UC3M's ST3LLARsat1 Boira CubeSat: Thermal Control Subsystem evolution from concept to baseline design

Carlos García, Miguel Cruzat, Daniel Jiménez, Julia Schieffer, Alison Ponche, Andrés Marcos, Antonio Acosta

Universidad Carlos III de Madrid (UC3M)

uc3m Universidad Carlos III de Madrid

- CubeSat overview and goals
- Current team/config & Thermal design methodology
- **>** BDR vs (current) FDR configurations
- **BDR** analyses
- **>** BDR to FDR: identified issues
- Conclusions

CubeSat overview and goals

- 1st UC3M CubeSat student programme.
 - To provide students with hands-on experience in a real space project.
- Aim is to design, build, and launch a 2U CubeSat to monitor climate change by measuring local atmospheric moisture
- TECHNOLOGICAL

EDUCATIONAL

SCIENTIFIC

- An in-house state-of-art compact communication antenna
- An in-house OBC software for **advanced AOCS/ADCS algorithms**

ST3LLARsat1 is integrated within UC3M's Master in Space Engineering (MISE)

Sept'22: Start of the 1st UC3M student CubeSat program with support of UC3M-SENER aerospace chair ST3LLAR

Sept'22-March'23: Baseline Design Review (BDR) Phase April-August'23: Consolidation of BDR design

Sept'23-Jun'24: Final Design Review (FDR) Phase

Current team/config & Thermal design methodology

Team: 3 professors + 1 research associate + 35 grad-students + 35 undergrad (2 PhDs + 12 2ndyr-MISE + 21 1styr-MISE volunteers)

Thermal team: one 2ndyr-MISE team lead + **three** 1styr-MISE volunteers

- Identify components within the overall system
- Perform thermal analyses:
 - Define inputs, outputs, and heat paths
 - Assume default values for unspecified characteristics
 - Obtain the geometrical and thermal mathematical model
 - Perform nominal and worst (hot/cold & extreme orbit) cases
- Establish thermal subsystem design:
 - Define conceptual subsystem design
 - Check solution for consistency
 - Ensure integrity of design: identify abnormal behaviour, recommend control measures, validate predictions.

uc3m

Carlos II

BDR vs (current) FDR configurations

- > Temperature ref. points: only for payload and battery
- Worst Case Orbits:

Cold Case: SSO – NM – 500 Hot Case: SSO – DD – 500

- Heat paths: preliminary analysis
- Assumptions: solar panels with white paint, black anodizing for aluminum structure, and black paint for external walls

- > Temperature ref. points: to add for Solar panels
- > Updated Worst Case Orbits:

Cold Case: SSO – NM – **400** Hot Case: SSO – DD – **525**

- Heat paths: detailed analysis. Path through antenna to payload
- New solar panels
- New subsystems distribution

BOJRA BOJRA UC3m Universidad Carlos III de Madrid

Battery is out of range in min. temperature and max- temperature On Board Computer is out of range in max. temperature

MISSION SUMMARY							
Subsystem	Component	Min. Non	Min.	Min. Design	Max. Design	Max. Operative	Max. Non Operative
		Operative Temp.	Operative	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]
Power	Battery	-10	0	-7.87	49.01	40	60
AOCS	CPU_AOCS	-40	-40	12.12	76.36	85	85
OBC & Comms	CPU_OBC	-40	-40	30.68	88.54	85	85
AOCS	GPS Rx	-55	-40	-17.74	58.98	85	100
AOCS	Gyro	-40	-25	-14.52	61.27	85	105
AOCS	Magnetometer	-40	-40	-13.53	53.35	85	85
OBC & Comms	Memory1	-40	-40	3.59	65.17	85	85
OBC & Comms	Memory2	-40	-40	1.95	64.05	85	85
OBC & Comms	OBC_PCBs	-20	-20	-12.97	52.53	60	60
Structures	Structure	-40	-40	-32.44	48.17	60	60
Power	Solar Panel Z	-40	-40	-36.54	44.74	85	85
Power	Solar Panel mX	-40	-40	-35.39	55.14	85	85
Power	Solar Panel mY	-40	-40	3.59	65.17	85	85
OBC & Comms	Transceiver	-40	-40	-35.32	53.27	85	85
OBC & Comms	UHF Antenna	-20	-20	-14.33	52.89	60	60
Power	EPS I Casing	-40	-40	-18.15	41.83	150	150
Payload	Lens	-20	-20	-12.63	49.17	60	60
AOCS	Magnetorquers	-20	-20	-15.37	43.98	60	60
Payload	Ocean payload	-20	-20	-13.79	54.16	60	60

BOIRA BOIRA UC3m Universidad Carlos III de Madrid

Battery is out of range in min. temperature and max- temperature On Board Computer is out of range in max. temperature

MISSION SUMMARY							
Subsystem	Component	Min. Non	Min.	Min. Design	Max. Design	Max. Operative	Max. Non Operative
		Operative Temp.	Operative	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]
Power	Battery	-10	0	-7.87	49.01	40	60
AOCS	CPU_AOCS	-40	-40	12.12	76.36	85	85
OBC & Comms	CPU_OBC	-40	-40	30.68	88.54	85	85
AOCS	GPS Rx	-55	-40	-17.74	58.98	85	100
AOCS	Gyro	-40	-25	-14.52	61.27	85	105
AOCS	Magnetometer	-40	-40	-13.53	53.35	85	85
OBC & Comms	Memory1	-40	-40	3.59	65.17	85	85
OBC & Comms	Memory2	-40	-40	1.95	64.05	85	85
OBC & Comms	OBC_PCBs	-20	-20	-12.97	52.53	60	60
Structures	Structure	-40	-40	-32.44	48.17	60	60
Power	Solar Panel Z	-40	-40	-36.54	44.74	85	85
Power	Solar Panel mX	-40	-40	-35.39	55.14	85	85
Power	Solar Panel mY	-40	-40	3.59	65.17	85	85
OBC & Comms	Transceiver	-40	-40	-35.32	53.27	85	85
OBC & Comms	UHF Antenna	-20	-20	-14.33	52.89	60	60
Power	EPS I Casing	-40	-40	-18.15	41.83	150	150
Payload	Lens	-20	-20	-12.63	49.17	60	60
AOCS	Magnetorquers	-20	-20	-15.37	43.98	60	60
Payload	Ocean payload	-20	-20	-13.79	54.16	60	60

BOIRA BOIRA UC3m Universidad Carlos III de Madrid

Battery is out of range in min. temperature and max- temperature On Board Computer is out of range in max. temperature

MISSION SUMMARY							
Subsystem	Component	Min. Non	Min.	Min. Design	Max. Design	Max. Operative	Max. Non Operative
		Operative Temp.	Operative	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]	Temp. [ºC]
Power	Battery	-10	0	-7.87	49.01	40	60
AOCS	CPU_AOCS	-40	-40	12.12	76.36	85	85
OBC & Comms	CPU_OBC	-40	-40	30.68	88.54	85	85
AOCS	GPS Rx	-55	-40	-17.74	58.98	85	100
AOCS	Gyro	-40	-25	-14.52	61.27	85	105
AOCS	Magnetometer	-40	-40	-13.53	53.35	85	85
OBC & Comms	Memory1	-40	-40	3.59	65.17	85	85
OBC & Comms	Memory2	-40	-40	1.95	64.05	85	85
OBC & Comms	OBC_PCBs	-20	-20	-12.97	52.53	60	60
Structures	Structure	-40	-40	-32.44	48.17	60	60
Power	Solar Panel Z	-40	-40	-36.54	44.74	85	85
Power	Solar Panel mX	-40	-40	-35.39	55.14	85	85
Power	Solar Panel mY	-40	-40	3.59	65.17	85	85
OBC & Comms	Transceiver	-40	-40	-35.32	53.27	85	85
OBC & Comms	UHF Antenna	-20	-20	-14.33	52.89	60	60
Power	EPS I Casing	-40	-40	-18.15	41.83	150	150
Payload	Lens	-20	-20	-12.63	49.17	60	60
AOCS	Magnetorquers	-20	-20	-15.37	43.98	60	60
Payload	Ocean payload	-20	-20	-13.79	54.16	60	60

> Assumptions:

BOİRA BOİRA Uc3m Universidad Carlos III de Madrid

COLD CASE

- Only the capacitances for the EPS and the payload are included
- Most electronic equipment do not have a thickness -> no thermal inertia
- Thermal contacts are simplified

BO **Battery behaviour** uc3m de Madrid +10 °C Uncertainty margin Battery thermal evolution in cold case 20,00 Battery Temperature 15,00 operational range Uncertainty margin 10,00 for battery Temperature [C] 5,00 -10 °C Uncertainty margin 0,00 20,00 0.00 40,00 60,00 80,00 **Proposed solutions:** -5,00 > Thermostatic control definition could be changed: Heaters ON temp. set at 15 °C (instead of 5 °C) -10,00 Change of modelling uncertainty : \succ -15,00 If battery heater's duty cycle shown to be <70%, Time [min] then we can lower batt. model uncertainty to 5 °C

BDR to FDR: identified issues & proposed solutions

BDR to FDR: identified issues & proposed solutions

On Board Computer MCU behaviour

Issue:

- Exceedance on OBC (just a few degrees)
- Contact conductance is 20 W/m2K

Not critical but need to keep an eye and check it for final model/design

Т

(ºC)

78.145

75.675 73.205

70.734 68.264 65.794 63.323 60.853 58.382 55.912 53.442 50.971 48.501 46.031 43.560 41.090 38.620

CPU of the OBC hot results with PCB

https://www.pcgamer.com/bent-cpu-pins-may-become-athing-of-the-past-as-amd-eyes-major-socket-change/

https://videocardz.com/newz/golem-intel-core-i9-9900k-will-be-soldered

BDR to FDR: identified issues & proposed solutions

On Board Computer MCU behaviour

Bolted

> Contact conductance assumption known to be low, can be improved by looking at MCU integration:

- By considering the MCU mounting method: bolted, soldered, pinned ٠
- > Thermal fillers have been proposed to increase conductivity between CPU and PCB

8

Conclusions

Technical:

- Recommended to be more conservative for HOT case by assuming that 100% of power delivered to components is dissipated as heat.
- Consider calculated versus predicted temperatures from beginning of design phase as they can change based on chosen duty cycles.

Team Management:

- > Critical subsystems must be led by 'experienced' student (i.e. previous year volunteer)
- Choices, assumptions, and solutions MUST be documented

Acknowledgements

Dr. Marcos gladly acknowledges the Senior Distinguished Beatriz Galindo award by the Spanish government & additional funding by the VPRICIT framework of the Comunidad de Madrid and UC3M. The **UC3M-SENER aerospace chair**, for funding and expert support

For expert support, training and providing access to their AIV facilities within their **FYS Booster Design programme**

For providing their **thermal modeling software**

UC3M's Aeroelastic and Structural Design Lab for their knowledge and support The E.T.PACK-F H2020 project for integrating us in their **GCS development** *activity*

Thank you!

carlos.g.gomez@alumnos.es anmarcos@ing.uc3m.es

100 - C

Sener Sener

S

BOIRA

ELLAR-SA

Back-up slides

Analysis on BDR Configuration

HOT CASE

- Only the capacitance for the EPS and the payload are included.
- Most of electronic equipment do not have a thickness associated, no thermal inertia.

- The thermal contacts are **not** representative enough.
- Example: Second lowest plate is thermally decoupled from its surroundings.