.500 -0.25 0.25 8.250, 9.250, 10.250 8.250, 10.000, 12.000 LBP�1, LBP1 0.000, 0.400, 0.100 0.150, 0.350, 0.550 0.390 1.106

5.1 7.450, 12.550 -0.275 0.275 8.225, 9.225, 10.225 8.225, 10.000, 12.000 LBP�1, LBP1 0.000, 0.108, 0.392 0.152, 0.348, 0.544 0.390 1.130

7 6.500, 13.500 -0.75 0.75 7.750, 8.750, 9.750 7.750, 10.000, 12.000 LBP�1, LBP1 0.000, 0.286, 0.214 0.179, 0.321, 0.464 0.383 1.540

7.1 6.450, 13.550 -0.725 0.725 7.775, 8.775, 9.775 7.775, 10.100, 12.100 LBP�2, LBP�1, LBP1 0.014, 0.282, 0.204 0.187, 0.327, 0.468 0.381 1.130
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Figure 5: 2-Period Model with Profit-Maximizing Exchange: Equilibrium Fees, Exchange Profit and Transaction Probability. Re-

stricted fee pricing regime. This figure reports the equilibrium make fees (MF) and take fees (TF) corresponding to different investor valuation supports with widths
ranging from 0.33 to 21 on the horizontal axes. In the restricted fee pricing model trading fees are capped to the tick size value which is set equal to 1t . The support is
expressed in tick unit of measure (t). The figure reports in blue (red) the equilibrium fees MF (TF). The Taker-Maker and Maker-Taker pricing structures are optimal and
symmetric for a support widths ranging from 0.33 to 3. We report the Maker-Taker pricing: for example, in correspondence of the smallest support we consider, 0.33, the
figure reports the equilibrium symmetric Maker-Taker MF and TF, �0.444 and 0.556. For supports larger than 3, fee pricing also include positive MF and TF. The figure also
reports the sum of MF and TF, Total Fee (green), as well as the Transaction Probability (orange) and the Exchange Profit (gray).
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Figure 6: 3-Period Model with Profit-Maximizing Exchange. Unrestricted fee pricing regime. This figure reports the equilibrium make fees (MF)
and take fees (TF) corresponding to different investor valuation supports with widths ranging from 0.33 to 21 on the horizontal axes. The support is expressed in tick unit
of measure (t). The figure reports in blue (red) the equilibrium fees MF (TF). For supports  2.4 , the Taker-Maker and Maker-Taker pricing structures are optimal and
asymmetric. We report the Maker-Taker pricing: for example, in correspondence of the smallest support we consider, 0.33, the figure reports the equilibrium asymmetric
Maker-Taker MF and TF, �0.428 and 0.556. For supports � 2.4, fee pricing also include positive MF and TF. The figure also reports the sum of MF and TF, Total Fee
(green), as well as the Transaction Probability (orange) and the Exchange Profit (gray).



Table 3: 3-Period Model with Profit-Maximizing Exchange: Equilibrium Fees and Trading Strategies. Unrestricted fee pricing regime.

This table reports for different investor valuation support width, D = b �b expressed in terms of the tick size, t (column 1), the extreme values of the support, b and b̄
(column 2), the equilibrium make and take fees, MF⇤ and T F⇤ (column 3 and 4), the sum of the equilibrium MF⇤ and T F⇤ (column 5), the thresholds (column 6), the
buyer’s equilibrium trading strategies at t1 and at t2 other than No Trade (columns 7 and 8) and the associated probability of submission at t1 and at t2, (columns 9 and 10).
The table also shows the equilibrium transaction probability (column 11), and the exchange expected profit (column 12). For supports  2.4t the equilibrium pricing is
asymmetric, with both Taker-Maker and Maker-Taker pricing, and we report only the Maker-Taker pricing. The third and fourth gray rows report results (marked with a *) for
off-equilibrium fees that symmetrically flip the corresponding equilibrium fees. When the equilibrium pricing is rebate-based for a given support, we report the Taker-Maker
fees on the first row and then the Maker-Taker fees on the second row. For supports  2.4 the equilibrium pricing is asymmetric, with both Taker-Maker and Maker-Taker
pricing. When, for a given support and set of fees, there are multiple optimal orders given different valuations bt1 for the investor at t1, these orders are shown on different
rows along with the optimal potential responses at t2. Results are rounded to the third decimal.

Support width b , b̄ MF⇤ T F⇤ MF⇤+T F⇤ Threshold Eq.Strategies xtz Pr. Submission Pr. Trans Exchange E[Profit]
D = b �b Pr(xtz |X⇤,Ltz�1 ) pEx(MF⇤,T F⇤)

t1 t2 t1 t2

0.572 -0.443 0.129 10.072 LBP�1 MSP�1 0.284 0.328 0.391 0.051
0.33 9.833, 10.167

-0.428 0.557 0.129 10.072 LBP1 MSP1 0.284 0.328 0.391 0.051
0.716 -0.328 0.388 10.216 LBP�1 MSP�1 0.284 0.328 0.392 0.152

1 9.500, 10.500
-0.284 0.672 0.388 10.216 LBP1 MSP1 0.284 0.328 0.392 0.152

0.933 -0.156 0.777 10.433 LBP�1 MSP�1 0.284 0.328 0.392 0.304
2 9.000, 11.000

-0.067 0.845 0.777 10.433 LBP1 MSP1 0.284 0.328 0.392 0.304

1.000 -0.102 0.898 10.500 LBP�1 MSP�1 0.284 0.328 0.392 0.351
2.31 8.850, 11.150

-0.001 0.898 0.898 10.500 LBP1 MSP1 0.284 0.328 0.392 0.351

10.000 LBP�1 MSP�1, LSP2 0.241 0.341, 0.270
3 8.500, 11.500 0.189 0.949 1.138 0.400 0.456

10.723 LBP1 MSP1 0.259 0.350

10.000 LBP�1 LBP1, MSP�1, LSP2 0.244 0.030, 0.324, 0.205
4 8.000, 12.000 0.382 1.126 1.508 0.418 0.630

11.131 LBP1 LBP2, MSP1 0.256 0.030, 0.344

10.000 LBP�1 LBP1, MSP�1, LSP2 0.246 0.038, 0.320, 0.206

10.000 LBP�1 LSP2, MSP�1, LBP1 0.236 0.203, 0.297, 0.010
5 7.500, 12.500 0.500 1.390 1.890 0.427 0.806

11.405 LBP1 LBP2, MSP1 0.263 0.100, 0.322

10.000 LBP�1 LBP1, LSP2, LSP1, MSP�1, 0.289 0.283, 0.185, 0.306, 0.125
6 7.000, 13.000 0.802 1.390 2.192 0.436 0.955

10.437 LBP�2 LBP�1, LBP1, LSP2, LSP1, , LSP�1 0.058 0.346, 0.098, 0.125, 0.333, 0.098
12.189 LBP1 LBP2, MSP1, LSP2, 0.153 0.116, 0.346, 0.270

10.655 LBP�1 LBP1, LSP2, LSP1, MSP�1, 0.264 0.282, 0.193, 0.238, 0.138
7 6.500, 13.500 1.025 1.650 2.675 0.418 1.117

10.000 LBP�2 LBP�1, LBP1, LSP2, LSP1, LSP�1 0.094 0.336, 0.089, 0.193, 0.286, 0.089
12.505 LBP1 LBP2, MSP1, LSP2, 0.142 0.139, 0.323, 0.244

11.033 LBP�1 LBP1, LSP2, LSP1, MSP�1, 0.259 0.274, 0.213, 0.148, 0.163
8 6.000, 14.000 1.303 1.793 3.096 0.414 1.281

10.000 LBP�2 LBP�1, LBP1, LSP2, LSP1, LSP�1 0.129 0.338, 0.061, 0.213, 0.250, 0.061
13.108 LBP1 LBP2, MSP1, LSP2, 0.111 0.150, 0.320, 0.204

11.405 LBP�1 LBP1, LSP2, LSP1, MSP�1, 0.233 0.278, 0.216, 0.114, 0.169
9 5.500, 14.500 1.500 2.053 3.553 0.406 1.444

10.000 LBP�2 LBP�1, LBP1, LSP2, LSP1, LSP�1 0.156 0.327, 0.061, 0.216, 0.222, 0.040
13.510 LBP1 LBP2, MSP1, LSP2, 0.110 0.167, 0.307, 0.193
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Figure 7: 3-Period Model with Profit-Maximizing Exchange. Restricted fee pricing regime. This figure reports the equilibrium make fees (MF)
and take fees (TF) corresponding to different investor valuation supports with widths ranging from 0.33 to 21 on the horizontal axes. The support is expressed in tick unit
of measure (t). The figure reports in blue (red) the equilibrium fees MF (TF). The Taker-Maker and Maker-Taker pricing structures are optimal and asymmetric for small
support widths. We report the Maker-Taker pricing: for example, in correspondence of the smallest support we consider, 0.33, the figure reports the equilibrium symmetric
Maker-Taker MF and TF, �0.428 and 0.556. For large supports, fee pricing also include positive MF and TF. The figure also reports the sum of MF and TF, Total Fee (green),
as well as the Transaction Probability (orange) and the Exchange Profit (gray). In the restricted fee pricing model trading fees are capped to the tick size value which is set
equal to 1t . The support is expressed in tick unit of measure (t).



61

Figure 8: Welfare Comparison This figure shows how the following variables evolve with the support width D. For both the restricted (red) and the unrestricted
(blue) exchange fee pricing regime the figure reports: profit of the exchange (EXCH - dashed line), investors welfare , (INV - thin line), total welfare (ExchangeTW=INV +
EXCH - dashed-dotted line). In addition the figure reports the social planner total welfare (SocialPlannerTW,SPTW - black dotted line) and the benchmark regime with no
trading fees (BenchmarkTW, MF=TF=0 - - black solid thick line). Finally, the figure shows the results for three regions: Pareto Improvement Welfare (PIW), Redistribution
Welfare (RW) and Deadweight Loss (DL); and also report the difference between the Restricted and the Unrestricted regime in total welfare (DTot.Wel f are), in investors
welfare (DInvestorsWel f are), and in exchange profit (DExchangePro f it). The support is expressed in tick unit of measure (t).
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Appendices

A Proofs

Lemma 3. Given fee pricing such that the exchange has a non-negative profit MF+T F � 0 per transaction,

a priori arriving investors only consider submitting limit buys (sells) at posted prices Pk that are sufficiently

low (high) such that the associated cum-fee prices for market sells (buys) satisfies Pcum,MS
k < b (Pcum,MB

k >

b ).

Proof for Lemma 3: : This follows immediately from the fact that submitting a limit buy is only profitable

for an investor if the cum-fee limit-buy price Pcum,LB
k = Pk +MF  b and the fact that Pcum,MS

k = Pk �T F =

Pk +MF � (MF +T F) where MF +T F � 0 for an exchange with a non-negative profit per transaction and,

thus, the cum-fee market sell price satisfies Pcum,MS
k  b . The argument for limit sells is symmetric. Q.E.D.

Lemma 4. If the standing limit order book is symmetric at a time tz, then investors with btz > v are potential

buyers at time tz (i.e., they either submit limit buy orders or NT but they never submit limit sell orders).

Similarly, investors with btz < v are potential sellers at time tz. In particular, this is true at time t1 when the

opening book Lt0 is empty.

Proof of Lemma 4: This result follows from the fact that the investor expected profit functions from limit

buy and sell orders are symmetric and increasing in the distance of btz from the posted limit prices. Q.E.D.

Comment about Lemma 4: In particular, Lemma 4 applies at time t1 since the initial book is empty.

Lemma 5. If trading fees are capped at one tick by regulation, then an exchange never sets rebates larger

than one tick in equilibrium.

Proof for Lemma 5 If the trading rebate is larger than the trading fee, then the exchange’s net profit per

transaction is negative. However, an exchange can always earn a zero net profit per transaction by setting its
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rebates equal to its fee. Thus setting rebates larger than fees does not maximize exchange profits (if profit-

maximizing exchanges set access pricing) and violates incentive compatibility (if a welfare-maximizing

Social Planner sets fee pricing). Q.E.D.

Lemma 6. Consider limit buys at prices Pj and Pk >Pj, which both have positive execution probabilities and

positive execution payoffs given hypothetical fees MF and T F. With uniformly distributed private values bt2

at time t2, the threshold for limit buys at Pj versus Pk on a discrete price grid is

b LB, j,k
t1 = Pj +Pk �b �T F +MF (30)

and the corresponding threshold for limit sells at Pj and Pk < Pj is

b LS,k, j = Pj +Pk �b +T F �MF (31)

Proof of Lemma 6: Given hypothetical take and make fees T F and MF , consider two limit buy orders

posted at Pj and Pk >Pj, where PMS,cum
k 2 (b ,b ) and PMS,cum

j 2 (b ,b ), so that there is a positive well-defined

probability of investors arriving at t2 who would be willing to submit a market sell MSPj and MSPk to hit

these limit buys. Define n j,k = Pk �Pj > 0, which is the integer number of ticks between Pj and Pk. Using

the above notation, we have PMS,cum
k = Pk �T F = Pj +n j,k �T F and PLB,cum

k = Pk +MF = Pj +n j,k +MF .

In addition, we can write PLB,cum
k = PLB,cum

j +n j,k and PMS,cum
k = PMS,cum

j +n j,k.

We now solve for the critical value b LB, j,k of the private valuation bt1 such that the expected profit of a

63



limit buy at Pk is greater than for a limit buy at Pj:

p INV
t1 (LBPk) =

PMS,cum
k �b

b �b
(bt1 �PLB,cum

k ) �
PMS,cum

j �b
b �b

(bt1 �PLB,cum
j ) = p INV

t1 (LBPj) (32)

! [(PMS,cum
k �b )� (PMS,cum

j �b )]bt1 � (PMS,cum
k �b )PLB,cum

k � (PMS,cum
j �b )PLB,cum

j

! n j,k bt1 � n j,kPLB,cum
j +(PMS,cum

j �b +n j,k)n j,k

! bt1 � PLB,cum
j +(PMS,cum

k �b )

! bt1 � Pj +[(Pk �b )�T F ]+MF

Thus, the threshold b j,k for limit buys is as given in (30).

Similar calculations give the threshold bk, j for limit sells at Pj and Pk < Pj where nk, j = Pj �Pk < 0 is

the signed integer number of price ticks between Pk and Pj:

p INV
t1 (LSPk) =

b �PMB,cum
k

b �b
(PLS,cum

k �bt1) �
b �PMB,cum

j

b �b
(PLS,cum

j �bt1) = p INV
t1 (LSPj) (33)

! [(b �PMB,cum
j )� (b �PMB,cum

k )]bt1 � (b �PMB,cum
j )PLS,cum

j � (b �PMB,cum
k )PLS,cum

k

! nk, j bt1 � nk, jP
LS,cum
j � (b �PMB,cum

j �nk, j)nk, j

! bt1  PLS,cum
j � (b �PMB,cum

k )

! bt1  Pj +[(Pk �b )+T F ]�MF

so that, the threshold b LS, j,k for limit sells is given in (31). Q.E.D.

Proof of Lemma 2: The subgame existence result follows from the following construction: First, fix a finite

support width D. It can be arbitrarily large or small relative to the normalized tick size of 1. Second, for

any hypothetical take and make fees T F and MF , market-order cum prices can be calculated analytically

and thus, limit-order execution probabilities and limit-order expected profits can be determined analytic-

ally for each possible limit order price in the a priori relevant portion of the price grid. Third, given the
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limit-order expected profit functions in bt1 , the limit-order thresholds can be computed analytically from

the upper envelope of the investor expected profit functions for the different hypothetical limit orders at the

different hypothetical posted prices and, thus, the associated limit-order submission strategy can be determ-

ined analytically. Fourth, the upper envelope for limit buy orders starts with the limit order with the lowest

cum-fee price above v with positive expected profits or at the limit order with the maximum expected profit

for bt1 = v given that, from Lemma 4, limit buys are only used when bt1 > v. The envelope then continues

to successively higher limit buys since limit buy thresholds from Lemma 6 are sequential (i.e., does not

skip orders). In particular, we know in the construction of the upper envelope that Pj+1 is the next optimal

limit buy price after Pj rather than some higher price Pk because, holding price Pj fixed, we have from (30)

above that b j, j+1
t1 < b j,k

t1 for k > j+1. Thus, the interval for which LBPj+1 is optimal extends from b j, j+1
t1

to b j+1, j+2
t1 and so on. Q.E.D.

Comment on order-submission probabilities in 2-period equilibrium: If b is uniformly distributed, the

order-submission probabilities for optimal limit buys at t1 are just the width of the interval for which they

are optimal divided by the length D of the full valuation support. To see this, consider first an arbitrary

“interior” interval [b prior(k),k
t1 ,b k,next(k)

t1 ] for 1 < k < m. The thresholds, from above, are

b prior(k),k
t1 = Pprior(k) +Pk �b �T F +MF (34)

b k,next(k)
t1 = Pk +Pnext(k)�b �T F +MF

Thus, the width of any “interior” interval for bt1 is

b k,next(k)
t1 �b prior(k),k

t1 = next(k)� prior(k) = 2 (35)
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and the associated interval probability of bt1 2 [b prior(k),k
t1 ,b k,next(k)

t1 ] is 2
D . The construction for the upper

envelope of limit sells is symmetric.

Lemma 7. i) In a Taker-Maker regime with �1  T F < 0  MF  1, limit orders are never posted at prices

Pk outside of the interval [b �1, b̄ ] for limit buys or outside of the interval [b , b̄ +1] for limit sells. ii) In a

Maker-Taker regime with �1  MF < 0  T F  1, limit orders are never posted at prices Pk outside of the

interval [b , b̄ + 1] for limit buys or outside of the interval [b � 1,> b̄ ] for limit sells. iii) In a positive-fee

regime with 0  T F  1 and 0  MF  1, limit buy and sell orders are never posted at prices Pk outside of

the interval [b , b̄ ] for both limit buys or limit sells.

Proof of Lemma 7: In a Taker-Maker regime, the highest possible cum price Pcum,MS
k = Pk � T F for a

market sell given a limit buy at a posted price Pk < b � 1 is Pk + 1 < b given the bounded take rebate

�T F  1. Thus, no investor arriving at t2 will be willing to submit a market sell given a limit buy at posted

prices Pk < b � 1. Similarly, the lowest possible cum price Pcum,LB
k = Pk +MF for a limit buy at a posted

price Pk > b̄ is Pk > b̄ given the non-negative fee MF > 0 in a Taker-Maker regime. As a result, no investor

arriving at t1 will be willing to post a limit buy at prices Pk > b̄ . A similar logic applies for the result for

potential posted limit prices in the Maker-Taker regime and the positive-fee regime. Q.E.D.

A.1 Optimal fees for the Social Planner

Lemma 8. The fees that maximize total welfare are such that if the optimal the take fee (rebate) T F = A > 0

(T F = A < 0), then the associated optimal make fee is a rebate (fee) MF =�FT =�A < 0 so that the net

fee for the exchange is zero. This means that the total net fee is T F +MF = 0.

Proof: Given an optimal take fee (or rebate) F , the Social Planner optimally set the make rebate (or fee) to

maximize order submissions. Q.E.D.
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Proof of Theorem 1: The proof starts given the trading subgame equilibrium in Lemma 2 for arbitrary MF

and T F and then follows the following steps: First, from Lemma 8, if T F = F , the make fee is MF = �F

submission strategy can be determined analytically. Second, given the optimal limit order strategy at time

t1 and the associated optimal market-order submission strategy at time t2, total social welfare in (12) can

be computed analytically. Third, the optimal take fee F (and make rebate �F) is found by repeating these

computations for each possible hypothetical fee F to find the fee F⇤ that maximizes (12). Fourth, the optimal

fee function F(D) can then be constructed by repeating the above steps for each support width D.

From the preceding argument, the fee F(D) that maximizes the total welfare function is either the solu-

tion to a local optimization given the associated set of equilibrium “used” orders, or it is a fee that makes it

incentive compatible for investors to use orders that are associated with a higher local social value function

given that set of “used” orders than the set of “used"" orders associated with a next-best (i.e., adjacent) lower

local social value function. Thus, thus the changes in F(D) given a change in D are due either to continuous

changes in the maximum of the highest local social value function or to continuous changes in the threshold

associated with some order than needs to be deterred. Q.E.D.

Proof of Theorem 3: The proof follows from rescaling all of the variables in the model relative to an

absolute tick size t > 0. In particular, we define scaled quantities M̂F = MF/t , ˆT F = T F/t , b̂tz = btz/t ,

ˆ̄b = b̄/t , b̂ = b/t , and prices P̂j = Pj/t for all h. Given this rescaling, we next observe that all of the

order-submission and order-execution probabilities are homogeneous of degree zero in the absolute tick

size t . In particular, the absolute tick size factors out of both the numerator and denominator and cancels.

Similarly, the conditional payoffs on executed orders for the exchange and investors is homogeneous of order

one. Thus, changing the tick size does not change relative comparisons for prices centered around a given

fundamental valuation v. The rescaled optimization problems for the investors and exhange are, therefore,

equivalent to the optimization problem with a tick of 1. This gives us the solutions to the exchange’s
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optimal scaled fees. Multiplying the scaled fees by t gives the corresponding absolute fees MF = M̂Ft and

MF = M̂Ft . Q.E.D.

A.2 Proof for the 3-period market

Proof for Theorem 4: The proof strategy is standard for finite sequential games and consists of three steps:

The recursion step for deriving analytic investor strategies is the following: Given access pricing fees X, the

order-execution probabilities Pr(q xtz
tz |X,Ltz�1) for computing the investor expected profit for each possible

order xtz 2 Xtz at any time tz in the investor maximization problem (2) are either 1 for market orders at the

BBO or are determined recursively for limit orders from the order-submission probabilities Pr(xtz |X,Ltz�1) at

later dates. The upper envelope of the expected investor payoffs for the different possible actions at a generic

time tz determines the optimal investor actions at tz and, given the distribution over the investor valuation

btz the associated order-submission probabilities for the optimal actions in terms of intervals on the investor

valuation support S for any incoming book Ltz�1 . Given the assumptions of a discrete number of possible

investor actions and discrete tine, the set of possible incoming books is finite.

The initiation step starts the recursion at the terminal period tN , at which time the order-execution prob-

abilities take a simple form: They are zero for new limit orders (since the game ends after time tN) and one

for market orders (which can only be submitted if the book is non-empty). Thus, investor expected profit

for different orders, the upper envelope, the optimal orders, and the order-submission probabilities at time

tN can be derived directly.

The exchange profit optimization step is then as follows: The order-submission and order-execution

probabilities from the first two steps can then be used to construct the exchange’s expected profit in (26) ana-

lytically given arbitrary fees X. Given the analytic exchange expected profit function, the profit-maximizing

fees X⇤ can then be found analytically since the set of possible fees and rebates is compact given the regu-
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latory cap on access fees. Q.E.D.

A.3 Derivations of selected formulas

In a two-period model, the Social Planner’s problem is

max
MF,T F

�t<MF,T F<+t
MF+T F�0

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(36)

= Â
xt12XL

✓
W INV

t1 (xt1 |X,Lt0)+W INV
t2 (x̃t2(xt1) |X,Lt0)+Pr(xt1 ,q

xt1
t1 |X)(MF +T F)

◆

given that limit orders xt1 are only submitted at t1 and lead to investor welfare:

W INV
t1 (xt1 |X,Lt0) =

Z

bt12Bt1 (xt1 ,X,Lt0 )

⇥
I(xt1)⇥ (bt1 �P(xt1))�MF

⇤
f (bt1)dbt1 ⇥Pr(q xt1

t1 |X,Lt0)

= I(xt1)⇥
Z

bt12Bt1 (xt1 ,X,Lt0 )
bt1 f (bt1)dbt1 ⇥Pr(q xt1

t1 |X,Lt0)

� [I(xt1)⇥P(xt1)+MF)]⇥
⇣Z

bt12Bt1 (xt1 ,X,Lt0 )
f (bt1)dbt1

⌘
⇥Pr(q xt1

t1 |X,Lt0)

= Pr(xt1 |X,Lt0)⇥Pr(q xt1
t1 |X,Lt0)⇥ I(xt1)⇥E[bt1 |xt1 ]

� Pr(xt1 |X,Lt0)⇥Pr(q xt1
t1 |X,Lt0)⇥ [I(xt1)⇥P(xt1)+MF)] (37)

where Itz is an indicator variable equal to 1 (�1) for buy (sell) orders at tz, Bt1(xt1 ,X,Lt0) is the interval of

the bt1 realizations for which a given limit order xt1 is optimal at t1, and where market orders x̃t2(xt1) at t2
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executing earlier limit orders xt1 from t1 lead to investor welfare:

W INV
t2 (x̃t2(xt1) |X,Lt0) = Pr(xt1 |X,Lt0)⇥

Z

bt22Bt2 (q
xt1
t1 ,X,Lt1 )

[I(xt1)⇥ (P(xt1) � bt2)�T F ] f (bt2)dbt2

= Pr(xt1 |X,Lt0)⇥ [I(xt1)⇥P(xt1) �T F)]⇥
Z

bt22Bt2 (q
xt1
t1 ,X,Lt1 )

f (bt2)dbt2

� Pr(xt1 |X,Lt0)⇥ I(xt1)⇥
Z

bt22Bt2 (q
xt1
t1 ,X,Lt1 )

bt2 f (bt2)dbt2

= Pr(xt1 |X,Lt0)⇥Pr(q xt1
t1 |X,Lt0)⇥ [I(xt1)⇥P(xt1) �T F)]

� Pr(xt1 |X,Lt0)⇥Pr(q xt1
t1 |X,Lt0)⇥ I(xt1)⇥E[bt2 |q

xt1
t1 ] (38)

given the interval Bt2(q
xt1
t1 ,X,Lt1) of bt2 realizations for which a market order is optimal at t2 that leads to

execution the order xt1 submitted at t1. The third term in (36) is the exchange’s profit W Ex
tz (MF,T F) from

(11). Adding (37) and (38) and using MF =�T F for the Social Planner gives the addends in (12).

In a general multiperiod model, a Social Planner maximizes the total welfare, which generalizes to the

N-period model to:

max
MF,T F

�t<MF,T F<+t
MF+T F�0

Â
tz2{t1,...,tN}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(39)

= Â
tz2{t1,...,tN}

Â
8Ltz�1

Pr(Ltz�1 |X)⇥


Â
xtz2XL

✓Z

btz2Btz (xtz ,X,Ltz�1 )
Itz ⇥ [btz �P(xtz)�MF)] f (btz)dbtz ⇥Pr(q xtz

tz |X,Ltz�1)

+Pr(xtz |X,Ltz�1)⇥ Â
tn2{tz+1,...,tN}

Â
8Ltn�1

Pr(Ltn�1 \N
xtz

tn�1
|xtz ,Ltz�1 ,X)

Z

btn2Btn (x̃tn (xtz ),X,Ltn�1 )
Itz ⇥ [P(xtz)� btn �T F)] f (btn)dbtn

+Pr(xtz ,q
xtz
tz |X)(MF +T F)

◆�

where W INV
tz (MF,T F) is the expected welfare of arriving investors at each date tz and W Ex

tz (MF,T F) is the

exchange’s expected profit from (26) from limit orders submitted at dates tz and subsequently executed at

later dates. The first term on the right is the welfare of investors who submitted different possible limit

orders xtz 2 XL at all dates tz where Btz(xtz ,X,Ltz�1) is the interval of private value realizations btz at time tz
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for which a limit order xtz is optimal given the book Ltz�1 and fees X. The second term on the right is the

welfare of investors who subsequently submit market orders x̃tn(xtz) at later dates tn > tz that execute earlier

limit orders xtz , where Btn(x̃tn(xtz),X,Ltn�1) is the corresponding interval of private value realizations btn at

times tn > tz for which the market order x̃tn(xtz) is optimal at date tn. Investor private valuations at different

dates (i.e., btz or btn at tz or tn) are i.i.d. random variables with uniform distributions U [b ,b ]. The indicator

function Itz denotes limit buys (Itz = +1) and sells (Itz = �1) at tz. The conditioning information at date tn

includes both the incoming book Ltn�1 and also the fact that the limit order from tz is still unexecuted as of

date tn�1. In particular, N
xtz

tn�1 denotes the set of states in which the limit order xtz from tz is not executed

before time tn.

A similar logic to the 2-period model simplifies the 3-period Social Planner objective to (28).

B Equilibrium of Two-Period Model and Proof of Theorem 2

This Appendix solves for the profit-maximizing exchange’s optimal access pricing in the two-period model

given the regulatory constraint and given optimal trading by investors. Since the investors’ optimal orders

are solutions to discrete choice problems, their trading strategies and the exchange’s optimal fees change

qualitatively in different regions of the parameter space in terms of the size of the investor valuation support

D relative to the tick size t , which is normalized to 1 in the LTM.

B.1 Case 1: 0 < D  3t0 < D  3t0 < D  3t

Our analysis of this first case shows that, when D 3t , optimal access pricing by the exchange in equilibrium

takes the functional forms in (20) for Taker-Maker pricing and (21) for Maker-Taker pricing.
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Figure B1: Taker-Maker Pricing: XT M = {0  MF  1,�1  T F  0} This Figure provides a graphical repres-
entation of how to obtain the equilibrium probabilities of order submission and execution for the Taker-Maker pricing structure and
the support D 2 [b , b̄ ]. P2 and P�2 are the outside quotes of the LTM, whereas P1 and P�1 are the inside quotes of the LTM. Pcum,LB

�1
and Pcum,MS

�1 are the cum-fee buy and sell prices, respectively. LBP�1,t1 is a limit buy order posted at P�1 at t1, and MSP�1,t2 is a
market sell order posted at P�1 at t2.

Db b̄
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2
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2

P�2 P2

P�1

Pcum,MS
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Figure B2: Maker-Taker Pricing: XMT = {�1  MF  0,0  T F  1} This Figure provides a graphical rep-
resentation of how to obtain the equilibrium probabilities of order submission and execution for the Maker-Taker pricing structure
and the support D 2 [b , b̄ ]. P2 and P�2 are the outside quotes of the LTM, whereas P1 and P�1 are the inside quotes of the LTM.
Pcum,LB

1 and Pcum,MS
1 are the cum-fee buy and sell prices, respectively. LBP1,t1 is a limit buy order posted at P1 at t1, and MSP1,t2 is

a market sell order posted P1 at t2.
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Table B1: Submission and Execution Probability. This table reports the price levels on the LTM price grid (column 1)

and the associated probabilities Pr(bt1 > Pcum,LB
k ) = max{0, b̄�Pcum,LB

k
D } and Pr(Pcum,LS

�k > bt1) = max{0,
Pcum,LS
�k �b

D }, which, in
equilibrium, correspond to the submission probabilities for limit orders posted at Pk and at P�k at t1 (columns 2 and 3). In addi-

tion, the table reports the associated limit order execution probabilities, Pr(q xLB
k

t1 |X,Lt0) = Pr(xMS
k,t2 |X,Lt0) = max{0,

Pcum,MS
k �b

D } and

Pr(q xLS
�k

t1 |X,Lt0) = Pr(xMB
�k,t2 |,X,Lt0) = max{0, b̄�Pcum,MB

�k
D } (columns 4 and 5).

Pk Pr(bt1 > Pcum,LB
k ) Pr(Pcum,LS

�k > bt1) Pr(q xLB
k

t1 |X,Lt0) Pr(q xLS
�k

t1 |X,Lt0)

P3 max
n

0, 1
D [

D
2 �

5
2 �MF ]

o
max

n
0, 1

D [
D
2 �

5
2 �MF ]

o
max

n
0, 1

D [
D
2 +

5
2 +T F ]

o
max

n
0, 1

D [
D
2 +

5
2 +T F ]

o

P2 max
n

0, 1
D [

D
2 �

3
2 �MF ]

o
max

n
0, 1

D [
D
2 �

3
2 �MF ]

o
max

n
0, 1

D [
D
2 +

3
2 �T F ]

o
max

n
0, 1

D [
D
2 +

3
2 �T F ]

o

P1 max
n

0, 1
D [

D
2 �

1
2 �MF ]

o
max

n
0, 1

D [
D
2 �

1
2 �MF ]

o
max

n
0, 1

D [
D
2 +

1
2 �T F ]

o
max

n
0, 1

D [
D
2 +

1
2 �T F ]

o

P�1 max
n

0, 1
D [

D
2 +

1
2 �MF ]

o
max

n
0, 1

D [
D
2 +

1
2 �MF ]

o
max

n
0, 1

D [
D
2 �

1
2 �T F ]

o
max

n
0, 1

D [
D
2 �

1
2 �T F ]

o

P�2 max
n

0, 1
D [

D
2 +

3
2 �MF ]

o
max

n
0, 1

D [
D
2 +

3
2 �MF ]

o
max

n
0, 1

D [
D
2 �

3
2 �T F ]

o
max

n
0, 1

D [
D
2 �

3
2 �T F ]

o

P�3 max
n

0, 1
D [

D
2 +

5
2 �MF ]

o
max

n
0, 1

D [
D
2 +

5
2 �MF ]

o
max

n
0, 1

D [
D
2 �

5
2 �T F ]

o
max

n
0, 1

D [
D
2 �

5
2 �T F ]

o

Taker-Maker: We first consider Taker-Maker pricing XT M = {0  MF  1,�1  T F  0} with a take

rebate and a positive make fee. Given D  3, the lower investor-valuation bound in this case is b = P�2 +

3�D
2 , and the upper bound is b = P2 � 3�D

2 , as illustrated in Figures B1 and B2. Consider first a potential

buyer arriving at t1 with bt1 > v. The logic for a potential seller arriving at t1 is symmetric.

Order-submission probabilities for each possible market order at t2 can be computed using (4) and (5)

given the valuation-support restriction D  3 and Taker-Maker pricing. Columns 4 and 5 in Table B1 report

the market order submission probabilities for the price levels in Column 1:

Pr(xMS
k,t2 |X,Lt1) = max

⇢
0,

Pk �T F �b
D

�
= max

⇢
0,

1
D


D
2
+

Pk �P�k

2
�T F

��
(40)

Pr(xMB
�k,t2 |X,Lt1) = max

⇢
0,

b̄ �P�k �T F
D

�
= max

⇢
0,

1
D


D
2
� Pk �P�k

2
�T F

��
(41)

For example, Row 5 in Column 4 and Row 5 in Column 5 in Table B1 gives the order-submission probability
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Table B2: Submission and Execution Probability V2. This table reports the price levels on the LTM price grid (column

1) and the associated probabilities Pr(bt1 > Pcum,LB
k ) = max{0, b̄�Pcum,LB

k
D } and Pr(Pcum,LS

�k > bt1) = max{0,
Pcum,LS
�k �b

D }, which,
in equilibrium, correspond to the submission probabilities for limit orders posted at Pk and at P�k at t1 (columns 2 and 3). In

addition, the table reports the associated limit order execution probabilities, Pr(q xLB
k

t1 |X,Lt0) = Pr(xMS
k,t2 |X,Lt0) = max{0,

Pcum,MS
k �b

D }

and Pr(q xLS
�k

t1 |X,Lt0) = Pr(xMB
�k,t2 |,X,Lt0) = max{0, b̄�Pcum,MB

�k
D } (columns 4 and 5).

Pk Pr(bt1 > Pcum,LB
k ) Pr(Pcum,LS

�k > bt1) Pr(q xLB
k

t1 |X,Lt0) Pr(q xLS
�k

t1 |X,Lt0)

P3 max
n

0, 1
D [

D
2 �

5
2 �MF ]

o
max

n
0, 1

D [
D
2 +

5
2 �MF ]

o
max

n
0, 1

D [
D
2 +

5
2 +T F ]

o
max

n
0, 1

D [
D
2 �

5
2 +T F ]

o

P2 max
n

0, 1
D [

D
2 �

3
2 �MF ]

o
max

n
0, 1

D [
D
2 +

3
2 �MF ]

o
max

n
0, 1

D [
D
2 +

3
2 �T F ]

o
max

n
0, 1

D [
D
2 �

3
2 �T F ]

o

P1 max
n

0, 1
D [

D
2 �

1
2 �MF ]

o
max

n
0, 1

D [
D
2 +

1
2 �MF ]

o
max

n
0, 1

D [
D
2 +

1
2 �T F ]

o
max

n
0, 1

D [
D
2 �

1
2 �T F ]

o

P�1 max
n

0, 1
D [

D
2 +

1
2 �MF ]

o
max

n
0, 1

D [
D
2 �

1
2 �MF ]

o
max

n
0, 1

D [
D
2 �

1
2 �T F ]

o
max

n
0, 1

D [
D
2 +

1
2 �T F ]

o

P�2 max
n

0, 1
D [

D
2 +

3
2 �MF ]

o
max

n
0, 1

D [
D
2 �

3
2 �MF ]

o
max

n
0, 1

D [
D
2 �

3
2 �T F ]

o
max

n
0, 1

D [
D
2 +

3
2 �T F ]

o

P�3 max
n

0, 1
D [

D
2 +

5
2 �MF ]

o
max

n
0, 1

D [
D
2 �

5
2 �MF ]

o
max

n
0, 1

D [
D
2 �

5
2 �T F ]

o
max

n
0, 1

D [
D
2 +

5
2 �T F ]

o

at t2 of a market sell at P�1, which is equal to the order-submission probability of a market buy at P1

Pr(xMS
�1,t2 |X,Lt1) = max

⇢
0,

Pcum,MS
�1 �b

D

�
(42)

= Pr(xMB
1,t2 |X,Lt1) = max

⇢
0,

b̄ �Pcum,MB
1
D

�
= max

⇢
0,

1
D


D
2
� 1

2
�T F

��
.

To understand the intuition in the last term in (42), note from Figure B1 that only traders with bt2 in the

interval [b ,Pcum,MS
�1 ] with width D

2 �
1
2 �T F are willing to use a market order to sell at a posted price P�1.

This interval is equal to half of the support minus half the tick size, hence 1
2 , given t = 1, which is the

distance from the fundamental asset value v to P�1, minus TF (negative in the Taker-Maker regime), which

increases the interval of the support including b s belonging to sellers. This interval is strictly positive for

D � 1, which means that Pr(xMS
�1,t2 |X,Lt1)> 0 for D � 1.

The market-order submission probabilities at t2 are, in turn, respectively the corresponding order-execution

probabilities of limit orders posted at t1. Thus, we can consider the expected profits for all possible limit or-

ders that a potential buyer and symmetrically a potential seller can post at t1. We verify the conditions under
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which (6) and (7) hold — and symmetrically (9) and (10) — and finally compute the limit order submission

probabilities at t1 consistent with both (8) and (11).

To check that conditions (6) and (9) hold, we compute Pr(bt1 > Pcum,LB
k ) and Pr(Pcum,LS

�k > bt1) for each

order in Columns 2 and 3 of Table B1. For example, for a limit buy at P�1 and limit sell at P1 we have:

Pr(bt1 > Pcum,LB
�1 ) = max

⇢
0,

b̄ > Pcum,LB
�1

D

�
(43)

= Pr(Pcum,LS
1 > bt1) = max

⇢
0,

Pcum,LS
1 > b

D

�
= max

⇢
0,

1
D


D
2
+

1
2
�MF

��
.

To understand the intuition for the final term in (43), notice, for example, from Figure B1 that only traders

with a bt1 in the interval [Pcum,LB
�1 , b t1 ] with width D

2 +
1
2 �MF will be willing to buy at the quoted price P�1.

This interval is equal to half of the investor valuation support (consistent with Lemma 4 only traders with a

personal evaluation larger than the fundamental value v will be buying) plus half the tick size (the distance

between the mid-point of the support/fundamental asset value v and P�1) minus MF, which decreases the

interval of the support including b s belonging to buyers.

We also need to check whether both conditions (7) and (10) hold for each possible order at t1:

• First, consider a limit buy at P2 and symmetrically a limit sell at P�2. Given the assumed investor

valuation support with width D  3 and given the positive MF with Taker-Maker pricing, the expected

payoff associated with limit orders at P2 (P�2) would be negative since the associated cum-fee buy

(sell) price would be above (below) the maximum (minimum) possible trader valuation. Hence, such

limit orders would never be submitted.

• Second, the expected profit (bt1 �Pcum,LB
�1 )⇥Pr(q xLB

�1
t1 |X,Lt0) on a limit buy at P�1 for a potential buyer

with bt1 > v and (Pcum,LS
1 �bt1)⇥Pr(q xLS

1
t1 |X,Lt0) on a limit sell at P1 for a potential seller with bt1 < v
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is:

⇣
|bt1 � v|+ 1

2
�MF

⌘
max

n
0,

1
D

hD
2
� 1

2
�T F

io
, (44)

which is positive given Take rebates (0 � T F ��1) and Make fees (1 � MF � 0).

• Third, the expected profit (bt1 �Pcum,LB
�2 )⇥Pr(q xLB

�2
t1 |X,Lt0) on a limit buy at P�2 for a potential buyer

with bt1 > v or (Pcum,LS
2 �bt1)⇥Pr(q xLS

2
t1 |X,Lt0) on a limit sell at P2 for a potential seller with bt1 < v

is:

⇣
|bt1 � v|+ 3

2
�MF

⌘
max

n
0,

1
D

hD
2
� 3

2
�T F

io
, (45)

To characterize when the expected profit on limit buys at P�1 (and limit sells at P1) are greater than on limit

buys at P�2 (and limit sells at P2), we write the expected profits in (44) for limit buys at P�1 and limit sells

at P1 as a⇤b where a = |bt1 � v|+ 1
2 �MF and b = 1

D

h
D
2 �

1
2 �T F

i
. Given this, we derive the b threshold

between a limit buy at P�1 and a limit buy at P�2 as the b values for which (46) holds

(bt1 �Pcum,LB
�2 )⇥Pr(q xLB

�2
t1 |X,Lt0)� (bt1 �Pcum,LB

�1 )⇥Pr(q xLB
�1

t1 |X,Lt0) = 0 (46)

The bt1 values which satisfy (46) are

b
xLB

P�2
,xLB

P�1
t1 =

8
>>><

>>>:

v+ D
2 �2+MF �T F T F < 0 ^ T F < D�3

2

v� 1
2 +MF Otherwise

(47)
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We can now compute the order-submission probabilities from (8) for a limit buy at P�1 and at P�2

Pr(xLB
�1,t1 |X,Lt0) =

8
>>><

>>>:

1
D [

D+1
2 �MF ] T F � 0 _ T F � D�3

2

1
D
⇥
2�MF +T F

⇤
Otherwise

(48)

Pr(xLB
�2,t1 |X,Lt0) =

8
>>>>>>>><

>>>>>>>>:

1
D
⇥D�4

2 +MF �T F
⇤

(MF > 1
2 ^T F < 0^T F < D�3

2 ) _

�
MF  1

2 ^MF > T F + 1
2 ^MF > 4�D

2 +T F
�

0 Otherwise

(49)

Lastly, the expected profit (bt1 �Pcum,LB
1,LB )⇥Pr(q xLB

1
t1 |X,Lt0) on a limit buy at P1 for a potential buyer with

bt1 > 0 and (Pcum,LS
�1 �bt1)⇥Pr(q xLS

�1
t1 |X,Lt0) on a limit sell at P�1 for a potential seller with bt1 < 0 is:

⇣
|bt1 � v|� 1

2
�MF

⌘
max

n
0,

1
D

hD
2
+

1
2
�T F

io
. (50)

Comparing (44) and (50) shows that, in Taker-Maker regimes, limit buys at P�1 always have higher expected

profit than limit buys at P1 and that limit sells at P1 have higher expected profits than limit sells at P�1:26

(bt1 �Pcum,LB
1 )⇥Pr(q xLB

1
t1 |X,Lt0)� (bt1 �Pcum,LB

�1 )⇥Pr(q xLB
�1

t1 |X,Lt0) (51)

= (Pcum,LS
�1 �bt1)⇥Pr(q xLS

�1
t1 |X,Lt0)� (Pcum,LS

1 �bt1)⇥Pr(q xLS
1

t1 |X,Lt0)

= (|bt1 � v|� D
2
)�MF +T F  0

where the inequality in the third line follows because |bt1 � v|  D
2 by definition for all bt1 and because

MF � 0 and T F  0 in the Taker-Maker regime. We can now set the optimizing function for both the

exchange and the Social Planner.
26 Using the representation for the expected profit for a limit buy at P�1 and limit sell at P1 in (44) as a ⇤ b where a = |bt1 �

v|+ 1
2 �MF and b = 1

D

h
D
2 � 1

2 �T F
i
, the expected profit for a limit buy LBP1 at P1 and limit sell LSP�1 at P�1 in (50) can be

represented as (a�1)(b+1). Taking the difference a⇤b� (a�1)(b+1) and substituting in for a and b gives the third line in (51).
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Comment: The discussion above identifies which orders are possibly used in the two-period trading sub-

game in the LTM with t = 1. This analysis is used next to derive optimal fees in the LTM.

Exchange Problem: Taker-Maker D 2 (0,3]D 2 (0,3]D 2 (0,3] The exchange chooses MF and T F to maximize its profits

given the optimal strategy for potential buyers and sellers posting limit orders LBP�1,t1 and LSP1,t1 and

LBP�2,t1 and LSP2,t1 at t1, which we have derived as a function of the trading fees MF and T F and the

investor valuation-support width D.27 From now onward we concentrate on the buy side, the sell side be-

ing symmetric. The exchange’s expected profit is equal to the submission probability Pr(xLB
�1,t1 |X,Lt0) of

LBP�1,t1 and the submission probability Pr(xLB
�2,t1 |X,Lt0) of LBP�2,t1 , times the associated execution prob-

ability Pr(q xLB
�1

t1 |X,Lt0) and Pr(q xLB
�2

t1 |X,Lt0) times the per share net fee, MF+TF. Table B1 reports the order-

execution probabilities.

max
MF,T F

0MFt
T FMF

pEx,LT M(MF,T F) (52)

=
⇥
Pr(xLB

�1,t1 |X,Lt0)⇥Pr(q xLB
�1

t1 |X,Lt0)+Pr(xLB
�2,t1 |X,Lt0)⇥Pr(q xLB

�2
t1 |X,Lt0)

⇤
⇥ (MF +T F)

=

8
>>><

>>>:

(�D+2MF �1)(MF +T F)(�D+2T F +1)
4D2 T F � 0_2T F +3 � D

� (MF +T F)(�(D�3)D+4MF +2(D�2)T F �8)
4D2 Otherwise

The first order conditions are:
8
>>><

>>>:

(�D+2T F +1)(�D+4MF +2T F �1)
4D2 = 0 T F � 0_2T F +3 � D

�8MF +D(D�2T F �3)+8
4D2 = 0 Otherwise

(53)

8
>>><

>>>:

(�D+2MF �1)(�D+2MF +4T F +1)
4D2 = 0 T F � 0_2T F +3 � D

D(D�2MF �3)�4(D�2)T F +8
4D2 = 0 Otherwise

(54)

From the first-order conditions, the equilibrium optimal Take-Make fees for the exchange are in (20).
27The case of a seller posting LSP1,t1 or LSP2,t1 is symmetric. As in real markets, traders arrive sequentially and, hence, either a

buyer or seller may arrive at t1.
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The second and mixed partial derivatives dT F,T F , dMF,MF and dMF,T F are

dT F,T F ,dMF,MF ,dMF,T F

=

8
>>>><

>>>>:

⇢
1

D2

⇥
�D�1+2MF

⇤
, 1

D2

⇥
�D+1+2T F

⇤
, 1

D2

⇥
�D+2MF +2T F

⇤�
T F � 0 _ T F � D�3

2

⇢
1

D2

⇥
�D+2

⇤
, � 2

D2 , �D
2

�
Otherwise

(55)

which, together with the equilibrium fees from (20), gives the determinant

Det(MF⇤,T F⇤) = dMF,MF(MF⇤,T F⇤)⇥dT F,T F(MF⇤,T F⇤)� (dMF,T F(MF⇤,T F⇤))2 =
1

3D2 > 0 (56)

Since the second-order conditions for profit-maximizing fees are satisfied, and the MF and T F in (20)

maximize the exchange profit. This completes our analytic construction of the Taker-Maker equilibrium for

the D  3t case.

Social Planner Problem: Taker-Maker D 2 (0,3]D 2 (0,3]D 2 (0,3] The Social Planner sets MF and T F to maximize total

welfare of market participants, which is the sum of the welfare of investors submitting limit orders at t1 and

market orders at t2, and expected exchange profits:

max
MF,T F

0MFt
MF+T F�0

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(57)

= W INV
t1 (xLB

�1,t1 |X,Lt0)+W INV
t1 (xLB

�2,t1 |X,Lt0)+W INV
t2 (xMS

�1,t2 |X,Lt0)

+W INV
t2 (xMS

�2,t2 |X,Lt0)+
⇥
Pr(xLB

�1,t1 ,q
xLB
�1

t1 |X)+Pr(xLB
�2,t1 ,q

xLB
�2,t1

t1 |X)
⇤
(MF +T F)

where the welfare of investors submitting limit buys and market sells, and of exchange profits are defined
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in (37) and (38), and (26) and (27). We present the welfare of the buy side (the sell side being symmetric):

W INV
t1 (xLB

�1,t1 |X,Lt0) =
Z

bt12Bt1 (x
LB
�1,t1

,X,Lt0 )
[bt1 �P(xLB

�1,t1)�MF)]
1
D

dbt1 ⇥Pr(q xLB
�1

t1 |X,Lt0) (58)

=

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

1
18

MF = 1 ^ T F = 0 ^ D = 3

1
18 (MF �2)2 0  MF < 1 ^ T F = 0 ^ D = 3

1
4D2

⇥
(T F +1)(T F �D+2)(2T F �D+1)

⇤
MF = 1 ^ �1 < T F < 0 ^ T F  D�3

2 ^ D  3

� 1
4D2

⇥
(MF �T F �2)(2T F �D+1)(MF +T F �D+1)

⇤
0  MF < 1 ^ �1 < T F < 0 ^ T F  D�3

2 ^ D  3

� 1
16D2

⇥
(D�1)2(2T F �D+1)

⇤
MF = 1 ^ D > 1 ^ ((T F = 0 ^ D < 3)_

�
T F  D�3

2 ^ T F < 0)
�

� 1
16D2

⇥
(D�2MF +1)2(D�2T F �1)

⇤
MF < 1^MF � 0^D > 1^

�
(T F = 0^D < 3)_ (T F  D�3

2 ^T F < 0)
�

where the region of integration is Bt1(x
LB
�1,t1 ,X,Lt0) = [b̂

xLB
P�2

,xLB
P�1

t1 ,b ], and b̂
xLB

P�2
,xLB

P�1
t1 is defined in (46).

W INV
t1 (xLB

�2,t1 |X,Lt0) =
Z

bt12Bt1 (x
LB
�2,t1

,X,Lt0 )
[bt1 �P(xLB

�2,t1)�MF)]
1
D

dbt1 ⇥Pr(q
xLB
�2,t1

t1 |X,Lt0) (59)

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

� (2T F �D+3)(4�2MF +2T F �D)(2(MF +T F �1)�D)
16D2 (2T F +3 < D^ ((0 < MF < 1

2

^((MF = T F + 1
2 ^D < 3)_

(MF < T F + 1
2 ^T F < 0^D  3)_

(MF > T F + 1
2^

T F ��1^D+2MF < 2T F +4)))_

(�1  T F < 0^ 1
2 < MF  1^D  3)))_

(0  MF  1
2 ^T F ��1^

D  3^D+2MF > 2T F +4)

0 Otherwise

where the region of integration is Bt1(x
LB
�2,t1 ,X,Lt0) = [v, b̂

xLB
P�2

,xLB
P�1

t1 ], and b̂
xLB

P�2
,xLB

P�1
t1 is defined in (46).
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W INV
t2 (xMS

�1,t2 |X,Lt0) = Pr(xLB
�1,t1 |X,Lt0)⇥

Z

bt22Bt2 (x
MS
�1,t2

,X,Lt1 )
[P(xLB

�1,t1)�bt2 �T F)]
1
D

dbt2 (60)

=
1

8D
⇥
(D�2T F �1)2⇤⇥

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
2

(2MF < 1^ (MF < T F + 1
2 _ (MF = T F + 1

2 ^D  3)_

(MF > T F + 1
2 ^2MF +D  2T F +4)))_

(2MF = 1^ (T F = 0_ (2T F +3 � D^�1 < T F  0)))

1
3 MF = 1^T F = 0^D = 3

1
3
⇥
2�MF

⇤ 1
2 < MF < 1^T F = 0^D = 3

1
D
⇥
T F +1

⇤
MF = 1^�1 < T F < 0^T F  1

2 D� 3
2

1
D
⇥
T F �MF +2

⇤
(�1 < T F < 0^ 1

2 < MF < 1^T F  1
2 D� 3

2 )_

(2MF < 1^MF > T F + 1
2 ^T F  1

2 D� 3
2 > 2T F +4)

1
2D
⇥
2T F +3

⇤
2MF = 1^�1 < T F < 0^T F < 1

2 D� 3
2

1
2D
⇥
D�1

⇤
MF = 1^ ((T F = 0^D < 3)_ (T F > 1

2 D� 3
2 ^�1 < T F < 0))

1
2D
⇥
D+1�2MF

⇤ 1
2 < MF < 1^ ((T F = 0^D < 3)_ (T F > 1

2 D� 3
2 ^�1 < T F < 0))

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where the region of integration is Bt2(x
LB
�1,t2 ,X,Lt0) = [b ,P�1 �T F ].

W INV
t2 (xMS

�2,t2 |X,Lt0) = Pr(xLB
�2,t1 |X,bt2 ,Lt0)⇥

Z

bt22Bt2 (x
MS
�2,t2

,X,Lt1 )
[P(xLB

�2,t1)�bt2 �T F)]
1
D

dbt2 (61)

=

8
>>><

>>>:

1
16D2

⇥
(D�2T F �3)2(D+2MF �2T F �4)

⇤
T F ��1^T F <

D�3
2

^D  3^
✓

MF >
1
2
_
✓

MF > T F +
1
2
^D+2MF > 2T F +4

◆◆

0 Otherwise

where the region of integration is Bt2(x
MS
�2,t2 ,X,Lt1) = [b ,P�2 �T F ]. Substituting (58), (59), (60) and (61)

into the welfare function of the Social Planner, (57), we obtain a functional form whose components are

subject to different boundary conditions. The Social Planner problem then simplifies to:

81



max
MF,T F

0MFt
MF+T F�0

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(62)

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(�2D+2T F +1)(�D+2T F +1)
16D

2MF = 1^0 < D  1^
✓
(D+2T F +1 > 0^T F +1 � 0^

(2T F +1 < 0_

(T F < 0^2T F +1 < D)))_

�
� 1

2 < T F < 0^2T F +1 < D
�◆

D(D�2T F �1)2 �4(MF �T F �2)(�D+2T F +1)(�D+MF +T F +1)
16D2 �1 < T F < 0^1 < D  3^

✓
(2MF = 1^2T F +3 = D)_

�
0  MF < 1

2 ^2T F +3  D^

(MF  T F + 1
2 _D+2MF  2T F +4)

�◆

The fees MF⇤ and T F⇤ in Table 2 maximize (62) for values of 0 < D  3 satisfying the given conditions of

(62). For example, for D = 2 the second expression in (62) is maximized by MF⇤ = 0.5 and T F⇤ = �0.5.

In the Online Appendix shows plots of the Social Planner’s value function for the Taker-Maker case for the

different values of the support (D 2 {t,2t,2.5t,3t}).

Comment: When D 2 (0,3t), the logic of the construction of optimal Maker-Taker fees for a profit-

maximizing exchange and the Social Planner is similar to the logic for Taker-Maker fees. To conserve

space, the details for the Maker-Taker derivation are in Online Appendix D.1.
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Table B3: Difference in expected payoff from different orders. This table reports the difference in the expected payoffs from different orders indicated in column 1.
Column 2 reports such differences as a function of D, whereas columns 3 to 6 reports the same differences for different values of D.

D D = 1 D = 2 D = 3 D = 4

Pr(bt1 �Pcum,LB
2 (xt1))⇥Pr(q xLB

2
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

1 (xt1))⇥Pr(q xLB
1

t1 |X,Lt0)
4MF�3D+2T F+5

2D2 2MF +T F +1 1
8(4MF +2T F �1) 1

9(2MF +T F �2) 1
32(4MF +2T F �7)

Pr(Pcum,LS
1 (xt1)�bt1)⇥Pr(q xLS

1
t1 |X,Lt0)�Pr(Pcum,LS

2 (xt1)�bt1)⇥Pr(q xLS
2

t1 |X,Lt0)

Pr(bt1 �Pcum,LB
2 (xt1))⇥Pr(q xLB

2
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

�1 (xt1))⇥Pr(q xLB
�1

t1 |X,Lt0)
2MF�3D+4T F+5

2D2 MF +2T F +1 1
8(2MF +4T F �1) 1

9(MF +2T F �2) 1
32(2MF +4T F �7)

Pr(Pcum,LS
�1 (xt1)�bt1)⇥Pr(q xLS

�1
t1 |X,Lt0)�Pr(Pcum,LS

2 (xt1)�bt1)⇥Pr(q xLS
2

t1 |X,Lt0)

Pr(bt1 �Pcum,LB
2 (xt1))⇥Pr(q xLB

2
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

�2 (xt1))⇥Pr(q xLB
�2

t1 |X,Lt0)
�3D+6T F+9

2D2 3(T F +1) 3
8(2T F +1) T F

3
3
32(2T F �1)

Pr(Pcum,LS
�2 (xt1)�bt1)⇥Pr(q xLS

�2
t1 |X,Lt0)�Pr(Pcum,LS

2 (xt1)�bt1)⇥Pr(q xLS
2

t1 |X,Lt0)

Pr(bt1 �Pcum,LB
1 (xt1))⇥Pr(q xLB

1
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

�1 (xt1))⇥Pr(q xLB
�1

t1 |X,Lt0)
T F�MF

D2 T F �MF T F�MF
4

T F�MF
9

T F�MF
16

Pr(Pcum,LS
�1 (xt1)�bt1)⇥Pr(q xLS

�1
t1 |X,Lt0)�Pr(Pcum,LS

1 (xt1)�bt1)⇥Pr(q xLS
1

t1 |X,Lt0)

Pr(bt1 �Pcum,LB
1 (xt1))⇥Pr(q xLB

1
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

�2 (xt1))⇥Pr(q xLB
�2

t1 |X,Lt0)
�2MF+2T F+2

D2 �2MF +2T F +2 1
2(�MF +T F +1) �2

9(MF �T F �1) 1
8(�MF +T F +1)

Pr(Pcum,LS
�2 (xt1)�bt1)⇥Pr(q xLS

�2
t1 |X,Lt0)�Pr(Pcum,LS

1 (xt1)�bt1)⇥Pr(q xLS
1

t1 |X,Lt0)

Pr(bt1 �Pcum,LB
�1 (xt1))⇥Pr(q xLB

�1
t1 |X,Lt0)�Pr(bt1 �Pcum,LB

�2 (xt1))⇥Pr(q xLB
�2

t1 |X,Lt0)
�MF+T F+2

D2 �MF +T F +2 1
4(�MF +T F +2) 1

9(�MF +T F +2) 1
16(�MF +T F +2)

Pr(Pcum,LS
�2 (xt1)�bt1)⇥Pr(q xLS

�2
t1 |X,Lt0)�Pr(Pcum,LS

�1 (xt1)�bt1)⇥Pr(q xLS
�1

t1 |X,Lt0)



B.2 Case 2: 3t < D  5t3t < D  5t3t < D  5t

We now consider different ranges of b valuations that are characterized by unique equilibrium strategies.

As before we first consider the regime with a maximizing exchange and then a regime with a Social Planner

setting optimal fees.

Exchange Maximizing Problem: Positive Fees D 2 (3,5]D 2 (3,5]D 2 (3,5] With the exchange setting optimal fees there are

three b ranges characterized by different equilibrium strategies: D 2 (3,4], D 2 (4,4.7] and D 2 (4.7,5].

All these b ranges are characterized by strictly positive fees, XPF = {0  MF  1,0  T F  1}.

Subcase D 2 (3,4]D 2 (3,4]D 2 (3,4]: Given 3t < D  4t , traders choose among the same orders as in Case 1. Note that

Table B3 shows that a limit order to buy at P2 (sell at P�2), and a limit order to buy at P�2 (sell at P2)

are dominated strategies for this subcase. Hence, to determine the optimal MF and TF, we maximize the

exchange profits conditional on the buyer choosing LBP�1,t1 , the case of the seller choosing LSP1,t1 arriving

at t1 being symmetric:

max
MF,T F
MFt
T Ft

3<D4

pEx,LT M(MF,T F) =
⇣

Pr(xLB
�1,t1 |X,Lt0)⇥Pr(q xLB

�1
t1 |X,Lt0)

⌘
⇥ (MF +T F)

=�
(D�1)(MF+TF)

�
�D

2 +TF+ 1
2
�

2D2 (63)

The Kuhn-Tucker Lagrangian is:

L(MF,T F,lk,vh) = pEx,LT M(MF,T F)�l1(�MF +1)�l2(�T F +
D�3

2
) (64)
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The Kuhn-Tucker conditions are:

∂L(MF,T F,lk,vh)

∂MF
= l1 +

(D�1)(D�2T F �1)
4D2 � 0 & MF ⇥ ∂L(MF,T F,lk,vh)

∂MF
= 0 (65)

∂L(MF,T F,lk,vh)

∂T F
=

� 1
2 �

D
2
�

MF +(1�D)T F +D
�
D
�
l2 +

1
4
�
� 1

2
�
+ 1

4
D2 � 0 &T F ⇥ ∂L(MF,T F,lk,vh)

∂T F
= 0

(66)

∂L(MF,T F,lk,vh)

∂l1
= (MF �1)� 0 & l1 ⇥

∂L(MF,T F,lk,vh)

∂l1
= 0 (67)

∂L(MF,T F,lk,vh)

∂l2
= (T F � D�3

2
)� 0 & l2 ⇥

∂L(MF,T F,lk,vh)

∂l2
= 0 (68)

The equilibrium MF⇤ and T F⇤ that satisfy these conditions are given in the first line of (22): By substituting

a given value of D into MF⇤ and T F⇤ in the first line (22), we obtain the equilibrium fees.

Table B4: Equilibrium Submission Probability This table reports the equilibrium submission probabilities for the buy side,
Pr(xLB

k,t1 |X,Lt0), conditional on the support D. Equilibrium submission probabilities for the sell side, Pr(xLS
�k,t1 |X,Lt0) are symmetric.

0 < D  4t 4 < D  4.7t 4.7 < D  5t

Taker-Maker Maker-Taker Positive Fees Positive Fees

Pr(xLB
1,t1 |X,Lt0) max

n
0, 1

D [
D
2 �

1
2 �MF ]

o
max

n
0, 1

D [T F �MF ]
o

for b > D
2 +9.5

Pr(xLB
�1,t1 |X,Lt0) max

n
0, 1

D [
D
2 +

1
2 �MF ]

o
max

n
0, 1

D [T F +1]
o

max
n

0, 1
D [

D
2 +

1
2 �T F ]

o

for b > MF + D
2 �T F +8 for MF +9.5 < b < MF + D

2 +9

Pr(xLB
�2,t1 |X,Lt0) max

n
0, 1

D [
D
2 +MF �T F �2]

o

for 10 < b < MF + D
2 �T F +8

Subcase D 2 (4,4.7]D 2 (4,4.7]D 2 (4,4.7]: We have shown that for investor valuation supports with widths up D = 4, there

are dominant orders for potential buyers and sellers, and so the optimal order-submission strategy can be

obtained by comparing the expected payoff associated with each possible order, as shown in Tables B1 and

B3; in the latter we present the differences in expected payoffs conditional on different supports. However,
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for investor valuation supports with widths D > 4, there are two possible equilibrium limit orders, which

we report in Table B4 showing that both a limit buy order at P�1 and a limit buy at P�2 may be optimal

depending on the investors’ evaluation, bt1 . We also report conditions on the value of b such that the

equilibrium strategies hold. To determine the optimal MF and TF, the exchange maximizes its expected

profits conditional on the buyer choosing either LBP�2,t1 , or LBP�1,t1 the case of the seller arriving at t1

being symmetric:

max
MF,T F
MFt
T Ft

MF+T F�0
4<D4.7

pEx,LT M(MF,T F) (69)

=
h
Pr(xLB

�1,t1 |X,Lt0)⇥Pr(q xLB
�1

t1 |X,Lt0)+Pr(xLB
�2,t1 |X,Lt0)⇥Pr(q xLB

�2
t1 |X,Lt0)

i
⇥ (MF +T F)

=
(MF+TF)

�� 3
4 �

D
4
�

D+MF+
�D

2 �1
�

TF�2
�

D2

The Kuhn-Tucker Lagrangian is:

L(MF,T F,lk,vh) = pEx,LT M(MF,T F)�l1(�MF +1)�l2(�T F +
4�D

2
)

The Kuhn-Tucker conditions are:
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∂L(MF,T F,lk,vh)

∂MF
=

8MFT F �4MF(1+D)+D(�1�2T F +D�4Dl1)

4D2 � 0 & MF ⇥ ∂L(MF,T F,lk,vh)

∂MF
= 0

(70)

∂L(MF,T F,lk,vh)

∂T F
=

4MF2 +4(1�3T F)T F �2MFD+D(�1+D�4Dl2)

4D2 � 0 & T F ⇥ ∂L(MF,T F,lk,vh)

∂T F
= 0

(71)

∂L(MF,T F,lk,vh)

∂l1
= (�MF +1)� 0 & l1 ⇥

∂L(MF,T F,lk,vh)

∂l1
= 0 (72)

∂L(MF,T F,lk,vh)

∂l2
= (�T F +

4�D
2

)� 0 & l2 ⇥
∂L(MF,T F,lk,vh)

∂l2
= 0 (73)

The equilibrium MF⇤ and T F⇤ that satisfy these conditions are in the second line of (22): By substituting a

given value of D into MF⇤ and T F⇤ in the second line of (22), we obtain the equilibrium fees.

Subcase D 2 (4.7,5]D 2 (4.7,5]D 2 (4.7,5]: In this case, the investor valuation support width can be as large as 5t , which is the

difference between P3 and P�3. So we also consider the investor’s profit conditional on orders posted at P3

and P�3. Table B1 shows that the investor’s profit is zero if he buys at P3 or sells at P�3. Table B4 shows

that for this interval of the support the equilibrium strategies are either xLB
1,t1 = LBP1,t1 , or xLB

�1,t1 = LBP�1,t1 .

Therefore, to determine the optimal MF and TF, we maximize the exchange profits conditional on the buyer

optimally using these two strategies, the case of the seller arriving at t1 being symmetric:

max
MF,T F
MFt
T Ft

4.7<D5

pEx,LT M(MF,T F) (74)

=
h
Pr(xLB

1,t1 |X,Lt0)⇥Pr(q xLB
1

t1 |X,Lt0)+Pr(xLB
�1,t1 |X,Lt0)⇥Pr(q xLB

�1
t1 |X,Lt0)

i
⇥ (MF +T F)

=
(MF +T F)

�
(D�1)D�2(D+1)MF +4MFT F �4T F2 +2T F

�

4D2
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The Kuhn-Tucker Lagrangian is:

L(MF,T F,lk,vh) = pEx,LT M(MF,T F)�l1(�MF +1)

The Kuhn-Tucker conditions are:

∂L(MF,T F,lk,vh)

∂MF
=

8MFT F �4MF(1+D)+D(�1�2T F +D+4Dl1)

4D2 � 0 & MF ⇥ ∂L(MF,T F,lk,vh)

∂MF
= 0

(75)

∂L(MF,T F,lk,vh)

∂T F
=

4MF2 +4(1�3T F)T F �2MFD+(1�D)D
4D2 � 0 & T F ⇥ ∂L(MF,T F,lk,vh)

∂T F
= 0

(76)

∂L(MF,T F,lk,vh)

∂l1
= (�MF +1)� 0 & l1 ⇥

∂L(MF,T F,lk,vh)

∂l1
= 0 (77)

The equilibrium MF⇤ and T F⇤ that satisfy these conditions are given in the third line of (22). Q.E.D.

Social Planner Problem: TM and MT D 2 (3,5]D 2 (3,5]D 2 (3,5] Table 2 shows that with the Social Planner setting optimal

fees there is a unique b range characterized by both TM and MT pricing.

Subcase D 2 (3,5]D 2 (3,5]D 2 (3,5]: Under the Taker-Maker regime, to determine the optimal MF and TF, the Social Planner

maximizes total welfare from both limit buy orders and market sell orders, and exchange profit as defined

in (36), (37) and (38), as well as (26) and (27). We present the welfare of the buy side of the market (the sell

side being symmetric):

max
MF,T F
T Ft

MFt
MF+T F�0

3<D5

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(78)

= W INV
t1 (xLB

�1,t1 |X,Lt0)+W INV
t2 (xMS

�2,t2 |X,Lt0)+W INV
t2 (xMS

�1,t2 |X,Lt0)

+W INV
t2 (xMS

�2,t2 |X,Lt0)+
⇥
Pr(xLB

�1,t1 ,q
xLB
�1

t1 |X)+Pr(xLB
�2,t1 ,q

xLB
�2,t1

t1 |X)
⇤
(MF +T F)

where the welfare from a limit buy at P�1 and from a limit buy at P�2 with 3 < D  5 are respectively:

W INV
t1 (xLB

�1,t1 |X,Lt0) =
Z

bt12Bt1 (x
LB
�1,t1

,X,Lt0 )
[bt1 �P(xLB

�1,t1)�MF)]
1
D

dbt1 ⇥Pr(q xLB
�1

t1 |X,Lt0) (79)
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=

8
>><

>>:

(T F +1)(�D+T F +2)(�D+2T F +1)
4D2 MF = 1^�1 < T F  0^3 < D  5

� (MF �T F �2)(�D+2T F +1)(�D+MF +T F +1)
4D2 �1  T F  0^3 < D  5^0  MF < 1

W INV
t2 (xMS

�2,t2 |X,Lt0) = Pr(xLB
�2,t1 |X,Lt0)⇥

R
bt22Bt2 (x

MS
�2,t2

,X,Lt1 )
[P(xLB

�2,t1)�bt2 �T F)] 1
D dbt2 (80)

=

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

� (�D+2T F +3)(�D�2MF +2T F +4)(2(MF +T F �1)�D)
16D2 (D  5^D > 3^T F +1 � 0^

((2MF > 1^MF  1^T F  0)_ (MF � 0^

MF � T F + 1
2 ^2MF  1)))_

(MF � 0^T F  0^

((D+2MF > 2T F +4^MF < T F + 1
2^

D  5)_ (D > 3^D+2MF < 2T F +4)))

0 Otherwise

Whereas the welfare from a market sell at P�1 and from a market sell at P�2 when 3<D 5 are respectively:

W INV
t2 (xMS

�1,t2 |X,Lt0) = Pr(xLB
�1,t1 |X,Lt0)⇥

Z

bt22Bt2 (x
MS
�1,t2

,X,Lt1 )
[P(xLB

�1,t1)�bt2 �T F)]
1
D

dbt2 (81)

=
(D�2T F �1)2

8D

0

BBBBBB@

1
2

2MF +D  2T F +4^MF < T F + 1
2 ^2MF  1

T F +1
D

MF = 1^T F >�1

�MF +T F +2
D

MF < 1^
�
2MF > 1_MF � T F + 1

2 _2MF +D > 2T F +4
�

1

CCCCCCA

W INV
t2 (xMS

�2,t2 |X,Lt0) = Pr(xLB
�2,t1 |X,Lt0)⇥

Z

bt22Bt2 (x
MS
�2,t2

,X,Lt1 )
[P(xLB

�2,t1)�bt2 �T F)]
1
D

dbt2 (82)

=

8
>><

>>:

(D�2T F �3)2(D+2MF �2T F �4)
16D2 MF � T F + 1

2 _2MF > 1_D+2MF > 2T F +4

0 Otherwise

By substituting (79), (80), (81) and (82) into the welfare function of the Social Planner, (78), we obtain a

functional form whose components are subject to different boundary conditions. The following component
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has the highest total welfare:

max
MF,T F
T Ft

MFt
MF+T F�0

3<D5

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(83)

=
2D3 �D2(4MF +6T F +3)+D(MF(8T F +4)+4T F(T F +2)+7)+8(MF �T F �2)(MF +T F)

16D2

The optimal fees presented in Table 2 are determined by the boundary conditions of the different parts of

the total welfare functional form. By substituting any 3 < D  5 and the optimal MF⇤ and T F⇤ in (84)

we obtain the total welfare presented in Table 2. In Online Appendix we show the Social Planner’s value

function for the Taker-Maker case for the different support values (D 2 {3.5t,4t,4.5,t,5t}) in Table 2.

Subcase D 2 (3,5]D 2 (3,5]D 2 (3,5]: Under the Maker-Taker regime, the Social Planner maximizes total welfare from limit

buy orders and market sell orders at P�1, as well as limit buy order and market sell orders at P1. As before,

we present the welfare of the buy side of the market - the sell side being symmetric:

max
MF,T F
MFt
T Ft

MF+T F�0
3<D5

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆
(84)

= W INV
t1 (xLB

�1,t1 |X,Lt0)+W INV
t1 (xLB

1,t1 |X,Lt0)+W INV
t2 (xMS

�1,t2 |X,Lt0)+W INV
t2 (xMS

1,t2 |X,Lt0)

+
⇥
Pr(xLB

�1,t1 ,q
xLB
�1

t1 |X)+Pr(xLB
1,t1 ,q

xLB
1

t1 |X)
⇤
(MF +T F)

Where the welfare from a limit buy at P�1 and from a limit buy at P1 with 3 < D  5 are respectively:

W INV
t1 (xLB

�1,t1 |X,Lt0) =
Z

bt12Bt1 (x
LB
�1,t1

,X,Lt0 )
[bt1 �P(xLB

�1,t1)�MF)]
1
D

dbt1 ⇥Pr(q xLB
�1

t1 |X,Lt0) (85)

=

8
>>>>>>>>>>><

>>>>>>>>>>>:

� (�D+2T F +1)(�D�2MF +2T F)(2(MF +T F �1)�D)
16D2 (MF + 3

2 < T F ^MF ��1^T F  1^ ((D > 3^D+2MF < 2T F)_

(D+2MF > 2T F ^D  5)))_ (3 < D  5^ ((MF + 3
2 � T F^

T F � 0^�1  MF � 1
2 )_ (� 1

2 < MF  0^0  T F  1)))

0 Otherwise

90

https://www.dropbox.com/scl/fo/chk0y1dnijt0tbi2t38zt/h?rlkey=l2z3ek7jqd4rwuazau2awudnf&dl=0


W INV
t1 (xLB

1,t1 |X,Lt0) =
Z

bt12Bt1 (x
LB
1,t1

,X,Lt0 )
[bt1 �P(xLB

1,t1)�MF)]
1
D

dbt1 ⇥Pr(q xLB
1

t1 |X,Lt0) (86)

=

8
>><

>>:

� (MF �T F)(�D+2T F �1)(�D+MF +T F +1)
4D2 0  T F  1^3 < D  5^�1  MF < 0

T F
�
D2 +2T F2 �3DT F +T F �1

�

4D2 MF = 0^0 < T F  1^3 < D  5

Whereas the welfare from a market sell order at P�1 and from a market sell order at P1 when 3 < D  5 are

respectively:

W INV
t2 (xMS

�1,t2 |X,Lt0) = Pr(xLB
�1,t1 |X,Lt0)⇥

Z

bt22Bt2 (x
MS
�1,t2

,X,Lt1 )
[P(xLB

�1,t1)�bt2 �T F)]
1
D

dbt2 (87)

=

8
>><

>>:

(D�2T F �1)2(D+2MF �2T F)

16D2 MF + 3
2 � T F _MF >� 1

2 _D+2MF > 2T F

0 Otherwise

W INV
t2 (xMS

1,t2 |X,Lt0) = Pr(xLB
1,t1 |X,Lt0)⇥

Z

bt22Bt2 (x
MS
1,t2

,X,Lt1 )
[P(xLB

1,t1)�bt2 �T F)]
1
D

dbt2 (88)

=
(D�2T F +1)2

8D

0

BBBBBB@

1
2

2MF +D  2T F ^MF + 3
2 < T F ^MF � 1

2

T F
D

MF = 0^T F > 0

T F �MF
D

MF < 0^
�
2MF +1 > 0_MF + 3

2 � T F _2MF +D > 2T F
�

1

CCCCCCA

By substituting (85), (86), (87) and (88) into the welfare function of the Social Planner, (84), we obtain a

functional form whose components are subject to different boundary conditions. The following component

has the highest total welfare:

max
MF,T F
MFt
T Ft

MF+T F�0
3<D5

Â
tz2{t1,t2}

✓
W INV

tz (MF,T F)+W Ex
tz (MF,T F)

◆

=
(D�1)D(2D+1)+8MF2 �4DMF(D�2T F +1)+4(D�2)T F2 +2(4�3D)DT F

16D2 (89)
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The optimal fees presented in Table 2 are determined by the boundary conditions of the different parts of

the total welfare functional form. By substituting any 3 < D  5 and the optimal MF⇤ and T F⇤ in (89) we

obtain the total welfare presented in Table 2. In the Online Appendix we show the Social Planner’s value

function for the Maker-Taker case for the different values of the support (D 2 {3.5,4,4.5, ,5}) in Table 2.
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