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Abstract 

Private Equity (PE) has grown into a substantial asset class, but there remain major problems 

with measuring PE fund returns. Investors continue to use the internal rate of return (IRR) as a 

key measure of fund performance. It is well known that early returns of cash can have a 

substantial impact on fund IRRs, but the magnitude and causes of this effect have not 

previously been systematically analysed. We demonstrate that the IRR is affected by two 

biases: a convexity bias, and a “quit-whilst-ahead” bias arising because the returns on PE 

projects tend to covary with their durations. Both bias the IRRs of PE funds upwards. Using 

parametric and non-parametric estimation techniques, we show that these biases boost fund 

IRRs by an average of around 3% per annum. This represents a substantial proportion of the 

amount by which the average net PE fund IRR (around 12% per annum) appears to outperform 

returns on listed equity indices. Fund cash multiples and PMEs become similarly biased if they 

are annualized to try to make them comparable with other assets. We further demonstrate that 

alternative performance measures which have been suggested by practitioners are also biased, 

which confirms how poorly understood these effects are. Failure to take proper account of these 

biases is likely to lead investors into badly misinformed investment decisions.  
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Biases in Private Equity Returns 
 

The PE sector has grown massively over recent years: US Private Equity funds now manage 

$6 trillion (2021q4, Preqin). However, measuring the returns generated by PE funds remains 

very problematic. Funds’ valuations of the assets they hold are generally regarded as unreliable, 

so investors rely instead on performance measures derived from the cashflows between PE 

funds and investors, especially the internal rate of return (IRR).  

Other annualized return measures such as the Public Market Equivalent (PME) and 

Modified IRR (MIRR) are used in academic studies, but are not generally published by funds. 

Funds do publish their cash multiples, but these take no account of the time taken to return this 

cash to investors, and so cannot be directly compared to the annualized returns generally used 

for other asset classes. For these reasons, investors have little choice but to use the historic 

IRRs recorded by PE funds as the basis for choosing their strategic asset allocation to PE.  

It is well known that IRRs can be strongly affected by early cash distributions from 

funds to investors. This effect is generally explained as being due to investors being unable to 

reinvest this cash at a rate equivalent to the IRR, but this is not a helpful explanation since it 

gives no account of the underlying causes of the effect, or its likely size. Instead we demonstrate 

two biases in these IRRs. We estimate the size of these biases, demonstrating that they are 

economically significant in overstating the return investors can expect from holding a strategic 

allocation to PE. These biases are not the result of deliberate manipulation by fund managers, 

but are inherent in the statistical distribution of the cashflows generated by PE projects.  

These biases must be taken into account if investors are to make like-for-like 

comparisons between PE returns and those achieved on other assets.  Failure to do so will lead 

investors into misinformed asset allocation decisions. 

Variants of the IRR have been proposed by investment professionals to measure the 

extent to which funds outperform listed equity indices (e.g. direct alpha, ICM/PME, PME+ and 

mPME). We demonstrate in Section 7 that these measures suffer from the same biases as the 

original IRRs. This confirms that the effects of early cash returns on fund IRRs remain poorly 

understood.  
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2. Literature Review: Measuring PE Returns 

Liquid asset classes such as exchange-traded public equity can be marked-to-market every day, 

making it easy to calculate returns over any chosen period. But market values are not available 

for the illiquid assets held by PE funds. FASB has since 2008 required US funds to release 

periodic fair value estimates of their assets. Before this, fund managers were generally thought 

to keep their valuations artificially low, often at the purchase price. However, PE fund 

managers are now widely believed to manipulate the valuations of their existing funds in order 

to encourage investors into new funds that they are starting (e.g. Jenkinson et al. (2013) and 

Brown et al. (2019), although Huther (2018) disagrees). The SEC has expressed concern about 

such manipulation.  

In the absence of reliable valuations, investors are forced to rely on performance 

measures derived from the cashflows between PE funds and their investors. The key such 

measures are the internal rate of return (IRR) on these cashflows and the cash multiple.  

The cash multiple records the total cash returned to investors over the lifetime of the 

fund as a multiple of the total cash invested. The Public Market Equivalent (PME) is a version 

of the cash multiple which discounts the cashflows to a common base year.1 Academic studies 

have shown that the cash multiple and PME are both good indicators of relative fund 

performance (Harris, Jenkinson, and Kaplan, 2014), and PMEs have been used to assess the 

aggregate performance of the PE sector (Kaplan and Schoar, 2005). However, funds generally 

do not publish their performance as PMEs. They do publish the cash multiples that they 

achieve, and these are widely used to compare the performance of different funds, but in 

choosing their strategic asset allocations investors instead require a measure of annualized PE 

returns that they can compare with the annual returns reported for other asset classes such as 

bonds and listed equities. For this purpose they have little alternative but to use the IRR.  

A number of papers have estimated the factor exposures of PE funds in aggregate. For 

buyout funds some studied find market betas above unity, some below,2 with significant 

                                                      
1 The PME is defined as the present value of all cash received divided by the present value of all cash 
invested. These present values are calculated by discounting using an appropriate benchmark such as 
the total return on the S&P500 index (Kaplan and Schoar, 2005). A PME greater than unity shows that 
the fund concerned outperforms this index. The cash multiple can be regarded as a special case of the 
PME, with the discount rate set to zero. Various alternative performance measures derived from fund 
IRRs have been proposed by practitioners. Confusingly, some of these are also referred to as the PME. 
We consider these in Section 7. 
2 Ewens et al. (2013), find β=0.93  for a sample of BO and VC funds. Jegadeesh, Kraussl, Pollet (2015) 
find β=0.95 for BO, β=1.19 for VC. Ewens, Jones, Rhodes-Kropf (2013) β=0.72 for BO, β=1.23 for 
VC. Driessen, Lin, Phalippou (2012) β=1.3 for BO, β=2.73 for VC. Ang et al. (2018) derive β=1.43 for 
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additional exposure to small (SMB) and value (HML) equity factors (Ewens et al., 2013, 

Jegadeesh et al., 2015 and Ang et al., 2018). Estimated alphas range from -0.3% to +1% per 

annum. Driessen et al. (2012) is something of an outlier reporting much larger market exposure 

and a -1% alpha. These studies report higher market betas for venture capital funds, but a 

similar range of alphas. It is, of course, very important to distinguish risk premia from 

outperformance, but this is not the focus of our paper. Continued massive capital inflows 

suggest that the low alphas reported by these studies do not appear to have diminished investor 

appetite for PE, and Gompers et al. (2016) notes that use of non-risk-adjusted performance 

metrics by fund managers “raises questions as to whether limited partners understand the 

returns are leveraged”.  Consistent with this, we focus on a different question: how misleading 

are the IRRs which are reported by PE funds (and widely used by investors)? 

The modified IRR (MIRR) has frequently been suggested as an alternative to the IRR, 

but fund managers seldom release their performance data in this form. Such MIRRs are 

sensitive to the level of returns which is assumed to be earned when early cash distributions 

are reinvested. If funds use different reinvestment assumptions, the resulting performance 

measures will not be comparable. Similarly, PMEs are only comparable if based on the same 

benchmark index. By contrast, the IRR and cash multiple are both derived directly from the 

fund’s cashflows without the need for any judgmental inputs. This may make them seem more 

objective and unambiguous than the MIRR and PME, and this may help explain their continued 

popularity. However, whilst academics recommend alternative measures, IRRs are the only 

widely available estimates of PE funds’ annualized returns, so investors have little choice but 

to use these as the basis for estimating the future returns they expect from PE. 

Whatever the reasons, surveys clearly show that investors continue to rely on IRRs. Da 

Rin and Phalippou (2017) find that the IRR is the measure most frequently cited by investors 

as the most important criterion in their selection of PE funds. The cash multiple is less popular, 

and is not in a form that can be directly compared to the returns on other asset classes. The 

survey by Gompers et al. (2016) finds that PE fund managers primarily use IRRs and multiples 

to evaluate potential projects (with over 60% using an IRR as their “most important 

benchmark”), and that they believe that investors in their funds (the limited partners, LPs) 

                                                      
a combined BO/VC dataset, but their method assumes that cumulative log project returns are normally 
distributed. However, the negative covariance between project returns and durations means that even if 
periodic project returns were symmetrically distributed, the cumulative returns would have a substantial 
left skew. Ang et al. note that their simulations show that their results are not robust to such a “hold-on-
to-losers” effect. Boyer et al. (2023) uses a stochastic discount factor method to derive a total return 
β=1.79. 
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generally rely on the same measures to assess fund performance. Brown et al. (2019) shows 

that fund managers’ previous IRRs affect their ability to attract commitments to future funds. 

Some of the problems associated with IRRs have long been known. It is derived as the 

solution to a complex polynomial of discounted cash flows, so a set of cashflows may in 

principle have multiple IRRs, or none at all. Indeed, some argue that the IRR does not represent 

a rate of return at all, yet investors continue to use it as one (Phalippou, 2020). Indeed, use of 

the IRR has been embedded into accepted reporting practice for PE funds.3 

It is well known that a single early cash return can have a large impact on the IRR (e.g. 

Phalippou 2008, 2013). Indeed, large early cashflows back in the 1990s have kept some funds’ 

since-inception IRRs at “an artificially sticky and high level” ever since (Phalippou, 2017). 

Funds have also been accused of deliberately manipulating their IRRs, e.g. by requiring 

portfolio companies to pay a dividend to the fund as soon as they have been acquired (Rabener, 

2020), or using lines of credit to delay calling capital from their limited partners (Albertus and 

Denes, 2019, Schillinger et al., 2019). These can be regarded as ways in which funds 

deliberately use hidden increases in their leverage to boost their reported returns. Widespread 

use of these techniques would tend to raise the returns on all PE projects, but the biases we 

identify in this paper result instead from the variance or project durations and the extent to 

which these covary with project returns. These biases should thus be regarded as in addition to 

any increase in the IRR due to hidden increase in leverage. Furthermore, the recent use of lines 

of credit is likely to have had very little effect on the historical datasets we use to estimate IRR 

biases. 

Bond yields are, of course, also calculated as the IRR of their cashflows, and are 

affected by the reinvestment problem: that investors will only earn a holding period return 

equal to this IRR if they are able to reinvest the coupons they receive at the same rate. Unlike 

typical bond coupons, PE funds generate stochastic cashflows. Nevertheless, the reinvestment 

problem is often used as a catch-all explanation for PE fund IRRs: that large early cash returns 

can generate high IRRs which will be misleading if investors are unable to reinvest this cash at 

the same IRR. This explanation is not very useful because it is couched as a counterfactual: 

that if investors were able to reinvest at the same rate as the IRR then this IRR would be a 

perfectly good measure of returns.  

                                                      
3 The CFA Guidance Statement on Private Equity (2012) stated that “the basic metric and industry 
practice used in measuring performance in the private equity industry is the since inception internal rate 
of return (SI- IRR)”.   
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By contrast, in this paper we explicitly model the size and timing of PE fund cashflows 

as stochastic processes and identify two biases generated by the observable statistical properties 

of these distributions. This approach allows us to quantify these biases using both parametric 

methods and simulations. Specifically, we show that PE fund IRRs are biased because the 

timing of the cash distributions to investors is correlated with the returns achieved: high 

annualised returns are typically generated by projects which mature rapidly. We term this the 

Quit Whilst Ahead (QWA) bias, and demonstrate how it comes about and how it differs from 

the other problems with the IRR. We identify a separate convexity effect which also biases PE 

IRRs upwards compared to the returns on other asset classes.  

We derive explicit expressions for these effects, showing (i) that they generate a 

systematic upward bias in PE fund IRRs; (ii) that these biases arise without any deliberate 

manipulation by fund managers, purely as a result of the innate characteristics of the 

distribution of PE cash returns; (iii) that alternative measures of annualised fund returns used 

by practitioners are similarly biased; (iv) that the PME is not itself biased, but it will become 

biased as soon as it is converted into an annualised return. 

Our estimates show that these biases increase fund IRRs by an average of around 3% 

per annum. This is economically highly significant since it accounts for a substantial proportion 

of the 12.2% average net IRR generated by PE funds. Correcting for these biases is likely to 

remove most of the extent to which these IRRs appear to outperform the returns on listed equity 

indices such as the S&P500. Many investors now allocate substantial proportions of their 

portfolios to PE, and they do this on the basis of IRRs which exaggerate the annualized returns 

achieved by PE. Failure to take account of the biases in these IRRs is thus likely to lead 

investors into badly misinformed strategic asset allocation decisions.  

This analysis also contributes to three different parts of the existing literature: the 

literature on performance measurement, which investigates the extent to which popular 

performance measures are inherently biased or can be deliberately manipulated by fund 

managers (e.g. Ingersoll et al., 2007); the wider empirical literature on bias in the returns 

reported by other types of fund manager (mutual funds, e.g. Elton, Gruber and Blake, 1996 and 

Ter Horst, Nijman and Verbeek, 2001; and hedge funds, e.g. Baquero et al., 2005, and Fung 

and Hsieh, 2009), and the literature which explores how the IRRs reported for other asset 

classes differ from the other periodic returns (Dichev, 2007, Friesen & Sapp, 2007, Dichev & 

Yu, 2011). 
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The following section derives an expression for the QWA bias, and Section 4 uses this 

to generate a parametric estimate of this effect. In Annex 1 we identify an additional convexity 

bias which further increases fund IRRs. Sections 5 and 6 generate alternative simulation-based 

estimates which confirm the scale of these effects. Section 7 considers alternative performance 

measures that practitioners derive from fund IRRs and finds that these fail to remove these 

biases. Section 8 concludes.  

 

3. The “Quit-Whilst-Ahead” Bias 

The IRR is defined as the discount rate which sets the present value of the cash distributed to 

investors equal to the present value of the cash invested. This can be parametrized as an initial 

investment K0, followed by a stream of cashflows dt (which can be positive or negative) and a 

final end-of-horizon payment to investors KT: 

𝐾 ∑                         (1) 

We can also express the fund value Kt at the end of each period as a function of organic growth 

rt in the fund and any periodic returns of cash to investors (dt): 

𝐾 𝐾 1 𝑟 𝑑               (2) 

Following Dichev and Yu (2011) we can substitute this into equation 1 to eliminate dt, 

rearranging to give: 

𝐼𝑅𝑅 ∑ ∑       (3) 

This shows that the IRR is a weighted average of the periodic returns rt, where the 

relative weight given to each return is determined by the present value of the portfolio at the 

start of the period (discounted at the IRR). Thus the IRR is rightly referred to as the dollar-

weighted return (although, more correctly, the weights are dollar present values).  

The IRRs calculated for a number of asset classes have been found to be significantly 

lower than the corresponding time-weighted (geometric mean, GM) returns: for the US equity 

market (Dichev, 2007), mutual funds (Friesen and Sapp, 2007) and hedge funds (Dichev and 

Yu, 2011). In each case the comparatively low IRRs were interpreted as evidence that investor 

cash flows were badly timed, buying ahead of low returns and selling ahead of high returns. 

Hayley (2014) showed that such differentials could instead be caused by cashflows being 

correlated with past returns rather than future returns (e.g. “return chasing” as investors 

deliberately increase their exposure following unusually strong returns), and specifically that 
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the differential between the GM returns and IRRs for aggregate US equity markets can be 

entirely explained by this retrospective bias, leaving no evidence of bad investor timing.   

In this paper we will demonstrate similar systematic biases in the IRRs calculated for 

PE funds. This context is very different, since (i) the cash committed is fixed in advance, giving 

investors (the limited partners, LPs) no control over the timing of the cashflows over the life 

of the fund, so “return chasing” behaviour cannot be at work; (ii) the difficulty of valuing PE 

assets before they are liquidated means that the returns generated in each period by PE funds 

cannot be reliably measured. Thus, in contrast to previous time series analysis, the present 

paper investigates whether a bias is inherent in the cross-section of the separate projects that 

are undertaken by a PE fund. 

3.1 Modelling the Cross-Section of Returns within a PE Fund       

We model each PE fund as a collection of N individual projects. For simplicity we assume that 

each project invests one dollar in period 0, and returns a single cash outflow to the investor at 

maturity Ti, when the project is liquidated. Over its lifetime, each project generates cumulative 

log returns ∑ 𝑟 . 

PE assets are illiquid and hard to value objectively before they are liquidated at Ti, so 

we observe only the cumulative return at maturity rather than individual periodic returns 

𝑟  within this. Nevertheless, we will model these cumulative returns as ∑ 𝑟  in order to 

impose the condition that these returns 𝑟  have a constant mean μr in all periods. This allows 

us to rule out any effect flowing from Ti to returns (for example, that projects which have 

already reached a given Ti tend subsequently to generate higher or lower returns than before). 

The relationship can instead be regarded as flowing entirely from rit to Ti: that unusually high 

periodic returns tend to be associated with relatively short maturities. This relationship can be 

thought of as a hazard rate effect: that high cumulative returns to date increase the probability 

that the project will mature in the next period, whilst the distribution of rit remains iid across 

all projects and time periods. 

We derive the present value of each project at the discount rate R: 

𝑃𝑉
∑

 exp ∑ 𝑟 𝑅𝑇     (4) 

Using 𝑒 1 𝑥 0.5𝑥  as an approximation accurate for small 

∑ 𝑟 𝑅𝑇 : 
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𝑃𝑉 1 ∑ 𝑟 𝑅𝑇  ∑ 𝑟 𝑅𝑇                                 (5) 

The fund invests in N such projects. Summing over N, the IRR is defined as the discount 

rate that gives zero NPV, implying that the project PVs sum to the $N initially invested: 

    ∑ ∑ 𝑟 𝑅𝑇  ∑ ∑ 𝑟 𝑅𝑇 0                             (6) 

We show below that these first and second order terms each generate distinct biases in the IRR.   

3.2 First Order Bias 

In this section we consider just the linear terms in equation (6), which approximate the IRR as 

a simple weighted average of the project returns: ∑ ∑ 𝑟 𝑇 𝑅 0. We amend this to 

consider the excess returns in each period, where 𝜇 𝐸 𝑟 : 

   R μ
∑ ∑

∑
    (7) 

We separate the right hand side into N separate ratios, and for each one we separate the 

denominator ∑ 𝑇  into the lifetime of the project in the numerator (𝑇  and the lifetimes of 

all other projects 𝑇 . We then divide top and bottom by 𝑁𝜇 , where μT is the population mean 

of 𝑇 . 

 𝑅 𝜇 ∑
∑

∑ ,      (8) 

This makes the denominator approximately equal to 1, and  is likely to be small if 

N is large or var(Ti) small, allowing us to approximate using 1 𝑥: 

 𝑅 𝜇 ∑ ∑ 𝑟 𝜇
∑ ,

  (9) 

Taking expectations: E ∑ 𝑟 𝜇 0, and the first fraction in the final term 

contains only terms in Tj (𝑗 𝑖 , which are independent of the terms in i. Hence: 

𝐸 𝑅 𝜇 ∑ 𝐸 𝑇 𝜇 ∑ 𝑟 𝜇    (10) 

  𝐸 𝑅  𝜇 𝑐𝑜𝑣 𝑇 , ∑ 𝑟 𝜇    (11) 

Thus the IRR is a biased estimator of the mean periodic return 𝜇  if the cumulative 

excess return of each project covaries with its maturity. Figure 1 shows that this correlation is 
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very strong: deals with the highest annualised returns may be liquidated within months, 

whereas less successful projects last much longer and to generate lower returns. This negative 

correlation biases the IRR upwards, so the average IRR will be greater than the average periodic 

returns 𝜇  achieved by the fund’s projects. 

Figure 1: Durations And Annualised Returns of PE Deals 

 
Source: MergerMarket (see Section 4.1 for details) 

Our derivation above modelled fund managers as picking projects at random from the 

data shown in Figure 1 and assumed that they have no control over the size or timing of the 

cashflows that these projects subsequently generate for investors. Purely by good luck, some 

funds will find that an unusually high proportion of their initial investments generate high 

returns, and these tend to have short lives. If the funds reinvested the cash from these successful 

projects into new projects picked from the same population then these reinvestments should be 

expected to benefit from only an average amount of luck, so they would be likely to drag down 

the overall fund return. But funds do not reinvest: instead they return the cash to their investors. 

This avoids diluting the lucky returns in their initial projects with less lucky subsequent 

projects. We term this the Quit-Whilst-Ahead (QWA) bias, and it will raise average fund IRRs 

purely as a result of the negative correlation shown in Figure 1: that shorter-duration projects 

tend to generate higher annual returns.   

More formally, we saw that the IRR is (to a first-order approximation) simply an 

equally-weighted mean of the 𝑟  of every project over the lifetimes of these projects  

∑ ∑

∑
. Taken at face value, this seems like a reasonable measure, but it is biased because 
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∑ 𝑇  on the denominator is endogenous to the project returns in the numerator. Hence we 

have the following (where the covariance with this reciprocal is positive): 

𝐸 𝐼𝑅𝑅 𝐸
∑ ∑

∑
𝐸 ∑ ∑ 𝑟 𝐸

∑
𝑐𝑜𝑣 ∑ ∑ 𝑟 ,

∑
     (12) 

If one of the initial projects has an unusually short life 𝑇 , this increases 1 ∑ 𝑇⁄ , so 

such projects are on average given greater weight in IRR calculations than they would over a 

fixed horizon. Figure 1 shows that this covariance is strong.   

This dynamic bias is distinct from and additional to other effects which have been 

shown to boost PE fund IRRs where funds (i) require portfolio companies to pay a dividend to 

the fund as soon as they have been acquired, or (ii) use credit lines to delay calling cash from 

investors. These two effects are the result of deliberate behaviour by fund managers which 

boosts the expected IRR by increasing fund leverage, increasing the expected project return in 

each period (μr). By contrast, our derivation above shows that the QWA bias boosts the 

expected IRR above μr. This bias is not caused by the deliberate behaviour of fund managers, 

but is inherent in the strong correlation observed in our dataset: that projects with short 

durations tend to generate higher annual returns. In interpreting this QWA bias, we should note: 

(a) It is a first order effect. It results from the time period over which returns are calculated 

being endogenous to the returns achieved. It is distinct from the second order effect that 

we identify in Annex 1, which is instead due to the IRR being a non-linear function of 

the project lives.  

(b) The bias is a function of the covariance of project returns and their durations. Figure 1 

shows exactly the situation which would lead to a large positive bias: returns and project 

lives both have high variance and are strongly negatively correlated. We estimate the 

size of this bias in the following sections, using a range of different methods.  

(c) This bias is not a risk-premium effect. It remains even if we set 𝜇 0 in the derivation 

above. 

(d) For simplicity, the derivation above used continuous-time discounting, but this is not 

vital: the same result can be obtained using discrete time discounting (annually 
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compounded returns are industry standard, e.g. under CFA GIPS), since this gives us 

the same first-order approximation.4 

(e) QWA bias is declining in N: if a fund contains many projects, then an individual project 

with high 𝑟  and low 𝑇  will have little effect on ∑ 𝑇  and hence little effect on the 

weight that this project is given in the IRR calculation, resulting in little bias.  

(f) Conversely, this bias should not be presumed to be a short period (small T) effect, 

despite the 1 𝑁𝜇⁄   in equation (11). Suppose that the relationship between project 

returns and their durations is linear: 𝑇 𝑘 ∑ 𝑟 𝜇 𝜇 𝜀  (where 𝜇

𝐸 𝑟  and 𝜇 𝐸 𝑡 . Substituting this into our expression for the bias: 

  𝑄𝑊𝐴 𝑏𝑖𝑎𝑠 𝑐𝑜𝑣 𝑇 , ∑ 𝑟 𝜇            (13) 

𝑐𝑜𝑣 𝑘 ∑ 𝑟 𝜇 𝜇 𝜀 , ∑ 𝑟 𝜇  (14) 

𝑣𝑎𝑟 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛    (15) 

If each periodic return 𝑟  is iid, then the variance of the cumulative excess return will 

be proportional to Ti. Hence we would expect the bias to be proportional to . 

However this assumes that 𝜎  does not vary with 𝜇 . If instead the proportionate 

variation in Ti is the same in populations with differing 𝜇 , then 𝜎 will be proportional  

to 𝜇  and the bias will be invariate to 𝜇 . Thus we should not assume that the QWA 

bias is a short-horizon effect that shrinks as average project lives increase.  

4. Quantifying the QWA Bias 

Our starting point in quantifying the QWA bias is simply to evaluate the expression derived 

above. However, a number of simplifying assumptions were used in its derivation, and the 

extreme volatility exhibited by PE project returns means that these assumptions are likely to 

be imprecise. Hence, for robustness we will also use a range of different simulation techniques 

to estimate the biases by comparing the IRRs of simulated funds with corresponding bias-free 

return measures (Sections 5-6 below). 

                                                      

4 Discrete period discounting gives 𝑃𝑉
∑

.  Setting ∑ 𝑃𝑉 𝑁 gives us the same first order 

approximation ∑ ∑ 𝑟 ∑ 𝑇 𝑅 0 as above, and hence 𝑅
∑ ∑

∑
. 
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4.1 Data on Private Equity Projects 

We use the PE deal exits database from MergerMarket comprising 1,585 investment exits by 

438 PE funds with purchase years from 1998 to 2018. The collected  data is limited to the 

transaction dates, percentage of the target company equity bought or sold, and transaction 

values.    

This database has several issues that need to be taken into account. First, it includes 

buyout (BO) and venture capital (VC) deals, with no way to distinguish them from each other. 

However, Brown et al. (2020) shows a very similar relationship to Figure 1, using an entirely 

different dataset comprising only BO projects. This confirms that the covariance between 

project durations and annualised returns is strongly negative within a population of BO 

projects, rather than being due to any additional heterogeneity in our dataset due to the inclusion 

of both VC and BO. 

 Second, if the purchased company is sold in multiple transactions, the database 

contains information on only the final tranche sold. In 63% of deals the whole of the acuired 

equity was sold in a single transaction, so the exit information for these deals is complete. For 

the remainder, we have information on the final tranche of equity, but not on earlier partial 

sales of equity in these firms. Our central estimates include the returns generated on these 

partial sales with the initial investment cost scaled down to reflect the cost of the proportion 

subsequently sold, on the assumption that they are  representative of the whole exit transaction. 

For robustness we also calculated our results using only the 63% of deals which exited in one 

transaction. This resulted in  very similar estimates for the QWA bias. 

Third, the database does not provide information regarding the financing of the deals, 

and, as these are mostly private companies, it is not possible to obtain this information from 

other sources. The IRR measures the return on the equity that the fund invests, so we are forced 

to make an assumption about the leverage involved. For robustness, we have confirmed that 

our bias estimates are positive and economically significant over a wide range of parameter 

assumptions. Our central assumptions are a leverage ratio of 60% (the average reported by S&P 

Global Market Intelligence, and close to the levels reported by Metrick and Yasuda, 2010, and 

Axelson et al., 2013), and an interest rate of 7.5% (consistent with the Libor + 4.9% reported 

by Axelson et al., 2013). 

In common with other research in this field, we filter out projects in each financing 

scenario which show cash multiples greater than 6 or annualised returns greater than 500%. 

We confirm that on the basis of these assumptions our simulations generate a distribution of 
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fund IRRs which is similar to those reported in other databases.  For robustness we also confirm 

that the observed covariance of project returns and durations was not generated by filtering out 

outliers with exceptional cash multiples, but remains substantial and negative with alternative 

filters or with no filtering of multiples. Indeed, our filtering assumptions are conservative since 

they reduce the covariance which causes the QWA bias. 

Table 1 records the key features of the distribution of project returns generated by the 

Mergermarket data once we have applied the leverage, interest rate and other assumptions 

discussed above, and compares these with the corresponding data reported in other studies.   

Our assumptions generate realistic proportions of deals with negative returns, although overall 

our data turns out to be slightly worse-performing, with higher percentages of bankrupt deals 

and a lower median project multiple and median annualised return. The MergerMarket database 

only includes data for companies that were sold as going concerns. It excludes failing 

companies whose assets were sold separately. These are likely to record below-average returns 

but our estimates of the QWA bias will not be sensitive to the level of these returns ─ only to 

their covariance with Ti. The exclusion of these failed deals leaves us with a more homogeneous 

dataset. If anything this is likely to make our bias estimates more conservative, by removing 

the possibility that this additional heterogeneity tended to increase the observed covariance. 

Table 1: Deal Returns and Durations  

 Previous Studies Our Data 

Negative returns % 30 - 40% 38.0% 

Bankrupt Deal % 17 - 20% 22.9% 

Median Multiple 1.90 - 2.10 1.77  

Median Annualised Return 21.0% 14.5% 

Median Months Held  51.6 - 60.0 52.0  

Sources: the second column shows the range reported by other studies: Lopez-de-Silanes et al. 
(2015), Hüther (2016) and  Braun et al. (2017). The third column reports the corresponding figure 
implied by our MergerMarket dataset, transformed using the financing assumptions and filters 
discussed in the text. Each project return is calculated from a single cash investment and a single 
cash distribution, so the returns referred to here are annualised geometric mean (GM) returns. 

 
Funds report their IRRs net of fees, and these fees are calculated as a function of overall 

fund performance. For this reason, project data is only available before fees are deducted. To 

simulate net fund IRRs we are forced to model this fee structure explicitly. We find that the 

leverage assumptions described above result in a distribution of simulated net fund IRRs which 
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closely matches empirical data reported in other databases (Figure 2 below). We could instead 

fine-tune our leverage assumptions to more closely match the gross returns reported in Table 

1 for other sources, and then adjust our assumed fee structure so that the resulting net fund 

IRRs continue to match those reported elsewhere. However, the basic parameters of the fee 

structure are well documented, so adjusting these would itself be unrealistic. For robustness we 

use a range of different estimation techniques, but our key objective is to estimate the biases 

that are inherent in the net IRRs reported by PE funds. For these reasons our preferred approach 

is to use gross data that are an adequately close ─ if not exact ─ empirical match, apply a fee 

structure with well-known parameters, and then confirm that the resulting distribution of net 

fund IRRs closely matches other sources. As a further check, in Sections 5 and 6 we generate 

very similar estimates using (i) simulations based on the MergerMarket project data, thus 

avoiding the inevitable simplifications that come with parametrizing this data; (ii) simulations 

based on an entirely separate database of net fund cashflows. 

4.2 Parametric Estimates of IRR biases 

Our starting point is to evaluate the expression derived above:  

𝑄𝑊𝐴 𝑏𝑖𝑎𝑠 𝑐𝑜𝑣 𝑇 , ∑ 𝑟 𝜇 𝑁𝜇 . The projects in our data have an average maturity of 4.3 

years, and the covariance between these maturities and the cumulative abnormal return 

∑ 𝑟 𝜇  is -2.3. The first row of Table 2 evaluates this expression for different numbers of 

projects per fund (N). 

These positive estimates represent the degree to which fund IRRs are increased by 

QWA bias. As discussed above, it is intuitive that these estimates are declining in N, since if 

each project accounts for only a very small proportion of fund value then the endogeneity which 

causes the bias will be correspondingly slight. Jenkinson, Kim and Weisbach (2021) reports 

that the median buyout fund invests in nine projects, but our derivation above assumed that 

projects all invest equal amounts, and that returns are independent across projects. These 

assumptions represent ideal diversification, whereas in practice some projects are much larger 

than others and systematic and sectoral risk factors may lead to significant covariance across 

project returns. This will increase the QWA bias, since funds will in effect behave as if they 

were composed of a smaller number N of truly independent projects (or, equivalently, a smaller 

number of independent principal components). Thus setting N=9 would underestimate the 

likely degree of QWA bias. A simple way to correct for this is to reduce our assumption for N. 

On the other hand, these estimates are based on the covariance of gross project returns, and the 
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option-like structure of fund fees means that the variance of net cashflows should be expected 

to be slightly lower. Taking both these factors into account, we argue below that N=6 is the 

most appropriate assumption (implying QWA bias of +2.1%), since this matches the observed 

variance in empirical net fund IRRs. 

Table 2  Parametric Estimates of QWA Bias 

Full dataset          
N: 1 2 3 4 5 6 9 12 All 

Bias derived from 
sample covariance 

12.5% 6.2% 4.2% 3.1% 2.5% 2.1% 1.4% 1.0% 0.0% 

  ∑ 𝑟 𝑇 ∑ 𝑇⁄  35.5% 26.4% 24.1% 22.9% 22.3% 22.7% 21.8% 21.4% 20.7% 
Implied Bias 14.8% 5.7% 3.4% 2.2% 1.6% 1.9% 1.1% 0.7% 0.0% 

Robustness check: projects with maturity over 7.5 years eliminated   
N: 1 2 3 4 5 6 9 12 All 

Bias derived from 
sample covariance 

10.3% 5.1% 3.4% 2.6% 2.1% 1.7% 1.1% 0.9% 0.0% 

∑ 𝑟 𝑇 ∑ 𝑇⁄   37.5% 30.2% 27.2% 26.3% 25.8% 25.6% 25.4% 25.1% 24.5% 
Implied Bias 13.1% 5.7% 2.7% 1.8% 1.3% 1.1% 0.9% 0.6% 0.0% 

 

Our derivation above used the approximation 1 1 𝑥⁄ 1 𝑥, which in this context 

could be inaccurate for small N. To avoid this we return to our earlier approximation 𝐼𝑅𝑅 

∑ 𝑟 𝑇 ∑ 𝑇⁄ . The second row of Table 2 shows that this decreases as we sum over 

progressively larger N, consistent with decreasing QWA bias. The estimate which includes all 

732 projects in our sample represents a massively diversified fund which will have minimal 

QWA bias. Differences between this and the corresponding figures for smaller N represent the 

amount of the bias for these more concentrated portfolios. This generates QWA estimates 

similar to those above. Specifically, for N=6 we obtain a bias estimate of 1.9% per annum.5 

As described above, we already excluded extreme outliers from our dataset. As a further 

robustness check we removed all projects which recorded maturities greater than 7.5 years (a 

further 9% of our dataset). The results are shown in the second panel of Table 2. Even on this 

artificially conservative basis our estimates of QWA bias remain economically significant. This 

is reassuring in showing that the effect is not simply the result of a few extreme observations. 

                                                      
5 This estimate is based on the annually-compounded project returns in our database, since this is consistent with 
the fact that funds report annually-compounded IRRs. Replacing these with the corresponding continuously-
compounded (logarithmic) returns would artificially shrink the right tail of the return distribution, but even under 
this extremely conservative manipulation of the data our estimated QWA bias remains economically highly 
significant at 1.3% per annum. 
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However, the QWA bias is a covariance effect, so our estimates will inevitably be sensitive to 

outliers in the distribution of project returns and maturities, and to the extent that this robustness 

check artificially reduces the observed variation in our dataset, it  will inevitably underestimate 

the QWA effect. Finally, note that our simulation-based estimates in Sections 5 and 6 remove 

the need for any assumptions about parametrization and generate slightly larger bias estimates 

than the parametric estimates above. As a further robustness check, in Annex 2 we derive 

alternative estimates of QWA bias by explicitly modelling the extent to which the returns on 

all projects in a fund might be affected by systematic risk. These estimates are slightly larger 

than our estimates above, ranging from a likely underestimate of 1.8% per annum, to a likely 

overestimate of 3.9%.   

Biases of the magnitudes estimated above would be economically highly significant, 

given that the average net IRR recorded by PE funds has been 12.2% per annum (see Table 4, 

below). In choosing their strategic asset allocations, investors are likely to compare this figure 

to the return they expect on other assets. Pension funds generally assume a total asset return of 

8% per annum, and this includes significant holdings of comparatively low risk bonds, so the 

implied expected return on equities must be higher. A total equity return of around 10% would 

be consistent with the observed long-term geometric mean total return on the S&P500 index 

(investors who mistakenly use the arithmetic mean S&P500 index as a comparison would 

derive a larger figure). We cannot pin down investor expectations with any great precision, but 

these simple comparisons suggest that QWA bias in these IRRs could on its own account for 

most of the amount by which average PE IRRs appear to outperform the return on listed 

equities. 

Furthermore, the estimates above are for only the first order “Quit Whilst Ahead” bias 

resulting from the covariance of project returns and maturities.  In Annex 1 we demonstrate the 

existence of an additional second order “convexity” bias resulting directly from the variance 

of project lives Ti. This represents a more modest increase (0.34%) in the expected IRR than 

the QWA bias, but: (i) it represents an entirely separate effect, which will arise even in the 

absence of QWA bias; (ii) it should also be considered a bias since it boosts the IRRs recorded 

for portfolios of assets with varying 𝑇  above those (GMs) of portfolios with entirely similar 

return characteristics but a fixed horizon. 
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5. Simulation Estimates of the Biases 

The parametric bias estimates derived above were based on a number of assumptions. We now 

turn to simulation techniques to avoid these simplifications. In particular, our estimates above 

were for only the first and second order biases, whereas simulations will also include any higher 

order effects. 

We demonstrated that QWA bias and convexity bias both arise because of variation in 

the maturities (Ti) of the projects in which PE funds invest, either directly (convexity bias), or 

because they are correlated with project returns (QWA bias). Both biases will be absent in a 

strategy which invests in PE over an exogenously fixed horizon, immediately re-investing any 

early cash distributions into similar PE investments. Comparing simulated fund IRRs (without 

reinvestment) with the simulated returns of funds which reinvest in similar projects over a fixed 

horizon will thus give us an estimate of the combined effect of QWA and convexity biases, and 

higher-order effects. 

To confirm this intuition we again assume each PE fund comprises N projects which 

each invest $1, generate periodic returns 𝑟  and mature at time Ti. We now assume that the 

cash released by these projects at maturity is reinvested at rate R* until a fixed horizon T*, at 

which point their terminal values are measured. Discounting these terminal values at discount 

rate R gives: ∑ NPV ∑ 𝑒∑ ∑ ∗∗
𝑒 ∑ ∗

1 0 as the expression 

which defines R=IRR.  We consider the first order terms in the Taylor expansion of this 

exponential function: 

∑ ∑ 𝑟 ∑ 𝑅∗∗ ∑ 𝑅∗ 0          (16) 

We can express this in terms of excess returns: 

⇒   ∑ ∑ 𝑟 𝜇 ∑ 𝑅∗ 𝜇∗ 𝑁𝑇∗ 𝑅 𝜇 0   (17) 

In section 3.2, when we reached this stage in the derivation of the IRR we found that 

obtaining a first-order solution for R required us to divide by ∑ 𝑇  (see equation 7). This gave 

rise to the QWA bias because the ∑ 𝑇  in the denominator covaries with the project returns in 

the numerator. This time we are dividing by an exogenous NT*, so the IRR calculated over this 

fixed horizon does not suffer from QWA bias: 

𝑅 𝜇 ∗ ∑ ∑ 𝑟 𝜇 ∑ 𝑅∗ 𝜇∗    (18) 
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Turning to second order effects, Annex 1 demonstrates that convexity bias is a function 

of the variance of the project maturities Ti, so this too will be zero when the IRR is calculated 

over a fixed horizon. The IRRs calculated without reinvestment suffer from both QWA and 

convexity biases, but equivalent IRRs calculated with reinvestment to a fixed horizon suffer 

neither of them. Thus the difference between the IRR and the return on a corresponding fixed-

horizon strategy can be used to estimate the size of the biases inherent in the IRR. 

It is worth noting that the total return indices which are calculated for other assets 

similarly assume that all cash distributions (such as dividends or coupons) are immediately 

reinvested into the same asset. Using the same approach for PE will ensure a like-for-like 

comparison with these other assets. Such reinvestment means that there are no intermediate 

cashflows so the IRR becomes identical to the geometric mean return.6   

Such fixed-horizon reinvestment strategies could be modelled using either fixed or 

stochastic returns during the reinvestment period. For robustness we take both approaches in 

the following sections. 

5.1 Fixed Rate Reinvestment 

The most obvious way to model fixed-horizon returns is to calculate the modified IRR (MIRR) 

which assumes that a constant rate of interest is earnt on any cash returned to investors before 

the end of the time horizon. The textbook approach is to calculate the MIRR using the risk-free 

interest rate (typically proxied as the yield on short-term government bonds). However, this is 

likely to be substantially lower than the returns expected on PE investments. The MIRR 

calculated on this assumption would represent the return on a dynamic strategy which shifts 

from a high-risk asset (PE) into cash over the course of the investor’s horizon. It is not clear 

why investors would choose such a strategy, so although it is an investible strategy, we have 

no reason to think that it represents a sensible benchmark. Choosing such an inappropriate 

reinvestment rate would understate the expected returns that should be expected from 

maintaining an exposure to PE.7  

                                                      
6 The IRR is defined as the discount rate that generates NPV=0, which for a single asset implies 𝐾

0 ⇒ 𝑅 1 𝐺𝑀 return. 
7 Larocque et al. (2022) compares fund IRRs with the “multiple return” calculated from the fund’s cash multiple 
and lifetime as 𝑀𝑂𝐼𝐶 / 1, but this is simply the MIRR calculated with a reinvestment rate of zero. Under this 
extreme assumption they find that the mean fund IRR exceeds the mean multiple return by almost 8% per annum.  
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Phalippou (2008) instead suggested using either a fixed reinvestment rate of 8% (a 

figure commonly used as the hurdle rate used in calculating fund performance fees) or the total 

return on a popular listed equity index such as the S&P500. However, these may still be 

excessively low if PE funds earn additional risk premia, such as those resulting from a CAPM 

beta greater than unity, an illiquidity premium (as was identified by Franzoni et al., 2012) or a 

small capitalisation equity premium (e.g. Jegadeesh, Kraussl and Pollet, 2015).  

Instead, we will use reinvestment rates derived from the project returns in our dataset, 

since these incorporate any such risk premia, and hence are comparable to the returns used to 

generate our IRR estimates. The weighted average of the annualised discrete time gross GM 

returns achieved by each project in our dataset (weighted by their lifetimes (𝑇 ) and gross of 

fees) is 20.7% per annum. This represents a first-order approximation of the average return that 

would be achieved if we invested sequentially in projects picked at random from this dataset 

(the 𝑇 -weighting reflects the fact that the probability at any given moment that we are invested 

in a high-return project is relatively low because such projects tend to have short lives). This 

figure incorporates no QWA bias, because it measures the return on a strategy which involves 

no early returns of cash (hence no “quitting”).  

By contrast, investing simultaneously in every project in our database generates a gross 

IRR of 30.4%. This IRR also includes minimal QWA and convexity biases, since these both 

fall with 1/N, and our dataset includes hundreds of projects. However, whilst diversification 

does not affect the expected terminal wealth 𝐸 𝐾  of any strategy, the IRR (like the geometric 

mean return) is a non-linear function of 𝐾  which penalises volatility, as expressed by the well-

known relationship 𝐸 𝐺𝑀 𝐸 𝐴𝑀 𝜎 2⁄ . Thus the difference between the 20.3% IRR on 

sequential investment in the projects in our dataset and the 30.4% for simultaneous investment 

can be attributed to the much greater diversification in the latter (the so-called “diversification 

return”). We will be simulating reinvestment for moderately diversified portfolios of different 

projects (N=3 to N=12), so the corresponding expected growth rate will be between these two 

rates. For robustness, our simulations use the two rates above as lower and upper bounds, with 

a central scenario which approximates the appropriate rate by including a fraction  of the 

differential between these upper and lower bounds (this result is derived in Annex 1). For 

further robustness we will cross-check these results against stochastic reinvestment simulations 

below. 
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Choice of time horizon might also be important. The conventional approach would be 

to choose a horizon at least as long as the longest project. However, this would make our 

estimates very sensitive to any error in the reinvestment rate used: an excessively low rate 

would reduce the MIRRs and overestimate the biases. We also modelled returns over a very 

short horizon of three years. Many projects will mature after this horizon so, rather than 

reinvesting, the MIRR calculation discounts project terminal values back to the equivalent PV 

at the three year horizon. An excessively low reinvestment (discount) rate would thus overstate 

the MIRRs and understate the biases.8 Our central estimates are based on a horizon of 4.3 years. 

This is the mean project life, so using this horizon implies that there will be as much discounting 

as reinvesting, implying that the average MIRRs calculated over this horizon should be least 

sensitive to the possibility that we are using an inappropriate reinvestment rate. For this reason 

we consider them the most robust estimates. 

Table 3 shows the differences between (i) the mean IRR for funds each containing N 

randomly-selected projects from our dataset; and (ii) the corresponding MIRR that would result 

if early returns of cash from these projects were reinvested at a constant return. The 

reinvestment rates chosen ensure that these IRRs and MIRRs include the same risk premia, but 

the IRRs will be boosted by QWA and convexity biases, whilst the MIRRs will not. The 

difference between these figures represents the combined size of these two biases.  

Table 3: IRR-MIRR Median Differentials for Simulated Funds (per annum) 

Reinvestment 
Rate 

Time 
Horizon 
(years) 

Bias 
(N=3) 

Bias 
(N=6) 

Bias 
(N=9) 

Bias 
(N=12) 

20.7% 3.0 4.3% 1.3% 0.7% 0.2% 

Mid 3.0 4.6% 2.0% 1.3% 0.8% 

30.4% 3.0 5.8% 2.9% 1.9% 1.4% 

20.7% 4.3 6.8% 4.7% 3.7% 3.4% 

Mid 4.3 6.7% 3.8% 2.8% 2.5% 

30.4% 4.3 5.5% 2.7% 1.4% 1.3% 

20.7% 7.5 9.3% 7.2% 7.0% 6.4% 

Mid 7.5 8.3% 5.4% 4.5% 4.2% 

30.4% 7.5 4.4% 2.3% 1.4% 1.1% 

The “Mid” reinvestment rate varies with N. As discussed above, it includes N 2 2𝑁⁄  
of the difference between the low (20.7%) and high (30.4%) rates. 

                                                      
8 We can observe this effect in Table 3, where for our central case N=6: a 7.5 year horizon with our lower 
reinvestment rate (20.7%) generates lower MIRRs than with the higher (30.4%) rate, and hence a higher bias 
estimate. Using the 3 year horizon this difference is reversed, since these reinvestment rates will frequently be 
discount rates, and a lower discount rate applied to future project liquidation values boosts the MIRR, implying 
lower bias. 
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Table 3 shows that our estimated biases are positive across a very wide range of 

assumed parameters for the number of projects per fund, the time horizon and the reinvestment 

rate. The results also confirm that bias is smaller for funds containing more projects (higher N) 

as the QWA bias is reduced. Jenkinson, Kim and Weisbach (2021) reports that the median 

buyout fund invests in nine projects. But, as discussed above, drawing nine projects at random 

from our historic dataset represents an unrealistic degree of diversification, due to systematic 

risk and projects of unequal size. We correct for this by setting N=6. This generates a realistic 

standard deviation of fund IRRs (Figure 3, below), whilst avoiding the need to specify the risk 

factors which account for this systematic risk. This assumption gives us our central estimate of 

3.8% per annum bias: somewhat greater than the sum of our parametric estimates above for 

QWA bias (1.9%) and convexity bias (0.34%). 

As a further robustness check, we repeated these MIRR calculations after removing any 

projects which recorded lives greater than 7.5 years. This only slightly reduced the central bias 

estimate (for N=6) to 3.5% per annum, confirming that this bias is not simply the result of a 

few exceptionally long-lived projects. 

6. Stochastic Reinvestment  

In this section we compare the IRRs of conventional PE funds (which distribute the proceeds 

of mature projects to investors), with the returns generated if this cash is reinvested into 

randomly-chosen new projects until the end of an exogenously-fixed time horizon. The latter 

is free of QWA and convexity biases, so the difference between the estimates derived on these 

different assumptions will again give us estimates of the size of the biases in the IRRs. 

For robustness we will derive estimates using two very different approaches and 

different datasets: (i) simulating reinvestment by each fund into new projects (in effect 

simulating the returns on “evergreen” funds); (ii) simulating the returns achieved by an investor 

who reinvests the cash distributed by a mature fund into a new PE fund. These approaches both 

remain fully invested over a fixed horizon, so they will be free from QWA and convexity 

biases.9  

                                                      
9 As a further robustness check we tried shuffling the data to remove the covariance of project returns 
and maturities by matching each ri with a randomly drawn Ti. However, this generates some projects 
which generate exceedingly large annual returns over a period of many years, resulting in massive 
dispersion of the final values generated by different projects. This resulted in correspondingly far greater 
volatility drag and diversification return than is seen in actual fund data. In removing the first-order 
QWA bias this massively increased the second order bias, and thus did not generate useful results. 
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6.1 Simulating PE Fund IRRs Using Project-Level Data 

We first consider the returns generated by a PE fund which immediately reinvests the proceeds 

from each maturing project into a new project. These stochastic project returns could be 

modelled either parametrically or by bootstrapping historic PE returns. However, in either case, 

generating returns over a fixed investment horizon raises problems.  

Consider an investment in an initial project which generates an annualised return 𝑟  and 

matures at 𝑇 . These values are then fed into the IRR calculation, but to generate the 

corresponding annualised return up to our fixed horizon 𝑇∗ we need to simulate the return 𝑟  

which is earned when this cash is reinvested. We know that 𝑟  is strongly correlated with the 

maturity 𝑇  of this second project, so if we select a project (either parametrically or directly 

from our historical dataset) with exactly the required maturity 𝑇 𝑇∗ 𝑇 , the return on 

this project will be conditional on 𝑇 , and hence on 𝑟 .  Thus simulating a return which exactly 

fits the horizon 𝑇∗ threatens to produce very misleading results by generating autocorrelation 

of returns. 

To avoid this we must select reinvestment projects unconditionally. We draw these 

projects from the same pool as we used to select the initial projects with replacement. Once the 

final project extends beyond our pre-defined horizon we must discount its future liquidation 

value back to our horizon. Thus stochastic modelling still requires the use of an appropriate 

discount rate to generate our end-of-horizon valuations. Given this issue, taking a parametric 

approach to generating these reinvestment returns has little to recommend it since it introduces 

the additional risk of misparamaterisation without avoiding the need for discounting. 

Our simulations use the same project-level data as above. We simulate 10,000 funds 

with a fixed life of 10 years. Each fund invests in private equity deals drawn from the project 

database with replacement. As discussed in section 4.1, we chose leverage parameters which 

generated net IRRs with a distribution in line with that observed empirically.  

We assume that capital is called 2.5 years after being committed by investors (similar 

to the figure reported by Metrick and Yasuda (2010) although, of course, the IRR is a calculated 

from the first cashflow rather than the commitment of capital). This leaves 7.5 years for the 

deals to be liquidated and the proceeds distributed back to the investors. Durations of the deals 

that exceed 7.5 years are capped at 7.5 years, keeping their IRRs fixed and recalculating their 

multiples accordingly (for robustness, in ongoing work we model alternative assumptions).  
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The IRRs quoted by PE funds are calculated from the net-of-fees cash returned to 

investors, so to generate comparable data we also need to simulate these fees.10 Our base case 

assumptions are leverage ratio 0.60 (defined as debt/assets), interest rate 7.5% and 2.5 years 

between commitment of capital and first call. As discussed above, we assume that each fund 

contains 6 independent projects, since this makes allowance for an appropriate degree of 

systematic risk.  Table 4 shows that our simulated fund fees are very similar to those 

documented by Phalippou (2009).  

 
Table 4: Actual and Simulated Fund Net IRRs and Manager Fees 

Panel A: Net IRR Actual Simulated Difference 

Mean 12.7% 12.7% 0.0% 

Median 12.2% 12.5% -0.3% 

St. Dev. 13.1% 13.5% -0.3% 

    
Panel B: Manager Fees Benchmark Simulated Difference 

Fixed Fees 4.8% 5.3% -0.6% 

Performance Fees 2.0% 3.0% -1.0% 
Sources: Panel A actual: Preqin. Panel B benchmark: Phalippou (2009). 

 

Figure 2 compares the Net IRR distribution of our simulated funds with the Net IRR 

distribution of the funds in the Preqin Cash Flow database. This shows that our base case 

assumptions produce a realistic distribution of net fund IRRs. 

  

                                                      
10  There are four broad groups of fund fees for private equity funds:  
a) A typical buyout fund charges a management fee of 2% on the committed capital (during the investment 

period) and on the invested capital (during the harvesting period); 
b) Each project is charged a transaction cost of 1% of the deal value (after 50% reimbursement to the investor, 

Metrick and Yasuda, 2010). For simplicity, we combine these with management fees as “Fixed Fees” in the 
tables below; 

c) A carried interest of 20%, based on a hurdle rate of 8%, with catch-up, claw-back and a waterfall structure. 
The last of these implies that as long as the combined fund returns do not exceed the hurdle rate, all fund 
profit goes to the fund investors (limited partners). If fund return exceeds the hurdle rate, catch-up provision 
kicks in and fund managers retain the excess profits until the total profits are shared as 80/20 between 
investors and fund managers. For the further excess profits, 80/20 split is maintained. Generally the profit 
split is made on a deal level, and a claw-back provision, results in a final rebalancing at the end of the fund 
life based on the total fund returns); 

d) Metrick and Yasuda (2010) reports that monitoring fees are 0.40% of the firm value annually, but 80% of 
these fees are reimbursed to the investors. Since the remaining effect is negligible, we do not take these fees 
into consideration.   
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Figure 2: Simulated vs. Actual Fund Net IRRs (%) 

 
Source: Preqin buyout fund net cashflows (1980-2005), simulations 
based on Mergermarket (1998-2018) deal data. 

 
We will compare these simulated IRRs with the simulated returns of PE funds which 

reinvest the proceeds of their initial deals into new projects drawn with replacement from the 

same pool of PE projects until the end of our fixed horizon (10 years) so that the fund remains 

fully invested throughout this period. The value of live projects at this horizon is determined 

by assuming that each project’s value grows at a steady rate until maturity. 

For robustness we introduce different levels of return persistence in the deals in which 

funds invest. Such persistence might be due to manager skill, or differences in the risk premia 

earned by funds specialising in different sectors or within sub-periods of our dataset. 

Performance persistence should be expected to reduce bias by reducing the cross-sectional 

variance of the returns on the projects in which funds invest. Our first reinvestment model 

(Model 1) assumes no performance persistence: successive deals are independent. Model 2 

introduces a high level of performance persistence by drawing the reinvestment deals from the 

initial set of invested deals. Thus a fund which initially invested in successful deals is likely to 

continue to do so. Model 3 generates moderate performance persistence by drawing projects 

for reinvestment from one of two deal clusters. The first cluster includes all the deals drawn by 

the successful half of the PE funds, the second cluster includes the deals drawn by the other 

half of the PE funds. Both clusters include all deals, but the successful cluster has a higher 

share of the better ones.    
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We quantify the resulting persistence using a simple regression model of the annualised 

return of reinvestment deal k invested by fund f against the return on the fund’s preceding deal 

𝐷𝑒𝑎𝑙𝐺𝑀𝑟𝑒𝑡𝑢𝑟𝑛 ,  𝛽𝐷𝑒𝑎𝑙𝐺𝑀𝑟𝑒𝑡𝑢𝑟𝑛 ,   𝜀.  Model 1 generates β=0, Model 2 β=0.21, 

Model 3 β=0.13. By comparison, Braun, Jenkinson and Stoff (2017) look at the performance 

of successive projects by a given manager and find a regression coefficient of 0.10.11 Thus our 

different models introduce unrealistically little persistence (Model 1), unrealistically strong 

persistence (Model 2), and a more plausible central scenario (Model 3). 

For each of these models we simulate the net IRRs of PE funds containing (i) nine 

projects per fund (the observed median for buyout funds), and (ii) six projects per fund (which, 

as discussed above, generates a more realistic level of variance in our simulated IRRs).  

We saw above that QWA and convexity biases are both due to variation in the 

maturities of the individual project returns within the fund (and hence in the timing of the 

cashflows returned to investors). We thus estimate the sum of these two biases as the difference 

between (a) the fund IRR without reinvestment (subject to both biases), and (b) with 

reinvestment over a fixed horizon (which removes both biases). 

The results are shown in Table 5. As expected, a larger number of projects per fund 

results in lower bias, but the resulting bias estimates are positive and economically significant 

over a wide range of parameters, with a central estimate of 4.0% per annum (medium 

persistence, N=6). Biases of this magnitude will be very important to investors since they 

account for a significant proportion of the average net fund IRR of 12.2%.  

These estimates are all slightly higher than the parametric estimates in Section 3 and 

Annex 1 (1.9% QWA plus 0.34% convexity bias). This can be attributed to the fact that these 

simulations: (i) avoid the simplifying assumptions required in our derivations and (ii) allow 

possible higher-order effects in addition to the first order (QWA) and second order (convexity). 

The fact that our simulations model net-of-fees fund IRRs and our earlier parametric estimates 

were based on gross project returns makes little difference, since the assumed leverage in the 

latter was calibrated to match the empirically-observed volatility in net fund IRRs. 

 
  

                                                      
11 Braun, Jenkinson and Stoff (2017) regress the PMEs of successive fund deals, whereas we use deal 
GM returns (IRRs), but as long as the market return (which is netted off the fund return when the PME 
is calculated) is assumed to have near-zero autocorrelation the regression coefficients will be 
comparable to ours. 
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Table 5: Simulated Median Net Fund Returns and Implied Bias 

 N = 6 N = 9 

  

Model 1 
(no 
persistence) 

Model 2 
(high 
persistence) 

Model 3 
(medium 
persistence) 

Model 1(no 
persistence) 

Model 2 
(high 
persistence) 

Model 3 
(medium 
persistence) 

Median IRR (no reinvestment) 12.3% 12.3% 12.3% 12.4% 12.4% 12.4% 

Median return over fixed 
horizon (with reinvestment) 

7.9% 8.9% 8.2% 8.9% 9.3% 8.9% 

Median Bias 4.6% 3.0% 4.0% 3.9% 2.6% 3.6% 

 

It is also worth emphasizing that Table 5 reports the median bias for each scenario (our 

earlier parametric estimates were, by their nature, means). The mean simulated biases are 

substantially higher, but we are again keen to be conservative in our estimates. For robustness 

we also repeated these simulations whilst excluding all deals recorded after 2014 (in order to 

avoid any risk of self-selection resulting from deals which were not yet complete being omitted 

from the MergerMarket dataset). This had little effect on our estimates. 

Table 6 shows the corresponding bias estimates for different deciles of the IRR 

distribution, with substantial bias in all deciles.12 This method introduces some heterogeneity 

between different pools from which projects are drawn. We would expect this to reduce the 

variance of project returns and maturities within each decile. The fact that this results in only a 

slight reduction in the overall median (from 3.4% to 3.0%) is a reassuring sign that our earlier 

estimates were not badly affected by the pooling of potentially heterogenous projects (e.g. 

projects from different vintages, or from sectors with persistently different risk premia).   

Table 6: Median Simulated Bias by IRR Decile (N=6, high persistence) 

Max IRR  2  3  4  5  6  7  8  9  Min. IRR 

2.9%  2.3%  2.0%  1.4%  1.9%  2.3%  3.3%  3.9%  5.7%  5.7% 

 
 
 

  

                                                      
12 For this decomposition to be meaningful we need to apply the high persistence assumption (otherwise 
unluckily low IRRs record higher fixed-horizon returns as reinvestments tend to be less unlucky – this 
is simple mean reversion rather than an indication of bias). With high persistence, reinvestment will on 
average be equally lucky as the initial project choices, although with some variation depending on the 
frequency with which the best projects among the initial projects are picked again for reinvestments. 
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6.2 Simulating Investor Recommitment into New Funds 

In this section we simulate an investor who invests in a PE fund and subsequently reinvests the 

cash distributions from this fund into a new PE fund. This is another way of modelling the 

return which is generated by maintaining an exposure to PE over a fixed time horizon, so the 

resulting returns will be free of convexity and QWA biases. This alternative approach allows 

us to check the robustness of our earlier simulations using different assumptions and a separate 

database. 

We use the Preqin database of fund cashflows. This  contains data on 4,355 PE funds 

(with vintages between 1980 and 2018), including the dates and amounts of the cash inflows 

to the PE funds (capital calls), and cash distributions to the investors (net of fund manager 

fees). From the 30 different fund strategies included in the database, we limit our attention to 

buyout funds (consistent with our project-level simulations, which were calibrated to match 

the empirical distribution of net BO fund IRRs). We also filter out all funds with a vintage later 

than 2005, since these might still make significant future cash distributions (the typical private 

equity fund has a life of 10-13 years).13 Consistent with other studies we also filter out a small 

number of funds with extreme IRRs and very short durations, leaving a sample of 369 buyout 

funds. 

Table 7 summarizes the main characteristics of this data. The mean (median) fund IRR 

is 12.2% (8.6%), in line with the summary statistics in Gupta, Nieuwerburgh (2019).  The 

average fund calls 86% of its fund size (measured by committed capital), and distributes close 

to double the called capital, but with substantial variation -  the worst performing funds end up 

close to complete failure. On a value-weighted basis, these funds manage funds for an average 

of five years.  

Table 7: Characteristics of Net Fund Cashflows (Buyout Funds) 

  Mean Median Min Max 
IRR 12.7% 12.2% -46.8% 102.3% 
Contributions (% of commitments) 8.5 8.6 3.6 14.6 
Distributions (% of commitments) 16.3 15.2 0.5 117.2 
Duration (years from first call) 5.0  4.9  1.3  10.7  

Vintage 1998.9 1999 1980 2005 
Source: Preqin. Note that this data excludes completely failed funds, although 
in practice these are rare  ̶̶  most funds make at least some cash distributions. 

                                                      
13 Kaplan and Schoar (2005), Phalippou and Gottschalg (2009) similarly eliminate funds younger than 10 years. 
We are more stringent in removing live funds, since we require fund cashflows for our simulations. For this reason 
we wish to remove live funds which include a final valuation generated by the fund managers. We eliminate funds 
younger than 13 years, considering the possibility of 3-years fund life extension. 
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The investor commits to a PE fund, remits capital to the fund when it is called, and 

receives distributions when the projects are exited. After the final cash flow the fund IRR is 

calculated using the complete set of net cash flows. In the alternative scenario, distributions 

received by the investor are committed to another PE fund. Such “recommitment” strategies 

are widely discussed in the practitioner literature (e.g. Cardie et al., 2000, de Zwart et al., 2012, 

Nevins et al., 2004, Oberli, 2015). Endowment funds are known to reinvest in this way, since 

they have allocations to PE which are not only substantial, but also very stable over time (Azlen 

and Zermati, 2017). More generally, such reinvestment is generally implicit in investors’ 

strategic asset allocation decisions, which typically assume that the chosen asset allocations are 

maintained throughout the investment horizon. 

In practice, investors commit to multiple funds simultaneously, in order to diversify 

returns and make their aggregate cashflows more predictable. We consider an investor who 

commits to a single fund, and when sufficient cash has been distributed by this fund, reinvests 

in another single fund. This is a less attractive strategy but, as we saw in section 5.1, to generate 

a like-for-like comparison between our fixed-horizon strategy and the IRRs reported by 

individual funds, we need to model reinvestment in an asset with equivalent returns and 

diversification to those included in the IRR.  Reinvesting in a portfolio of such funds would 

generate additional “diversification return” which would distort this comparison. 

Fund cashflows can extend considerably further than the maturities recorded for 

individual projects, so in order to allow investment in a sequence of funds (and also protect our 

estimates from excess sensitivity to projects which mature after the end of the investment 

horizon) we make this horizon substantially longer (40 years) than for our project-level 

simulations. At the end of this horizon the investor stops reinvesting, then all remaining 

distributions are collected and the resulting cashflows are used to calculate the annualised IRR. 

This leaves only slight residual variation in the effective horizon (all cashflows are received 

between 40 and 45 years), so the scope for QWA or convexity bias is very small. The difference 

between this figure and the average PE fund IRR gives us an estimate of the systematic biases. 

Unlike the project cashflows above, the Preqin dataset records the cash distributions from each 

fund net of fund manager fees, so no additional fee calculation is necessary. 

For these two strategies to be comparable we keep the investor’s average cash holding 

close to zero, even though the cash calls by funds and cash distributions from funds are 

unpredictable. This assumes that investors sometimes borrow (or sell other non-private assets 
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from elsewhere in their portfolios) in order to provide the cash called by a fund, but this 

assumption is required since positive net cash holdings would dilute investor returns, leaving 

us comparing the IRR generated on a fund fully exposed to PE with the return on a reinvested 

strategy with significant cash holdings or net borrowing. 

Investors are assumed to collect distributions from their most recent fund for t years 

before making commitments to a new fund. At this point they commit a multiple of the cash 

they hold into a new fund. The value of this multiple (1.55) is chosen to give an average net 

cash holding close to zero across these simulations. By the time this cash is called, funds are 

likely to have received further distributions from their previous investment. For robustness we 

use different techniques for dealing with the short-term fluctuations in the cash held by the 

investor. Our first method calculates the IRR over the full investment horizon, including cash 

distributions and cash calls as positive/negative cashflows. This IRR might in principle be 

subject to convexity and QWA biases, but these are likely to small because the strategy remains 

on average fully invested in PE over this long (and exogenous) horizon. By contrast, the IRRs 

published by funds will be affected by the very large variance of the project lives, and their 

covariance with the projects’ annualised returns (Figure 1 above). Over 50,000 simulations our 

reinvested investor IRR averaged 11.4%, compared to the average published IRR of 13.5%, 

suggesting a bias of just over 2.1%.14  

As an alternative (and to avoid using an IRR) we instead assumed that cash balances 

were subject to a at a borrowing/lending rate of 10% until the end of the horizon. This generated 

a long term investor return (in effect a MIRR) which also averaged 11% and so again suggested 

a bias of 2%. Assuming zero interest resulted in lower long term investor return and hence a 

higher bias estimate. These simulations remain preliminary, since we are investigating 

alternative simulation techniques which might be less granular, and hence generate smaller 

absolute cash balances. However, whilst some simulated paths generate positive cash balances, 

others were negative (implying borrowing), and with the average cash holding across our 

simulations close to zero, simple gearing differences are likely to have little net effect.  

Thus, although still preliminary, these results are broadly consistent with the bias 

estimates that we derived in earlier sections. This is reassuring, since here we are using a 

different method and a separate database of net fund cashflows. Furthermore, we know that 

these latest estimates are likely to be conservative, since they compare the IRRs of single funds 

                                                      
14 For VC funds the bias is larger, at around 4%, consistent with the greater variance of VC fund returns. 
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against a reinvested strategy which is slightly better diversified (accumulated cash is reinvested 

into a single new fund, but the existence of residual cashflows from earlier funds will give an 

element of additional diversification). This will add some further “diversification return” to the 

returns of the reinvested strategy, and hence will reduce our estimated bias. 

These estimates can be regarded as giving equal weight to all funds in our dataset, since 

our simulated investors make the required commitment to each new fund regardless of the size 

of this fund. For robustness we repeated this analysis using just the cashflows of the largest 

50% of funds (thus removing the smaller funds that would arguably have been most 

overweighted). This generated marginally larger bias estimates.  

Phalippou and Gottschalg (2008) notes that the IRRs recorded by individual funds are 

sometimes aggregated together into an average for the PE sector as a whole, but this average 

will be a misleading indicator of the returns investors can expect to achieve since funds which 

record higher IRRs tend to be achieved be of relatively short duration. To correct for this (and 

the different sizes of funds) they weight fund IRRs by the PV of the cash invested and the 

fund’s duration, resulting in “a sort of IRR per year and per dollar invested” which is 2.42% 

per annum lower than the simple average of the fund IRRs. This differential is related to QWA 

bias to the extent that it is the covariance of the project returns and durations which leads to 

the observed covariance of fund IRRs and durations, although the latter could also result from 

sectoral, vintage or compositional differences within the dataset. However, QWA bias is 

distinct, since it not just a matter of aggregation   ̶ each individual fund IRR should be regarded 

as having potentially been boosted by QWA bias. Furthermore, duration-weighting fund IRRs 

simplifies each fund into a single cashflow returned after the calculated duration, thus removing 

some of the effect of the covariance of individual project returns and maturities within 

individual funds. It also removes the convexity effect identified above. These factors help 

explain why this differential is lower than our bias estimates.  

We have now estimated QWA and convexity bias both parametrically and by 

simulation, including simulations based on two entirely separate databases, and using a wide 

range of different assumptions. This is grounds for confidence that the biases that we have 

identified are robust and economically highly significant. 
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7. Alternative Return Measures - Biases in Other Measures of Annualized Returns 

Having established that the IRR is systematically biased, we now investigate alternative 

measures that have been suggested for measuring PE returns. This gives a useful additional 

perspective on the underlying factors causing QWA bias. 

The PME (Public Multiple Equivalent) derived by Kaplan and Schoar (2005), is widely 

used in academic studies, but seldom calculated by funds. It is defined as the ratio of two 

present values, using a time-varying discount rate which reflects the return achieved each 

period in a benchmark asset, typically the total return on an equity index such as the S&P500. 

A PME greater than one thus represents fund outperformance of this benchmark: 

    𝑃𝑀𝐸 ≡  ℎ   

 ℎ 
        (19) 

The cash multiple (Multiple of Invested Capital, MOIC) can be seen as a special case 

of the PME where the discount rate is set to zero.  This measure is widely cited by funds, 

although it cannot be directly compared to the annualized returns recorded for other asset 

classes. To investigate the properties of the PME, it is useful to make the same simplifying 

assumption that we did for the IRR in section 3: that all the investor cash (K0) is called by the 

fund at time t=0. All cashflows returned to investors in subsequent periods are discounted back 

to t=0 using the time-varying discount rate Mt: 

𝑃𝑀𝐸 ∑
…

       (20) 

Substituting for dt, using the identity 𝑑 𝐾 1 𝑟 𝐾 :  

𝑃𝑀𝐸 ∑
…

      (21)  

𝑃𝑀𝐸  …    

… …
 

…
                 (22) 

We can ignore the last term, since the investment horizon T will be extended until all assets 

have been written off or distributed to investors, so KT≡0. 

𝑃𝑀𝐸 1 …  

…
        (23)  

The PME is thus a weighted average of the excess returns (in excess of the benchmark return 

Mt) recorded by the fund in each period. Recall the corresponding equation for the IRR: 



33 
 

𝐼𝑅𝑅 ∑ ∑    (24)   

 The PME and IRR can both be regarded as weighted averages of the periodic returns 

rt. In each case, the weight given to each periodic return is a function of the present value of 

the fund at the start of each period. However, the weights for the PME are functions of variables 

which are all simultaneous or prior to the periodic return in question, so these weights will not 

subsequently be revised as successive terms are added. By contrast, we can see that the IRR 

gives weights to each rt which depend on asset values in all periods ─ including those 

subsequent to the return in question. This leads to retrospective adjustment of these weights, 

and hence QWA bias. Thus the IRR exhibits QWA bias, but the PME does not.15 

 However the weights on the excess returns in equation (23) sum to much greater than 

unity. This reflects the fact that the PME is a multiple, not an annualized return. By contrast, 

for a meaningful measure of annualized returns these weights must sum to unity, since a 

performance measure with Σwt≠1 would be a biased estimator of the expected excess return 

(assuming that periodic returns are drawn from a stable distribution). But setting Σwt=1 

introduces QWA bias, because it means that earlier wt must be adjusted retrospectively as 

subsequent periodic returns and distributions are added into the calculation.  

The weights given to later returns rt must be a function of the cash distributions that 

have been made over periods 1 to t-1. Otherwise, substantial weight would be given to periodic 

returns even after the fund has already returned most of its assets to investors, leaving little 

value in the portfolio. Hence, to be meaningful, an annualised performance measure must 

possess two properties: that wt should be a function of prior dt, and that Σwt=1. However, 

together these conditions imply that the weight given to early period returns must also be a 

function of subsequent distributions. This retrospective adjustment will give rise to QWA bias 

if distributions are correlated with earlier returns, just as we saw above for the IRR.16 

                                                      
15 In theory in a fund manager might be able to bias the cash multiple and PME: for example, if the first project 
in which the fund invested very rapidly generated an exceptionally large multiple, then the fund manager will 
know that subsequent investments are likely to dilute this exceptional multiple with more average values. Hence 
the fund’s overall multiple could be boosted by abandoning any further investments and winding the fund up 
prematurely. However, this seems unlikely in practice, since the amount of cash committed to the fund by LPs is 
fixed in advance. Failure to invest this full amount is likely to disappoint the LPs, and would, of course, reduce 
the fees earned by the fund manager. Thus it seems unlikely that fund managers would choose to exploit this bias. 
This comes in dramatic contrast to the QWA bias analysed in this paper which does not depend on discretionary 
action by the fund manager, but is instead driven by the negative correlation between fund returns and duration 
shown in Figure 1, which appears to be a fundamental characteristic of the PE sector. 
16 As discussed earlier, reliable periodic valuations of PE projects are not available until the project matures and 
is realised as cash or listed equity. We can infer the average periodic return ri on this project between initial 
investment and maturity, but we have no reliable means of measuring how this return might have varied over time 
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This has a very important implication: there is no point in looking for alternative 

functions which, like the IRR, seek to measure annualized fund returns using only the fund’s 

periodic cashflows. Any such return would require weights wt which are adjusted to reflect 

cash calls and distributions and, coupled with the requirement Σwt=1, this requires 

retrospective adjustment of earlier weights. This leads to an important conclusion: that QWA 

bias does not arise from the particular functional form of the IRR. Instead it follows directly 

from the properties that we would demand of any meaningful measure of annualized returns.  

Consistent with this, it is straightforward to show that the various alternative measures 

of annualized returns that have been suggested within the PE industry all suffer from QWA 

bias. These have been suggested as means of generating IRRs that compare fund cashflows 

with those on listed equities, giving a measure of the annualized outperformance by the fund. 

Confusingly, the first of these alternative measures is also referred to as the public market 

equivalent (PME), but it is generally attributed to Long and Nickels (1996), so we will refer to 

it here as PMELN. It compares the IRR of the fund cashflows with the IRR that would have 

been recorded for a similarly-timed set of investments in listed equities. The value of each cash 

call made by the fund is assumed to evolve in line with the total return on an equity index such 

as S&P500. Subsequent cash distributions by the fund are treated as the sale of these equities, 

leaving a reduced asset value invested in the equity index. These cashflows plus the residual 

asset value at the end of the investment horizon are then used to calculate a benchmark IRR. 

The difference between the fund’s conventional IRR and this benchmark IRR is taken as a 

measure of fund outperformance.  

One known problem with this approach is that the cash distributions of a fund which 

significantly outperforms the equity index may generate a negative residual asset value, 

implying that the fund is then being benchmarked against a short position in the equity index. 

This problem has been addressed by introducing a scaling factor for the implied equity flows 

(e.g. the Capital Dynamics PME+ measure and the Cambridge Associates mPME). 

A more fundamental problem is that these measures suffer from QWA bias. They each 

compare the fund IRR with the IRR of equivalently-timed investments in public equity. We 

                                                      
(rit). Nevertheless, the cross-sectional correlation shown in Figure 1 between the maturity of individual projects 
and their average return will itself translate into a time series correlation between rt and dt for the fund in aggregate. 
High return projects tend to mature quickly, and after they mature the average return on the fund’s remaining 
projects will fall. Thus substantial returns of cash to investors on average tend to be followed by lower subsequent 
aggregate fund returns, leading to a positive QWA bias. 
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know that the fund IRR suffers significant bias as a result of the correlation between project 

returns and project maturities. Only if the second component (the IRR of the public equity 

equivalent) is equally biased will these two biases net off, leaving the overall measure unbiased.  

This would require the covariance between the returns and durations of the projects 

within the fund to be entirely due to systematic risk rather than idiosyncratic risk. This seems 

extremely unlikely, since (i) annualized returns on PE projects show far greater volatility than 

publicly-listed equity (annualised standard deviation of returns on the S&P500 has been around 

12% compared to the (maturity-weighted) standard deviation of project annualised returns of 

64% in our dataset); (ii) estimates of the market beta for fund returns have been around unity 

(see Section 2). Hence the majority of the volatility in project returns is idiosyncratic. It remains 

theoretically possible that the observed covariance of PE project returns with their maturities 

comes about because maturities covary massively with the market return, but are independent 

of idiosyncratic risk. To assess this, we can regress the average duration of funds within each 

vintage against subsequent equity index returns. Figure 4 shows that there is some systematic 

effect of strong market returns on durations, but this is far smaller than would be required to 

generate the observed covariance of project returns and durations without any effect from 

idiosyncratic returns (to generate the observed 64% standard deviation of returns, the 

regression coefficient would need to be greater than 5).  

Figure 4: Average Fund Duration by Vintage Year vs. Subsequent Equity Returns 

 

Direct Alpha is another performance metric used by practitioners. This is calculated by 

deflating each of the cashflows into and out of the fund by the cumulative return on the equity 

index up to that point. The IRR of these deflated cashflows is then calculated, and is interpreted 

as representing the annualized excess return generated by the fund. This figure will suffer from 



36 
 

QWA bias for exactly the same reasons as PMELN, since the deflated project returns are likely 

to show a strong negative covariance with Ti.   

The fact that these alternative measures all suffer from QWA bias demonstrates that the 

sources of this bias have not previously been well understood. 

Conclusion 

The IRR has long been known to be sensitive to the impact of early cash returns. However the 

reasons for this have not previously been fully analyzed. We have identified two systematic 

upward biases in the IRRs quoted by PE funds. These arise because the timing of the cash 

distributions made by funds to investors (i) is stochastic (resulting in convexity bias), and (ii) 

covaries with the returns achieved up to this date (“Quit Whilst Ahead” bias). By contrast, the 

returns on more liquid assets are calculated over exogenously fixed horizons, and so are free 

from these biases. Thus the IRRs quoted by PE funds are upwardly-biased compared with the 

returns on other asset classes such as listed equity, with which they are likely to be compared. 

Survey evidence clearly shows that investors continue to regard fund IRRs as a key factor when 

deciding to make commitments to funds. 

We quantify the biases in PE IRRs using a range of parametric and simulation 

techniques. These show robust upward biases that raises a typical fund IRRs by an average of 

around 3% per annum (it could be far higher in individual cases). This is economically highly 

significant to investors, compared to the average net fund IRR of 12.2% per annum. Indeed, 

the biases account for a substantial proportion of the extent to which this average IRR appears 

to exceed the returns generated by listed equity indices. We have shown that these biases are 

not just the result of a small number of extreme datapoints. To this end our estimates are 

deliberately conservative in a number of respects. Consistent with other studies we removed 

extreme returns and durations from our dataset of PE projects. We also reported the median 

biases in our simulations (the means are substantially higher). We also considered alternative 

scenarios which (i) removed projects with the longest lives; (ii) modelled the performance of 

individual deciles of the IRR distribution (consistent with persistent differentials in manager 

skill levels or the risk premia involved); (iii) checked our project-based simulations against an 

entirely separate dataset of net fund cashflows by modelling an investor reinvesting in 

successive funds.  

QWA bias does not arise from the particular functional form of the IRR, it follows 

directly from the properties that we would demand of any meaningful measure of annualized 
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returns. Public Multiple Equivalent (PMEs) are not biased, but they become biased if they are 

annualised. Variants on the IRR have been suggested by practitioners (Direct Alpha, 

ICM/PME, PME+, mPME). We have shown that these are similarly biased. The fact that 

practitioners have proposed such biased measures demonstrates that the biases in the IRR have 

not previously been properly understood.  

Neither IRRs nor related measures should be relied upon. Unbiased performance 

measures instead need to be calculated over fixed time horizons. PE funds should be 

encouraged to publish their performance on this basis. In practice this would be best achieved 

by using some form of MIRR (modified IRR). There is inevitably scope for debate about the 

returns assumed to be achieved by reinvesting early cash distributions, but any standardized 

calculation method would remove the potentially very large biases that are inherent in private 

equity IRRs.  
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Annex 1: Second-Order (Convexity) Bias 

The figures derived in Section 4 are estimates of the QWA bias, which is derived from the first 

order term of the Taylor expansion of the expression which defines the IRR. In this annex we 

demonstrate that there is an additional second order bias which further increases fund IRRs. 

We use the same framework as above, but this time consider both terms in equation (6): 

∑ ∑ 𝑟 𝑅  ∑ ∑ 𝑟 𝑅 0. Decomposing the first order term, as 

before: 

𝑅 𝜇 ∑ 𝑇 ∑ ∑ 𝑟 𝜇  ∑ ∑ 𝑟 𝑅   (A1) 

Separating ∑ 𝑇  into 𝑇  and the lifetimes of all other projects ∑ 𝑇, , then dividing top 

and bottom by 𝑁𝜇 : 

𝑅 𝜇 ∑
∑

∑ , ∑
∑

∑ ,  (A2) 

Noting that 
∑ ,

1, we approximate using 1 𝑥 𝑥 , where 𝑥 . 

 𝑅 𝜇 ∑ ∑ 𝑟 𝜇 1 ∑ ∑ 𝑟 𝑅 1

    (A3)                          

We first consider the special case where all projects are realised at a fixed horizon 𝑇 𝜇

𝑇∗, noting that E ∑ 𝑟 𝜇 0: 

 𝐸 𝑅 𝜇 ∗ 𝐸 ∑ ∑ 𝑟𝑖𝑡 𝑅𝑡 𝑇∗

𝑡 1    (A4) 

We saw above that R is (to a first order approximation) simply the sample mean of all 

the periodic returns 𝑟 . Hence, we can interpret the quadratic term as the variance of these 

returns around their own sample mean. This has expectation  .  

 𝐸 𝑅 𝜇 1      (A5) 

This equation shows the “diversification return” by which the geometric mean (GM) 

return on a portfolio of N iid assets is raised above 𝜇  (the expected GM return on a single one 

of these assets). This requires careful interpretation. First, we note that the IRR of a portfolio 
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of assets with identical maturities 𝑇 𝑇∗ is simply the GM return.17 Thus this effect is not 

specific to the IRRs that are the focus of this paper. It is relevant whenever we compare the 

GM returns of different assets or portfolios.  

This effect can be regarded as simply an application of the well-known relationship 

between the geometric and arithmetic means: E GM E AM 𝜎 2⁄ . This relationship 

comes about because the GM return is a concave function of the final portfolio value: 𝐺𝑀

𝐾 𝐾⁄ 1  in discrete time (or 𝐺𝑀 𝑙𝑜𝑔 𝐾 𝐾⁄   in continuous time). For example, if 

the distribution of asset returns is symmetrical, then the concavity of this function generates an 

upward skew in the corresponding distribution of terminal asset values, because compounding 

a slightly above-mean return 𝜇 𝑑 increases the terminal value by more than a below-mean 

return 𝜇 𝑑 would reduce it. This upward skew boosts the expected terminal value of each 

asset by 𝜎 2⁄ , as can be seen in the textbook result that the mean of a lognormal distribution 

with mean return 𝜇 and variance 𝜎  is 𝑒 ⁄ , but its median is 𝑒 .  

We reverse the process when we calculate the GM returns corresponding to these asset 

values: the upward skew disappears as the curvature of the return function punishes positive 

outliers with particularly large KT, thus reducing the mean return by 𝜎 2⁄ . This effect has 

been termed “volatility drag”.  

However, these two effects no longer cancel out when we consider a portfolio of assets. 

The concavity of the return function: (i) gives an upward skew to the distribution of final values 

which increases the expected value of each asset by half its variance; (ii) reduces the expected 

return corresponding to this total final value by half of the variance of the portfolio. Thus for a 

portfolio of N iid assets, the expected final portfolio value is boosted by 𝜎 /2, but the portfolio 

return associated with this distribution is reduced by 𝜎 /2𝑁. The expected portfolio return is 

the expected asset return plus 1 , as shown in equation (A5) above.  

  

                                                      

17 The GM is derived from the ratio of the final portfolio value to its initial value: 𝐺𝑀
∑ ∗

∑

/

1 ⇔

∑ ∗ ∑ 𝐾 0. The latter expression states that the NPV of the portfolio is zero at the discount rate GM, 

which is the definition of the IRR. Hence the IRR and GM are identical when all assets have equal maturity. 
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Figure A1: Illustration of Volatility Drag and “Diversification Return” 

 

If we are comparing portfolios with similar levels of diversification and containing 

assets with similar variances then the GM returns of these portfolios would give a like-for-like 

comparison. But with different levels of diversification return these GMs give a misleading 

comparison. For example, a particularly highly diversified mutual fund will, all else equal, tend 

to record a higher GM return than other funds which invest with equal skill in a smaller number 

of similar assets. This differential may be misinterpreted as outperformance by the better-

diversified fund. Portfolio diversification is obviously desirable, but investors do not need to 

invest in highly diversified funds to achieve this  ̶  they can instead invest in a highly diversified 

selection of less diversified funds. Comparing GM returns may thus encourage investors to 

choose inappropriate funds. Cuthbertson et al. (2016) showed that confusion about this 

“diversification return” has led to dynamic trading strategies being recommended which have 

no impact on the expected terminal value of the portfolio, but merely boost the GM return by 

reducing volatility drag.  

This issue is of much wider scope than the PE IRRs that are our focus in this paper. 

However, we need to take it into account since our goal here is to identify any additional biases 

which affect the IRRs of PE funds when compared to the GM returns calculated for more liquid 

assets such as exchange-traded equities. Phalippou (2020) reports that PE fund managers do 

indeed cite the GM returns on other asset classes as benchmarks against which their fund IRRs 

should be compared. 

Our assumption above that all projects are realised at a fixed horizon 𝑇∗ made the fund 

IRR identical to the GM return. Relaxing this assumption shows how variation in Ti affects the 

GM return

Terminal Wealth

μ

μ+d

μ‐d

𝜎 2𝑛⁄  
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IRR. In the slightly more general case where Ti varies, but is not correlated with either 𝑟  or 

∑ 𝑟 𝑅 , most of the terms in equation (A3) have zero expectation (since terms in 

𝑇 𝑗 𝑖  are independent of the terms in 𝑖 and 𝐸 𝑟𝑖𝑡 𝜇𝑟 0 , but the second order product term 

does not: 

𝐸 𝑅 𝜇 ∑ 𝐸 ∑ 𝑟𝑖𝑡 𝑅
𝑡 𝑇𝑖

𝑡 1 𝐸 1   (A6) 

𝜇 1                  (A7) 

Thus, even in the absence of the covariance which generates QWA bias, the variance 

of 𝑇  increases the expected IRR. Our dataset shows that these project maturities vary widely, 

with a mean of 4.3 years, but a standard deviation of 2.3 years. However, before using this 

expression to quantify this effect, we should recall that it is based on the approximation 

1 𝑥 𝑥 , which is adequate to demonstrate the existence of this effect, but may be a poor 

approximation, since the higher order terms in this Taylor series could also be significant. In 

particular, the distribution of project maturities Ti is positively skewed, with fewer of the 

extremely short durations which would maximise this convexity effect. Furthermore, shorter-

maturity projects record more volatile annualised returns than longer projects (see Figure 1), 

and this negative correlation will reduce the positive skew in the resulting distribution of 

terminal values. Hence the positive effect on the expected IRR is likely to be smaller than the 

1  derived above. To avoid an inappropriate approximation, we recall that this effect 

comes about because we derived our expression for the expected IRR by dividing both sides 

of equation A1 by  ∑ 𝑇 : 

𝑅 𝜇
∑ ∑

∑
 

∑ ∑

∑
   (A8) 

If  ∑ 𝑇  is correlated with the cumulative returns then we have QWA bias. If there is 

no such correlation then the linear term on the right has zero expectation, leaving: 

𝐸 𝑅 𝜇  𝐸
∑ ∑

∑
 𝐸 ∑ ∑ 𝑟 𝑅 𝐸

∑
 (A9) 

When 𝑇  is fixed at 𝑇 𝜇 𝑇∗, this simply becomes ∗ 𝐸 ∑ ∑ 𝑟 𝑅  

giving us the expression above for the diversification return for the portfolio geometric mean 

return calculated over a fixed horizon. But when 𝑇  varies independently of returns, this boosts 
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the diversification return simply because the reciprocal is a convex function such that  

𝐸
∑ ∑

  (given that 𝑇 0). Our data on project returns shows that for N=6 the 

left hand side of this inequality is 5% larger than the right, so independent variance in 𝑇  in our 

dataset should be expected to boost the diversification return from its original 6.71% to 7.05% 

(derived by evaluating  using the observed 16.1% maturity-weighted variance of project 

returns). This represents a more modest increase (+0.34%) in the expected IRR than the QWA 

bias discussed above, but: (i) it represents an entirely separate effect, which will arise even in 

the absence of QWA bias; (ii) it should be considered a bias since it boosts the IRRs recorded 

for portfolios of assets with varying 𝑇  above those (GMs) of portfolios with entirely similar 

return characteristics but a fixed horizon.  
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Annex 2: Modelling Systematic Risk 

In this section we check the robustness of our estimates of QWA bias above by explicitly 

modelling the extent to which the returns on all projects in which a fund invests might be 

affected by systematic risk. We return to our first order approximation of the IRR as simply a 

weighted average of the project returns, but this time systematic risk will mean that Tj is not 

independent of 𝑟 , since each Tj is correlated with ∑ 𝑟 , and systematic risk means that each 

𝑟  is correlated with 𝑟 . 

𝑅 𝜇
∑ ∑

∑ 𝑇𝑖

∑
∑

∑ ,    (A10) 

∑ ∑ 𝑟 𝜇 1
∑ ,

  (A11) 

This expression identifies an additional element of bias reflecting the covariance of 

∑ 𝑟 𝜇  with the lives Ti of each of the (N-1) other projects in the fund. We can estimate 

this additional bias by approximating that the relationship between project durations and 

returns is linear: 𝑇 𝜇 𝑘 ∑ 𝑟 𝜇 𝑓 , where 𝑘 0, 𝑓  are iid, 𝐸 𝑓 0: 

𝑅 𝜇 ∑ ∑ 𝑟 𝜇 1
∑ ∑,

       (A12) 

We identify systematic risk by substituting ∑ 𝑟 𝜇 ∑ 𝛽 𝑟 𝜇

𝑒 , where 𝑟  is the market return, 𝛽 is the CAPM coefficient, 𝑒  is iid and 𝐸 𝑒 0.  

𝑅 𝜇 ∑ ∑ 𝛽 𝑟 𝜇 𝑒 1
∑ ∑  ,

∑ ∑ 𝑟 𝜇           (A13) 

Taking expectations, noting that 𝐸 ∑ 𝑟 𝜇 0, and that the idiosyncratic 

errors 𝑒  and 𝑓  are independent of 𝑟 : 

𝐸 𝑅 𝜇 ∑ 𝐸 ∑ 𝑟 𝜇 ∑ ∑ 𝑟 𝜇,

∑ 𝐸 𝑇 𝜇 ∑ 𝑟 𝜇  (A14) 

Thus a component of the bias is related to the variance of the market return. We can 

approximate that 𝐸 ∑ 𝑟 𝜇 ∑ 𝑟 𝜇 𝜇 𝜎 , giving:  
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𝐸 𝑅 𝜇 𝜎 𝑐𝑜𝑣 𝑇 , ∑ 𝑟 𝜇              (A15) 

This expression decomposes the bias into systematic and idiosyncratic risk 

components. As noted in the literature survey, previous studies report β estimates ranging either 

side of  unity, so we use β=1. Simple OLS estimation of our linear model of project durations 

gives a coefficient k= -1.05 (Figure A2) and, as above, 𝑐𝑜𝑣 𝑇 , ∑ 𝑟 𝜇 = -2.30. Taking 

N=6 gives an estimated bias of 3.9% (N=9 implies 3.0%).  

This is a useful cross-check, although we should regard it as a likely overestimate of 

QWA bias, since (i) the squared residuals in 𝐸 ∑ 𝑟 𝜇 ∑ 𝑟 𝜇   will only 

be variances for min(Ti, Tj), since the excess market returns during the period where only one 

of the two projects is still live will be uncorrelated with the earlier returns (given our 

assumption of serial independence); and (ii) high market returns tend to reduce both 𝑇  and 𝑇  

as project exits are achieved more quickly (although this endogeneity will be of limited 

magnitude since the majority of the volatility of project returns is idiosyncratic).  

Figure A2: Project Durations and Cumulative Excess Returns 

 
Source: MergerMarket, with debt assumptions imposed as discussed in Section 4. 

 

More generally, we could model the bias as a function of a number of independent risk 

factors: 𝐸 𝑅 𝜇 𝑘𝛽 𝜎 𝑘𝛽 𝜎 𝑘𝛽 𝜎 … The corresponding portfolio 

variance is 𝛽 𝜎 𝛽 𝜎 𝛽 𝜎 …, so our assumption that Ti is a linear function of 

∑ 𝑟 𝜇  implies that the bias is simply proportional to the portfolio variance: 𝐸 𝑅

y = ‐1.0534x + 3.6637
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𝜇 𝑘𝜎 . Indeed, we could derive this result directly by substituting 𝑇 𝜇

𝑘 ∑ 𝑟 𝜇 𝑓  into equation (A3) above:  

 𝐸 𝑅 𝜇 𝐸 ∑ ∑ 𝑟 𝜇
∑ ∑

𝑘𝜎  (A16) 

This allows us a simpler approach to estimating the bias. It is based on the restrictive 

assumption of a linear relationship between Ti and ri, but it has the advantages (i) that it allows 

us to be completely agnostic about the risk factors which generate this variance; (ii) that we 

can apply it to the observed variance of net fund IRRs, thus to some extent taking into account 

the non-linear effect of performance-related fees, which will tend to make net returns less 

volatile than gross returns. We use the same estimate of k as above (-1.05), since the aggregate 

sensitivity of project durations to these unspecified risk factors must be the same as their 

average sensitivity to project returns rit, regardless of how we choose to decompose the return 

volatility. Combining this with the observed variance of net fund IRRs (standard 

deviation=13.1%, see Table 4) gives us a bias of 1.8%. However, k was of necessity estimated 

using gross project returns. To the extent that the option-like fee structure reduces the variance 

of net IRRs, the regression coefficient would need to be larger to be consistent with the 

observed variance of Ti. Thus the bias estimate this gives us should be regarded as an 

underestimate.  

Our bias estimates inevitably vary when we use different techniques. These estimates 

were based on a number of assumptions that might be imprecise, especially given the extreme 

volatility of PE project returns. However, even with these inherent uncertainties, our bias 

estimates are fairly consistent, ranging from a likely underestimate of 1.8% per annum to a 

likely overestimate of 3.9%.  
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