Conference Agenda

Overview and details of the sessions of this conference. Please select a date or location to show only sessions at that day or location. Please select a single session for detailed view (with abstracts and downloads if available).

 
 
Session Overview
Session
MS31 2: Inverse Problems in Elastic Media
Time:
Friday, 08/Sept/2023:
4:00pm - 6:00pm

Session Chair: Andrea Aspri
Session Chair: Ekaterina Sherina
Location: VG3.104


Show help for 'Increase or decrease the abstract text size'
Presentations

An inverse problem for the porous medium equation

Catalin Ion Carstea1, Tuhin Ghosh2, Gen Nakamura3

1National Yang Ming Chiao Tung University, Taiwan; 2National Institute of Science Education and Research, India; 3Inha University, Korea

The porous medium equation is a degenerate parabolic type quasilinear equation that models, for example, the flow of a gas through a porous medium. In this talk I will present recent results on uniqueness in the inverse boundary value problem for this equation. These are the first such results to be obtained for a degenerate parabolic equation.


Comparison of variational formulations for the direct solution of an inverse problem in linear elasticity

Paul E. Barbone1, Olalekan Babaniyi2

1Boston University, United States of America; 2Rochester Institute of Technology, United States of America

Given one or more observations of a displacement field within a linear elastic, isotropic, incompressible object, we seek to identify the material property distribution within that object. This is a mildly ill-posed inverse problem in linear elasticity. While most common approaches to solving this inverse problem use forward iteration, several variational formulations have been proposed that allow its direct solution. We review five such direct variational formulations for this inverse problem: Least Squares, Adjoint Weighted Equation, Virtual Fields, Inverse Least Squares, Direct Error in Constitutive Eqn. [1, 2, 3, 4, 5]. We briefly review their derivations, their mathematical properties, and their compatibility with Galerkin discretization and numerical solution. We demonstrate these properties through numerical examples.

[1] P. B. Bochev, M. D. Gunzburger. Finite element methods of least-squares type, SIAM Review, 40(4): 789--837, 1998.

[2] P. E. Barbone, C. E. Rivas, I. Harari, U. Albocher, A. A. Oberai, Y. Zhang. Adjoint-weighted variational formulation for the direct solution of inverse problems of general linear elasticity with full interior data, International Journal for Numerical Methods in Engineering 81(13): 1713--1736, 2010.

[3] F. Pierron, M. Grédiac. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements, Springer Science & Business Media, 2012.

[4] G. Bal, C. Bellis, S. Imperiale, F. Monard. Reconstruction of constitutive parameters in isotropic linear elasticity from noisy full-field measurements, Inverse Problems 30(12): 125004, 2014.

[5] O. A. Babaniyi, A. A. Oberai, P. E. Barbone. Direct error in constitutive equation formulation for plane stress inverse elasticity problem, Computer Methods in Applied Mechanics and Engineering 314: 3--18, 2017.


 
Contact and Legal Notice · Contact Address:
Privacy Statement · Conference: AIP 2023
Conference Software: ConfTool Pro 2.8.101+TC
© 2001–2024 by Dr. H. Weinreich, Hamburg, Germany